Supplementary material

Kratom (*Mitragyna speciosa*) validation: quantitative analysis of indole and oxindole alkaloids reveals chemotypes of plants and products

Preston K. Manwill¹, Laura Flores-Bocanegra¹, Manead Khin¹, Nadja B. Cech¹, Nicholas H. Oberlies^{1,*}, and Daniel A. Todd^{1,*}

¹Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, 27402, USA

* Corresponding authors:

Daniel A. Todd

Tel.: (336) 334-4768

E-mail address: <u>datodd3@uncg.edu</u>

Nicholas H. Oberlies

Tel.: (336) 334-5474

Email address: nicholas_oberlies@uncg.edu

1 Table of Contents

Table 1S List of publications covering the analytical analysis of kratom plants and products	,
Fig. 1S Comparison of a kratom extract analyzed using a generic screening method with a BEH C18	
column (A) and the developed method using a Kinetex F5 column (B)	ł
Table 2S Intraday and interday precision (as measured by RSD) and accuracy (as measured by RE) of the	
method for kratom alkaloid quantification	;
Table 3S Concentration (μ g/mL) and Percent recovery (%) of internal standard mitragynine- d_3 , which	
was added to all solutions at a concentration of 125 $\mu\text{g/mL}$ 12)
Fig. 2S Base peak MS chromatograms representing the methanolic extracts of kratom material	
quantified in Table 2	_
Fig. 3S Base peak MS chromatograms representing the methanolic extracts of kratom material	
quantified in Table 3	2
Fig. 4S Base peak MS chromatograms representing the methanolic extracts of kratom material	
quantified in Table 4	;
Table 4S Literature references for purchased indole and oxindole alkaloid standards14	ŀ
Table 5S Commercial kratom products and M. speciosa specimens analyzed in this study15	,

Fig. 5S Graphical overview of the BLAST results (January 2022) in NCBI GenBank database using Inter	rnal
Transcribed Spacer (ITS) region of K64	15
Fig. 6S Graphical overview of the BLAST results (January 2022) in NCBI GenBank database using Inter	rnal
Transcribed Spacer (ITS) region of K68	16
Fig. 7S Phylogram of the most likely tree (-InL = 1320.66) from a RAxML analysis of 20 taxa based on	ITS
region (608 bp).	
Table 6S Precursor ion inclusion list for MS ² analysis.	19
Table 7S Constrain peak width settings used for peak integration.	19

Table 1S List of publications covering the analytical analysis of kratom plants and products.

Biological matrix	LOD (ng/mL)	LOQ (ng/mL)	Calibration range	Compounds detected	Concentration	Concentration (%)	Internal standard(s)	A nalytical technique	Column	Solvent system	Run time	Reference
kratom cocktail' (4 x 100)	1.000 mg/L	3.000 mg/L	5.000– 100.000 mg/L	MG	90.021 mg/L			HPLC-DAD	Eclipse XDB- C8	methanol:water (80:20, v/v)	10 min	[1]
commercial products, live plant (US)		5 μg/mL	5–100 μg/mL	MG	2.76–20.05 mg/g	Y	mitragynine-d₃	DART-HRMS		methanol		[2]
kratom products, <i>M. speciosa</i> and <i>M.</i> <i>hirsuta</i> dried leaves (Thailand)			1.0–10.0 μg/mL 10–1000 ng/mL	MG 7-HMG SPG SPC PAY	0.8 ± 0.2–62.6 ± 1.6 mg/g 0.031 ± 0.004–0.393 ± 0.026 mg/g	0.08–6.3 % 0.003–0.04 %	betamethasone valerate	HPLC-DAD, LC-ESI-MS	Atlantis dC18	A: water (10 mM ammonium formate, pH 3.5), B: methanol	66 min	[3]
commercial products, police sample, fresh and dried leaves			0.5 mg/mL	MG				HPLC-UV-Vis, TLC	Luna C18	MeCN/0.01% ammonia (70:30, v/v), pH 10.3	20 min	[4]
leaf extracts, drinks, dried plants	0.25 μg/mL	0.50 μg/mL	0.5–10.0 μg/mL	MG	0.80 ± 0.11-24.72 ± 0.67 mg/g, 30.95 ± 1.61-444.23 ± 3.55 μg/mL			HPLC-DAD	Inertsil C8	MeCN:0.5% formic acid, pH 5 (50:50, v/v)	6 min	[5]
leaf extracts, commercial products		1 ng/mL	1–200 ng/mL	MG 7-HMG SPG SPC PAY COR COX COX-B		0.7-38.7 % w/w 0.01-0.04 % w/w 0.1-5.3 % w/w 0.4-12.3 % w/w 0.3-12.8 % w/w 0.02-1.16 % w/w 0.03-2.75 % w/w 0.03-1.44 % w/w	phenacetin	UHPLC-ESI- MS/MS	BEH C18	A: water (10 mM ammonium acetate, pH 3.5), B: MeCN	22.5 min	[6]

	ICOR	0.02-0.13					
	MTP	< LLOQ					
leaf extract, alkaloid extract	СОХ-В		UHPLC-API- MS-DAD, SFC- DAD, GC-MS	Zorbax RRHD SB-C8, Rx-SIL, DB-5MS	A: water (10 mM ammonium acetate, pH 7.7), B: MeCN; CO2 with MeOH (10 mM ammonium acetate)	35 min, 10 min	[7]
	сох						
	РАҮ						
	3-IPAY						
	MG						
	SPG						
	SPC						
	7-HMG						
commercial leaves and products	7-HMG		UHPLC-ESI- MS/MS	Zorbax RRHD SB-C8	A: water (0.1% formic acid), B: MeCN (0.1% formic acid)	40 min	[8]
	ISPF						
	ISPFE						
	IROF						
	COX-B						
	сох						
	7β- hydroxy- 7 <i>H</i> -MTC PAY						
	MG						
	SPG						
	3-IPAY						
	SPC						
commercial product, seized product	MG		CE-HRMS, CE- MS/MS	capillary (50 μm i.d., 67.5 cm length)	MeCN (58 mmol/L ammonium formate and 1.01 mol/L acetic acid)		[9]
"кгуртоп"	SPG						
	SPC						
	MTC						
	O-DMT						
	7-HMG						

leaves and local drink extracts				MG			GC-MS, GC- FID	DB-5, HP-5			[10]
commercial products		1 ng/mL	10–0.05 μg/mL	MG	9.7–19.0 μg/mg, 190.7–396.4 ng/μL	ondansetron	UHPLC-ESI- MS/MS	BEH C18			
				7-HMG	93.0–593.2 ng/mg, 1.96–2.51 ng/μL						[11]
commercial products	0.2 μg/mL	0.6 μg/mL	1.0–500 μg/mL	MG	0.379–68.52 mg/g		HPLC-DAD	Kinetex EVO C18	A: water (5.0 mM ammonium bicarbonate, pH 9.5), B: MeCN	18 min	[12]
	0.4 μg/mL	1.1 μg/mL		7-HMG	0.59–2.59 mg/g						
Malaysian <i>M. speciosa</i> leaves		1 ng/mL	1–200 ng/mL	COX	0.03–0.46 mg/g	phenacetin	UHPLC-ESI- MS/MS	BEH C18	A: water (10 mM ammonium acetate, pH 3.5), B: MeCN	22.5 min	[13]
				COX-B	0.05–0.15 mg/g						
				ISPF	0.03 mg/g						
				MG oxindole	0.05–0.21 mg/g						
				COR	0.03–0.42 mg/g						
				MG	9.38–18.85 mg/g						
				SPG	0.97–1.99 mg/g						
				PAY	0.01–1.90 mg/g						
				SPC	0.43–14.76 mg/g						
				SPC <i>N</i> (4)- oxide	0.02–0.06 mg/g						
				7-HMG	0.03–0.15 mg/g						
				ICOR	0.03–0.17 mg/g						
				AJM							
				MTP							
<i>M. speciosa</i> leaves	32.47 μg/mL		32.92– 250 μg/mL,	MG	8.96–56.26 mg/g, 8.45–55.52 mg/g		ELISA, HPLC- DAD	Vertisep UPS C18	water (5 mM phosphate buffer, pH 6.0):MeCN (35:65)		[14]
			1.56–25 μg/mL								
commercial products			0–750 μg/mL	MG	0.640–187 mg/g	thymol	GC-MS	Varian VF- 5MS			[15]
				7-HMG							
				ΡΑΥ							
				SPC							
				SPG							
				COX A							

				COX-B								
commercial products			0.01–2 mg/g	MG	<i>ca.</i> 2–19 mg/g		yohimbine	TLC, GC-MS	Agilent DB- 5MS UI			[16]
commercial products	0.5 ng, 2 ng/mL	6 ng/mL	0.1–5 ng/μL, 10–100	MG	0.03–862 µg/mL			IMS, HPLC- ESI-MS	Xbridge C18	A: water (0.1% formic acid), B: MeCN (0.1% formic acid)	20 min	[17]
commercial products			10 or 20 μg/mL, 10–100 ng/mL, 1–10 μg/mL	MG	189–308 µg/mL	0.536–3.100 % w/w, 0.540–3.540 % w/w		GC-MS, HPLC- ESI-MS/MS, UHPLC-PDA	Agilent DB-5 MS, XBridge BEH C18, Acquity BEH C18	A: water (0.1% formic acid), B: MeCN	20 min, 7 min	[18]
commercial products, <i>M. speciosa</i> leaves	1.1 ng/mL		9.77– 5000 ng/mL	IMTP	0.943–1.47 mg/g			UHPLC-ESI- HRMS	Kinetex F5	A: water (0.1% formic acid), B: MeCN (0.1% formic acid)	20 min	Present method
	0.67 0.79 0.66 0.69 0.77 1.0 1.0 1.5 1.4 1.3 0.94 0.59 0.70			7-HMG ISPFE SPF COX COXE RYP AJM PAY MG SPG IPAY SPC MTC	0.1240–1.10 mg/g 0.382–1.675 mg/g 0.1222–5.90 mg/g 0.2322–11.40 mg/g 0.290–1.217 mg/g 0.0480–0.239 mg/g 0.0262–0.883 mg/g 5.79–70.4 mg/g 0.53–270 mg/g 3.18–33.4 mg/g 0.512–3.80 mg/g 3.68–41.7 mg/g 0.647–4.75 mg/g							

Abbreviations: MG, mitragynine; 7-HMG, 7-hydroxymitragynine; SPG, speciogynine; SPC, speciociliatine; MTC, mitraciliatine; PAY, paynantheine; IPAY, isopaynantheine; COR, corynantheidine; ICOR, isocorynantheidine; COX, corynoxine; COX-B, corynoxine B; COXE, corynoxeine; MTP, mitraphylline; IMTP, isomitraphylline; AJM; ajmalicine; SPF, speciofoline; ISPF, isospeciofoline; ISPFE, isospeciofoleine; IROF, isorotundifoline; RYP, rhynchophylline; O-DMT, *O*-desmethyltramadol; HPLC, high performance liquid chromatography; UHPLC, ultra-high performance liquid chromatography; TLC, thin-layer chromatography; CE, capillary electrophoresis; GC, gas chromatography; SFC, supercritical fluid chromatography; DART, direct analysis in real time; DAD, diode array detector; PDA, photodiode array detector; UV-Vis, ultraviolet-visible light detector; FID, flame ionization detector; MeCN, acetonitrile; CO2, carbon dioxide; MS, mass spectrometry; MS/MS, tandem mass spectrometry; IMS, ion mobility spectrometry; HR, high resolution; API, atmospheric pressure ionization; ESI, electrospray ionization; ELISA, enzyme-linked immunosorbent assay.

Refer to Kerrigan et al. [19] for analytical methods that identify and quantify Mitragyna alkaloids in biological matrices.

Fig. 1S Comparison of a kratom extract analyzed using a generic screening method with a BEH C18 column (A) and the developed method using a Kinetex F5 column (B).

Table 2S Intraday and interday precision (as measured by RSD) and accuracy (as measured by RE) of the method for kratom alkaloid quantification.

Analyte	Concentration of standard	Intra	day	Interday		
,	solution (ng/mL)	RSD ^a (%)	RE [♭] (%)	RSD ^a (%)	RE [♭] (%)	
	5000	1.8	1.6	6.8	4.4	
	2500	0.90	7.6	5.8	5.0	
	1250	0.30	7.4	5.8	2.7	
	625	1.7	1.8	4.9	0.88	
isomitraphylline	313	1.3	2.6	7.3	1.0	
(1)	156	2.2	5.4	10	5.5	
	78.1	1.1	3.2	4.4	0.59	
	39.1	2.2	10	4.9	6.4	
	19.5	1.0	0.70	4.3	3.6	
	9.77	2.9	3.6	3.1	3.7	
	2500	2.7	4.5	5.8	1.4	
	1250	5.2	2.7	4.5	3.3	
	625	6.9	6.4	6.8	3.4	
7-hydroxymitragynine	313	5.2	4.9	6.2	6.6	
(2)	156	11	11	9.9	2.9	
	78.1	3.8	1.9	6.3	1.3	
	39.1	4.7	6.9	6.3	7.4	
	19.5	1.0	1.4	4.0	4.4	
	9.77	1.8	3.1	3.3	4.1	
	2500	7.3	0.043	7.4	0.54	
	1250	3.6	3.3	4.4	4.3	
	625	5.1	7.7	6.5	5.0	
isospeciofoleine	313	3.6	5.2	5.6	6.5	
(3)	156	12	8.9	9.8	3.8	
	78.1	2.1	1.4	7.2	3.0	
	39.1	2.4	7.1	5.9	8.5	
	19.5	0.39	2.0	3.4	4.9	
	9.77	2.1	3.2	3.0	4.9	
chociefalina	5000	1.6	7.4	7.0	2.7	
(E)	2500	0.24	0.92	4.6	1.6	
	1250	0.41	5.8	3.6	4.1	

	625	1.0	7.4	5.9	3.3
	313	0.60	4.0	6.7	4.6
	156	1.1	0.36	11	4.0
	78.1	0.36	2.7	5.6	0.36
	39.1	4.3	9.8	5.9	6.5
	19.5	1.0	0.8	4.5	3.6
	9.77	1.7	3.0	3.8	3.5
	2500	0.90	5.4	5.8	3.4
	1250	1.3	2.6	3.9	1.6
	625	1.0	6.7	6.4	2.9
corynoxine A	313	1.1	5.3	6.8	6.9
(7)	156	0.95	2.0	11	1.5
	78.1	0.84	3.0	6.8	0.44
	39.1	3.8	9.9	6.0	6.0
	19.5	0.84	1.5	4.9	4.3
	9.77	1.7	3.2	3.7	3.4
corynoxine A (7) corynoxeine (8)	5000	1.2	0.4	6.1	3.8
	2500	1.1	6.6	4.9	4.9
	1250	1.1	6.7	3.7	4.4
	625	0.28	3.8	4.9	0.7
corvnoxeine	313	1.0	0.64	6.2	2.3
(8)	156	1.4	2.3	11	5.8
	78.1	1.2	5.6	6.2	2.7
	39.1	5.1	12	6.3	7.5
	19.5	0.81	2.6	4.7	5.1
	9.77	1.8	4.9	3.0	5.0
	2500	1.8	7.3	8.0	1.4
	1250	0.12	0.74	5.8	1.3
	625	0.68	8.1	7.8	1.7
rhynchophylline	313	0.63	6.0	7.3	7.0
(9)	156	0.17	1.9	13	3.8
	78.1	0.54	1.3	8.9	2.2
	39.1	5.3	10	7.2	6.1
	19.5	0.20	0.34	7.2	4.3
	9.77	2.6	2.5	5.0	3.4
ajmalicine	5000	6.1	3.1	7.7	4.5

(10)	2500	0.76	5.1	4.9	1.3
	1250	2.4	5.1	3.4	4.9
	625	5.9	2.6	5.8	2.6
	313	3.7	4.8	8.3	6.4
	156	14	14	12	2.8
	78.1	2.6	1.9	7.1	0.11
	39.1	6.0	6.8	7.6	6.8
	19.5	2.0	0.68	7.6	4.9
	9.77	2.7	2.9	5.1	4.1
	2500	1.2	7.4	5.8	4.1
	1250	1.3	0.66	5.4	0.17
	625	0.66	2.5	6.0	0.0064
paynantheine	313	0.19	3.7	7.4	5.5
(11)	156	0.57	3.2	12	1.7
	78.1	1.1	3.1	7.3	4.1
	39.1	5.7	6.8	7.3	2.7
	19.5	0.73	2.7	7.7	2.6
	9.77	4.3	0.37	4.6	1.4
	5000	0.24	11	8.5	3.4
	2500	1.2	1.3	5.5	0.11
	1250	0.81	4.1	5.7	2.7
	625	1.2	4.2	5.7	0.64
mitragynine	313	1.4	4.3	8.4	4.9
(12)	156	1.3	1.6	14	3.2
	78.1	0.95	2.6	8.3	3.0
	39.1	4.6	7.3	7.5	3.7
	19.5	0.59	2.1	8.4	3.3
	9.77	4.1	0.11	4.7	2.2
	2500	2.7	2.8	7.4	1.5
	1250	1.0	6.9	5.4	8.3
	625	1.6	10	6.9	3.1
speciogynine	313	0.30	2.1	11	3.6
(13)	156	0.52	3.6	12	8.0
	78.1	1.3	4.4	8.0	1.5
	39.1	6.2	12	8.3	7.0
	19.5	1.3	0.043	8.1	4.4
	9.77	3.2	3.5	5.0	4.4

	2500	4.4	2.6	7.8	5.8
	1250	5.5	2.2	5.8	0.27
	625	6.1	3.1	7.9	0.24
isopaynantheine	313	3.4	3.4	8.7	5.4
(14)	156	17	12	14	0.0020
	78.1	1.2	2.5	9.8	6.1
	39.1	7.3	3.2	8.2	3.0
	19.5	2.8	0.13	7.5	4.9
	9.77	2.7	1.0	4.0	2.3
	2500	2.2	1.2	9.8	2.5
	1250	2.9	7.8	6.2	4.1
	625	1.0	5.5	7.4	1.9
speciociliatine	313	1.3	1.8	11	6.6
(15)	156	1.0	2.7	14	3.6
	78.1	1.3	4.8	11	1.3
	39.1	6.4	11	12	6.0
	19.5	1.2	1.9	8.7	6.2
	9.77	1.5	4.3	3.7	4.4
	2500	5.1	3.0	8.3	1.6
	1250	7.0	4.4	7.9	2.5
	625	1.1	7.0	5.9	2.8
mitraciliatine	313	2.6	3.8	7.8	6.7
(16)	156	2.5	0.20	12	2.9
	78.1	0.88	2.8	9.6	1.0
	39.1	6.9	11	9.0	7.3
	19.5	1.3	1.7	6.6	5.6
	9.77	1.8	3.8	2.8	4.4

^a relative standard deviation (RSD) = $100\% \times \left(\frac{s_i}{\overline{x}}\right)$ standard deviation $(s_i) = \sqrt{\frac{\sum(x_i - \overline{x})^2}{(n-1)}}$ ^b relative error $(RE) = \left|\frac{\overline{x_i} - x_t}{x_t}\right| \times 100\%$ $\overline{x_i} = mean of the actual values observed$ $x_t = true (or nominal) value$

Sample	Conc. (µg/mL)	% Recovery
K49	109	88
K51	120	96
K52	110	88
K55	115	92
K59	114	91
K76	111	89
K77	114	91

Table 3S Concentration (μ g/mL) and Percent recovery (%) of internal standard mitragynine- d_3 , which was added to all solutions at a concentration of 125 μ g/mL.

Figure 2S Base peak MS chromatograms representing the methanolic extracts of kratom material quantified in Table 2. Specifically, from top to bottom, (panel a) a commercial kratom powder (K49), (panel b) a commercial kratom powder (K51), (panel c) a high-speciofoline containing commercial kratom powder (K52), (panel d) a UNCG grown kratom cutting "Rifat" (K55), (panel e) an Ohio grown kratom cutting "Rifat" (K59), (panel f) a commercial kratom pill, and (panel g) an equimolar mixture of kratom alkaloids at 313 ng/mL. Structures corresponding to each peak (Figs. 1 and 2) were assigned by matching retention time, fragmentation pattern, and accurate mass with authentic standards. Compounds are numbered in order of elution. NL is the normalization level, i.e., the base peak intensity.

Figure 3S Base peak MS chromatograms representing the extracts of kratom material quantified in Table 3. Specifically, from top to bottom, (panel a) a methanolic extract of a commercial kratom powder (K49), (panel b) a methanolic extract of a commercial kratom powder (K51), (panel c) the alkaloidal partition from a CHCl₃–MeOH extract of K51 (K51-2), (panel d) a hot water (tea) extract of K51 (K51-3), (panel e) a high-speciofoline containing methanolic extract of commercial kratom powder (K52), (panel f) a liquid kratom product (K76), (panel g) a methanolic extract of a commercial kratom pill, and (panel h) an equimolar mixture of kratom alkaloids at 313 ng/mL. Structures corresponding to each peak (Figs. 1 and 2) were assigned by matching retention time, fragmentation pattern, and accurate mass with authentic standards. Compounds are numbered in order of elution. NL is the normalization level, i.e., the base peak intensity.

Figure 4S Base peak MS chromatograms representing the methanolic extracts of kratom material quantified in Table 4. Specifically, from top to bottom, (panel a) a commercial kratom powder (K51), (panel b) a high-speciofoline containing commercial kratom powder (K52), (panel c) an Ohio grown kratom cutting "Rifat" (K59), (panel d) a UNCG grown kratom cutting "Rifat" (K64), (panel e) a UNCG grown kratom seedling (K68), and (panel f) an equimolar mixture of kratom alkaloids at 313 ng/mL. Structures corresponding to each peak (Figs. 1 and 2) were assigned by matching retention time, fragmentation pattern, and accurate mass with authentic standards. Compounds are numbered in order of elution. NL is the normalization level, i.e., the base peak intensity.

Compound	Reference(s)	
7-hydroxymitragynine (2)	[20]	
ajmalicine (10)	[21, 22]	
isomitraphylline (1)	[23, 24]	
speciophylline (5)	[24]	
mitraphylline (4)	[23, 24]	
rhynchophylline (9)	[25]	

 Table 4S Literature references for purchased indole and oxindole alkaloid standards.

Table 5S Commercial kratom products and *M. speciosa* specimens analyzed in this study.

Code	Product Name	Purported Origin	Description	Voucher	GenBank # for ITS
K10	Groop Maong Da	Thailand	Cut loof: low speciafeline group		MT111840,
K49	Green Maerig Da	mananu	cut lear, low speciolonne group	-	MT111841
K51	Yellow Indonesian	Indonesia	Powder; low speciofoline group	-	MT586314
KED	White lengtong	Jongkong West Kelimenten Indonesia	Dowdon high crossisfoling group		MT111842,
K5Z	white jongkong	Jongkong, west Kaimantan, indonesia	Powder; high specioroline group	-	MT111843
K76	Kratom Extract	Unknown	Liquid; leaf extract 50:1	· ·	-
K77	Botanical Extract	Unknown	Capsule; powdered extract 50:1	-	-
K55	Living UNCG plant	Cutting from Ohio grown mother tree	Rifat, ca. 9-month-old	NCU00433756	MT586315
K59	Living Ohio plant	Leaves from Ohio grown mother tree	Rifat, ca. 7-year-old		-
K64	Living UNCG plant	Cutting from US supplier grown "Rifat"	Rifat, ca. 8-month-old	NCU00675498	OM181964
K68	Living UNCG plant	Mempawah, West Kalimantan,	Borneo seedling, ca. 14 months	NCU00675499	OM181965
		Indonesia seedling from US supplier			

Products K49, K51, K52, and K55 were identified previously as *M. speciosa* [26, 27].

Oth	ner r	eports	Distance tree of results	MSA viewer 🔞							Filter		Reset
	Des	criptions	Graphic Summary	Alignments	Taxonomy	<u></u>							
	Seq	uences p	roducing significant a	lignments			Download 🗠	New S	elect colu	mns ~	Show	10) 🗸 👔
		select all	100 sequences selected				<u>GenBank</u> Gra	phics	Distanc	tree of I	<u>esults</u>	New	ASA Viewer
				Description			Scientific Name	Max Score	Total Que Score Cov	ry E er value	Per. Ident	Acc. Len	Accession
		Mitragyna sp	eciosa isolation-source red-veir	ned variety 18S ribosom	al RNA gene, partial seque	ence; internal trans	Mitragyna speciosa	948	948 100	% 0.0	99.24%	744	JF412826.1
		Mitragyna sp	eciosa clone K51 Indonesian sr	mall subunit ribosomal f	RNA gene, partial sequence	e; internal transcrib	Mitragyna speciosa	942	942 100	% 0.0	99.05%	692	MT586314.1
		Mitragyna sp	eciosa strain White Jongkong c	lone K52_2 small subu	nit ribosomal RNA gene, pa	irtial sequence; int	Mitragyna speciosa	942	942 100	% 0.0	99.05%	707	MT111843.1
		Mitragyna sp	eciosa strain White Jongkong c	lone K52_1 small subu	nit ribosomal RNA gene, pa	urtial sequence; int	Mitragyna speciosa	942	942 100	% 0.0	99.05%	710	MT111842.1
	<	Mitragyna sp	eciosa strain Green Maeng Da	clone K49 1 small sub	unit ribosomal RNA gene, p	artial sequence; in	Mitragyna speciosa	942	942 100	% 0.0	99.05%	703	MT111840.1
		Mitragyna sp	eciosa G13 genes for ITS1, 5.8	S rRNA, ITS2, partial a	nd complete sequence		Mitragyna speciosa	937	937 989	6 0.0	99.42%	625	LC514373.1
		Mitragyna sp	eciosa MUS-5603-3 genes for I	TS1, 5.8S rRNA, ITS2,	partial and complete seque	ance	Mitragyna speciosa	937	937 989	6.0	99.42%	608	LC504152.1
	~	Mitragyna sp	eciosa MUS-5603-2 genes for I	TS1, 5.8S rRNA, ITS2,	partial and complete seque	ance	Mitragyna speciosa	937	937 989	6 0.0	99.42%	608	LC504148.1
	✓	Mitragyna sp	eciosa MUS-5603-1 genes for I	TS1, 5.8S rRNA, ITS2,	partial and complete seque	ence	Mitragyna speciosa	937	937 989	6 0.0	99.42%	608	LC504144.1
	<	Mitragyna sp	eciosa MUS-5602-2 genes for I	TS1, 5.8S rRNA, ITS2,	partial and complete seque	ence	Mitragyna speciosa	937	937 989	6 0.0	99.42%	608	LC504140.1
		Mitragyna sp	eciosa MUS-5602-1 genes for I	TS1, 5.8S rRNA, ITS2,	partial and complete seque	ence	Mitragyna speciosa	937	937 989	6 0.0	99.42%	608	LC504136.1
	✓	Mitragyna sp	eciosa MUS-5601-4 genes for I	TS1, 5.8S rRNA, ITS2,	partial and complete seque	ence	Mitragyna speciosa	937	937 989	6 0.0	99.42%	608	LC504132.1
		Mitragyna sp	eciosa MUS-5512-3 genes for I	TS1, 5.8S rRNA, ITS2,	partial and complete seque	ence	Mitragyna speciosa	937	937 989	6 0.0	99.42%	608	LC504128.1
		Mitragyna sp	eciosa MUS-5601-3 genes for I	TS1, 5.8S rRNA, ITS2,	partial and complete seque	ence	Mitragyna speciosa	937	937 989	6 0.0	99.42%	608	LC504124.1
		Mitragyna sp	eciosa MUS-5601-2 genes for I	TS1, 5.8S rRNA, ITS2,	partial and complete seque	ence	Mitragyna speciosa	937	937 989	6 0.0	99.42%	608	LC504120.1
		Mitragyna sp	eciosa MUS-5601-1 genes for I	TS1, 5.8S rRNA, ITS2,	partial and complete seque	ence	Mitragyna speciosa	937	937 989	6 0.0	99.42%	608	LC504116.1
	<	Mitragyna sp	eciosa MUS-5512-2 genes for I	TS1, 5.8S rRNA, ITS2,	partial and complete seque	ence	Mitragyna speciosa	937	937 989	6 0.0	99.42%	608	LC504112.1
		Mitragyna sp	eciosa genes for ITS1, 5.8S rRI	NA, ITS2, partial and co	mplete sequence		Mitragyna speciosa	937	937 989	6 0.0	99.42%	608	AB249645.1
		Mitragyna sp	eciosa strain Green Maeng Da	clone K49 2 small sub	unit ribosomal RNA gene, p	artial sequence; in	. Mitragyna speciosa	935	935 999	6 0.0	99.23%	665	MT111841.1
		Mitragyna pa	rvifolia isolate MPF3 internal tra	anscribed spacer 1, par	tial sequence; 5.8S ribosom	nal RNA gene, co	Mitragyna parvif	905	905 999	6 0.0	98.08%	586	JX856480.1
		Mitragyna pa	rvifolia voucher Fagerlind & Kla	ackenberg 400 (S) interr	nal transcribed spacer 1, pa	artial sequence; 5	Mitragyna parvif	894	894 979	6 0.0	98.24%	556	KC737617.1
		Mitragyna ine	ermis 5.8S rRNA gene, internal	transcribed spacer 1 (II	S1) and internal transcribe	d spacer 2 (ITS2)	Mitragyna inermis	891	891 979	6 0.0	98.05%	608	AJ346873.1
		Mitragyna hir	suta MUS-5604-3 genes for ITS	<u>S1, 5.8S rRNA, ITS2, pa</u>	artial and complete sequence	ce	Mitragyna hirsuta	889	889 979	6 0.0	98.05%	607	LC504184.1
		Mitragyna hir	suta MUS-5603-5 genes for ITS	<u>S1, 5.8S rRNA, ITS2, pa</u>	artial and complete sequence	<u>ce</u>	Mitragyna hirsuta	889	889 979	6 0.0	98.05%	607	LC504180.1
		Mitragyna hir	suta MUS-5603-4 genes for ITS	S1, 5.8S rRNA, ITS2, pa	artial and complete sequence	<u>ce</u>	Mitragyna hirsuta	889	889 979	6 0.0	98.05%	607	LC504176.1
	<	Mitragyna div	versifolia MUS-5603-3 genes for	r ITS1, 5.8S rRNA, ITS	2, partial and complete sequ	uence	Mitragyna diversi	889	889 979	6 0.0	98.05%	607	LC504172.1

Fig. 5S Graphical overview of the BLAST results (January 2022) in NCBI GenBank database using Internal Transcribed Spacer (ITS) region. Sample K64 shows \geq 99% similarity with *Mitragyna speciosa*. The ITS sequence of K64 shows high homology with *M. speciosa* samples identified previously (K49, K51 and K52) [26, 27]. One sample, K55 showed \geq 98% similarity with ITS data, but did not group with other *M. speciosa* samples in the ITS phylogeny, and showed phylogenetic affiliation with *M. speciosa* samples based on combined *matK* and *trnH-psbA* regions [27].

Otl	her r	reports	Distance tree of results	MSA viewer 🔞								Filter		Reset
10 11	Des	criptions	Graphic Summary	Alignments	Taxonomy									
	Seq	luences p	roducing significant a	alignments			Download 🗠	New	Selec	t colur:	nns ~	Show	10) 🗸 🔞
		select all	100 sequences selected				<u>GenBank</u> (Graphic	<u>s Di</u>	stance	tree of	results	New	ASA Viewer
				Description			Scientific Name	Max Score	Total Score	Query Cover	E value	Per. Ident	Acc. Len	Accession
		Mitragyna sp	eciosa strain White Jongkong	clone K52_1 small sub	unit ribosomal RNA ge	ne, partial sequence; i	Mitragyna speci	1303	1303	100%	0.0	100.00%	710	MT111842.1
		Mitragyna sp	eciosa strain White Jongkong	clone K52_2 small sub	unit ribosomal RNA ge	ne, partial sequence; i	Mitragyna speci	1301	1301	99%	0.0	100.00%	707	MT111843.1
		Mitragyna sp	eciosa strain Green Maeng Da	a clone K49_1 small sul	ounit ribosomal RNA g	ene, partial sequence;	.Mitragyna speci	1299	1299	99%	0.0	100.00%	703	MT111840.1
		Mitragyna sp	eciosa isolation-source red-vei	ined variety 18S riboso	mal RNA gene, partial	sequence; internal tra	Mitragyna speci	1297	1297	100%	0.0	99.86%	744	JF412826.1
		Mitragyna sp	eciosa clone K51 Indonesian s	mall subunit ribosomal	RNA gene, partial sec	uence: internal transcr	.Mitragyna speci	1277	1277	98%	0.0	100.00%	692	MT586314.1
		Mitragyna sp	eciosa strain Green Maeng Da	a clone K49_2 small sul	ounit ribosomal RNA g	ene, partial sequence;	.Mitragyna speci	1219	1219	94%	0.0	99.70%	665	MT111841.1
		Mitragyna sp	eciosa G13 genes for ITS1, 5.8	8S rRNA, ITS2, partial	and complete sequence	20	Mitragyna speci	1149	1149	88%	0.0	99.84%	625	LC514373.1
		Mitragyna sp	eciosa MUS-5603-3 genes for	ITS1, 5.8S rRNA, ITS2	, partial and complete	sequence	Mitragyna speci	1118	1118	86%	0.0	99.84%	608	LC504152.1
	<	Mitragyna sp	eciosa MUS-5603-2 genes for	ITS1, 5.8S rRNA, ITS2	, partial and complete	sequence	Mitragyna speci	1118	1118	86%	0.0	99.84%	608	LC504148.1
		Mitragyna sp	eciosa MUS-5603-1 genes for	ITS1, 5.8S rRNA, ITS2	, partial and complete	sequence	Mitragyna speci	1118	1118	86%	0.0	99.84%	608	LC504144.1
		Mitragyna sp	eciosa MUS-5602-2 genes for	ITS1, 5.8S rRNA, ITS2	, partial and complete	sequence	Mitragyna speci	1118	1118	86%	0.0	99.84%	608	LC504140.1
		Mitragyna sp	eciosa MUS-5602-1 genes for	ITS1, 5.8S rRNA, ITS2	, partial and complete	sequence	Mitragyna speci	1118	1118	86%	0.0	99.84%	608	LC504136.1
		Mitragyna sp	peciosa MUS-5601-4 genes for	ITS1, 5.8S rRNA, ITS2	, partial and complete	sequence	Mitragyna speci	1118	1118	86%	0.0	99.84%	608	LC504132.1
		Mitragyna sp	eciosa MUS-5512-3 genes for	ITS1, 5.8S rRNA, ITS2	, partial and complete	sequence	Mitragyna speci	1118	1118	86%	0.0	99.84%	608	LC504128.1
		Mitragyna sp	eciosa MUS-5601-3 genes for	ITS1, 5.8S rRNA, ITS2	, partial and complete	sequence	Mitragyna speci	1118	1118	86%	0.0	99.84%	608	LC504124.1
		Mitragyna sp	eciosa MUS-5601-2 genes for	ITS1, 5.8S rRNA, ITS2	, partial and complete	sequence	Mitragyna speci	1118	1118	86%	0.0	99.84%	608	LC504120.1
		Mitragyna sp	eciosa MUS-5601-1 genes for	ITS1, 5.8S rRNA, ITS2	partial and complete	sequence	Mitragyna speci	1118	1118	86%	0.0	99.84%	608	LC504116.1
		Mitragyna sp	eciosa MUS-5512-2 genes for	ITS1, 5.8S rRNA, ITS2	, partial and complete	sequence	Mitragyna speci	1118	1118	86%	0.0	99.84%	608	LC504112.1
		Mitragyna sp	eciosa genes for ITS1, 5.8S rF	RNA, ITS2, partial and o	complete sequence		Mitragyna speci	1118	1118	86%	0.0	99.84%	608	AB249645.1
		Uncaria laevi	igata voucher K6 18S ribosoma	al RNA gene, partial se	quence; internal transc	cribed spacer 1, 5.8S ri	. Uncaria laevigata	1070	1070	100%	0.0	94.06%	719	MT263759.1
		Uncaria mac	rophylla voucher GT-33 18S rit	posomal RNA gene, pa	rtial sequence; interna	I transcribed spacer 1,	Uncaria macrop	1068	1068	100%	0.0	94.06%	718	MF033305.1
		Uncaria mac	rophylla voucher GT-29 18S rit	posomal RNA gene, pa	rtial sequence; interna	I transcribed spacer 1,	Uncaria macrop	1068	1068	100%	0.0	94.06%	718	MF033304.1
		Uncaria mac	rophylla voucher GT-11 18S rib	oosomal RNA gene, pa	rtial sequence; internal	transcribed spacer 1	Uncaria macrop	1068	1068	100%	0.0	94.06%	718	MF033302.1
		Uncaria mac	rophylla voucher GT-3 18S ribo	osomal RNA gene, part	ial sequence; internal	transcribed spacer 1, 5	Uncaria macrop	1068	1068	100%	0.0	94.06%	718	MF033301.1
		Uncaria mac	rophylla voucher GT-14 18S rit	posomal RNA gene, pa	rtial sequence; interna	I transcribed spacer 1,	Uncaria macrop	1062	1062	100%	0.0	93.92%	718	MF033303.1
		Uncaria mac	rophylla voucher GT-A 18S ribo	osomal RNA gene, part	ial sequence; internal	transcribed spacer 1,	Uncaria macrop	1062	1062	100%	0.0	93.92%	718	MT263758.1

Fig. 6S Graphical overview of the BLAST results (January 2022) in NCBI GenBank database using Internal Transcribed Spacer (ITS) region. Sample K68 shows ≥99-100% similarity with *Mitragyna speciosa*. The ITS sequence of K68 shows high homology with *M. speciosa* samples identified previously (K49, K51 and K52) [26, 27].

Fig. 7S Phylogram of the most likely tree (-InL = 1320.66) from a RAxML analysis of 20 taxa based on ITS region (608 bp). Numbers refer to PhyML bootstrap support values \geq 70% based on 1000 replicates. K64 and K68 group with *Mitragyna speciosa* with \geq 78% PhyML bootstrap support. The tree is rooted with *Nauclea officinalis*. Bar indicates nucleotide substitutions per site. Phylogenetic tree was constructed using methodology described previously [26, 27].

Analyte	Precursor ion (m/z) [M+H] ⁺	Molecular Formula
ajmalicine (10)	353.18597	$C_{21}H_{24}N_2O_3$
isomitraphylline (1),		
speciophylline (5),	369.18088	$C_{21}H_{24}N_2O_4$
mitraphylline (4)		
corynoxeine (8)	383.19653	$C_{22}H_{26}N_2O_4$
corynoxine A (7),	385 21218	
rhynchophylline (9)	565.21216	C22112811204
paynantheine (11),	397 21218	
isopaynantheine (14)	557.21210	023112811204
isospeciofoleine (3),		
mitragynine (12),		
speciogynine (13),	399.19145	$C_{22}H_{26}N_2O_5$
speciociliatine (15),		
mitraciliatine (16)		
speciofoline (6)	401.20710	$C_{22}H_{28}N_2O_5$
7-hydroxymitragynine (2)	415.22275	$C_{23}H_{30}N_2O_5$

 Table 6S Precursor ion inclusion list for MS² analysis.

Table 7S Constrain peak width settings used for peak integration.

	Constrain peak width				
	Peak height (%)	Tailing factor			
isomitraphylline (1)	30	2			
7-hydroxymitragynine (2)	20	2			
isospeciofoleine (3)	40	2			
speciofoline (6)	30	2			
corynoxine A (7)	30	2			
corynoxeine (8)	30	2			
rhynchophylline (9)	10	2			
ajmalicine (10)	2	3			
paynantheine (11)					
D3-mitragynine	5	2			
mitragynine (12)	2	3			
speciogynine (13)	20	2			
isopaynantheine (14)	5	2			
speciociliatine (15)	5	2			
mitraciliatine (16)	15	2			

2 References

- 1. Chittrakarn S, Penjamras P, Keawpradub N. Quantitative analysis of mitragynine, codeine, caffeine, chlorpheniramine and phenylephrine in a kratom (*Mitragyna speciosa* Korth.) cocktail using high-performance liquid chromatography. Forensic Sci Int 2012; 217: 81-86
- 2. Fowble KL, Musah RA. A validated method for the quantification of mitragynine in sixteen commercially available kratom (*Mitragyna speciosa*) products. Forensic Sci Int 2019; 299: 195-202
- 3. Kikura-Hanajiri R, Kawamura M, Maruyama T, Kitajima M, Takayama H, Goda Y. Simultaneous analysis of mitragynine, 7-hydroxymitragynine, and other alkaloids in the psychotropic plant "kratom" (*Mitragyna speciosa*) by LC-ESI-MS. Forensic Toxicol 2009; 27: 67-74
- 4. Kowalczuk AP, Łozak A, Zjawiony JK. Comprehensive methodology for identification of kratom in police laboratories. Forensic Sci Int 2013; 233: 238-243
- Parthasarathy S, Ramanathan S, Murugaiyah V, Hamdan MR, Mohd Said MI, Lai C-S, Mansor SM. A simple HPLC–DAD method for the detection and quantification of psychotropic mitragynine in *Mitragyna speciosa* (ketum) and its products for the application in forensic investigation. Forensic Sci Int 2013; 226: 183-187
- Sharma A, Kamble SH, León F, Chear NJY, King TI, Berthold EC, Ramanathan S, McCurdy CR, Avery BA. Simultaneous quantification of ten key Kratom alkaloids in *Mitragyna speciosa* leaf extracts and commercial products by ultra-performance liquid chromatography-tandem mass spectrometry. Drug Test Anal 2019; 11: 1162-1171
- 7. Wang M, Carrell EJ, Ali Z, Avula B, Avonto C, Parcher JF, Khan IA. Comparison of three chromatographic techniques for the detection of mitragynine and other indole and oxindole alkaloids in *Mitragyna speciosa* (kratom) plants. J Sep Sci 2014; 37: 1411-1418
- 8. Avula B, Sagi S, Wang Y-H, Wang M, Ali Z, Smillie TJ, Zweigenbaum J, Khan IA. Identification and characterization of indole and oxindole alkaloids from leaves of *Mitragyna speciosa* Korth using liquid chromatography–accurate QToF mass spectrometry. J AOAC Int 2015; 98: 13-21
- 9. Posch TN, Martin N, Pütz M, Huhn C. Nonaqueous capillary electrophoresis-mass spectrometry: A versatile, straightforward tool for the analysis of alkaloids from psychoactive plant extracts. Electrophoresis 2012; 33: 1557-1566
- 10. Chan K, Pakiam C, Rahim RA. Psychoactive plant abuse: the identification of mitragynine in ketum and in ketum preparations. Bull Narc 2005; 57: 249-256
- 11. Lydecker AG, Sharma A, McCurdy CR, Avery BA, Babu KM, Boyer EW. Suspected adulteration of commercial kratom products with 7-hydroxymitragynine. J Med Toxicol 2016; 12: 341-349
- 12. Mudge EM, Brown PN. Determination of mitragynine in *Mitragyna speciosa* raw materials and finished products by liquid chromatography with UV detection: Single-laboratory validation. J AOAC Int 2017; 100: 18-24
- 13. Chear NJ, Leon F, Sharma A, Kanumuri SRR, Zwolinski G, Abboud KA, Singh D, Restrepo LF, Patel A, Hiranita T, Ramanathan S, Hampson AJ, McMahon LR, McCurdy CR. Exploring the chemistry of alkaloids from Malaysian *Mitragyna speciosa* (kratom) and the role of oxindoles on human opioid receptors. J Nat Prod 2021; 84: 1034–1043

- 14. Limsuwanchote S, Wungsintaweekul J, Keawpradub N, Putalun W, Morimoto S, Tanaka H. Development of indirect competitive ELISA for quantification of mitragynine in kratom (*Mitragyna speciosa* (Roxb.) Korth.). Forensic Sci Int 2014; 244: 70-77
- 15. Oliveira AS, Fraga S, Carvalho F, Araújo AM, Pereira CC, Teixeira JP, de Lourdes Bastos M, de Pinho PG. Chemical characterization and in vitro cyto- and genotoxicity of 'legal high' products containing kratom (*Mitragyna speciosa*). Forensic Toxicol 2016; 34: 213-226
- 16. Scott TM, Yeakel JK, Logan BK. Identification of mitragynine and *O*-desmethyltramadol in kratom and legal high products sold online. Drug Test Anal 2014; 6: 959-963
- 17. Fuenffinger N, Ritchie M, Ruth A, Gryniewicz-Ruzicka C. Evaluation of ion mobility spectrometry for the detection of mitragynine in kratom products. J Pharm Biomed Anal 2017; 134: 282-286
- Casey CR, Conley T, Heise A, Thomas T, Ayres PR. Quantitative and qualitative analysis of mitragynine in kratom (*Mitragyna speciosa*) by GC-MS, LC-MS/MS and UPLC-PDA. J Reg Sci 2015; 3: 1-14
- 19. Kerrigan S, Basiliere S. Kratom: A systematic review of toxicological issues. WIREs Forensic Sci 2021; e1420
- Ponglux D, Wongseripipatana S, Takayama H, Kikuchi M, Kurihara M, Kitajima M, Aimi N, Sakai Si. A new indole alkaloid, 7-α-hydroxy-7*H*-mitragynine, from *Mitragyna speciosa* in Thailand. Planta Med 1994; 60: 580-581
- 21. Morales-Ríos MS, Espiñeira J, Joseph-Nathan P. 13C NMR spectroscopy of indole derivatives. Magn Reson Chem 1987; 25: 377-395
- 22. Shamma M, Richey JM. The stereochemistry of the heteroyohimbine alkaloids. J Am Chem Soc 1963; 85: 2507-2512
- 23. Johns SR, Lamberton JA. Uncaria alkaloids: Two stereoisomers of mitraphylline from *Uncaria bernaysii* F.v.Muell. and *U. ferrea* D.C. Tetrahedron Lett 1966; 7: 4883-4888
- 24. Seki H, Takayama H, Aimi N, Sakai S-i, Ponglux D. A nuclear magnetic resonance study on the eleven stereoisomers of heteroyohimbine-type oxindole alkaloids. Chem Pharm Bull 1993; 41: 2077-2086
- 25. Hemingway SR, Houghton PJ, Phillipson JD, Shellard EJ. 9-Hydroxyrhynchophylline-type oxindole alkaloids. Phytochemistry 1975; 14: 557-563
- 26. Flores-Bocanegra L, Raja HA, Graf TN, Augustinovic M, Wallace ED, Hematian S, Kellogg JJ, Todd DA, Cech NB, Oberlies NH. The chemistry of kratom [*Mitragyna speciosa*]: Updated characterization data and methods to elucidate indole and oxindole alkaloids. J Nat Prod 2020; 83: 2165-2177
- 27. Todd DA, Kellogg JJ, Wallace ED, Khin M, Flores-Bocanegra L, Tanna RS, McIntosh S, Raja HA, Graf TN, Hemby SE, Paine MF, Oberlies NH, Cech NB. Chemical composition and biological effects of kratom (*Mitragyna speciosa*): In vitro studies with implications for efficacy and drug interactions. Sci Rep 2020; 10: 19158