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Supplementary Methods 

Interpreting the Heterogeneity Statistic 

Here we provide a description of what the Genomic SEM heterogeneity statistic (Q) indexes, and 

how we can appropriately interpret the detected heterogeneity by investigating the univariate GWAS 

results for the individual phenotypes. 

Q indexes the extent to which model misfit occurs for a common pathway model in which the 

effects of a given SNP on the individual phenotypes are specified to occur exclusively via a single effect 

of the SNP on the latent factor (Supplementary Figure 9, left panel) compared to a less restrictive 

independent pathways model in which the effects of a given SNP on the individual phenotypes are 

specified to occur directly on those phenotypes (Supplementary Figure 9, right panel). In other words, 

low Q indicates that the SNP plausibly acts on the latent factor, whereas high Q indicates that the SNP 

does not plausibly act on the latent factor.  

Under the common pathway model, the expected SNP effects ( ,
ˆ
SNPm ykb ) on phenotype k, is 

bSNPm,F × λk, i.e.: 
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 .      (Equation S1) 

Misfit occurs when the vector of expected SNP effects on phenotypes 1 through k deviates from the 

vector of observed SNP effects on phenotypes 1 though k ( ,SNPm ykb ) , as estimated from the univariate 

GWASs. If the effects of the SNP on the individual phenotypes occur exclusively by way of the effect of 

the SNP on the common factor, the vector of observed SNP effects should be proportional to the vector 

of unstandardized loadings of those phenotypes on the common factor, and Q will be low. If, however, 

the vector of observed SNP effects is not proportional to the vector of unstandardized loadings of those 

phenotypes on the common factor, Q will be high, and a model in which the SNP effects on the 

phenotypes occur exclusively via the common factor will be rejected. 

When Q is high for a given SNP, the linear association between the vector of univariate 

regression coefficients, ,SNPm ykb , and the vector of unstandardized factor loadings, λk, will be weaker, and 

there may be one or more outliers. Note that we do not necessarily expect that a SNP that acts 
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exclusively on the common factor to have relatively equal univariate associations with each phenotype 

(this will only occur if the factor loadings are all relatively similar). Rather, if the SNP acts exclusively 

on the common factor, we expect the univariate associations to scale with the unstandardized factor 

loadings for the corresponding phenotypes. For instance consider a phenotype with a relatively low 

unstandardized factor loading. We expect that a SNP that acts directly and exclusively on the common 

factor to have a relatively lower association with that phenotype compared to its associations with the 

other phenotypes. In fact, if the association with that phenotype is comparable to the association of that 

SNP with other phenotypes, Q will be high. 

We next explain why it is the SNP’s beta coefficients, and not its Z statistics or p values, that 

must be explored to investigate heterogeneity. Importantly, when the different phenotypes differ 

dramatically in their sample sizes, SNP heritabilities, or polygenicity, the Z statistics (or p value, which 

is derived from the Z statistic) for a given SNP and each phenotype are not expected to be proportional 

to the magnitude of the unstandardized factor loadings for those phenotypes. For instance, imagine a 

scenario in which Q is 0 (no heterogeneity) for a particularly SNP, such that the correlation between the 

vectors of betas and factor loading is 1.0. We would still likely see differences in Z statistics (and p 

values) across phenotypes that do not correspond with their unstandardized factor loadings. All else 

being equal, the phenotypes with the largest Ns will have very high Z statistics and those with the 

smallest Ns will have very low Z statistics (and may not be significant). If we investigate the Z statistics 

or p values, we may incorrectly infer that the SNP is relevant to the high N phenotypes but not the low N 

phenotypes. However, if we investigate the betas and rely on the Q statistic, we will come to a very 

different (and more correct) conclusion. If Q is 0 (such that the method of correlated vectors produces 

r=1.0), and the SNP effect on the common is genome-wide significant, we will correctly conclude that 

we have identified a SNP that plausibly acts on the phenotypes via the factor.  

Now consider what happens when Q is high for a particular SNP. We may be interested in 

identifying the source(s) of the heterogeneity across phenotypes. The same principles as above hold; we 

must investigate the betas. If we investigate the Z statistics or p values, we will simply conclude that the 

SNP is specific to the phenotypes for which the univariate GWASs are more highly powered, whether 

this is true or not. 

Next, we consider how these principles apply to the results with respect to genetic g. Table S30 

provides the univariate GWAS summary statistics for the lead SNPs from the 3 loci that are genome-

wide significant for both Q and genetic g. 

The first hit considered is for a lead SNP within the APOE gene, which is a well-known risk 

factor for Alzheimer’s Disease. Supplementary Figure 10 is the scatterplot of the betas against the 
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unstandardized factor loadings. It can be seen that the betas correspond very closely to the factor 

loadings for all traits except VNR, which is a test that does not decline with age. The betas for memory 

and RT are also low, but these are traits with relatively lower unstandardized loadings, so these 

observations are unlikely to contribute directly to high Q. VNR is an outlier because its beta is low 

relative to its factor loading. Note that only Symbol Digit and Trails-B pass the genome-wide 

significance threshold, so one (likely incorrect) interpretation would be that this is a SNP that is only 

relevant to those two traits. However, remember that Q is examining heterogeneity in betas across all 

traits (not just the significant ones), and whether they scale with factor loadings. If our goal was to tally 

the intersection of univariate hits for the same SNPs across traits, we would not need multivariate 

methods. However, our goal is to evaluate how these SNPs operate within a formal multivariate model. 

Importantly, Q is genome-wide significant for this SNP, which is why we investigate it further. 

However, differences in the significance of the SNP associations for the individual traits are not directly 

relevant for interpreting the genome-wide significant Q statistic. 

The second hit considered is for a lead SNP within a locus on Chromosome 17.  Supplementary 

Figure 11 is the scatterplot of the betas against the factor loadings. It can be seen that there is not much 

correspondence between the factor loadings and the SNP effects, even with outliers removed. The SNP 

has its strongest association with RT (a measure of psychomotor speed), but it also has a sizable 

association with Symbol Digit. The RT association is the only genome-wide significant univariate 

association for this SNP, but one hesitates to conclude that this is a SNP that is specific to RT, given the 

magnitude of the Digit Symbol beta. A more conservative conclusion would be that this is a SNP that is 

more broadly related to speeded abilities. 

The last hit considered is for a lead SNP within a locus on Chromosome 3. Supplementary 

Figure 12 is the scatterplot of the betas against the factor loadings. First, it is important to observe that 

although there appears to be good correspondence between the factor loadings and the betas, this isn’t 

exactly the case, as two of the betas are slightly negative. Because the factor loadings are all positive, it 

is not possible for a vector that contains both positive and negative SNP effects to be proportional to the 

factor loadings. Rather, there appears to be two clusters of SNP effects. One cluster (Memory, RT, and 

Digit Symbol; all tests of basic mental processes) is characterized by associations that are very close to 

0. A second cluster (Trails-B, Tower, Matrices, VNR; all tests of higher order cognition) is characterized 

by similarly sized positive associations. This SNP only exhibits Z statistics surpassing the suggestive 

threshold (p<1×10-5) for Trails-B and VNR, but in fact the SNP’s beta coefficient for Tower is larger 

(.029) than its coefficient for Trails-B (.023).  Tower (n = 11,263) is simply less well powered than is 

Trails-B (n = 78,547). One would be very hesitant to say that this SNP is only relevant for Trails–B and 
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VNR as its regression relations with Tower and Matrices are very similar in magnitude as those for 

Trails–B and VNR. One sensible interpretation of this pattern is that that this SNP is relevant for higher-

order cognition, but not basic cognitive processes.  

Some points of caution are important to keep in mind. First, the formal hypothesis being tested, 

for which a genome-wide multiple testing correction is made, is the omnibus test of heterogeneity (Q). 

Interpretation of the specific pattern of SNP-phenotype associations following identification of genome-

wide significant Q loci is post-hoc, and should therefore be considered tentative. Nevertheless, for the 

reasons described above, basing such investigation of the individual phenotype associations on 

regression coefficients is more appropriate than basing such investigations on Z-statistics or p-values. 

This is because Genomic SEM is a formal framework for modeling effect sizes across traits, and is not 

simply a method of pooling p values. Importantly, interpreting genome-wide significant Q loci in terms 

of on p values or Z statistics from disproportionally powered univariate GWASs can lead to 

interpretations that fail to account for the fact that “the difference between significant and not significant 

is [not necessarily] itself significant”1.  

Second, overfitting is always bound to be a problem when SNPs are identified on the basis of 

surpassing a stringent significance threshold for their associations. In conventional univariate GWAS it 

is well-known that the effect sizes for genome-wide significant SNPs are likely to be overestimated in 

the discovery sample. In multivariate GWAS, such as the analyses conducted on genetic g, when SNPs 

are identified on the basis of surpassing a stringent threshold for heterogeneity, there is likely to be 

collider bias that builds in artifactual dependencies between individual SNP effect sizes. Short of having 

well-powered independent validation data to re-estimate individual SNP effects for Q hits, this collider 

bias will be difficult to fully resolve, and must be considered when making interpretations.  
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Supplementary Figure 1. Hierarchical structure of intelligence differences (adapted from Deary2, cf. 

Carroll3 and Tucker-Drob4). Cognitive abilities composing intelligence are measured via a variety of 

diverse cognitive tests (Level 1). Spearman5,6 discovered that person-to-person differences in 

performance on many different cognitive tests are moderately positively correlated. Later work refined 

this discovery3,7–10, and articulated the hierarchical model, after observing particularly strong positive 

correlations among tests within cognitive domains (Level 2), such that latent traits representing the 

domains of performance can be extracted to represent their common variance. People who have 

strengths in one domain also tend to have strengths in other domains, such that a general intelligence 

factor, g, can be extracted (Level 3). This hierarchical structure of intelligence differences is well-

established3. Approximately 25-50% of the variation in performance on the individual tests of a diverse 

cognitive battery is accounted for by g, with additional variation accounted for by the cognitive domains 

after taking g into account, and additional variance explained by factors that are specific to the 

individual tests and by measurement error. When only one test per domain is available, the sources of 

variation stemming from levels 1 and 2 to cannot be separated, but g can still be extracted. It has been 

found that, so long as the tests used to measure cognitive abilities are sufficiently diverse, almost the 

same g factor is always extracted6,11. 
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Supplementary Figure 2.  Heat-map of phenotypic correlations among the seven UK Biobank cognitive 

tests. Matrix = Matrix Pattern Completion task; Memory = Memory – Pairs Matching Test; RT = Reaction 

Time; Symbol Digit = Symbol Digit Substitution Task; Trails-B = Trail Making Test – B; Tower = Tower 

Rearranging Task; VNR = Verbal Numerical Reasoning Test. All cognitive tests were first residualized 

for age and several other covariates (see Method). 
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Supplementary Figure 3.  Heat-map of LDSC-estimated genetic correlations among the seven UK 

Biobank cognitive phenotypes. Matrix = Matrix Pattern Completion task; Memory = Memory – Pairs 

Matching Test; RT = Reaction Time; Symbol Digit = Symbol Digit Substitution Task; Trails-B = Trail 

Making Test – B; Tower = Tower Rearranging Task; VNR = Verbal Numerical Reasoning Test. 
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Supplementary Figure 4.  Heat-map of GREML-estimated genetic correlations among the UK Biobank 

cognitive phenotypes. Matrix = Matrix Pattern Completion task; Memory = Memory – Pairs Matching 

Test; RT = Reaction Time; Symbol Digit = Symbol Digit Substitution Task; Trails-B = Trail Making 

Test – B; Tower = Tower Rearranging Task; VNR = Verbal Numerical Reasoning Test.  
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Supplementary Figure 5. Scatterplot of LDSC and GREML genetic correlations (from Figs S2 and S3) 

among UK Biobank cognitive phenotypes. Note: Shaded area represents 95% confidence interval. 
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Supplementary Figure 6. Scatterplot of phenotypic and genetic g factor loadings. Matrix = Matrix 

Pattern Completion task; Memory = Memory – Pairs Matching Test; RT = Reaction Time; Symbol Digit 

= Symbol Digit Substitution Task; TMT-B = Trail Making Test – B; Tower = Tower Rearranging Task; 

VNR = Verbal Numerical Reasoning Test. Note: the regression intercept of the regression line displayed 

in this figure is .269, and the unstandardized slope is .970. The intercept of .269 indicates somewhat 

higher genetic than phenotypic factor loadings, and the slope of .970 indicates close correspondence 

between their orderings. 
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Supplementary Figure 7.  Heat-map of LDSC-estimated (observed) and genetic g model-implied genetic 

correlations among UK Biobank cognitive phenotypes. Matrix = Matrix Pattern Completion task; Memory 

= Memory – Pairs Matching Test; RT = Reaction Time; Symbol Digit = Symbol Digit Substitution Task; 

Trails-B = Trail Making Test – B; Tower = Tower Rearranging Task; VNR = Verbal Numerical Reasoning 

Test.  

 

  



Genetic g Supplement  13 

 

 

 
Supplementary Figure 8. Scatterplot of observed and model-implied genetic correlations (from Fig. 

S7) among UK Biobank cognitive phenotypes. Note: Shaded area represents 95% confidence interval. 
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Supplementary Figure 9. Unstandardized path diagrams for common pathway (left) and independent pathways (right) models used to compute 

the Genomic SEM heterogeneity statistic (Q) for a multivariate GWAS of a single common factor. In this example, F is a common genetic factor 

of the genetic components of k GWAS phenotypes (Y1-Yk). Each model is run once for each SNP, m. Single-headed arrows are regression 

relations, and double-headed arrows are variances. Paths labeled 1 are fixed to 1 for model identification purposes. All other paths represent 

freely estimated model parameters. Q represents the decrement in model fit of the common pathway model relative to the more restrictive 

independent pathways model. Q is a χ2 distributed test statistic with k-1 degrees of freedom, representing the difference between the k SNP-

phenotype b coefficients in the independent pathways model and the 1 SNP-factor b coefficient in the common pathway model. 
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Supplementary Figure 10. Scatter plot of SNP-phenotype regression coefficients (betas) 

against unstandardized genetic factor loadings for the associated phenotypes, for lead SNP 

rs429358 within the APOE gene. Error bars represent standard errors of the SNP-

phenotype betas. The dashed red line represents the regression line based on all seven data 

points. The solid blue line represents the regression line after excluding VNR. In order to 

correspond directly with Equation S1, both regression lines were estimated with their 

intercepts fixed to zero, using weights equal to the inverse of the squared standard errors of 

the betas. 
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Supplementary Figure 11. Scatter plot of SNP-phenotype regression coefficients against 

unstandardized genetic factor loadings for the associated phenotypes, for rs273534 within 

a locus on Chromosome 17. Error bars represent standard errors of the SNP-phenotype 

betas. The solid black line represents the regression line based on all seven data points. In 

order to correspond directly with Equation S1, the regression line was estimated with its 

intercept fixed to zero, using weights equal to the inverse of the squared standard errors of 

the betas. 
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Supplementary Figure 12. Scatter plot of SNP-phenotype regression coefficients against 

unstandardized genetic factor loadings for the associated phenotypes, for lead SNP 

rs2352974 within a locus on Chromosome 3. Error bars represent standard errors of the 

SNP-phenotype betas. The solid black line represents the regression line based on all seven 

data points. In order to correspond directly with Equation S1, the regression line was 

estimated with its intercept fixed to zero, using weights equal to the inverse of the squared 

standard errors of the betas. 
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Supplementary Table 1. Phenotypic correlations across UK Biobank’s cognitive 

phenotypes. 
Note: Matrix = Matrix Pattern Completion task; Memory = Memory – Pairs Matching Test; RT = Reaction 

Time; Symbol Digit = Symbol Digit Substitution Task; Trails-B = Trail Making Test – B; Tower = Tower 

Rearranging Task; VNR = Verbal Numerical Reasoning Test. The off-diagonal elements contain the 

phenotypic correlations across cognitive phenotypes, with standard errors in parentheses. 

  

 

 

  Matrix Memory RT 
Symbol 

Digit 
Trails-B Tower VNR 

Matrix 1       

Memory 
0.149 

(0.009) 
1 

     

RT 
0.100 

(0.009) 

0.074 

(0.002) 
1 

    

Symbol 

Digit 

0.300 

(0.008) 

0.149 

(0.003) 

0.157 

(0.003) 
1 

   

Trails-B 
0.339 

(0.008) 

0.169 

(0.003) 

0.161 

(0.004) 

0.490 

(0.003) 
1 

  

Tower 
0.303 

(0.009) 

0.158 

(0.009) 

0.117 

(0.009) 

0.298 

(0.008) 

0.335 

(0.008) 
1 

 

VNR 
0.337 

(0.008) 

0.142 

(0.002) 

0.110 

(0.002) 

0.300 

(0.003) 

0.401 

(0.003) 

0.291 

(0.008) 
1 
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Supplementary Table 2. SNP-based heritability (SNP h2; diagonal), LDSC-estimated genetic variance-covariance matrix (lower triangle) and 

genetic correlation matrix (upper triangle) across UK Biobank’s cognitive phenotypes. 

  Matrix Memory RT Symbol Digit Trails-B Tower VNR 

Matrix 0.155 (0.040) 0.473 (0.081) 0.135 (0.071) 0.544 (0.095) 0.687 (0.094) 0.633 (0.291) 0.869 (0.069) 

Memory 0.037 (0.006) 0.040 (0.002) 0.218 (0.029) 0.595 (0.046) 0.618 (0.047) 0.734 (0.095) 0.429 (0.031) 

RT 0.014 (0.008) 0.012 (0.002) 0.074 (0.003) 0.357 (0.035) 0.312 (0.032) 0.222 (0.072) 0.169 (0.024) 

Symbol Digit 0.071 (0.012) 0.040 (0.003) 0.032 (0.003) 0.110 (0.008) 0.816 (0.056) 0.665 (0.107) 0.551 (0.034) 

Trails-B 0.104 (0.014) 0.048 (0.004) 0.033 (0.003) 0.104 (0.007) 0.149 (0.009) 0.693 (0.104) 0.743 (0.038) 

Tower 0.084 (0.029) 0.050 (0.006) 0.020 (0.007) 0.074 (0.012) 0.090 (0.014) 0.114 (0.038) 0.670 (0.080) 

VNR 0.157 (0.013) 0.040 (0.003) 0.021 (0.003) 0.084 (0.005) 0.132 (0.007) 0.104 (0.012) 0.212 (0.008) 

Matrix = Matrix Pattern Completion task; Memory = Memory – Pairs Matching Test; RT = Reaction Time; Symbol Digit = Symbol Digit Substitution Task; Trails-B 

= Trail Making Test – B; Tower = Tower Rearranging Task; VNR = Verbal Numerical Reasoning Test. The diagonal elements of the matrix contain SNP h2. The lower 

off-diagonal elements contain the genetic covariances across cognitive phenotypes, with standard errors in parentheses. The upper off-diagonal elements contain the 

genetic correlations across cognitive phenotypes, with standard errors in parentheses. 
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Supplementary Table 3. Intercepts and cross-trait intercepts from LDSC analysis of UK 

Biobank’s cognitive phenotypes. 

  Matrix Memory RT Symbol Digit Trails-B Tower VNR 

Matrix 1.013       

Memory 0.028 1.002      

RT 0.020 0.086 1.021     

Symbol Digit 0.101 0.077 0.081 1.021    

Trails-B 0.122 0.087 0.079 0.439 1.005   

Tower 0.297 0.027 0.019 0.098 0.118 1.001  
VNR 0.086 0.111 0.096 0.215 0.272 0.074 1.025 

Note: Matrix = Matrix Pattern Completion task; Memory = Memory – Pairs Matching Test; RT = Reaction Time; 

Symbol Digit = Symbol Digit Substitution Task; Trails-B = Trail Making Test – B; Tower = Tower Rearranging 

Task; VNR = Verbal Numerical Reasoning Test. The diagonal elements of the matrix contain the intercepts from 

univariate LD score regression (LDSC). Values above 1.0 represent potential population stratification bias in each 

phenotype. The off-diagonal elements display LDSC cross-trait intercepts, with values over zero representing 

potential overlap and phenotypic correlation for the corresponding pair of phenotypes. 
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Supplementary Table 4. Unstandardized and standardized common factor solutions for the 

genetic covariance structure of seven UK Biobank cognitive traits. 

  Including Speeded Tests Excluding Speeded Tests 

    Unstandardized SE Standardized SE Unstandardized SE Standardized SE 

Factor loadings           
 Matrix 0.325 0.028 0.826 0.070 0.393 0.032 1.000 0.082 
 Memory 0.131 0.006 0.651 0.031 0.112 0.008 0.555 0.041 
 RT 0.084 0.007 0.308 0.026 - - - - 
 Symbol Digit 0.275 0.011 0.831 0.034 - - - - 
 Trails-B 0.377 0.014 0.976 0.035 - - - - 
 Tower 0.288 0.027 0.853 0.080 0.311 0.030 0.921 0.089 

  VNR 0.330 0.011 0.717 0.024 0.365 0.023 0.793 0.049 

Residual variances             

 Matrix 0.049 0.038 0.317 0.243 0.000 0.039 0.000 0.251 

 Memory 0.023 0.002 0.576 0.050 0.028 0.002 0.692 0.061 

 RT 0.067 0.003 0.905 0.043 - - - - 

 Symbol Digit 0.034 0.006 0.309 0.050 - - - - 

 Trails-B 0.007 0.008 0.048 0.051 - - - - 

 Tower 0.031 0.034 0.272 0.299 0.017 0.035 0.151 0.310 

 VNR 0.103 0.007 0.487 0.033 0.079 0.016 0.371 0.076 

Note: Matrix = Matrix Pattern Completion task; Memory = Memory – Pairs Matching Test; RT = Reaction Time; 

Symbol Digit = Symbol Digit Substitution Task; Trails-B = Trail Making Test – B; Tower = Tower Rearranging 

Task; VNR = Verbal Numerical Reasoning Test. Standardized factor loadings indicate the lineal relationship 

between the genetic g factor and each of the cognitive phenotypes, ranging from -1 to 1, with 0 representing no 

relationship. SE = Standard Error. R2 = percentage of genetic variance of each phenotype accounted for the genetic 

g factor. Residual variances reflect genetic variation unique to each cognitive phenotype. Note: In the model that 

excluded speeded tests, there was a Heywood case for the Matrix loading. Its residual variance was subsequently 

constrained to be greater than 0. 
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Supplementary Table 5. Phenotypic g factor CFA estimates for UK Biobank’s cognitive 

phenotypes. 

 

 Including Speeded tests Excluding Speeded Tests 

 

Unstandardized 

Factor Loadings 

Standardized Factor 

Loadings 

Unstandardized 

Factor Loadings 

Standardized 

Factor Loadings 

Cognitive 

Phenotype 
Estimate SE Estimate SE Estimate SE Estimate SE 

Matrix 1.013 0.022 0.501 0.009 1.181 0.028 0.587 0.012 

Memory 0.164 0.002 0.257 0.003 0.164 0.004 0.257 0.006 

RT 0.040 0.001 0.231 0.003 - - - - 

Symbol 

Digit 
2.879 0.019 0.628 0.004 - - - - 

Trails-B 0.209 0.001 0.766 0.003 - - - - 

Tower 1.522 0.033 0.487 0.009 1.598 0.041 0.514 0.012 

VNR  1.055 0.007 0.514 0.003 1.138 0.023 0.555 0.011 

Note: Fit indices (χ2(14) = 740.748, p < 0.001; AIC = 1,740,011.718; CFI = 0.985; Tucker-

Lewis Index (TLI) = 0.977; Root Mean Square Error of Approximation (RMSEA) = 0.013; 

SRMR = 0.024) indicated that this model closely approximated the observed phenotypic 

covariance matrix. Matrix = Matrix Pattern Completion task; Memory = Memory – Pairs 

Matching Test; RT = Reaction Time; Symbol Digit = Symbol Digit Substitution Task; Trails-

B = Trail Making Test – B; Tower = Tower Rearranging Task; VNR = Verbal Numerical 

Reasoning Test. Standardized factor loadings indicate the linear relationship between the 

phenotypic g factor and each of the cognitive phenotypes, ranging from -1 to 1, with 0 

representing no relationship. SE = Standard Error. Z-value = Z statistic value. Residual 

variances reflect genetic variation unique to each cognitive phenotype. The Reaction Time and 

Memory tasks were log-transformed to normalize their univariate distributions.  
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Supplementary Table 6. Genetic correlations of genetic g derived from the UK Biobank and genetic results from other major intelligence 

studies with educational attainment, neural phenotypes, and longevity. 

  

Genetic g Genetic g Genetic g 
General Cognitive 

Function: 
Intelligence: Intelligence: 

(speeded tests 

included): 

(excluding RT 

only) 

(speeded tests 

excluded): 
Davies et al. (2018)12 

Savage et al. 

(2018)13 
Hill et al. (2019)14 

Present Study Present Study Present Study       

  r SE r SE r SE r SE r SE r SE 

Educational Attainment: 
0.475 0.021 0.502 0.020 0.554 0.024 0.694 0.013 0.730 0.024 0.847 0.009 

(Lee et al., 2018)15 

Alzheimer’s Disease: 
-0.341 0.057 -0.353 0.059 -0.329 0.070 -0.326 0.058 -0.29 0.077 -0.327 0.055 

Lambert et al. (2013)16 

Autism Spectrum Disorder: 
0.095 0.043 0.092 0.043 0.173 0.043 0.203 0.035 0.234 0.038 0.205 0.033 

Grove et al. (2019)17 

ADHD: 
-0.233 0.038 -0.264 0.038 -0.323 0.040 -0.376 0.034 -0.379 0.041 -0.462 0.033 

Demontis et al. (2019)18  

Schizophrenia: 
-0.375 0.027 -0.348 0.027 -0.321 0.032 -0.235 0.022 -0.206 0.026 -0.134 0.021 

Lee et al. (2019)19 

Total Brain Volume: 
0.195 0.040 0.201 0.040 0.253 0.044 0.229 0.037 0.229 0.051 0.250 0.037 

Zhao et al. (2019)20  

Longevity: 
0.255 0.030 0.260 0.029 0.290 0.031 0.320 0.027 0.284 0.036 0.377 0.025 

Timmers et al. (2019)21 

Note: All correlations are statistically significant at p < 0.001, except r Genetic g with ASD (p = 0.029). ADHD = Attention Deficit Hyperactivity Disorder. r = Pearson 

correlation coefficient. SE = Standard Error. 
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