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Supplemental Figures 
 

 
 

Figure S1. Sequence-based phylogenetic tree of human calpain domains (related to Figure 2).  

Sequences representing individual human calpain domains (i.e., PC1, PC2, CBSW, PEF, and C2) underwent 

multiple sequence alignment (MSA) using MAFFT v7 (alignment strategy: FFT-NS-1). The MSA subsequently 

underwent phylogenetic reconstruction in IQ-TREE-1.6.2. The reconstructed human calpain domain (and C2-

domain containing proteins, panel E) trees are shown: (A) PC1, (B) PC2, (C) CBSW, (D) PEF(L), (E) C2 

demonstrating differences in clustering between one- and three-dimensional comparisons. Calpains in red text 

indicate that they are involved in ocular calpainopathies.  
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Figure S2. Pathology of calpain-mediated inherited retinal degenerations in in vivo models. Pathological 

mutations in (A) achromatopsia and (B-D) retinitis pigmentosa (RP) lead to calpain activation [1-3]. PDE6C 

mutations lead to cone cell death through increased CAPN2 expression and activation [1,4,5] while mutations 

in (B) PDE6B lead to rod cell death via increased CAPN1 activity [6,7]. (C) Rhodopsin (encoded by RHO) is a 

G-protein coupled receptor expressed on rod cells that is instrumental in conducting visual phototransduction. 

(D) Fam161a is a structural protein found in microtubule-organizing centers at the base of photoreceptor cells 

that is an integral part of the photoreceptor sensory cilium. Mutations that disrupt RHO or FAM161A cause 

retinal degeneration by activating CAPN1 and CAPN2, respectively [1,7-9].   
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Figure S3. Selective calpain inhibition in murine knockout models. Interrogation of the International 

Mouse Phenotyping Consortium (IMPC) and the Mouse Genome Informatics (MGI) databases for calpain-

related genes. Phenotypic summary data are represented as a heatmap where mouse orthologs are shown in 

rows and organ system phenotypes shown in columns. Blue indicates that deletion of the mouse ortholog is 

associated with a phenotype in that organ system (e.g., vision/eye). Selective deletion of two calpain orthologs 

(Capn12 and Capn15) are associated with ocular phenotypes.  
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Figure S4. Ocular injuries and cellular stress induce calpain hyperactivity. Calpain activation is widely 

implicated in the damaging effects of retina injuries. In various in vivo models, calpain upregulation and 

calpain-caspase crosstalk appear to activate cell-death pathways. (A) In traumatic axonal injury (TAI), calpain 

activity was studied in mice subjected to a 2.0-mm optic nerve stretch injury using a solenoid-applied stretch 

[10]. In subsequent axonal degeneration, immunohistology detected calpain-mediated proteolysis of the 

cytoskeletal protein, spectrin, implicating calpains as early mediators of TAI that contribute to progressive intra-

axonal structural damage. (B) Calpain activity is also implicated in retinal ischemia-reperfusion injury [11]. In a 
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relevant model, CAPN1 mRNA expression, which was downregulated immediately after injury (i.e., central 

retinal artery occlusion [CRAO]-induced retinal ischemia for one hour), began to recover by day three of the 

subsequent seven-day reperfusion. In contrast, CAPN2 mRNA expression was upregulated immediately after 

reperfusion and continued to rise after twenty-four hours. For both cases, spectrin proteolysis in the retina 

provided biochemical evidence that injury activated calpains. Further, treatment with a calpain inhibitor 

(SJA6017) following the ischemia-reperfusion event reduced the severity of cell density loss in the ganglion cell 

layer, indicative of the neuroprotective effect of calpain inhibition. (C) A rat model of retinal detachment 

(induced by subretinal injection with 1% hyaluronic acid [12]) demonstrated involvement of calpains in retinal 

injury. Mechanistically, CAPN1 activity (measured by spectrin proteolysis) peaked at seven days post-

detachment and was associated with decreased autophagy, a proxy for photoreceptor death. In vivo 

stimulation of autophagy by multiple calpain inhibitors (i.e., MDG28170, MG-101, and calpeptin) led to 

attenuated cleavage of spectrin, upregulation of autophagic markers (Atg5 and Atg5-12) and reduced TUNEL-

positive photoreceptors. Indeed, the fact that calpain inhibitors protected photoreceptors from apoptosis and 

increased cell survival suggests the neuroprotective power of calpain inhibition for patients with retinal injury. 

(D) Light-induced retinal degeneration (LIRD) caused by repetitive light exposure irreversibly damages retinal 

photoreceptors; furthermore, light exposure can exacerbate problems in a retina already made vulnerable by 

degenerative diseases such as RP, AMD, and DR. Hypothetically, light irradiation triggers apoptotic retinal 

photoreceptor cell death through increased intracellular calcium-mediated calpain activation [13]. This model is 

advantageous to use as the damage can be controlled by light intensity and exposure duration to render 

roughly all photoreceptors in an animal susceptible to cell death and more rapidly than transgenic models [14]. 

Several LIRD models demonstrate calpain upregulation during photoreceptor cell death. For example, CAPN5 

in Müller glia of zebrafish is upregulated in response to photoreceptor degeneration induced by acute light 

exposure [15,16]. In a LIRD rat model, the downstream targets of activated calpain in apoptotic pathways were 

identified: i calpain was postulated to cleave lysosomal associated membrane protein 2 (LAMP2A) leading to 

lysosomal permeabilization and subsequent cell death [17,18]. Importantly, SNJ-1945, a calpain inhibitor, 

protected eye function in a mouse model of LIRD (as measured by ERG and retina-histology) [19]. Indeed, 

LIRD models hold considerable value when probing the precise mechanisms of calpains in retinal 

degeneration. (E) N-methyl-N-nitrosourea (MNU) is an alkylating agent used in animal models to induce retinal 

degeneration. By methylating DNA, MNU kills only the photoreceptor cells in the RPE [20], a process that in 

turn activates the convergence of calpain/calcium and lipid peroxidation, and finally cell death. When MNU was 

intraperitoneally injected into rats, retinal intracellular calcium ion levels rose, as did calpain activity [21]. 

Moreover, the same study found that calpain inhibition with oral SNJ-1945 protected MNU-treated rats from 

photoreceptor cell loss, confirming calpain involvement in photoreceptor degeneration. Similar to rats, 

intraperitoneally injection of MNU into mice resulted in photoreceptor cell death which was ameliorated by 

treatment with SNJ-1945 [22]. Finally, another study corroborated this result: inhibiting calpain by MG-101 

prevented MNU-induced photoreceptor cell death by suppressing the cleavage of heat-shock protein 70 

(HSP70) [23].  
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Figure S5. Age-related macular degeneration (AMD) and calpains. (A) Calpains were upregulated in age-

related macular degeneration ex vivo and in vivo models. When primary retinal pigment epithelium cells (RPE) 

were subject to hypoxia, A2E—a principal component of drusen—increased, which was also found to increase 

calpain activation. A2E has been shown in a separate study to increase cytosolic calcium concentrations, 

which potentially further activates calpains. However, there are severe limitations to animal models of AMD. 

First, they do not fully mimic all stages of the human disease [24]. In addition, rodents lack a macula, therefore 

although they are cost effective and easy to genetically manipulate, they model only a limited range of AMD 

phenotypes. Further, non-human primates (NHP), which possess a macula, are expensive to maintain, difficult 

to genetically engineer, require a long-time course for disease progression and only develop early to 

intermediate stages of AMD (drusen, geographic atrophy) [25,26]. Therefore, advanced forms of AMD 

(neovascularization) must be induced by laser exposure or intravitreal injection with DL-alpha-aminodipic acid, 

for example. (B) Stargardt’s disease is one of the most common forms of early-onset macular degeneration 

and is most often caused by mutations in genes ABCA4 and ELOVL4. In photoreceptor cells, both ABCA4 and 

ELOVL4 play important roles in the visual cycle (visual phototransduction that converts light into electrical 

signals) by chemically regulating retinal/retinoid molecules. A key indicator of a dysfunctional RPE layer is the 

presence of lipofuscin, sub-retinal deposits of lipids and proteins. The principal component of lipofuscin is A2E 

as it is of drusen formation in AMD. Experimentally, ABCA4 knock-out mice [27-29] and ELOVL4 mutant 

knock-in mice (comparable to early-onset AMD) [30] develop a Stargardt’s disease-like phenotype: A2E and 

lipofuscin accumulates in RPE, leading to eventual apoptosis of the RPE and overlying photoreceptors.  
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