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1. BAYESIAN HYPOTHESIS TEST

When a given sequence is within Hamming distance ε of a putative barcode, it needs to be
classified as either an error sequence or a true barcode. This decision should account for both
sequences and their counts together with the estimated per nucleotide error rate ρ.

Let Sc denote the sequence under consideration and let fc denote its read count. Furthermore,
let Sp denote the sequence of the neighboring putative barcode with read count fp. The Hamming
distance between the sequences is given by d, such that d ≤ ε.

Two competing models for the sequence will be considered. In the first model, M1, the sequence
Sc originated from the nearby putative barcode Sp through substitution errors. In the second
model, M2, the sequence Sc is itself a true barcode generated independently of the nearby putative
barcode Sp.

The marginal likelihood of each model Mi takes the form,

P( fc, Sc | Sp, fp, ρ, Mi). (S1)

Naturally this marginal likelihood will depend greatly on the model we are considering.

1.A. Marginal Likelihood of Model M1

To find a computable expression for the marginal likelihood of model M1 the probability chain
rule is used to obtain,

P( fc, Sc | Sp, fp, ρ, M1) = P( fc | Sc, Sp, fp, ρ, M1)P(Sc | Sp, ρ, M1), (S2)

where we have used P(Sc | Sp, fp, ρ, M1) = P(Sc | Sp, ρ, M1), i.e. the probability of observing the
sequence Sc only depends on the sequence of the nearby putative barcode Sp, but not on its read
count fp. This is because P(Sc | Sp, ρ, M1) is the probability of converting the sequence Sp to Sc
in one trial/reading. Consequently, while fp is directly related to the total number of trials, given
by the true count of Sp in the population, it does not affect the probability that Sp is converted to
Sc in one of these trials.

Given this interpretation a computable expression for P(Sc | Sp, ρ, M1) can also be found. Each
time an error occurs at a nucleotide position, there are 3 nucleotides to replace the correct one. We
assume that each one of these 3 possibilities is equally likely. Since the distance between Sp and
Sc is given by d it follows that the probability of converting Sp to Sc in one trial is estimated by,

P(Sc | Sp, ρ, M1) = p̂pc = (ρ/3)d(1− ρ)l−d, (S3)

where it is assumed that the error rate is the same at each nucleotide position, and that errors
occur independently at each nucleotide position.

We can see that p̂pc is normalized by summing over all possible sequences Sc to obtain,
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(S4)

The term 3k appears in the first equality since there are 3 possible nucleotides at each of the k
positions where the two sequences differ.

An expression for P( fc | Sc, Sp, fp, ρ, M1) is also needed to determine the marginal likelihood
of model M1. It is the probability of observing the read count fc for the sequence Sc given that it
originated from the neighboring putative barcode Sp with the observed read count fp. We assume
that Sp has some unobserved true count in the population that we will denote n. We can think
about the process of sequencing Sp as n independent Bernoulli trials, each one has a probability
p̂pc (Eq. S3) of converting Sp to Sc. From this point of view fc follows a binomial distribution



with parameters n and p̂pc. We want to evaluate the probability of observing fc under this model.
To proceed, the unobserved parameter n needs to be estimated.

Consider the distribution of fp. Since we are assuming that Sp is a true barcode, it follows
that fp is its observed count in the population. In particular, it is the number of times Sp was
sequenced without errors. The probability of no error occurring in one reading of Sp is estimated
by p̂ne = (1− ρ)l . Consider each reading as an independent Bernoulli trial with probability p̂ne
of introducing no substitution errors. It follows that fp is a sample from a binomial distribution
with parameters n and p̂ne. Consequently, we can obtain the maximum likelihood estimate of n
given by,

n̂mle =

⌊
fp

p̂ne

⌋
. (S5)

where b·c denotes the floor function. For a more thorough discussion on the estimation of
this parameter we refer to Blumenthal and Dahiya (1981). Under the current model, M1, both
sequences originated from the same source barcode and so we need to ensure that our estimate of
n is not less than fp + fc. Therefore, our estimate of n is given by,

n̂ = max (n̂mle, fp + fc). (S6)

Using this estimate we obtain the following expression for the desired probability,

P( fc | Sc, Sp, fp, ρ, M1) = p( fc; n̂, p̂pc) =

(
n̂
fc

)
p̂ fc

pc(1− p̂pc)
n̂− fc ,

where p(k; n, p) denotes the probability mass function of a binomial distribution with parameters
n and p evaluated at k. The marginal likelihood of our first model M1 (Eq. S2) is now estimated
by,

P( fc, Sc | Sp, fp, ρ, M1) = P( fc | Sc, Sp, fp, ρ, M1)P(Sc | Sp, ρ, M1)

= p( fc; n̂, p̂pc) p̂pc.
(S7)

1.B. Marginal Likelihood of Model M2

In a similar way we can also find an expression for the marginal likelihood of model M2. As
before the probability chain rule is used to obtain,

P( fc, Sc | Sp, fp, ρ, M2) = P( fc | ρ, M2)P(Sc | Sp, M2). (S8)

In Eq. (S8), we use the property that the read count of the sequence under consideration, Sc, is
independent of the nearby putative barcode Sp and its read count fp. However, since Sc and Sp
are distinct sequences, the probability of observing Sc will not be independent of Sp. Furthermore,
the probability of observing Sc does not depend on the error rate ρ, since it is a randomized
sequence under model M2. On the other hand, the probability of observing fc will depend on ρ.
This becomes clear if we think about fc as the number of times Sc was read without errors.

Since Sc is a random DNA sequence under M2 with 4 possible nucleotides at each of the l
positions it follows that,

P(Sc | Sp, M2) =
1

4l − 1
≈ 1

4l . (S9)

The probability P( fc | ρ, M2) is more difficult to determine. It is the probability of observing the
read count fc for a true barcode Sc in the population, given the error rate ρ. Since the observed
count distribution of the sequences includes error sequences, the distribution of the observed true
barcode counts is unknown. What we do know is the maximum observed count fmax. Given this
maximum, we have a range for the possible count values between 1 and fmax. With no additional
information we want to assume as little as possible about the count distribution. This is achieved
by choosing the maximum entropy distribution, given by the discrete uniform distribution in our
case. It follows that for fc ∈ [1, fmax],

P( fc | ρ, M2) =
1

fmax
. (S10)

The marginal likelihood of model M2 is now given by,

P( fc, Sc | Sp, fp, ρ, M2) = P( fc | ρ, M2)P(Sc | M2) =
1

4l fmax
. (S11)
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1.C. Sequence Classification using Bayes Factor
The marginal likelihood of each model is now computable. To compare the models and to
determine which model describes a given sequence better we will use the log Bayes factor, ln K,
the logarithm of the ratio between the marginal likelihoods of model M1 and M2 given by,

ln K = ln P( fc, Sc | Sp, fp, ρ, M1)− ln P( fc, Sc | Sp, fp, ρ, M2)

= ln p( fc; n̂, p̂pc) + ln p̂pc + l ln 4 + ln fmax.
(S12)

To make a decision about whether the current sequence is an error sequence or a true barcode
we will consider M1 as our null model. We only want to reject this model if its marginal likelihood
is significantly lower than the marginal likelihood of the alternative model M2. By default, we
will reject the null model if ln K ≤ −4, i.e if the marginal likelihood of model M2 is approximately
55 times greater than the marginal likelihood of model M1. The threshold can be adjusted by the
user to control the trade-off between false positives and false negatives. Increasing the threshold
will increase the number of false positives while reducing the number of false negatives.

2. MULTIPLE TIME POINT MODE

Instead of performing clustering at each time point independently, Shepherd constructs the
k-mer Index at the first time point and only performs clustering for the first time point using the
procedure described in section 2.2 in the main text. For subsequent time points, Shepherd treats
the error correction task as a classification problem: Let tn denote the nth time point. Once the
clustering is performed for t1, each sequence at t2 is assigned to one of the clusters identified at
t1. Let us consider a sequence from t2 that we want to assign to a cluster from t1. To find the
most suitable cluster for the sequence, the k-mer Index from t1 is used to find its closest putative
barcode from t1. The sequence is then assigned to the cluster of this putative barcode if it is
within distance ε. If two or more putative barcodes at t1 have the same Hamming distance to the
sequence under consideration at t2 and appear in its ε-neighborhood, the sequence is assigned
with the one in the higher count cluster at t1. This is because the sequence is more likely to belong
to the higher count cluster given that its distance to the putative barcodes is equal. At later time
points the same classification procedure is used to assign sequences from time point tm (m > 1)
to the putative barcodes from the previous time point tm−1.

The computational advantage of the above multiple time point procedure is that the construc-
tion of the k-mer Index is only performed at the first time point, reducing the computational time
required for error correction in subsequent time points. Moreover, by assigning sequences from
later time points to clusters from previous time points, one connects barcodes from different time
points and performs error correction simultaneously.

2.A. Identification of Emerging Barcodes
Some barcodes exist in the population but may not be detectable in the first time point due to
low sequencing depth and a low barcode count. However, these barcodes may rise in frequency
at later time points and could have a significant impact on the evolutionary dynamics of the
population.

Shepherd is capable of identifying barcodes that emerge at later time points. This is done for
each time point after the sequences have been classified to putative barcodes from the previous
time point using the procedure described in the previous section.

Barcodes that emerge within the ε-neighborhoods of putative barcodes are separated from
these barcodes. This is done by using the statistical test described in section 1 to determine if a
sequence is an error sequence or a new putative barcode. If a new putative barcode is identified
all sequences in the same cluster are reassigned to either the original putative barcode or the new
putative barcode, using the statistical test to determine which barcode each sequence is more
likely to originate from. Furthermore, unassigned sequences are assigned to one of these new
putative barcodes if they are within distance ε.

Unassigned sequences not found in the ε-neighborhood of any putative barcode are clustered
using the procedure described in section 2.2 in the main text. This step yields new putative
barcodes that are discarded unless they are also found in the next time point. This is done to
prevent the formation of false positives. When a new putative barcode is identified its k-mers are
added to the k-mer index so that it can be found at later time points.

3



2.B. Algorithm
The procedure for multiple time point error correction can be summarised in steps. Given a time
point tm (m > 1) we perform the following steps to achieve accurate error correction.

1. Classify sequences at time tm to putative barcodes from time tm−1.

2. Separate emerging barcodes that were assigned to putative barcodes from tm−1 using the
statistical test.

3. Reclassify all sequences in separated clusters to either the original putative barcode or the
new putative barcode using the statistical test.

4. Assign sequences not assigned in step 1 to new putative barcodes introduced in step 3, if
they are within distance ε.

5. Cluster remaining unassigned sequences using the single time point procedure. New
putative barcodes from this step are discarded unless an exact match also appears at time
tm+1.

3. PARAMETER SELECTION AND OPTIMIZATION

In this section we detail how the parameters of Shepherd are automatically determined based
on the input data. We will also discuss how the clustering procedure is optimized to improve
performance. The per nucleotide substitution error rate ρ is determined from the input data using
the procedure described in section 2.A. The maximum distance ε for merging sequences and the
substring length k used for k-mer indexing can also be determined from the input data using the
procedures described in sections 2.B and 2.C, respectively. Furthermore, the parameters τ and ft
introduced for performance optimization are also estimated from the input data as described in
section 2.D.

It is important to note that the only parameters that impact the clustering results are ε and ρ.
Specifically, the ε parameter dictates which sequences are considered for merging and ρ is used
in the statistical test to determine if a sequence is an error sequence or a true barcode. The other
parameters of Shepherd only affect computational time and memory usage.

3.A. Determining ρ

Given the input data the parameter ρ is estimated by considering all possible single-nucleotide
polymorphisms (SNPs) of the highest count sequences. Specifically, we consider the Nh highest
count sequences in the input data. For each of these sequences we find the set of all possible SNPs.
Since the highest count sequences in the input data are almost certainly true barcodes the count
of these sequences corresponds to the number of times these barcodes were sequenced without
errors. Let n0 denote the combined counts of the Nh highest count sequences and let n1 denote
the combined counts of their SNPs.

Under the binomial model for sequencing errors proposed in the previous section the probabil-
ity of reading a sequence without errors is given by,

P(X = 0) = (1− ρ)l . (S13)

Under the same model the probability of a SNP during sequencing is given by,

P(X = 1) = lρ(1− ρ)l−1. (S14)

To obtain an estimate of ρ we consider the following ratio of Eq. (S13) and Eq. (S14),

P(X = 1)
P(X = 0)

=
lρ(1− ρ)l−1

(1− ρ)l = l
p

1− p
. (S15)

Empirical probability estimates of the probabilities P(X = 0) and P(X = 1) are given by
P̂(X = 0) = n0/n and P̂(X = 1) = n1/n, respectively. Here n is the unknown total number
of reads when sequencing the Nh highest count sequences. By substituting these estimates in
Eq. (S15) we obtain,

P̂(X = 1)
P̂(X = 0)

=
n1
n0

= l
p

1− p
. (S16)
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Note that the unknown quantity n cancels out in Eq. (S16) and we obtain a relationship between
ρ and the known quantities l, n0 and n1. By rearranging the terms in Eq. (S16) we now obtain the
following estimate of the error rate ρ,

ρ̂ =
n1

n1 + ln0
. (S17)

By default the number of sequences used for the estimation is set to Nh = min(N, 500), where N
is the total sequence count.

3.B. Determining ε

We will start by fixing ε appropriately. We want to choose ε so that the vast majority of error
sequences are within the ε-neighborhoods of their source barcodes. However, we do not want
to choose a larger ε than necessary. Firstly, the memory and time complexity of the algorithm
increase for larger values of ε. This is because a larger ε necessitates that the sequence is divided
into more partitions with smaller k, since we require that the number of partitions p > ε. In
general, this will increase the number of k-mer combinations and consequently the number
of entries in the k-mer index. As a result, the index will take up more space in memory and
will take longer to construct. Another reason that we want to avoid choosing a larger ε than
necessary is that the k-mer neighborhoods become larger as ε increases. Since we search the
k-mer neighborhoods for putative barcodes this leads to an increase in search time. If the distance
between a sequence under consideration Sc and a putative barcode Sp is large enough our
statistical test will classify Sc as a putative barcode regardless of the counts of the sequences.
Therefore a reasonable choice for ε is the largest distance such that Sc could still be classified as
an error sequence for some count combinations of fp and fc. To find this distance we start by
considering count combinations that will clearly favour model M1 for a given distance d between
Sc and Sp. We fix the count of the putative barcode to fp = fmax. It remains to find the value of fc
that maximizes the marginal likelihood of model M1.

From Eq. (S7) we see that maximizing the marginal likelihood of model M1, with respect to
fc, is equivalent to finding the mode of the binomial distribution with parameters n̂ and p̂pc.
However, since n̂ is a function of fc we will replace it with n̂mle to determine the mode. We
can do this since we know that the value of fc that maximizes the marginal likelihood of model
M1 will be much smaller than fp = fmax, since it represents the most likely count of an error
sequence originating from sequence Sp. Consequently, it is safe to assume that n̂mle > fp + fc,
which implies n̂ = n̂mle. Since fc > 0 it follows that given fp = fmax and a distance d between Sc
and Sp, the value of fc that maximizes the marginal likelihood of model M1 is given by,

fc = max
(
b(n̂mle + 1) p̂pcc, 1

)
. (S18)

To find ε we apply our statistical test using the count combination fc (as defined in Eq. S18)
and fp = fmax, for increasing values of d. The largest value of d for which Sc is classified as an
error sequence will be chosen as the value for ε.

3.C. Determining k
When choosing k we need to make sure that p > ε. However, in most cases there are several
choices of k that satisfy this constraint. On the one hand, we want to choose a small k so that
kε− ε is small, this corresponds to the distance between the dashed circle and the solid circle
being small in Figure 2. Since we only consider ε-neighbors for merging, this ensures that the
number of irrelevant sequences in each neighborhood with distance greater than ε are minimized.
This will decrease the size of each neighborhood resulting in shorter search times. However,
as we mentioned previously a smaller k will also increase the number of k-mer combinations,
increasing the memory use and running time of the algorithm.

To find a reasonable value for k we will only consider the true barcodes in the absence of errors.
The reason for this is that error sequences will be close to their source barcodes in sequence space.
Consequently, if we focus on excluding true barcodes, that are not associated with a given true
barcode, we are simultaneously excluding many of the error sequences of those distinct barcodes
as well. We will also assume that ε has already been fixed. It should be noted that the optimal
value for k depends on the hardware used for running the algorithm. However, our approach
here does not consider the hardware and only attempts to find a reasonable choice based on the
theoretical distribution of Hamming distances for random barcodes.
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For a given barcode we want to ensure that the number of distinct barcodes in the region
between the dashed circle and the solid circle in Figure 2 is small. As discussed in section 2 the
Hamming distance from a given barcode to a random barcode follows a binomial distribution
with l trials and success probability 3/4. Given this distribution we will require that,

P(ε < d ≤ kε) =
kε

∑
d=ε+1

(
l
d

)(3
4

)d(1
4

)l−d
<

1
2

. (S19)

This constraint ensures that for a given barcode the majority of distinct barcodes are expected
to be either within distance ε or beyond distance kε. This ensures that we do not pick a k that
is too large. Given Eq. (S19) and the constraint p > ε we will now pick the largest integer that
satisfies both as our value for k. The constraint given in Eq. (S19) is somewhat arbitrary since
there is no inherent reason to choose 1/2 as our threshold. Nevertheless, we have chosen it here
since it resulted in appropriate choices for k in practice. For example, our parameter selection
scheme found k = 4 to be the optimal value for synthetic datasets A and B (see table S2). For
both datasets the barcode length was l = 20 and ε = 3 was chosen. By considering the other two
possible values for k, 2 and 5, we can see why this choice is optimal. If k = 2, the k-mer index will
take up too much space in memory. If k = 5, the index takes up slightly less space in memory
compared to k = 4. However, this choice increases the k-mer neighborhood size significantly,
since kε = 5× 3 = 15 for k = 5 compared to kε = 4× 3 = 12 for k = 4. If we consider the
hamming distance distribution for true barcodes we see that many of the distinct barcodes will be
within hamming distance 12 to 15. Therefore, k = 5 is not a suitable choice since it would cause a
large number of unrelated barcodes to be included in the k-mer neighborhoods.

3.D. Performance Optimization
The statistical test described in section 1 is important for classifying a sequence in cases when
it is unclear whether it is a true barcode or an error sequence. However, a simple threshold
for the distance d or the count fc will suffice to classify the sequence accurately in many of
the cases encountered. By introducing appropriate thresholds to identify these cases we can
avoid performing the statistical test repeatedly, which leads to a reduction in computational time.
There are primarily two common classes of sequences that we want to focus on for performance
optimization.

The first common case is that the sequence has a high enough count that regardless of how
close it is to a neighboring barcode, it will still be very likely to be a true barcode. For these
cases we want to find a high count threshold ft, such that any sequence with count fc ≥ ft is
more likely to be a true barcode than an error sequence. To do this we consider the case when
we have a sequence Sc, with the smallest nonzero Hamming distance d = 1 to the true barcode
Sp. Furthermore, we consider the case when fp = fmax. The idea is to maximize the marginal
likelihood of model M1. To find ft we perform our statistical test for increasing values of fc,
starting from the value of fc given in equation Eq. (S18). We are looking for the smallest value of
fc for which the marginal likelihood of model M2 is greater than the marginal likelihood of M1.
Consequently, the first value of fc such that the statistical test classifies the sequence Sc as a true
barcode will be chosen as the count threshold ft. Once we have obtained ft we can classify all
sequences with count fc ≥ ft as true barcodes, without having to perform the test again for each
of these cases.

There is also another case that we want to deal with separately to decrease the running time
of our algorithm. Many of the error sequences will have count 1. This is because most errors
that originate from the same barcode are unique under reasonable assumptions on the error rate,
the barcode length and the barcode count distribution. To save time we want to find a distance
threshold, τ, such that any sequence with read count fc = 1 that is within Hamming distance
τ to a barcode Sp is more likely to be an error sequence than a true barcode, regardless of the
count of Sp. As fp increases, the likelihood that the current sequence is a true barcode decreases.
Because of this we will now consider the case when fp = 1, which is when Sc has the highest
likelihood of being a true barcode for a given distance d from Sp. We will now start with distance
d = 1 and perform our statistical test for increasing values of d. The largest value of d for which
Sc is classified as an error sequence will be chosen as the value for τ. Any sequence with count 1
within distance τ of its barcode neighbor can now be classified as an error sequence.

Finally, the computational time can be further reduced when computing the Hamming distance
between a sequence and its nearby putative barcode. Since sequences beyond distance ε are not
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considered, a truncated Hamming distance can be employed. For sequences Sa and Sb of length l
separated by Hamming distance d, their truncated Hamming distance is defined as,

ht(Sa, Sb) =

{
d if d ≤ ε,
l otherwise.

(S20)

The truncated Hamming distance allows us to save time by stopping the computation of the
Hamming distance once it has exceeded ε.

We note that the optimizations described in this section only affect the computational time of
the procedure, and do not affect the clustering results.

4. SYNTHETIC DATA

4.A. Single Time Point Data
The single time point evaluation of Shepherd, Bartender and Starcode is based on 3 synthetic
datasets.

The procedure for generating these datasets is as follows. First 500 000 barcodes are created,
each one with 20 random nucleotides and 6 constant nucleotides. Then a read count is assigned to
each barcode by drawing a sample from the exponential distribution with mean 100 and applying
the ceiling function to obtain an integer value.

The read count of each barcode corresponds to the number of times it is sequenced. Each time
a barcode is sequenced, we perform a Bernoulli trial at each of its nucleotide positions with the
chosen error rate as the probability of success. When one of these trials is successful, an error has
occurred and the nucleotide at that position is replaced by one of the other 3 nucleotides with
equal probability. Once the errors have been introduced, the synthetic datasets consist of a set
of unique sequences and their read counts. If a barcode was destroyed in the error generating
process, i.e., if every time it was sequenced an error was introduced, all sequences associated
with that barcode were removed from the dataset. This was done to simplify the evaluation,
since destroyed barcodes that have been clustered correctly are difficult to distinguish from false
positives.

Dataset A B C

ε 3 3 4

k 4 4 3

τ 2 2 3

ft 16 22 35

Table S1. Parameters used for Shepherd on each dataset. ε is the maximum Hamming distance
considered for merging a given sequence with a putative barcode. The parameter k controls
the length of the k-mers. τ is the maximum Hamming distance for which a count 1 sequence
is merged with a putative barcode within distance ε without performing the statistical test.
Finally, ft is a count threshold and all sequences with count greater than ft are classified as true
barcodes without performing the statistical test.

4.B. Simulation Procedure for Multiple Time Point Data
To generate synthetic multiple time point data we start with a single time point synthetic dataset
with 500 000 barcodes of length 26 (20 random nucleotides and 6 constant nucleotides). The count
of each barcode is obtained by applying the ceiling function to a sample from the exponential
distribution with mean 100.

To simulate selective advantage, 5000 of these barcodes are given an increased growth rate of
between 5% and 15%. These barcodes are randomly chosen without replacement, with higher
count barcodes having a higher probability of gaining a growth rate increase. Specifically,
the probability of a barcode gaining a growth rate increase is given by its proportion in the
population.The rationale is that once we start tracking the barcodes at the first time point, some
lineages may have already acquired a selective advantage previously. As a result, these lineages
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are more likely to have a high count in the first time point. Let gi denote the growth advantage of
lineage i. Note that gi = 0 if lineage i is not one of the 5000 lineages with a selective advantage.
The growth advantage for a lineage i chosen to receive a selective advantage is given by,

gi = min(x, 0.15),

where x is a sample from the exponential distribution with mean 0.05.
Let ni,t denote the number of individuals/cells of lineage i in generation t and let pi,t denote

the probability that a cell in lineage i undergoes mitosis (cell division) once until the next time
point, t + 1. Given that lineage i has ni,t cells at time t we want to simulate the number of cells
in the lineage at the next time point, ni,t+1. We consider two possible outcomes for each cell in
lineage i, either the cell undergoes mitosis once until time t + 1 with probability pi,t, or it dies
with probability 1− pi,t, independently of all other cells in the population. It follows that ni,t+1
has a binomial distribution with 2ni,t trials and trial probability pi,t. While ni,t is known at time t
the cell division probability pi,t must be determined to sample from this binomial distribution
and obtain an updated cell count for lineage i.

To determine pi,t while incorporating the growth advantage gi of lineage i we impose the
following constraint,

E[ni,t+1] = 2ni,t pi,t =
ni,t(1 + gi)

∑K
j=1 nj,t(1 + gi)

N, (S21)

where K is the number of lineages and N denotes the total number of cells in the population in
the first time point. Given that gi has been fixed for each lineage i the only unknown quantity in
equation (S21) is pi,t at time t. By solving for pi,t in equation (S21) we obtain,

pi,t =
1 + gi

2 ∑K
j=1 nj,t(1 + gi)

N. (S22)

At each time point t the cell division probability for each lineage i is found using equation (S22)
and the new cell count for the lineage is obtained by sampling from a binomial distribution with
2ni,t trials and success probability pi,t.

5. EXPERIMENTAL ILLUMINA HISEQ DATA

5.A. Preprocessing of Experimental Illumina HiSeq Data
Before applying the error correction methods to the experimental data the dataset is filtered to
remove extremely low quality sequences. These error sequences have a high enough average per
nucleotide error rate that no error correction method is able to reliably correct for them. In fact,
in some cases these sequences can accumulate errors at almost all nucleotide positions due to
phasing effects (Pfeiffer et al., 2018).

We apply the same sequence quality filter as the one used by Levy et al. (2015). In particular,
any sequence with an average Phred quality score less than 30 is excluded. Furthermore, we filter
out any sequences that do not match the following regular expression:

\D*?(.ACC|T.CC|TA.C|TAC.)\D{4,7}?AA\D{4,7}?AA\D{4,7}?TT\D{4,7}?(.TAA|A.AA|AT.A|ATA.)\D*\

After the filtering the random barcode regions of correct length 20 are extracted and counted to
obtain the final dataset.

5.B. Comparison to Starcode on Experimental Illumina HiSeq Data
We applied Starcode to the experimental Illumina HiSeq data using the default settings of the
method, with the distance threshold set to 2. Starcode identified 1 131 999 barcodes, 1 012 458 of
these were also identified by Shepherd (see Figure S5). All three methods, Shepherd, Bartender
and Starcode identified 963 112 barcodes in common. Figure S4 shows a comparison of the
effective cluster radius (re) for each method. We see that Starcode has a large number of clusters
for which re is extremely high. This is a clear sign that Starcode is merging unrelated sequences.

5.C. Runtime Performance
We benchmarked the time performance of Shepherd and Bartender on the experimental sequenc-
ing data. Shepherd clustered the data in 9 minutes and 4 seconds and Bartender performed the
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clustering task in 27 minutes and 23 seconds. The time measured is the wall-clock time. The
benchmark was performed on a desktop PC with an Intel Core I7 6700k processor and 32GB of
system memory. The number of threads used by Bartender was set to 4 to match the core count
of the processor. We observed that the time performance of the methods varies considerably
between the datasets in the study. Specifically, Bartender is faster than Shepherd on all synthetic
datasets and Shepherd is faster on the experimental sequencing data.

6. APPENDIX
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Fig. S1. The number of clusters with low read counts (< 6) for each method compared to the
ground truth on dataset A.
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Fig. S2. The number of clusters with low read counts (< 6) for each method compared to the
ground truth on dataset C.

Dataset Illumina HiSeq Data

ρ 0.00055

ε 3

k 3

τ 2

ft 83

Table S2. Parameters used for Experimental Illumina HiSeq Data.
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(a)

(b)

Fig. S3. (a) Estimated barcode counts compared to the true counts for each method on (a)
dataset A and (b) dataset C. The figures only include true barcodes that were identified by
all three methods. True barcodes for which all three methods estimated the same counts are
excluded to emphasize differences in the estimated counts.
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Fig. S4. Distribution of the effective cluster radius re on the experimental sequencing data for
each method, including all clusters containing at least 2 sequences. There are 439 658, 446 168
and 382 360 such clusters for Shepherd, Bartender and Starcode, respectively.
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Fig. S5. A Venn diagram showing the number of barcodes identified and shared by each
method on the experimental sequencing data.

Algorithm S1. Read Clustering Procedure

Input: sequences (including their read counts), k-mer index, ε, error rate estimate ρ
Output: clustered sequences

true_barcode_set = ∅
sorted_sequences = sort_by_count(sequences, order=descending)
for seq in sorted_sequences do

neighborhood = getNeighbors(seq, k-mer index)
true_barcode_neighbors = true_barcode_set ∩ neighborhood
if true_barcode_neighbors 6= ∅ then

closest_true_barcode = getClosest(seq, true_barcode_neighbors)
if h(seq, closest_true_barcode) ≤ ε then

class = hypothesis_test(seq, closest_true_barcode, ρ)
if class == error_sequence then:

cluster seq with closest_true_barcode
continue to next iteration

add seq to true_barcode_set
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