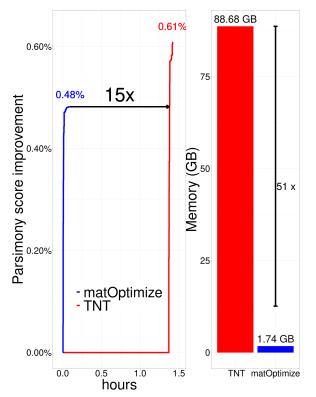

## Supplementary Figures And Tables




**Figure S1.** Comparison of parsimony score improvement and peak memory requirement of matOptimize and TNT, both using 40 threads on m1-ultramem-40 instance, starting from the SARS-CoV-2 based UShER-derived 100K-sample tree.



**Figure S2:** Taxonium (https://taxonium.org/) view of the 1M-sample tree (A) before and (B) after optimization. The tips of the trees are colored based on the lineage assignments derived from a trained PangoLEARN model (29), with P.1 labels highlighted using red circles.



**Figure S3:** (**A**) Parsimony score improvement and (**B**) the total runtime for different SPR radius achieved through the radius doubling mode in matOptimize.



**Figure S4.** Comparison of parsimony score improvement and peak memory requirement of matOptimize and TNT starting from the based UShER-derived 10K-sample tree of the *Mycobacterium tuberculosis* complex dataset. Benchmarking was done on iso-cost e2 instances of the Google Cloud Platform (GCP). TNT provided noticeably higher parsimony score improvement – 0.61% compared to 0.48% through matOptimize, but the log likelihood score of the two trees differed only by 0.007%.

| <b>Tree size</b><br>(number of samples) | Parsimony Score Improvement |              |
|-----------------------------------------|-----------------------------|--------------|
|                                         | Radius Doubling             | Fixed Radius |
| 100K                                    | 0.182%                      | 0.182%       |
| 1M                                      | 0.842%                      | 0.798%       |
| 3M                                      | 0.375%                      | 0.376%       |

 Table S1: Parsimony score improvement with fixed radius and radius doubling optimization strategies in matOptimize.