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Supplementary Fig. 1. ANG and PLXNB2 are up-regulated in GBM and are correlated with 

patient survival. a Level of ANG and PLXNB2 transcripts in human GBM tissues (TCGA, Cell 2013, 

n = 163) and matched normal tissue (TCGA/GTEx, n = 207). Data shown is the Log2 of transcripts 

per million (TPM) + 1. ** p < 0.01. b Survival plots of GBM patients (TCGA, Cell 2013, n = 163) 

with high (red, n = 122) and low (blue, n = 41) expression of ANG (left) and PLXNB2 (right). c

Survival of GBM patients in the same cohort with high (red, n = 104) and low (blue, n = 18) 

transcripts of both ANG and PLXNB2. The top 75% was defined as the high, and the bottom 25% was 

defined as the low in both ANG and PLXNB2 expression among the 163 patients in this cohort. 

GEPIA2 (gene expression of profiling interactive analysis 2) program was used for transcription (a) 

and survival (b and c) analysis. d Correlation analysis of ANG and PLXNB2 transcripts in the above 

cohort of GBM patients. e Survival plots of GBM patients of the proneural/neural, mesenchymal, and 

classic subtypes with high (75%) and low (25%) expression of ANG. 



Supplementary Fig. 2
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Supplementary Fig. 2. Generation of Ang1 knockout mice. a Construction of targeting vector. A 

pGK-gb2 loxP/FRT-flanked Neomycin cassette was inserted 161 nt upstream from the coding exon, 

and an additional loxP site was inserted 80 nt downstream from the coding exon. b Restriction 

enzyme map of the targeting vector. All bands showed correct size from the targeting vector. c PCR 

confirmation of embryonic stem (ES) clones. Recombinant clones were identified by a 2.3kb PCR 

fragment. d Genotyping of F1 mice. e Genotyping of Ang1 gene floxed and knockout (KO) 

heterozygous (hets) and homozygous (homo) mice. f Ang1 mRNA and protein levels from liver 

tissue of WT and Ang1-/- mice.
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Supplementary Fig. 3. Effect of Ang1 deficiency on transformation of mouse embryonic 

fibroblasts (MEF). a Trans-well migration assay. Cells migrated to the bottom of the trans-well 

were quantified at 24 h. Bar = 100 μm. b Trans-well invasion assay. The top of the insert membrane 

were coated with Matrigel. Bar = 100 μm. c qRT-PCR analysis of Mmp2, Mmp3, Mmp9, and 

Col1α2 expression in WT and Ang1-/- tMEF. Data were normalized to Gpdh of WT tMEF. d Colony 

formation of WT and Ang1-/- tMEF. Total number of colonies per microscopic field (400 X) was 

counted and the diameter of each colony was measured at day 14. Bar = 500 μm. e AO/EB staining 

of representative colonies. Apoptosis was determined by the percentage of EB positive cells (red). 

Bar = 100 μm. f Ectopic growth of WT and Ang1-/- tMEF in athymic mice (n = 12). **p < 0.01 ***p < 

0.001; nsp < 0.001.
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Supplementary Fig. 4
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Supplementary Fig. 4. ANG knockdown decreased angiogenic potential of GBM cells and 

increased apoptosis. a Immunoblots of ANG protein in control (NT) and ANG knockdown (A4, E4, 

and E7) U87 cells. b Matrigel plug analysis of angiogenesis induced by control (NT) and ANG

knockdown (E7) U87 cells. Gross images are the matrigel plugs from representative animals taken 

on day 6. IHC images are CD31 positive neovessels. Bar = 100 μm. Bar graphs are means ± SD of 

vessel numbers counted in 3 microscopic areas (400 X). The level of mouse Cd31 and Cdh5 (VE-

Cadherin) in the matrigel was determined by qRT-PCR normalized to human GAPDH. c

Proliferation of control or ANG knockdown U87 cells.  ANG and RNaseA proteins were added at 1 

μg/ml when cells were seeded. Cell numbers were determined by a Coulter counter. d ANG

knockdown potentiates stress-induced apoptosis in U87 cells, which can be ameliorated by 

exogenous ANG protein (1 μg/ml). Apoptotic cells were stained by AO/EB in control (NT) and ANG

knockdown (E7) U87 cells subjected to oxidative (0.25 mM sodium arsenite), ER (12.5 μg/ml 

tunicamycin), or serum-starvation stress for 24 h. Bar = 200 μm. e Pathway enrichment of genes 

correlated with ANG expression in a cohort of GBM patients (TCGA). The number of genes 

correlated with ANG in a particular pathway is shown in parenthesis. **p < 0.01; ***p < 0.001.



Supplementary Fig. 5
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Supplementary Fig. 5. ANG mediates GBM invasion. U87 spheroid invasion in response to ANG 

(1 µg/ml) and anti-ANG IgG 26-2F (50 μg/ml). The invasive area was defined by the area where 

invaded tumor cells were found. Data shown are fold changes of spheroid area at 24 and 48 h 

compared to that at 0 h. Bar = 50 μm. *p < 0.05; ***p < 0.001.



Supplementary Fig. 6
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Supplementary Fig. 6. Small molecule that blocks the binding of ANG to PLXNB2 inhibits 

mouse GBM. a Effect of neomycin on survival of PDGF-induced GBM mice. Mouse GBM was 

induced as described in Fig. 1a. Two weeks after tumor induction, mice were randomly separated in 

two groups and treated with daily i.p. injection of 10 mg/kg of neomycin (n = 6) or paromomycin (n 

= 6). Numbers shown are median survival days. b IHC of CD31 for blood vessels. Three microscopic 

fields (400 X) of each sample were used for quantification. Bar = 100 µm. c TUNEL staining for 

apoptosis. The percentage of apoptotic cells was calculated from cells counted from 3 microscopic 

fields (400 X). Bar = 100 µm. d H&E staining of mouse GBM tissues. Pixels along 20 lines were 

measured binarily based on H&E staining and the SD of matrix reflection signal was used as 

indication of matrix heterogeneity. Bar = 10 μm. e IHC of MMP9 in drug-treated mouse GBM 

tissues. Bar = 100 µm. **p < 0.01; ***p < 0.001.



Supplementary Fig. 7
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Supplementary Fig. 7. ANG inhibitors prevent the establishment of U87 xenograft tumor in 

athymic mice. a,b Effect of ANG mAb 26-2F (a) (n = 12) and small molecule inhibitor neomycin 

(b) (n = 6) on the establishment of U87 xenograft in athymic mice with PBS (n = 12) and 

paromomycin (n = 12) as respective controls. Treatment with daily i.p. injection of 10 mg/kg 26-2F 

(a) or 30 mg/kg neomycin (b) started 1 day post tumor cell (1 x 106) inoculation and continued for 

28 days. c IHC of MMP9 and CD24 in U87 xenograft tumor sections derived from animals treated 

with 26-2F or PBS. Bar = 100 µm. Data shown in the bar graph are positive cells counted from 5 

microscopic fields (400 X). d Double IF of CD24 (green) and CD31 (red) in neomycin-treated U87 

xenograft tumor sections. Bar = 50 μm. Tumor cells (green) that were associated with vessels (red) 

were counted from 5 fields per animal (n = 3) and shown as means ± SD. *p < 0.05; **p < 0.01.


