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ESM METHODS 

 

Participating studies and phenotype definitions: A total of ten case – control definitions for diabetic kidney 

disease (DKD) were included in DNCRI [1], based on either urinary albumin excretion rate (AER; divided 

into controls with normal AER, and cases with microalbuminuria, macroalbuminuria, or ESRD), estimated 

glomerular filtration rate (eGFR), or both, and harmonized to match and include all seven phenotypic 

definitions assessed in The SUrrogate markers for Micro- and Macrovascular hard endpoints for Innovative 

diabetes Tools consortium (SUMMIT) type 1 diabetes (SUMMIT-1) analyses [2] and SUMMIT type 2 

diabetes (SUMMIT-2) analyses [3] (ESM Table 1). All individuals (both cases and controls) had diabetes 

(either type 1 or type 2 diabetes) and cases had some form of kidney disease. The phenotypic comparisons are 

as follows: controls with normal AER vs. DKD cases with microalbuminuria or worse (“All vs. Ctrl”), 

macroalbuminuria or worse (“Severe DKD”), microalbuminuria alone (“Micro”), or “ESRD”; ESRD cases 

vs. everyone else (“ESRD vs. All”); controls with normal eGFR defined as eGFR ≥ 60 ml/min/1.73 m2 vs. 

CKD defined as eGFR < 60 ml/min/1.73 m2 (“CKD”); and “CKD-DKD” based on both AER and eGFR, with 

controls with normal AER and eGFR vs. cases with microalbuminuria or worse and eGFR < 45 ml/min/1.73 

m2. For the three phenotypic comparisons not initially part of the SUMMIT analysis (normal AER vs. 

macroalbuminuria [“Macro”], ESRD vs. macroalbuminuria [“ESRD vs. macro”], and controls with eGFR ≥ 

60 ml/min/1.73m2 vs. CKD cases with eGFR < 15 ml/min/1.73m2 or ESRD [“CKD extremes”]), GWAS and 

meta-analysis were performed with three SUMMIT type 2 diabetes studies (Genetics of Diabetes Audit and 

Research, Tayside and Scotland [GoDARTS] 1 and 2, and Scania Diabetes Registry [SDR] type 2 diabetes 

cohort) and the SDR type 1 diabetes cohort. Individuals from the Finnish Diabetic Nephropathy Study 

(FinnDiane) were included in both the original DNCRI (N=6,019) and SUMMIT-1 analyses (N=3,415), but 

for the purpose of this meta-analysis, FinnDiane was only included in the DNCRI meta-analysis and therefore 

excluded from the SUMMIT-1 data (ESM Table 2). All contributing studies were performed in accordance 

with the Declaration of Helsinki and Declaration of Istanbul. 

 

Genome-wide association study (GWAS) and meta-analysis: Genotyping and statistical analysis of the 

DNCRI [1] and SUMMIT [2, 3] cohorts have been previously described, and the statistical analyses were 

limited to the previously published results (apart from the three additional phenotypes for a subset of SUMMIT 
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cohorts mentioned above). Analysis plans were similar in both consortia, and the main characteristics are 

described in ESM Table 3. Imputation was performed using 1000Genomes Phase 3 reference panel in 

DNCRI, and the older 1000Genomes phase 1 panel in the SUMMIT cohorts. In both consortia, analyses were 

performed in unrelated individuals using the SNPtest additive score test, adjusting for age, sex, diabetes 

duration, the genetic principal components, and study-specific covariates (e.g., site or genotyping batch). 

Variants were filtered for INFO imputation quality score ≥ 0.3 (DNCRI) or ≥ 0.4 (SUMMIT) and minor allele 

count ≥ 10 in both cases and in controls. In SUMMIT, variants were further filtered to those with minor allele 

frequency (MAF) ≥ 0.01. Within-consortium meta-analyses were performed with inverse-variance fixed 

effects meta-analysis based on the effect size estimates. Meta-analyses between DNCRI, SUMMIT-1, and 

SUMMIT-2 were performed with inverse-variance fixed effect methods based on the effect size estimates 

from the summary statistics for each of the three datasets with METAL software (released 2011-03-25) [4]. 

Finally, variants were limited to those found in at least two studies and reported in the 1000Genomes phase 3 

reference panel. In addition, we performed meta-analyses for each DKD trait separately for individuals with 

type 1 diabetes (DNCRI and SUMMIT-1) and type 2 diabetes (SUMMIT-2), and calculated heterogeneity 

between type 1 and type 2 diabetes studies with METAL software [4]. Study-wise summary statistics were 

available for DNCRI and SUMMIT-1 studies. Regional association plots were plotted with LocusZoom [5].  

We estimated the significance level for multiple testing correction using a method suggested previously 

[6]:correction for multiple testing was estimated with spectral decomposition of the GWAS Z-scores of the 

non-missing variants across the ten DKD traits, which suggested 5.36 effective tests, leading to a corrected 

significance threshold of p<9.3×10-9.  

The FinnDiane GWAS data, originally imputed together with the other DNCRI GWAS data sets using 

1000Genomes Phase 3 reference panel, was re-imputed with a Finnish population-specific SISu v3 imputation 

reference panel. Samples were pre-phased with Eagle 2.3.5 [7], and genotype imputation was performed with 

Beagle 4.1 (version 08Jun17.d8b) [8]. 

We performed conditional analysis of the COL4A3 locus with apparent secondary association peak using 

GCTA v1.93β [9] and FinnDiane GWAS data as the reference panel. 
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Gene-prioritization analysis: Gene prioritization at each of our top loci was performed using two 

complementary similarity-based gene prioritization approaches (PoPS v0.1 [10] and MAGMA v1.06b [11]), 

which integrate GWAS summary statistics with gene set enrichment analysis based on a variety of biological 

annotation datasets including gene expression, curated pathways, protein-protein interactions, and mouse gene 

knock-out studies.  

 

For PoPS gene prioritization, MAGMA is first used to calculate gene-level association statistics for 18 383 

protein-coding genes in the genome, which is used to assess feature enrichment. PoPS then calculates 

polygenic priority (PoP) scores for each gene based on its membership to enriched features. For each of our 

top loci, we annotated the PoPS prioritized gene as the one with the highest PoP score within a 500kb flanking 

window of each of our lead SNPs. Of note, the PRNCR1 gene annotated as the nearest gene to SNP 

rs185299109 was not included in the PoPS protein-coding gene dataset and the CKD-associated SNP 

rs185299109 located in an intergenic region was also excluded from this analysis.  

MAGMA gene prioritization was conducted using a recently developed extension to the method as described 

and implemented in Benchmarker software [12], enabling the explicit derivation of gene prioritization results 

from gene set enrichment analysis. Like the Benchmarker approach, we classified genes as members of each 

gene set using the top 50, 100, and 200 ranked genes, and obtained similar results from all three. To identify 

the PoPS features that contributed to the prioritization of COL4A3, we limited it to the selected marginal gene 

features (PoPS step 1), multiplied the COL4A3 beta hats (PoPS step 2) by the COL4A3 feature’s scores, and 

ranked the features by the highest overall score. 

 

Gene-level analysis: SNP summary statistics from the GWAS meta-analysis were aggregated by gene-level 

regression analysis using two related software programs designed for gene-level analysis, MAGMA v1.06b 

[11] and PASCAL v2016 [13], using default parameters. Both methods take into account pairwise SNP 

correlation within a defined gene region (MAGMA 5kb flanking; PASCAL 50kb flanking) to calculate gene-

level scores while accounting for linkage disquilibirium. Gene-level significance thresholds were determined 

by a Bonferroni multiple-testing correction based on the number of genes tested for each of the ten phenotypes 
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within each software program (number of genes ranged from 18,439-21,790; significance thresholds ranged 

from 2.7×10-6 to 2.3×10-6). 

 

Transcriptome-wide association study (TWAS): MetaXcan [14] was applied to integrate kidney expression 

quantitative trait locus (eQTL) datasets with the GWAS meta-analysis results and to map disease-associated 

genes. The cis-eQTL data for microdissected human glomerular (N=119) and tubular (N=121) samples were 

obtained from Susztaklab Kidney Biobank (https://susztaklab.com/eQTLci/download.php) [15], and were 

analyzed jointly to infer differential gene expression in cases vs. controls using MetaXcan software with 

default parameters. The GTEx Elastic-Net Model pipeline (https://github.com/hakyimlab/PredictDBPipeline) 

was applied to prepare the model used for MetaXcan. The linkage disequilibrium (LD) references were 

estimated based on genotypes of European individuals from the 1000 Genome Project. Using FDR < 0.05, the 

method identified 5,990 coding genes with significant models for glomerular eQTL, and 5,371 coding genes 

for tubular eQTL. Significant association was defined as p<0.05/2/6,050=4.1×10-6, i.e., corrected for two 

tissues and 6,050 genes found in either tubular or glomerular eQTL data.  

 

 

Expression quantitative trait loci (eQTL): eQTL associations were sought from the eQTLGen database for 

eQTL in whole blood from >30 000 participants (http://www.eqtlgen.org/) [16]. Kidney specific eQTL 

associations were queried from eQTL datasets for glomeruli, tubules [15], and a meta-analysis of four eQTL 

studies with 451 kidney samples. The meta-analysis of four eQTLs datasets obtained from the Susztak lab, 

The Cancer Genome Atlas (TCGA), the Genotype-Tissue Expression (GTEx v8), and the Nephrotic Syndrome 

Study Network (NephQTL) [15, 17–19], was performed using METAL with fixed effects inverse-variance 

meta-analysis[4]. 

 

Methylation quantitative trait loci (mQTL): mQTL associations were sought for the lead SNPs in 188 

healthy kidney samples (eGFR > 60 and fibrosis < 10%), with Bonferroni threshold (p<1.5×10-11) considered 

genome-wide significant. DNA methylation of CpG sites were profiled in 188 healthy kidney samples by the 

Infinium MethylationEPIC Kit and BeadChips (Illumina, USA) and were transformed by an inverse-normal 

https://susztaklab.com/eQTLci/download.php
https://github.com/hakyimlab/PredictDBPipeline
http://www.eqtlgen.org/
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transformation after quality control using SeSAMe [20]. Genotypes for these samples were profiled by from 

Axiom Tx and Axiom Biobank arrays and imputed using the multiethnic panel reference from 1000Genomes 

Phase 3 (NCBI build 37, released in October 2014). The association between CpG site and the SNPs within 

1Mb were estimated by linear regression model using MatrixQTL [21]. with covariates including collection 

site, age, sex, top five genotype principal components (PCs), degree of bisulfite conversion, sample plate, and 

sentrix position and PEER factors. For the significant CpG sites, we then sought for evidence of association 

between blood methylation levels and eGFR, or eGFR decline, in 500 individuals with diabetes [22]; we 

furthermore tested association with DKD in our epigenome-wide association study in 1,304 UK-ROI and 

FinnDiane participants, analyzed using the Infinium MethylationEPIC Kit and BeadChips (Illumina, USA), 

following the QC and analysis procedures described earlier for UK-ROI[23]. Meta-analysis of the two data 

sets was performed with METAL software [4], based on p-values and direction of effect.  

 

Multiple trait co-localization (moloc): To estimate posterior probability that the GWAS lead variant is 

associated with kidney eQTL (kidney eQTL meta-analysis of N=686 samples, 

https://susztaklab.com/Kidney_eQTL/eQTLmeta.php) and mQTL (kidney samples described above, N=188) 

signals, we performed Bayesian multiple-trait-colocalization (moloc). Lead variants were determined as the 

variants with p-value < 1×10-4 within the lead loci identified from the GWAS meta-analysis or 

MAGMA/PASCAL gene aggregate tests, and available variants within 100kb search window were extracted 

for moloc analysis. R package moloc (v0.1.0) [24] was used to perform moloc analysis with default parameters 

prior_var = c(0.01, 0.1, 0.5) and priors = c(1×10-4, 1×10-6, 1×10-7). In moloc results, Coloc_ppas_abc > 0.8 

was considered evidence of colocalization among all three traits. Coloc_ppas_ab > 0.8 was considered 

evidence of colocalization between GWAS and mQTL. Coloc_ppas_ac > 0.8 was considered evidence of 

colocalization between GWAS and eQTL. 

 

 

Human kidney gene expression: For the 29 lead genes or transcripts underlying or located near the lead 

SNPs, or based on gene-level analyses, TWAS, PoPS, or kidney eQTL data, we studied gene expression in 

kidneys in human transcriptomics data from nephrectomy samples (433 tubule and 335 glomerulus samples) 
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[25] and kidney biopsies from the Pima Indian cohort (67 glomerular and 47 tubulointerstitial tissues) [26], 

and tested for correlation with relevant pathological phenotypes. The microdissected nephrectomy samples 

were from individuals with varying degree of diabetic and hypertensive kidney disease, and gene expression 

was defined with RNA sequencing. Pearson correlation p-values below 2.2×10-4 were considered significant, 

corrected for multiple testing for 29 genes, two tissue compartments, and four phenotypes (eGFR, fibrosis, 

glomerulosclerosis and group comparison). The study was approved by the institutional review board of the 

University of Pennsylvania.  

In the Pima Indian cohort, gene expression profiling in the first biopsy was performed with Affymetrix gene 

chip arrays [26], and with Illumina RNA-sequencing for the second biopsy, as described earlier [1]. Available 

phenotypes included progression to ESRD, measured GFR (mGFR), albumin-to-creatinine ratio (ACR), 

glycated hemoglobin (HbA1c) and six kidney morphological parameters for both biopsies, and change in the 

phenotypes between the first and the second study biopsies (27 phenotypes in total) [27]. Pearson correlation 

p-values below 3.2×10-5were considered significant, corrected for 29 genes, 2 tissues, and 27 phenotypes; p-

values below 8.6×10-4 (i.e. without correction for 27 phenotypes) were considered suggestive. The study was 

approved by the Institutional Review Board of the National Institute of Diabetes and Digestive and Kidney 

Diseases. 

 

Further annotation of the lead variants: Chromatin 3D conformation interactions with gene transcription 

start sites (TSS) were queried for the most significant SNPs from the promoter capture Hi-C (PCHiC) data 

from the www.chicp.org web interface, including data for GM12878 lymphoblastoid cell line and CD34 cells 

[28], hESC derived cardiomyocytes [29], 16 primary blood cells [30], and pancreatic islets [31]; no data was 

available for kidney tissue. Interactions with score ≥ 5 were considered significant. We queried chromatin 

accessibility in kidney single-nucleus ATAC-sequencing (snATACseq) data available at 

https://susztaklab.com/human_kidney/igv/ (accessed 24 June 2021) [32]. Detailed gene expression in kidney 

single cell RNA sequencing (scRNAseq) data was queried in the Human Diabetic Kidney data set (23,980 

nuclei) by Wilson et al. [33], accessed through http://humphreyslab.com/SingleCell. Further epigenetic 

annotation was sought from the regulomeDB [34], and differential renal gene expression in DKD versus 

healthy controls from the Ju CKD [35] and Woroniecka [36] data sets in the NephroSeq portal 

http://www.chicp.org/
http://humphreyslab.com/SingleCell
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(www.nephroseq.org). Of note, samples in the queried Woroniecka [36] data are a subset (N=22) of the more 

recent RNA sequencing based nephrectomy samples mentioned above (N=433) [25].  

Genetic correlation of DKD between type 1 and type 2 diabetes and general population kidney traits: 

We calculated the genetic correlation between the DKD traits in type 1 diabetes studies versus type 2 diabetes 

studies using LD score regression (LDSR) [37] with LDSC v1.0.1 software (https://github.com/bulik/ldsc) 

using the European 1000 genomes LD structure and limited to the HapMap3 SNPs. Valid (non-significant) 

estimates were obtained only for the two phenotypes with the largest number of participants, DKD (N=26,989) 

and CKD (N=26,626). We further calculated genetic correlation for the full meta-analysis (type 1 or type 2 

diabetes), and separately for the type 1 diabetes and type 2 diabetes meta-analysis results with the following 

general population kidney traits obtained from the CKDgen consortium: general population microalbuminuria 

(trans-ethnic, N=348,954 (51,861 cases, 297,093 controls) [38]; albumin-to-creatinine-ratio [ACR] 

(European-American, N=547361) [38]; ACR in diabetes (trans-ethnic, N=51,541) [38]; CKD (European 

Americans: N=480,698 (41,395 cases and 439,303 controls) [39]; and eGFR (CKDGen, N=765,348, trans-

ethnic, and UK Biobank, N=436,581, Europeans) [40]. Estimates of genetic correlation were obtained for 5 

out of the 10 studied DKD phenotypes. Correlation plots were plotted with heatmap.2 function from the R 

gplots package (v.3.1.1, https://cran.r-project.org/web/packages/gplots/index.html). 

LDSR and Mendelian Randomization (MR) of cardiometabolic and other related traits: LDSR [37] was 

performed at LDhub (http://ldsc.broadinstitute.org/) for 78 glycemic, autoimmune, anthropometric, bone, 

smoking behavior, lipid, kidney, uric acid, cardiometabolic, and aging related traits (listed in ESM Table 15), 

based on the GWAS summary statistics of the ten DKD phenotypes explored. Variants were filtered to those 

with MAF ≥1%. LDSR associations with p<6.4×10-4 were defined significant after Bonferroni correction for 

78 traits. To identify causal relationships for significant traits in the LDSR against DKD, we performed 

summary-based two-sample MR implemented in the R package TwoSampleMR v0.5.6 [41]. For the SNP-

trait associations, we selected genetic variants as instrumental variables (IV) that were independently 

associated with the selected traits (p<5×10−8; r2 < 0.001 based on the 1000Genomes EUR panel; LD 

window=10,000 kb) from published GWAS. Palindromic SNPs with intermediate allele frequency (MAF 

close to 50%) were removed. Traits with less than five IVs were excluded from the MR analysis. Primarily, 

https://github.com/bulik/ldsc
http://ldsc.broadinstitute.org/
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we used inverse variance-weighted (IVW) regression, but causality was further assessed using methods less 

sensitive to pleiotropy/heterogeneity (weighted median and MR-Egger regression) [42]. Heterogeneity of SNP 

estimates in MR was assessed with Cochran’s Q statistic p-value and the I2 statistic. The MR–Egger intercept 

test was used to detect unbalanced horizontal pleiotropy. As all but one significant LDSR associations were 

for the “All vs. DKD” phenotype with the largest number of included participants, only those results are shown 

in Figure 6; also association between “Obesity Class I” vs. CKD was tested and significant. 
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ESM Table 1: A total of ten case – control definitions for diabetic kidney disease (DKD; used as a 

general term to describe renal complications in diabetes) 

The subjects were classified as normal AER, microalbuminuria or macroalbuminuria based on two out of 

three consecutive urine samples surpassing the required thresholds: 

Normal AER AER <20 µg/min (overnight collection) OR 

AER <30 mg/24 h (24h urine collection) OR 

ACR <2.5 mg/mmol for men  

ACR <3.5 for women (spot/ any urine) 

Diabetes duration ≥10 years for type 2 diabetes, ≥ 15 years for type 1 diabetes 

Microalbuminuria AER ≥20 AND <100 µg/min (overnight collection) OR 

AER ≥30 AND <150 mg/24 hr (24h urine collection) OR 

ACR ≥2.5 AND <12.5 for men  

ACR ≥3.5 AND <17.5 for women (spot/ any urine). 

Macroalbuminuria AER ≥200 µg/min (overnight collection) OR 

AER ≥300 mg/24 h (24h urine collection) OR 

ACR ≥25 mg/mmol for men  

ACR ≥35 for women (spot/ any urine) 

*Due to study designs, in some SUMMIT studies one measurement above these 

thresholds was sufficient. 

ESRD: End-stage renal disease, dialysis or renal transplant (or eGFR< 15 ml/min/1.73m2 in SUMMIT) 

eGFR was estimated based on serum creatinine and calculated either with the MDRD4(ref [43]) or the CKD-

EPI[44] formula depending on the study. In SUMMIT, when IDMS-calibrated serum creatinine was used, 

the MDRD4 formula was multiplied by 175/186.[45] 

Phenotype Cases Controls Note 

All vs. Ctrl microalbuminuria or 

macroalbuminuria or 

ESRD 

Normal AER  Phenotype abbreviated as "DN" 

(diabetic nephropathy) in 

SUMMIT 

Severe DKD macroalbuminuria or 

ESRD 

Normal AER  Phenotype abbreviated as 

"MACRO" in SUMMIT; as 

“DN” in DNCRI 

Micro microalbuminuria Normal AER  
 

Macro macroalbuminuria Normal AER  Not analyzed in SUMMIT 

ESRD ESRD Normal AER  
 

ESRD vs. All ESRD no ESRD 
 

ESRD vs. macro ESRD macroalbuminuria Not analyzed in SUMMIT 

CKD eGFR < 60 

ml/min/1.73m2 

eGFR ≥ 60 

ml/min/1.73m2 

 

CKD extremes ESRD or eGFR < 15 

ml/min/1.73m2 

eGFR ≥ 60 

ml/min/1.73m2 

Not analyzed in SUMMIT 

CKD-DKD ESRD, or eGFR < 60 

ml/min/1.73m2 AND 

microalbuminuria or 

macroalbuminuria 

normal AER and 

eGFR ≥ 60 

ml/min/1.73m2 

Some cohorts in SUMMIT 

required at least one 

measurement with “high 

microalbuminruia”, i.e. AER 

≥150 mg/24, or equivalent 
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ESM Table 2: Number of individuals in each cohort for each phenotypic comparison 
Study Severe DKD Macro ESRD  ESRD vs. All ESRD vs. Macro All vs. Ctrl Micro CKD CKD extremes CKD-DKD 

DNCRI Cases Ctrls Total Cases Ctrls Total Cases Ctrls Total Cases Ctrls Total Cases Ctrls Total Cases Ctrls Total Cases Ctrls Total Cases Ctrls Total Cases Ctrls Total Cases Ctrls Total 

Austria 6 71 77 4 71 75 2 71 73 2 88 90 2 4 6 19 71 90 13 71 84 11 80 91 2 80 82 6 66 72 

CACTI 35 422 457 29 422 451 6 422 428 6 503 509 6 29 35 87 422 509 52 422 474 45 477 522 6 477 483 24 407 431 

EDIC 134 193 327 75 193 268 59 193 252 59 359 418 59 75 134 225 193 418 91 193 284 130 288 418 59 288 347 89 180 269 

EDC 84 1016 1100 61 1016 1077 23 1016 1039 23 1282 1305 23 61 84 289 1016 1305 205 1016 1221 80 1218 1298 23 1218 1241 47 999 1046 

FinnDiane 1371 2240 3611 535 2268 2803 854 2265 3119 854 3418 4272 854 517 1371 2069 2202 4271 719 2257 2976 1226 3038 4264 838 3069 3907 993 2066 3059 

FRANCE 332 627 959 181 625 806 151 627 778 151 920 1071 151 181 332 448 627 1075 124 625 749 281 740 1021 159 740 899 225 578 803 

GWU GOKIND 290 311 601 29 311 340 261 311 572 261 340 601 261 29 290 290 311 601 0 311 311 273 325 598 261 325 586 269 309 578 

ITALY 180 161 341 38 161 199 142 161 303 142 201 343 142 38 180 180 163 343 0 161 161 157 172 329 148 175 323 155 154 309 

JOSLIN 719 1082 1801 475 1082 1557 244 1082 1326 244 2027 2271 244 475 719 1189 1082 2271 470 1082 1552 533 1574 2107 262 1695 1957 402 1013 1415 

LatDiane 25 80 105 18 80 98 7 80 87 7 131 138 7 18 25 58 80 138 33 80 113 16 109 125 7 109 116 9 78 87 

LitDiane 19 39 58 9 39 48 10 39 49 10 69 79 10 9 19 40 39 79 21 39 60 21 50 71 10 50 60 16 36 52 

RomDiane 98 89 187 70 89 159 28 89 117 28 207 235 28 70 98 146 89 235 48 89 137 53 167 220 28 167 195 39 87 126 

Scotland 195 3962 4157 144 3984 4128 57 3962 4019 57 4632 4689 57 138 195 727 3962 4689 540 3984 4524 404 4712 5116 80 4712 4792 90 4450 4540 

STENO 488 414 902 469 414 883 19 414 433 19 897 916 19 470 489 489 427 916 0 414 414 200 690 890 28 690 718 106 398 504 

SWEDEN 51 346 397 35 346 381 20 346 366 20 497 517 20 32 52 51 346 397 85 346 431 42 287 329 20 287 307 21 252 273 

UK_ROI 704 730 1434 466 730 1196 200 730 930 200 1196 1396 200 466 666 704 730 1434 0 730 730 587 513 1100 200 513 713 266 433 699 

WESDR 217 293 510 113 293 406 104 293 397 104 452 556 104 113 217 263 293 556 46 293 339 207 398 605 104 398 502 140 260 400 

Total DNCRI 4,948 12,076 17,024 2,751 12,124 14,875 2,187 12,101 14,288 2,187 17,219 19,406 2,187 2,725 4,912 7,274 12,053 19,327 2,447 12,113 14,560 4,266 14,838 19,104 2,235 14,993 17,228 2,897 11,766 14,663 

SUMMIT-1 Cases Ctrls Total Cases Ctrls Total Cases Ctrls Total Cases Ctrls Total Cases Ctrls Total Cases Ctrls Total Cases Ctrls Total Cases Ctrls Total Cases Ctrls Total Cases Ctrls Total 

Eurodiab 203 491 694    84 491 575 84 705 789      298 491 789 95 491 586 113 467 580      210 357 567 

NFS-ORPS 47 199 246                 197 199 396 150 199 349              

SDR 168 292 460 85 277 362 75 294 369 75 529 604 57 85 142 266 290 556 98 290 388 163 365 528 57 349 406 118 239 357 

Total  
SUMMIT-1 418 982 1,400 85 277 362 159 785 944 159 1,234 1,393 57 85 142 761 980 1,741 343 980 1,323 276 832 1,108 57 349 406 328 596 924 

SUMMIT-2 Cases Ctrls Total Cases Ctrls Total Cases Ctrls Total Cases Ctrls Total Cases Ctrls Total Cases Ctrls Total Cases Ctrls Total Cases Ctrls Total Cases Ctrls Total Cases Ctrls Total 

GoDARTS Affy 218 816 1,034 138 816 954 80 816 896 48 1,491 1,539 80 138 218 885 816 1,701 667 816 1,483 1,025 1,553 2,578 80 1,101 1181 168 716 884 

GoDARTS Illumina 179 680 859 130 675 805 48 680 728 80 1,621 1,701 48 130 178 859 680 1,539 680 680 1,360 972 513 1,485 48 1092 1140 120 587 707 

MNI 66 165 231                 188 165 353 122 162 284              

SDR 713 580 1,292 424 556 980 243 580 823 243 1,359 1,602 268 424 692 1,250 580 1,830 520 580 1,100 997 666 1,663 240 628 868 609 307 916 

Steno 163 131 294                 163 131 294      100 174 274           

Total  
SUMMIT-2 1,339 2,372 3,710 692 2,047 2,739 371 2,076 2,447 371 4,471 4,842 396 692 1,088 3,345 2,372 5,717 1,989 2,238 4,227 3,094 2,906 6,000 368 2,821 3,189 897 1,610 2,507 

Total ALL 6,705 15,430 22,134 3,528 14,448 17,976 2,717 14,962 17,679 2,717 22,924 25,641 2,640 3,502 6,142 11,380 15,405 26,785 4,779 15,331 20,110 7,636 18,576 26,212 2,660 18,163 20,823 4,122 13,972 18,094 

Number of samples in the SUMMIT-1 (type 1 diabetes) and SUMMIT-2 (type 2 diabetes) cohorts represents those individuals included in the original analysis, 

containing related individuals; The current meta-analysis was based on effect size estimates from SUMMIT which were derived after excluding related 

individuals (see ESM Table 3 analysis method). 
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ESM Table 3: Key characteristics of the genotyping and statistical analyses in DNCRI and SUMMIT 

cohorts.  

 DNCRI SUMMIT-1 and SUMMIT-2 

N studies 17 3 (SUMMIT-1), 5 (SUMMIT-2) 

N samples (max) 19,406 1,741 (SUMMIT-1), 6,000 (SUMMIT-2) 

Genotyping 

chips 

HumanCoreExome Bead arrays 12-1.0, 

12-1.1, and 24-1.0 

Illumina Omni express array, Affymetrix 

SNP 6.0 array, Illumina 610Quad assay 

Genotype calling zCall GenomeStudio, CHIAMO 

Main pre-

imputation 

Quality control 

filters 

SNP call rates <95%, excessive 

deviation from Hardy–Weinberg 

equilibrium; sample call rates <98%, sex 

mismatch, extreme heterozygosity, 

principal component analysis to exclude 

outliers with evidence of non-European 

ancestry 

SNP call rate <95%, MAF<1%, HWE 

p<10-6 or p<10-7, evidence of plate 

differences (p<1e-7). Sample call rate 

<95%, extremely high/low heterozygosity 

(>3 sd. or >4 sd. from mean), Admixture 

(PC1 or PC2 > 6 sd. away from mean + 

visual evaluation) 

Imputation 

reference panel 

1000Genomes Phase 3 1000Genomes Phase 1 

Imputation 

software 

Minimac3/Minimac3-omp  

(version 1.0.14) 

Prephasing with SHAPE-IT v2; 

Imputation with IMPUTEv2 

Covariates Age, sex, diabetes duration, genetic 

principal components, study specific 

covariates (e.g. site or genotyping 

batch). Excluded closely related 

individuals. 

Age, gender, duration of diabetes, genetic 

principal components. 

Excluded closely related individuals. 

Main post-

analysis SNP 

QC filters 

•Imputation quality score: INFO ≥ 0.3 

•Minor allele count ≥ 10 in cases and in 

controls 

•Marker must be present in at least 2 

studies 

•Imputation quality score: INFO ≥ 0.4 

•Minor allele count ≥ 10 in cases and in 

controls  

•MAF ≥ 0.01 

•SUMMIT-2: Marker must be present in at 

least 2 studies (not applied for the three 

additional phenotypes available only in 

SDR, GoDARTS 1 and 2) 

Analysis method 

and software 

SNPtest, additive score test  SNPtest, additive score test. Note: in 

original studies, P values of association 

were estimated using EMMAX mixed 

model including related individuals, while 

only effect size estimates were obtained 

from SNPtest (excluding related 

individuals). 

Meta-analysis Inverse-variance fixed effects meta-

analysis (METAL software) 

Inverse-variance fixed effects meta-

analysis (GWAMA or METAL) 
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ESM Table 4: List of related traits studied with LD score regression. 

Trait PMID Category ethnicity 

Mothers age at death 27015805 aging European 

Parents age at death 27015805 aging European 

Fathers age at death 27015805 aging European 

Height_2010 20881960 anthropometric European 

Body mass index 20935630 anthropometric European 

Childhood obesity 22484627 anthropometric European 

Infant head circumference 22504419 anthropometric European 

Child birth weight 23202124 anthropometric European 

Difference in height between childhood and adulthood; 

age 8 23449627 anthropometric European 

Difference in height between adolescence and adulthood; 

age 14 23449627 anthropometric European 

Height; Females at age 10 and males at age 12 23449627 anthropometric European 

Obesity class 1 23563607 anthropometric European 

Overweight 23563607 anthropometric European 

Obesity class 2 23563607 anthropometric European 

Obesity class 3 23563607 anthropometric European 

Extreme bmi 23563607 anthropometric European 

Extreme height 23563607 anthropometric European 

Extreme waist-to-hip ratio 23563607 anthropometric European 

Child birth length 25281659 anthropometric European 

Waist-to-hip ratio 25673412 anthropometric European 

Waist circumference 25673412 anthropometric European 

Hip circumference 25673412 anthropometric European 

Sitting height ratio 25865494 anthropometric European 

Body fat 26833246 anthropometric Mixed 

Birth weight 27680694 anthropometric European 

Offspring birth weight 31043758 anthropometric European 

Offspring birth weight (maternal effect) 31043758 anthropometric European 

Offspring birth weight 31043758 anthropometric Mixed 

Own birth weight 31043758 anthropometric European 

Own birth weight 31043758 anthropometric Mixed 

Own birth weight (fetal effect) 31043758 anthropometric European 

Asthma 17611496 autoimmune European 

Celiac disease 20190752 autoimmune European 

Multiple sclerosis 21833088 autoimmune European 

Rheumatoid Arthritis 24390342 autoimmune European 

Inflammatory Bowel Disease (Euro) 26192919 autoimmune European 

Crohns disease 26192919 autoimmune European 

Ulcerative colitis 26192919 autoimmune European 

Primary biliary cirrhosis 26394269 autoimmune European 

Eczema 26482879 autoimmune Mixed 

Systemic lupus erythematosus 26502338 autoimmune European 

Primary sclerosing cholangitis  27992413 autoimmune Mixed 

Femoral neck bone mineral density 22504420 bone Mixed 

Lumbar spine bone mineral density 22504420 bone Mixed 

Lumbar Spine bone mineral density 26367794 bone Mixed 

Femoral Neck bone mineral density 26367794 bone Mixed 

Forearm Bone mineral density 26367794 bone Mixed 

Adiponectin 22479202 cardiometabolic Mixed 

Coronary artery disease 26343387 cardiometabolic Mixed 

Ischemic stroke 26935894 cardiometabolic Mixed 

2hr glucose adjusted for BMI 20081857 glycemic European 
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HOMA-IR 20081858 glycemic European 

HOMA-B 20081858 glycemic European 

Fasting proinsulin 20081858 glycemic European 

HbA1C 20858683 glycemic European 

Fasting glucose main effect 22581228 glycemic European 

Fasting insulin main effect 22581228 glycemic European 

Type 2 Diabetes 22885922 glycemic European 

Urinary albumin-to-creatinine ratio 26631737 kidney European 

Urinary albumin-to-creatinine ratio (non-diabetes) 26631737 kidney European 

Chronic Kidney Disease 26831199 kidney Mixed 

Serum cystatin c 26831199 kidney Mixed 

Serum creatinine 26831199 kidney Mixed 

Serum creatinine (non-diabetes) 26831199 kidney Mixed 

Triglycerides 20686565 lipids European 

HDL cholesterol 20686565 lipids European 

LDL cholesterol 20686565 lipids European 

Total Cholesterol 20686565 lipids European 

Urate 23263486 other European 

Former vs Current smoker 20418890 smoking_behaviour European 

Ever vs never smoked 20418890 smoking_behaviour European 

Cigarettes smoked per day 20418890 smoking_behaviour European 

Age of smoking initiation 20418890 smoking_behaviour European 

Smoking Initiation 30617275 smoking_behaviour European 

Smoking Cessation 30617275 smoking_behaviour European 

Cigarettes Per Day 30617275 smoking_behaviour European 

Pack Years 30617275 smoking_behaviour European 

Serumurate overweight 25811787 uric_acid European 

PMID: PubMed ID. See list of references on ESM References, page 11. 

 

27015805 [46] 

20881960 [47] 

20935630 [48] 

22484627 [49] 

22504419 [50] 

23202124 [51] 

23449627 [52] 

23563607 [53] 

25281659 [54] 

25673412 [55] 

25865494 [56] 

26833246 [57] 

27680694 [58] 

31043758 [59]

17611496 [60] 

20190752 [61] 

21833088 [62] 

24390342 [63] 

26192919 [64] 

26394269 [65] 

26482879 [66] 

26502338 [67] 

27992413 [68] 

22504420 [69] 

26367794 [70] 

22479202 [71] 

26343387 [72] 

26935894 [73]

20081857 [74] 

20081858 [75] 

20858683 [76] 

22581228 [77] 

22885922 [78] 

26631737 [79] 

26831199 [80] 

20686565 [81] 

23263486 [82] 

20418890 [83] 

30617275 [84] 

25811787 [85]
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ESM Table 5: Association details for the novel genome-wide significant locus rs72831309 in TENM2. In 

the meta-analysis, rs72831309 (chr5:166978230) minor A allele was considered the effect allele, major G as 

the non-effect allele.  

COHORT EAF BETA SE OR OR_L95 OR_U95 P INFO N 

GWU_GOKIND 0.02 -0.11 0.76 0.88 0.20 3.93 0.88 0.38 578 

UK_ROI 0.03 0.57 0.49 1.40 0.53 3.68 0.25 0.53 699 

JOSLIN 0.03 0.33 0.36 1.15 0.57 2.33 0.36 0.51 1415 

FinnDiane 0.05 0.82 0.17 1.60 1.15 2.22 1.0×10-6 0.66 3059 

EURODIAB 0.03 1.36 0.51 3.89 1.43 10.54 0.008 0.52 567 

SUMMIT-2 meta 0.03 0.69 0.31 1.99 1.08 3.67 0.028 NA 1552 

Meta all 0.04 0.73 0.13 2.08 1.62 2.67 9.82×10-9  8322 

EAF: effect allele (minor A allele) frequency. BETA: effect size estimate. SE: standard error for BETA. OR: odds ratio. 
OR_L95 and OR_U95: Lower and upper confidence intervals. P: p-value. INFO: imputation quality info metrics. N: 
Number of samples in the study.  
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ESM Table 6: Highly correlated reconstituted gene-sets that make-up the “basement membrane” meta-

gene set derived in Marouli et al. The “Genes prioritized” column contains all genes prioritized in MAGMA 

by one of these 26 gene-sets, including the “FBLN2 PPI subnetwork” gene set that prioritized COL4A3 for 

Severe DKD. 

GENE-SET ID GENE-SET DESCRIPTION GENES PRIORITIZED 

MP:0003044 impaired basement 
membrane formation 

 

ENSG00000163520 FBLN2 PPI subnetwork ADAMTS15, CD248, COL4A3, NID2 

MP:0004272 abnormal basement 
membrane morphology 

 

GO:0043256 laminin complex  

ENSG00000130702 LAMA5 PPI subnetwork  

ENSG00000132561 MATN2 PPI subnetwork  

ENSG00000091136 LAMB1 PPI subnetwork  

ENSG00000116962 NID1 PPI subnetwork  

ENSG00000135862 LAMC1 PPI subnetwork  

ENSG00000168487 BMP1 PPI subnetwork  

GO:0034446 substrate adhesion-
dependent cell spreading 

 

ENSG00000125810 CD93 PPI subnetwork  

ENSG00000134871 COL4A2 PPI subnetwork ABCC9, CCDC102B, COL18A1, CSPG4, CTHRC1, 
FN1, IGFBP3, LAMC1, LOXL1, OLFML2B, TGFBI 

ENSG00000188153 COL4A5 PPI subnetwork ABCA9, ADAMTS5, AEBP1, ART3, BICC1, C3, C7, 
COL15A1, COL1A1, COL1A2, COL3A1, COL4A3, 
COL5A2, COL6A2, ENSG00000259134, 
ENSG00000259284, FBLN5, FBN1, FIBIN, 
FNDC1, FSTL1, GALNTL4, GRB14, IGFBP6, 
LAMA2, LAMB1, LINC00312, LOX, MMP2, NOV, 
OLFML1, POSTN, SCN7A, SERPING1, SLIT3, 
SPARC, THBS2, VGLL3, WDR72 

ENSG00000112773 FAM46A PPI subnetwork  

ENSG00000100985 MMP9 PPI subnetwork  

ENSG00000110492 MDK PPI subnetwork  

ENSG00000101680 LAMA1 PPI subnetwork  

GO:0043236 laminin binding  

ENSG00000187498 COL4A1 PPI subnetwork ACTA2, COL14A1, COL4A2, CTHRC1, ENPEP, 
LHFP, LOXL2, TGFBI 

GO:0005605 basal lamina  

ENSG00000213949 ITGA1 PPI subnetwork  

ENSG00000114270 COL7A1 PPI subnetwork  

GO:0050840 extracellular matrix binding  

ENSG00000081052 COL4A4 PPI subnetwork ABCC9, ACTA2, ADAMTS1, ADAMTS5, ASPN, 
C1R, C1S, C7, CCDC80, COL4A1, COL5A1, 
COL6A1, DCN, EFEMP1, FBLN1, FKBP7, IGFBP3, 
LGALS1, LOX, LUM, MGP, NID2, PID1, PXDN, 
SCN7A, SERPINF1, SPARCL1, VCAN 

GO:0005604 basement membrane APLNR, COL12A1, CTGF, HTRA1, ITGB4, ITGB6, 
MCAM, PRSS23 
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ESM Table 7: Association results for the lead SNPs at the MAGMA/PASCAL genes. 

Phenotype  Gene(s) CHR:POS SNP EA NEA EAF OR (95% CI) P-value PHET 

CKD extremes COL20A1 20:61964452 rs6011746 C G 0.923 0.69 (0.59 - 0.8) 1.90×10-6 0.65 

ESRD vs. All COL20A1 20:61950071 rs74397198 A G 0.078 1.44 (1.24 - 1.69) 3.58×10-6 1 

ESRD vs. macro DCLK1 13:36542599 rs12428319 T C 0.553 1.2 (1.1 - 1.31) 3.18×10-5 0.78 

ESRD vs. macro EIF4E 4:99796439 rs7664964 T C 0.606 0.81 (0.74 - 0.88) 8.92×10-7 0.88 

Severe DKD GPR158 10:25590161 rs532538 T C 0.731 0.88 (0.84 - 0.93) 2.96×10-6 0.0053* 

All vs. Ctrl INIP/SNX30 9:115429626 rs786959 A G 0.105 1.18 (1.11 - 1.27) 9.91×10-7 0.63 

Severe DKD LSM14A 19:34701331 rs1260634 T C 0.371 1.12 (1.07 - 1.17) 5.22×10-6 0.94 

Severe DKD MFF 2:228121101 rs55703767 T G 0.208 0.82 (0.77 - 0.87) 3.60×10-11 0.11 

CKD PTPRN/RESP18 2:220178435 rs2090163 T C 0.728 1.14 (1.08 - 1.21) 1.01×10-6 0.46 

EA: Effect allele. NEA: Non-effect allele. EAF: Effect allele frequency. PHET: P-value for heterogeneity between the type 
1 diabetes and type 2 diabetes studies.  
*Type 1 diabetes: N=18,589, p=0.002, OR [95% CI] = 1.10 [1.03 - 1.16]; Type 2 diabetes: N=3,461, p=7.41×10-6, OR 
[95% CI] = 1.34 [1.18 - 1.52]
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ESM Table 8: TWAS results with p<1×10-4. P-values < 4.1×10-6 (in bold) are significant after correction for multiple testing.   

        TWAS association Prediction performance     

Tissue Pheno gene gene_name Effect p-value var_g r2 p-value q-value n_snps_used n_snps_in_model 

tub Severe DKD ENSG00000135334.8 AKIRIN2 0.308 1.11E-06 0.092 0.05 0.013 0.012 39 42 
tub Macro ENSG00000135334.8 AKIRIN2 0.383 1.70E-06 0.092 0.05 0.013 0.012 39 42 
glom Micro ENSG00000268208.1 AC008372.1 -7.489 1.59E-05 0.000 0.03 0.083 0.044 1 1 
glom Macro ENSG00000228696.4 ARL17B -0.195 2.06E-05 0.331 0.51 1.28E-19 1.77E-18 54 65 
glom Micro ENSG00000138028.10 CGREF1 -0.228 2.15E-05 0.131 0.14 2.08E-05 3.07E-05 25 26 
glom CKD ENSG00000078804.8 TP53INP2 0.499 2.73E-05 0.068 0.03 0.080 0.042 34 38 
glom Macro ENSG00000227057.3 WDR46 -0.583 4.05E-05 0.024 0.03 0.085 0.044 10 10 

tub Severe DKD ENSG00000205269.4 TMEM170B 0.192 4.62E-05 0.133 0.06 0.007 0.007 90 95 
tub CKD ENSG00000188283.7 ZNF383 0.327 4.72E-05 0.046 0.05 0.012 0.011 15 16 
tub CKD ENSG00000075413.13 MARK3 -0.258 5.05E-05 0.085 0.05 0.013 0.012 102 104 
tub Macro ENSG00000162836.7 ACP6 -0.146 6.44E-05 0.377 0.47 4.19E-18 7.16E-17 30 31 
Tissue: tub(ular) or glom(erular). TWAS association: Effect: association effect size for the gene. P-value: p-value for the TWAS association. var_g: variance of the gene 
expression. Prediction performance r2, p-value and q-value: statistics for tissue model's correlation to gene's measured transcriptome; n_snps_used: number of SNPs from 
GWAS that were used in the analysis; n_snps_in_model: number of SNPs in the model (i.e. in the transcriptomics data). Macro, macroalbuminuria vs normal AER; Micro, 
microalbuminuria vs normal AER.  

 

ESM Table 8b: TWAS results look-up for lead SNPs in kidney tubular and glomerular eQTL data (Qiu et al. 2018, [15]) and GWAS on eGFR in the 

general population (Wuttke et al. 2019, [39]). Results with p<0.05 are shown.  

        TWAS association Prediction performance     
Tissue Pheno gene gene_name Effect p-value var_g r2 p-value q-value n_snps_used n_snps_in_model 

tub eGFR ENSG00000148158.12 SNX30 0.0011 0.046 0.18 0.10 0.0003 0.00058 73 82 
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ESM Table 9: eQTL and association data for SNPs that were selected by elastic net regression model 

in TWAS contributing to AKIRIN2 TWAS association. 

   eQTL  Association with Severe DKD  eQTL 

SNP Chr Pos REF ALT Weight -  EA NEA EA Freq Effect SE P N - 

Weight 
for 
risk 

allele 

rs58305152 6 88340568 G A -0.001  A G 0.274 -0.101 0.027 0.0002 22045  0.001 

rs12529993 6 88283420 A C -0.071  A C 0.725 0.099 0.027 0.0003 22048  0.071 

rs9450740 6 88273971 G A -0.082  A G 0.274 -0.099 0.027 0.0003 22046  0.082 

rs2245604 6 88498604 G T -0.194   T G 0.853 -0.141 0.041 0.0005 21592   0.194 

rs10944332 6 88492526 A G 0.055  A G 0.865 -0.132 0.042 0.0015 21593  0.055 

rs4706308 6 88825342 G T -0.061  T G 0.653 -0.095 0.033 0.0038 22107  0.061 

rs4707394 6 88453883 G A -0.047  A G 0.536 -0.059 0.024 0.014 22103  0.047 

rs9342120 6 88455481 A G -0.046  A G 0.465 0.058 0.024 0.016 22107  0.046 

rs9444543 6 88450687 G A -0.046  A G 0.535 -0.058 0.024 0.016 22103  0.046 

rs9344715 6 88448510 A G -0.044  A G 0.465 0.057 0.024 0.017 22105  0.044 

rs72914432 6 87758995 C T 0.135  T C 0.044 0.174 0.077 0.024 19226  0.135 

rs118049447 6 87717596 G A 0.066  A G 0.043 0.177 0.079 0.026 18934  0.066 

rs7738899 6 88481411 T G -0.002  T G 0.394 0.054 0.026 0.037 22101  0.002 

rs13205684 6 88478101 C T -0.017  T C 0.607 -0.052 0.025 0.043 22101  0.017 

rs56200744 6 87624007 C A 0.003  A C 0.145 0.071 0.042 0.095 21939  0.003 

rs2787889 6 88505746 T C -0.028  T C 0.199 0.055 0.034 0.099 21944  0.028 

rs4707329 6 87572226 G T -0.004  T G 0.107 -0.067 0.041 0.099 21483  0.004 

rs9450545 6 87583661 T C -0.014  T C 0.887 0.066 0.040 0.103 21484  0.014 

rs79344675 6 87586002 A G -0.005  A G 0.891 0.063 0.041 0.121 21485  0.005 

rs202220103 6 87610476 T C -0.137  T C 0.904 0.073 0.049 0.139 16327  0.137 

rs138083000 6 87587532 T C -0.003  T C 0.891 0.059 0.041 0.145 21483  0.003 

rs17731731 6 87928971 G A 0.038  A G 0.084 0.076 0.053 0.153 21090  0.038 

rs6927401 6 89043905 A G 0.024  A G 0.573 -0.026 0.024 0.297 22107  0.024 

rs806377 6 88858723 T C -0.031  T C 0.486 -0.025 0.025 0.300 22102  -0.031 

rs9353542 6 89041259 G T 0.024  T G 0.428 0.025 0.025 0.304 22103  0.024 

rs12191012 6 89039844 G A 0.039  A G 0.104 0.033 0.043 0.434 20900  0.039 

rs1049353 6 88853635 C T -0.013  T C 0.285 -0.022 0.029 0.456 22048  0.013 

rs9344742 6 88626153 T C 0.054  T C 0.392 0.019 0.028 0.499 18646  -0.054 

rs34719676 6 87415764 G A 0.012  A G 0.128 0.026 0.038 0.504 22046  0.012 

rs7769951 6 89206945 T C -0.025  T C 0.087 0.031 0.047 0.508 20384  0.025 

rs62430887 6 89219617 G A 0.016  A G 0.086 0.030 0.047 0.526 20385  0.016 

rs36060042 6 87437974 T C 0.050  T C 0.874 -0.024 0.038 0.534 22046  0.050 

rs4076053 6 88626861 G A 0.032  A G 0.603 -0.016 0.028 0.571 18646  -0.032 

rs28825134 6 89048365 C A 0.038  A C 0.097 0.029 0.052 0.572 15743  0.038 

rs199700576 6 89231738 A G 0.020  A G 0.318 -0.017 0.031 0.574 16889  0.020 

rs73484048 6 88535200 A G -0.008  A G 0.665 0.013 0.029 0.654 22044  0.008 

rs78952394 6 88868594 T C -0.015  T C 0.881 0.017 0.040 0.660 21545  0.015 

rs7763877 6 88206513 G A -0.019  A G 0.909 -0.018 0.065 0.778 15930  0.019 

rs3798787 6 89337530 G A -0.130  A G 0.116 -0.010 0.042 0.812 21090  0.130 

rs7382639 6 89274654 A G -0.033  A G 0.802 0.008 0.033 0.820 21938  0.033 

rs9344742 6 88626153 T C 0.054  T C 0.394 0.011 0.057 0.843 3457  -0.054 

rs12215366 6 88989076 T G 0.096  T G 0.913 -0.005 0.048 0.911 20900  0.096 

rs4076053 6 88626861 G A 0.032  A G 0.607 -0.002 0.056 0.975 3456  -0.032 

eQTL Weight: weights for AKIRIN2 gene (ENSG00000135334.8) from tubule eQTL dataset, for the Alt 

(alternative) allele. Association: EA: effect allele; NEA: non-effect allele. EA Freq: effect allele frequency. 

Effect: effect size beta for EA, such that positive effect indicates higher EA frequency in Severe DKD cases. 

SE: effect size standard error. P: SNP – Severe DKD association p-value. N: number of samples contributing 

to association. eQTL weight for risk allele: eQTL weight for the Severe DKD risk increasing allele (not 

necessarily the effect allele).  
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ESM Table 10: Kidney eQTL associations with p<1×10-4 in tubular or glomerular eQTL data, or in the 

kidney eQTL meta-analysis for the lead SNPs. Three top SNPs were queried for each lead locus from 

GWAS meta-analysis, gene-level (MAGMA or PASCAL) analysis, or TWAS locus.  

In addition, eQTL associations with p<0.01 in tubular or glomerular eQTL data, or in the kidney eQTL meta-

analysis are given for the SNPs reaching genome-wide significance (p<5×10-8) in the GWAS meta-analysis.    

Tissue SNP CHR:POS P eQTL eQTL GENE Index gene P GWAS PP eQTL 

Glomerular rs28577966 4:99796005 2.13E-07 ADH4 EIF4E 1.05E-06 0.698 

Glomerular rs7664964 4:99796439 2.13E-07 ADH4 EIF4E 8.92E-07 0.698 

Glomerular rs11725932 4:99799310 2.13E-07 ADH4 EIF4E 9.97E-07 na 

Tubular rs59113552 6:88236233 5.19E-05 SMIM8 AKIRIN2 2.85E-05 na 

Kidney meta rs786959 9:115429626 4.59E-07 SNX30 INIP 9.913E-07 0.697 

Kidney meta rs6011746 20:61964452 5.75E-05 CHRNA4 COL20A1 1.90E-06 0.00 

eQTL associations with p<0.01 for GWAS lead SNPs with p<5×10-8 

Glomerular rs55703767 2:228121101 0.0091 AC010735 COL4A3 3.60E-11  

Kidney meta rs72831309 5: 166978230 0.0069 TENM2-AS1 TENM2 9.82E-09  

Tissue: kidney eQTL meta-analysis, or glomerular or tubule compartment-specific expression.  

PP eQTL: posterior probability of colocalization for the GWAS and eQTL signal in a kidney meta-analysis 

of 686 samples.  
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ESM Table 11: Significant kidney mQTL associations (p<1.46×10-11 Bonferroni-adjusted genome-wide 

significance; 1×10-7 suggestive significance) for lead loci. Three most significant SNPs were queried at each 

associated loci from single variant, gene-level, and transcriptome-wide association study (TWAS).  

Chr RSID SNP_Pos CpG CpG_Start P mQTL PP mQTL Gene P DKD/eGFR 

19 rs668933 34704936 cg14143166 34716204 1.94E-28 0.804 LSM14A 0.03 (DKD) 

19 rs1260634 34701331 cg14143166 34716204 2.09E-28 0.804 LSM14A 0.03 (DKD) 
19 rs535440 34694581 cg14143166 34716204 2.12E-28 0.804 LSM14A 0.03 (DKD) 
13 rs12428319 36542599 cg21746263 36562319 6.81E-22 0.821 DCLK1  

13 rs61948262 36533891 cg21746263 36562319 4.19E-21 0.821 DCLK1  
20 rs117255010 61953366 cg20706388 61958549 1.79E-12 na COL20A1  

20 rs6011746 61964452 cg20706388 61958549 2.14E-12 0.916 COL20A1  
20 rs4809528 61943661 cg20706388 61958549 2.55E-12 0.916 COL20A1  
20 rs74397198 61950071 cg20706388 61958549 2.88E-12 0.916 COL20A1  

20 rs143391037 61971717 cg20706388 61958549 4.76E-12 na COL20A1  
2 rs6436131 220151858 cg06895971 220147671 9.20E-12 Na PTPRN  

4 rs7664964 99796439 cg25974308 99852386 1.10E-11 0.003 EIF4E 0.041 (eGFR slope) 
4 rs28577966 99796005 cg25974308 99852386 1.10E-11 0.003 EIF4E 0.041 (eGFR slope) 
4 rs11725932 99799310 cg25974308 99852386 1.10E-11 0.003 EIF4E 0.041 (eGFR slope) 

6 rs34472900 88405040 cg00551398 88298473 1.12E-11 na AKIRIN2  

6 rs151077971 88405605 cg00551398 88298473 1.13E-11 na AKIRIN2  

6 rs59113552 88236233 cg00551398 88298473 1.58E-11 na AKIRIN2  

9 rs786975 115451231 cg13293976 115516494 2.20E-11  INIP 0.012 (eGFR slope) 

2 rs4674377 220201272 cg14891200 220197663 2.72E-10  RESP18  
2 rs2090163 220178435 cg14891200 220197663 1.06E-09  PTPRN  
6 rs59113552 88236233 cg10313604 88493367 3.18E-09  AKIRIN2  

6 rs151077971 88405605 cg10313604 88493367 7.06E-09  AKIRIN2  
6 rs34472900 88405040 cg10313604 88493367 7.11E-09  AKIRIN2  

6 rs151077971 88405605 cg05834092 87792915 7.82E-09  AKIRIN2  
6 rs34472900 88405040 cg05834092 87792915 7.83E-09  AKIRIN2  
19 rs535440 34694581 cg21245903 34711622 9.97E-09  LSM14A  

19 rs1260634 34701331 cg21245903 34711622 1.00E-08  LSM14A  
19 rs668933 34704936 cg21245903 34711622 1.04E-08  LSM14A  

6 rs59113552 88236233 cg05834092 87792915 1.63E-08  AKIRIN2  
6 rs151077971 88405605 cg15059496 88185750 3.76E-08  AKIRIN2  
6 rs34472900 88405040 cg15059496 88185750 3.76E-08  AKIRIN2  

6 rs59113552 88236233 cg20648632 88182160 4.22E-08  AKIRIN2  
2 rs2090163 220178435 cg19020434 220199207 6.40E-08  PTPRN  

2 rs4674377 220201272 cg06895971 220147671 6.77E-08  RESP18  
6 rs59113552 88236233 cg15059496 88185750 7.55E-08  AKIRIN2  

2 rs4674377 220201272 cg19020434 220199207 7.84E-08  RESP18  

19 rs535440 34694581 cg01663383 34676533 8.98E-08  LSM14A  
19 rs1260634 34701331 cg01663383 34676533 9.01E-08  LSM14A  

19 rs668933 34704936 cg01663383 34676533 9.24E-08  LSM14A  
Gene: CpG site annotated gene. P DKD/eGFR: P-value for association between blood methylation at the CpG site and 
DKD (UK-ROI+FinnDiane EWAS) or with eGFR slope (CRIC EWAS). 
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ESM Table 12: Correlation between glomerular and tubular gene expression and glomerulosclerosis, 

fibrosis, and eGFR in nephrectomy samples. All associations with p<0.05 are shown, significant 

associations (p<2.2×10-4, corrected for 29 genes × 2 tissue compartments × 4 phenotypes) are in bold.  

   eGFR Glomerulosclerosis Fibrosis Group comparison 

Gene Tissue r p r p r p Direction p 

ALLC glom         
ALLC tub 0.26 6.9E-08   -0.50 2.0E-16 lowest in DKD 8.3E-05 

COLEC11 glom 0.24 1.0E-05 -0.27 1.8E-06   lowest in DKD 1.8E-05 

COLEC11 tub 0.21 1.0E-05   -0.47 2.0E-16 lowest in DKD 1.37E-03 

PLEKHA7 glom 0.14 9.5E-03     lowest in DKD 4.3E-06 

PLEKHA7 tub 0.30 1.3E-10   -0.49 2.0E-16 lowest in DKD 1.3E-05 

SNX30 glom 0.24 1.2E-05 -0.22 8.0E-05   lowest for DKD 5.5E-05 

SNX30 tub 0.35 5.8E-14   -0.56 2.0E-16  1.2E-06 

DCLK1 glom         
DCLK1 tub -0.15 1.48E-03   0.39 7.4E-16 Highest in DKD 2.17E-04 

TENM2 glom 0.13 0.02 -0.18 1.7E-03     
TENM2 tub 0.27 1.6E-08   -0.29 2.0E-09 lowest in DKD 6.6E-04 

COL4A3 glom 0.11 0.05 -0.16 4.8E-03     
COL4A3 tub     0.29 3.2E-09   
ZNF3 glom   0.12 0.04     
ZNF3 tub -0.13 7.26E-03   0.26 1.4E-07   
TAMM41 glom -0.11 0.04 0.16 4.1E-03     
TAMM41 tub -0.20 2.0E-05   0.26 1.5E-07 highest in DKD 5.6E-03 

AKIRIN2 glom         
AKIRIN2 tub     0.25 2.8E-07   
EIF4E glom -0.12 0.03     highest in DKD 2.4E-06 

EIF4E tub     -0.18 1.9E-04   
LSM14A glom         
LSM14A tub 0.22 2.9E-06   -0.13 0.01   
INIP glom   -0.15 9.3E-03     
INIP tub 0.22 5.5E-06   -0.21 2.2E-05   
MFF glom         
MFF tub     -0.21 2.1E-05   

MBLAC1 glom   -0.11 0.05   lowest in DKD 2.8E-03 

MBLAC1 tub     -0.17 5.2E-04   
STAC glom   -0.17 3.0E-03     
STAC tub         
r: Pearson correlation coefficient between the phenotype and log2(Fragments per kilobases of transcript per 1 
million mapped reads [FPKM]) of gene expression in glomeruli/tubules. p: p-value. Group comparison: ANOVA test 
for group comparison (Controls, chronic kidney disease [CKD], diabetic kidney disease [DKD], diabetes mellitus [DM] 
(without DKD), hypertension [HTN]) vs. log2(FPKM) gene expression. 
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ESM Table 13: Gene centric summary of the lead genes 

      
lead 
SNP 

PCHiC 

   Nephrectomy Gene expression vs. phenotype correlations NephroSeq DN vs. healthy   

    

kidney 
eQTL 

kidney 
mQTL   

Glom/
Tub 

eQTL eGFR 
Glomerulosc
lerosis fibrosis Group comparison 

Woroniecka 
DN vs 

healthy 

Ju  
DN vs. 
healthy   

GENE Pheno Indication PoPS P min P min 
Max  
score   P min r p r p r p direction p P FC P FC Pima BX1 correlations Pima BX2 correlations 

TENM2 CKD+DKD Underlying lead SNP Yes 
  

8.61 glom 
 

0.1 0.022 -0.2 0.002 
          

       tub 
 

0.3 1.6E-8 
  

-0.3 2.0E-9 lowest in DKD 6.6E-4 
      

DCLK1 ESRD vs. 
macro 

Gene-based test 
  

6.81E-22 
 

glom 
           

1.2E-4 1.98 ACR: r=0.29 p=0.016; 
MesVol: r=0.25 p=0.041;  

GlomWidth: r=0.32 p=0.024; 
MesVol: r=0.29 p=0.038; 
FootProcW: r=0.71 p=0.0067;  

       tub 0.035 -0.2 0.001 
  

0.4 7.4E-16 Highest in 
DKD 

2.17E-4 0.003 2.09 0.001 1.32 ACR: r=0.39 p=0.0069; 
Fibrosis: r=0.52 
p=0.0003;  

ACR: r=0.28 p=0.04; Fibrosis: 
r=0.36 p=0.015;  

COL4A3 DKD Missense variant Yes 
  

8.89 glom 
 

0.1 0.047 -0.2 0.005 
    

8.3E-5 -1.48 0.032 -0.43 SV: r=-0.28 p=0.024;  
 

       tub 
     

0.3 3.2E-09 
    

2.1E-4 -1.33 
  

COLEC11 CKD Nearby 
   

9.67 glom 
 

0.2 1.0E-5 -0.3 1.8E-6 
  

lowest in DKD 1.8E-5 
  

0.019 -1.59 
  

       tub 
 

0.2 1.0E-5 
  

-0.5 2.0E-16 lowest in DKD 0.001 
  

0.036 -1.47 
 

ACR: r=-0.32 p=0.016; HbA1c: 
r=-0.29 p=0.034;  

ALLC CKD Underlying lead SNP 
   

10.42 glom 
           

0.04 -1.19 GlomWidth: r=0.24 
p=0.054; ΔSV: r=-0.46 
p=0.01;  

MesVol: r=-0.29 p=0.04;  

       tub 
 

0.3 6.9E-8 
  

-0.5 2.0E-16 lowest in DKD 8.3E-5 3.1E-4 -1.43 
  

HbA1c: r=0.3 p=0.041;  
 

PLEKHA7 Micro Underlying lead SNP Yes 
  

9.49 glom 
 

0.1 9.5E-3 
    

lowest in DKD 4.3E-6 
      

       tub 
 

0.3 1.3E-10 
  

-0.5 2.0E-16 lowest in DKD 1.3E-5 
      

SNX30 DKD Gene-based test; 
kidney eQTL 

 
4.6E-7 

  
glom 0.012 0.2 1.2E-05 -0.2 8.0E-5 

  
lowest in DKD 5.5E-5 

      

       tub 0.002 0.4 5.8E-14 
  

-0.6 2.0E-16 lowest in DKD 1.2E-6 
     

eGFR: r=0.33 p=0.013;  

AKIRIN2 Severe DKD TWAS 
 

0.017 1.12E-11 
 

glom 
               

       tub 0.001 
    

0.3 2.8E-7 
        

EIF4E ESRD vs. 
macro 

Gene-based test 
  

1.10E-11 
 

glom 
 

-0.1 0.027 
    

highest in DKD 2.4E-6 0.010 -1.88 0.027 -1.27 ACR: r=0.25 p=0.041;  
 

       tub 
     

-0.2 1.9E-4 
       

eGFR: r=-0.4 p=0.0028;  

MFF Severe DKD Gene-based test 
 

0.032 
 

10.19 glom 0.007 
        

5.4E-4 -1.40 
  

ΔMesVol: r=-0.46 
p=0.011; ΔeGFR: r=0.43 
p=0.017;  

 

       tub 0.017 
    

-0.2 2.1E-5 
      

Progr to ESRD: p=0.007;  
 

ZNF3 Micro Underlying tag SNP 
    

glom 
   

0.1 0.038 
        

GlomVol: r=0.25 p=0.05; 
HbA1c: r=-0.25 p=0.043;  

 

       tub 
 

-0.1 0.007 
  

0.3 1.4E-7 
  

1.1E-4 -1.33 
    

TAMM41 Micro Nearby 
   

10.65 glom 
 

-0.1 0.037 0.2 0.004 
          

       tub 
 

-0.2 2.0E-5 
  

0.3 1.5E-7 highest in DKD 0.006 
     

ACR: r=0.34 p=0.011;  

LSM14A Severe DKD Gene-based test 
  

1.9E-28 
 

glom 0.004 
        

7.4E-4 -1.27 0.001 -1.27 ΔMesVol: r=-0.59 
p=0.00065; ΔSV: r=0.5 
p=0.0052;  

 

       tub 0.017 0.2 2.9E-6 
  

-0.1 0.011 
        

STAC ESRD vs. All Underlying lead SNP 
   

10.87 glom 
   

-0.2 0.003 
    

0.030 -1.53 0.013 -1.38 
  

       tub 
         

0.018 -1.18 
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PTPRN CKD Gene-based test 
 

0.007 9.2E-12 
 

glom 
         

0.016 1.14 0.002 -1.16 FootProcW: r=0.29 
p=0.018;  

 

       tub 
         

0.011 -1.21 9.5E-4 -1.11 HbA1c: r=0.28 p=0.059;  
 

INIP DKD Gene-based test 
  

2.2E-11 
 

glom 0.004 
  

-0.1 0.009 
          

       tub 
 

0.2 5.5E-6 
  

-0.2 2.2E-5 
        

CNTN6 ESRD PoPS Yes 0.046 
  

glom 
               

       tub 
               

MBLAC1 Micro Nearby 
   

TSS glom 
   

-0.1 0.054 
  

lowest in DKD 0.003 
      

       tub 
     

-0.2 5.2E-4 
        

COL20A1 CKD extremes Gene-based test 
  

1.8E-12 
 

glom 
              

FootProcW: r=-0.68 p=0.01;  
       tub 0.018 

              

DCLK3 ESRD vs. All Nearby 
   

8.8 glom 
              

GlomWidth: r=0.33 p=0.021; 
MesVol: r=0.34 p=0.015; 
GlomVol: r=0.42 p=0.0072; 
SV: r=-0.28 p=0.05;  

       tub 
               

MUC7 Severe DKD Nearby 
   

10.53 glom 
               

       tub 
               

RESP18 CKD Gene-based test 
  

2.7E-10 
 

glom 
               

       tub 
               

AMTN Severe DKD Nearby 
    

glom 
               

   
    

tub 
               

GPR158 Severe DKD Gene-based test 
    

glom 
               

   
    

tub 
               

LINC01266 ESRD Underlying lead SNP 
    

glom 
               

   
    

tub 
               

PRNCR1 ESRD vs. 
macro 

Underlying lead SNP 
    

glom 
              

FootProcW: r=0.62 p=0.023;  

   
    

tub 
               

TENM2-
AS1 

CKD+DKD lead SNP kidney 
eQTL 

 
0.007 NA 

 
glom 

  
NA 

 
NA 

 
NA 

 
NA 

      

      
 

tub 
  

NA 
 

NA 
 

NA 
 

NA 
      

ADH4 ESRD vs. 
macro 

glom eQTL for EIF4E 
 

0.008 NA 
 

glom 2.1E-7 
 

NA 
 

NA 
 

NA 
 

NA 
      

      
 

tub 0.002 
 

NA 
 

NA 
 

NA 
 

NA 
     

ACR: r=0.39 p=0.003;  

SMIM8 Severe DKD tub eQTL for 
AKIRIN2 

 
1.1E-4 NA 

 
glom 

  
NA 

 
NA 

 
NA 

 
NA 

      

      
 

tub 5.2E-5 
 

NA 
 

NA 
 

NA 
 

NA 
      

CHRNA4 CKD extremes kidney eQTL for 
COL20A1 

 
5.8E-5 NA 

 
glom 0.009 

 
NA 

 
NA 

 
NA 

 
NA 0.030 1.17 

  
FootProcW: r=0.27 
p=0.029;  

GlomWidth: r=-0.29 p=0.041;  

      
 

tub 0.007 
 

NA 
 

NA 
 

NA 
 

NA 
     

eGFR: r=0.31 p=0.024;  

Indication: why gene was listed as a lead gene. PoPS: was prioritized by PoPS? Kidney eQTL: minimum P-value for eQTL association between the lead SNPs and the gene in 
the kidney eQTL meta-analysis. Kidney mQTL: minimum P-value for kidney methylation, between the lead SNPs and the gene, as assigned in the mQTL annotation. Lead SNP 
PCHiC: highest score for chromatin 3D conformation capture data at the chicp.org for the GWAS meta-analysis lead loci. Glom/Tub eQTL: minimum P-value for eQTL 
association between the lead SNPs and the gene in glomerular/ tubular eQTL data. Nephrectomy Gene expression vs. phenotype correlations: Pearson correlation (r) and p-
value for correlation between glomerular/tubular gene expression and the phenotype.  NephroSeq DN vs. healthy: Fold change (FC) and p-value for differential 
glomerular/tubular gene expression in DN vs. healthy in the Woroniecka and Ju CKD data sets. Pima BX1/BX2 correlations: Pearson correlation coefficient r and p-value for 
glomerular/tubular gene expression vs.  morphological parameters at the first (BX1) or second (BX2) biopsy. 
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ESM Table 14: Mendelian Randomization (MR) results for DKD (All vs Ctrl) 

Exposure method nsnp OR (95%CI) se p-val Q-pval I2 (%) 

Body fat  Inverse variance weighted 9 1.48 (0.73-2.98) 0.36 0.27 0.02 60.2 

Body fat  Weighted median 9 1.26 (0.64-2.49) 0.35 0.50 NA NA 

Body fat  MR Egger 9 1.04 (0.01-98.21) 2.32 0.99 0.01 65.1 

Body mass index  Inverse variance weighted 78 1.86 (1.55-2.23) 0.09 2.56e-11 0.50 0.00 

Body mass index  Weighted median 78 1.76 (1.31-2.36) 0.15 1.85e-04 NA NA 

Body mass index  MR Egger 78 1.98 (1.28-3.08) 0.22 3.18e-03 0.48 0.36 

Obesity class 1  Inverse variance weighted 17 1.28 (1.14-1.44) 0.06 1.90e-05 0.10 31.6 

Obesity class 1  Weighted median 17 1.24 (1.08-1.42) 0.07 2.26e-03 NA NA 

Obesity class 1  MR Egger 17 1.21 (0.87-1.69) 0.17 0.28 0.08 35.2 

Obesity class 2  Inverse variance weighted 11 1.16 (1.05-1.28) 0.05 2.83e-03 0.10 37.2 

Obesity class 2  Weighted median 11 1.13 (1.02-1.26) 0.05 0.02 NA NA 

Obesity class 2  MR Egger 11 1.21 (0.89-1.65) 0.16 0.25 0.07 42.9 

Overweight  Inverse variance weighted 14 1.47 (1.22-1.77) 0.09 4.51e-05 0.07 38.6 

Overweight  Weighted median 14 1.31 (1.05-1.64) 0.11 0.02 NA NA 

Overweight  MR Egger 14 1.11 (0.59-2.08) 0.32 0.75 0.07 39.3 

Hip circumference  Inverse variance weighted 49 1.74 (1.34-2.25) 0.13 2.68e-05 0.07 24.5 

Hip circumference  Weighted median 49 1.89 (1.33-2.67) 0.18 3.29e-04 NA NA 

Hip circumference  MR Egger 49 3.45 (1.35-8.77) 0.48 0.01 0.09 22.5 

Waist circumference  Inverse variance weighted 45 1.90 (1.49-2.42) 0.12 1.71e-07 0.28 10.0 

Waist circumference  Weighted median 45 1.86 (1.29-2.67) 0.19 8.35e-04 NA NA 

Waist circumference  MR Egger 45 2.39 (1.27-4.52) 0.32 0.01 0.27 10.8 

Waist-to-hip ratio  Inverse variance weighted 30 1.34 (0.97-1.84) 0.16 0.08 0.43 2.5 

Waist-to-hip ratio  Weighted median 30 1.15 (0.72-1.84) 0.24 0.55 NA NA 

Waist-to-hip ratio  MR Egger 30 1.61 (0.37-6.95) 0.75 0.53 0.38 5.7 

Coronary artery disease  Inverse variance weighted 61 0.99 (0.91-1.08) 0.04 0.79 0.65 0.00 

Coronary artery disease  Weighted median 61 0.95 (0.83-1.09) 0.07 0.47 NA NA 

Coronary artery disease  MR Egger 61 0.92 (0.77-1.09) 0.09 0.34 0.65 0.00 

Type 2 diabetes  Inverse variance weighted 25 1.14 (1.02-1.27) 0.05 0.02 0.06 32.5 

Type 2 diabetes  Weighted median 25 1.11 (0.97-1.27) 0.07 0.14 NA NA 

Type 2 diabetes  MR Egger 25 1.20 (0.79-1.83) 0.22 0.40 0.046 35.1 

HDL cholesterol  Inverse variance weighted 84 0.91 (0.82-1.02) 0.06 0.11 0.73 0.00 

HDL cholesterol  Weighted median 84 1.03 (0.87-1.21) 0.09 0.77 NA NA 

HDL cholesterol  MR Egger 84 1.16 (0.94-1.43) 0.11 0.17 0.87 0.00 

Urate  Inverse variance weighted 25 1.07 (0.94-1.23) 0.07 0.31 0.11 26.8 

Urate  Weighted median 25 1.08 (0.90-1.31) 0.10 0.40 NA NA 

Urate  MR Egger 25 0.90 (0.71-1.15) 0.12 0.41 0.17 21.3 

Smoking status: Never  Inverse variance weighted 77 0.54 (0.27-1.06) 0.35 0.07 0.10 17.7 

Smoking status: Never  Weighted median 77 0.84 (0.31-2.24) 0.50 0.72 NA NA 

Smoking status: Never  MR Egger 77 1.69 (0.08- 35.31) 1.55 0.74 0.09 18.2 

Smoking status: Current  Inverse variance weighted 15 0.94 (0.10-8.84) 1.15 0.96 0.95 0 

Smoking status: Current  Weighted median 15 0.24 (0.01-4.54) 1.50 0.34 NA NA 

Smoking status: Current  MR Egger 15 4.11 (0.00-1.4e5) 5.34 0.80 0.93 0 
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ESM Table 15. Egger intercepts for Mendelian Randomization analyses on DKD (all vs. Ctrl 

phenotype). 

Exposure Egger intercept Intercept SE Intercept p-value 

Body fat 0.00094 0.051 0.99 

BMI -0.0020 0.0063 0.76 

Obesity class I 0.0072 0.019 0.71 

Obesity class II -0.0083 0.027 0.77 

Overweight 0.024 0.026 0.37 

Waist circumference -0.0095 0.011 0.39 

Hip circumference -0.0071 0.0093 0.45 

WHR 0.0057 0.017 0.74 

CAD 0.0086 0.0064 0.18 

Type 2 diabetes 0.012 0.012 0.31 

HDL cholesterol -0.013 0.0047 0.0085 

Urate 0.014 0.0090 0.12 

Ever smoking -0.0084 0.013 0.51 

Current smoking -0.0078 0.027 0.78 
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ESM Figure 1: Odds ratios required to detect association with ≥ 80% statistical power, in function of 

the variant minor allele frequency [MAF]. Power was calculated at MAFs of 0.1%, 1%, 5%, 10%, 20%, 

30%, 40%, and 50%. 
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ESM Figure 2:  Manhattan and QQ-plots of the ten DKD GWAS meta-analysis results.  

A: Severe DKD (Macroalbuminuria or ESRD vs. normal AER). λGC = 1.029, LD score regression (LDSR) 

intercept = 1.019. 

 
B: Macro (Macroalbuminuria vs. normal AER). λGC = 1.002, LDSR intercept = 1.028. 

 
C: ESRD (ESRD vs. normal AER). λGC = 1.011, LDSR intercept = 1.018. 
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D: ESRD vs. All (ESRD vs. macro- or microalbuminuria or normal AER). λGC = 1.029, LDSR intercept = 

1.054. 

 
E: ESRD vs. Macro (ESRD vs. macroalbuminuria). λGC = 1.011, LDSR intercept = 1.009. 

 
F: All vs. Ctrl (Micro- or Macroalbuminuria or ESRD vs. normal AER). λGC = 1.035, LDSR intercept = 

1.005. 

 
G: Micro (Microalbuminuria vs. normal AER). λGC = 1.008, LDSR intercept = 1.004.  
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H: CKD (eGFR < 60 ml/min/1.73m2 vs. eGFR ≥60 ml/min/1.73m2). λGC = 1.041, LDSR intercept = 1.028. 

 
I: CKD Extremes (ESRD or eGFR < 15 ml/min/1.73m2 vs. eGFR ≥ 60 ml/min/1.73m2). λGC = 1.023, LDSR 

intercept = 1.019. 

 
J: CKD-DKD (ESRD or eGFR < 45 ml/min/1.73m2 and micro- or macroalbuminuria vs. eGFR ≥ 

60ml/min/1.73m2 and normal AER). λGC = 1.023, LDSR intercept = 1.031. 
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ESM Figure 3: Regional association plot for the COL4A3 gene region associated with Severe DKD, 

indicating a secondary association peak at chr2:228259302 (rs6436688, effect allele (A) frequency 56%,  

OR = 1.13 (95% confidence interval 1.08 – 1.19), p-value 1.79×10-7). SNP rs6436688 is in partial LD 

(D’=0.51, r2=0.08, 1000Genomes European ancestry populations) with the original COL4A3 lead variant 

rs55703767. Variants are colored according to their LD correlation with the primary signal (chr2:228121101 

rs55703767) in red, or with the secondary peak in blue; stronger color indicates stronger correlation.  
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ESM Figure 4: Regional association plots for the GWAS meta-analysis lead loci (A-K). 

A: CKD+DKD chr5:166978230 (rs72831309)  

 
 

B: CKD chr2:3745215 (rs12615970)
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C: Severe DKD chr2:228121101 (rs55703767) 

  
D: ESRD chr3:926345 (rs115061173)
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E: Micro chr3:11910635 (rs142823282) 
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F: ESRD vs. All chr3:36566312 (rs116216059). The SNP rs116216059 is located on a single nucleus 

ATACseq (snATACseq) peak border in podocytes (PODO), peak value 1.1 (peak maximum value 7.0).
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G: Severe DKD chr4:71358776 (rs191449639)  

  
H: Micro chr7:99728546 (rs77273076) 
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I: ESRD vs. macro chr8:128100029 (rs551191707) 

 

  
J: Micro chr11:16937846 (rs183937294) 
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K: CKD chr18:1811108 (rs185299109) 
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ESM Figure 5: Gene prioritization for the COL4A3 gene at lead SNP rs5570367 associated with Severe 

DKD using multiple intersecting gene prioritization approaches (PoPS, nearest gene, and MAGMA). 

Plotted is the PoP Score (y-axis) versus the genes within a 500kb flanking window surrounding the lead SNP 

(x-axis), colored by distance to the lead SNP, and bolded if the gene was also within the top 10% of prioritized 

genes genome-wide using MAGMA. 
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ESM Figure 6: Regional association plots for the gene-level analysis results from MAGMA and 

PASCAL analysis. The implicated gene region is highlighted in blue. If the same gene was significant in both 

analyses, only MAGMA region is highlighted (gene flanking ± 50 kbp, vs. ± 5 kbp for PASCAL).  

A: CKD, PTPRN       

 
B: CKD, RESP18 
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C: Severe DKD, MFF      

 
D: ESRD vs. macro, EIF4E
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E: DKD, INIP 

 
F: DKD, SNX30

 
 



DKD GWAS and omics integration 50 Supplemental Material 

 

G: Severe DKD, GPR158      

 
H: ESRD vs. macro, DCLK1 
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I: Severe DKD, LSM14A      

 
 

J: CKD extremes, COL20A1
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ESM Figure 7: TWAS QQ-plots and genomic control λGC inflation factors for A) tubular and B) 

glomerular expression. 

 

A 
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ESM Figure 8: Tubular and glomerular gene expression of the lead genes correlate with multiple 

morphological and pathological renal parameters. Golden rectangles indicate glomerular gene expression, 

green ellipses tubular gene expression, and gray circles the morphological phenotypes. All nominally 

significant correlations are shown. Blue edges indicate negative correlation, red edges positive correlation. 

Correlation with fibrosis, Glomerulosclerosis (GlomScl), and eGFR are measured in the nephrectomy 

samples. B1_ and B2_ indicate phenotypes from the first and second renal biopsies (B1, B2, respectively) 

from the Pima Indians, correlated with gene expression in transcriptomic data from the corresponding time 

point. B1/2_GlomVol: glomerular volume; B1/2_GlomW: glomerular width; B1/2 FPW: podocyte foot 

process width. B1/2_ACR: albumin creatinine ratio; B1/2_Fibr: fibrosis; B1/2_HbA1c: HbA1c 

B1/2_MesVol: mesangial volume; B1/2_SV: Surface volume of peripheral glomerular basement membrane 

per glomerulus; B1_Slope: measured GFR (mGFR) slope between the B1 and B2. B1_DMesVol: change in 

mesangial volume between B1 and B2. B1_DSV: change in SV between B1 and B2.  
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ESM Figure 9: Genetic correlation between DKD and related traits based on LD score regression. Only trait combinations with p<0.05 are shown, and 

traits that remained significant after correcting for 78 studied traits (p-value < 0.05/78 = 6.4×10-4) are indicated with dark dot borders. Dot colors indicate aging 

related (light purple), anthropometric (green; including BMI and obesity related (light green), height (dark green), and waist and/or hip related (pale green)), 

inflammatory bowel disease (orange), bone mineral density (light gray), coronary artery disease (red), glycemic (light blue), type 2 diabetes (dark blue), serum 

creatinine and cystatin C (brown), lipids (yellow), uric acid (purple), and smoking related (dark gray) traits.  
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ESM Figure 10: Mendelian Randomization scatter plots for SNP effects for the metabolic traits vs. DKD (All vs. Ctrl). Lines indicate IVW, Weighted 

median, and MR egger coefficients.  
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ESM Figure 11: rs1260634 intronic in the LSM14A gene affects the predicted binding motifs 

for KLF12, KLF4, and SP8 (top to bottom). Images obtained from the RegulomeDB 

(www.regulomedb.org) 
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