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1. Computational Methodology

1.1. Simulation methods

In the present molecular dynamics simulation, nearly 10000 atoms were selected to
be put into a cubic box. The components of studied systems have been listed in Table.
S1. The variables studied are TiO, contents and basicity and the temperature was kept
at 2273 K (absolute temperature). The notation of BiT; indicates that the different
Ti0O, contents and basicity. In which B represents the basicity, T represents the TiO,, i
equals 1, 2, 3, 4 respectively (representing the corresponding basicity of 0.5, 0.9, 1.3
and 1.7 respectively), and j equals 1, 2, 3, 4, 5, 6 respectively (representing the TiO,
contents of 10 wt.%, 15 wt.%, 20 wt% , 25 wt% , 30 wt% and 35 wt.%
respectively). Newton's law of motion, NVT (Number of particles, System Volume,
Temperature) ensemble and periodic boundary conditions were applied to this
simulation.

Table. S1 Components of the studied blast furnace slag system

Basicity | Samples Si Ca Ti O Sum
atoms | atoms | atoms | atoms

B=0.5 | BITI 2248 1205 282 6265 | 10000
BIT2 2142 1147 427 6285 | 10001

BIT3 2033 1089 574 6303 9999

B1T4 1923 1030 723 6322 9998

BITS 1811 970 876 6344 | 10001

BIT6 1697 909 1031 6365 10002
B=0.9 | B2TI1 1850 1784 294 6072 | 10000
B2T2 1759 1696 444 6102 | 10001
B2T3 1666 1607 596 6131 10000
B2T4 1573 1517 749 6161 10000

B2T5 1478 1425 905 6191 9999

B2T6 1382 1332 1063 6222 9999
B=1.3 B3T1 1572 2189 302 5937 | 10000
B3T2 1492 2078 456 5974 | 10000

B3T3 1412 1966 611 6012 | 10001

B3T4 1330 1853 768 6049 | 10000

B3T5 1248 1739 926 6087 | 10000

B3T6 1165 1623 1086 6125 9999
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B=1.7 B4Tl1 1366 2488 308 5836 9998
B4T2 1296 2360 464 5880 10002
B4T3 1225 2230 622 5924 10001
B4T4 1153 2100 781 5968 9998
B4T5 1081 1968 941 6012 10001
B4T6 1008 1835 1102 6055 10002

Table. S2. BMH model parameters used in this simulation !-2.

] Ajj (gAY/f5?) Bj (1/A) Cji (gAYfs?) D (gA'Y/fs?)
Si | Si 3.47E-23 6.25 0.00 0.00
Si | Ca 4.28E-22 6.25 0.00 0.00
Si | Ti 1.40E-22 6.25 0.00 0.00
Si | O 1.01E-21 6.06 0.00 0.00
Ca| Ca 5.27E-21 6.25 6.95E-26 0.00
Ca | Ti 1.72E-21 6.25 0.00 0.00
Ca| O 1.15E-20 6.06 1.39E-25 0.00
Ti | Ti 5.63E-22 6.25 0.00 0.00
Ti| O 3.89E-21 6.06 0.00 0.00
0|0 2.40E-20 5.88 2.78E-25 0.00

After obtaining the data, the radial distribution functions (RDFs), oxygen network
structure, polymerization degree of system, viscosity ware analyzed by using tools
such as VMD 3 and ISSACS 4. All the computations were performed on the GPC

supercomputer at the SciNet HPC Consortium in the Compute/Calcul Canada national

computing platform > ©,

1.2. Calculation methods

Coordination numbers (CNs) represent the number of the first neighbor atoms (O

atoms) of an atom (B atom), which are obtained by integrating the first peak and

valley of the CNs and the formula (equation. 1) is as follows:

N, (r) =

47N .
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Radial distribution functions (RDFs) describe the distribution of other ions around
an ion, and characterize the probability of finding other ions around an ion. Therefore,
the RDFs are the best parameters to explain whether the potential function and its

parameters match the system. The equation. 2 lists the mathematical expression of

RDFs.

v n(r)
QR0 Nrere 2)
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2. Results and discussion

2.1. Radial Distribution Functions (RDFs) and Bond Length
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Figure S1. RDFs under different TiO, contents and basicity conditions. The first peak

of each figure is enlarged and the vertical lines perpendicular to the abscissa axis in

the enlarged view highlight the peak value under the corresponding radial distribution

functions: (a) the RDFs of Si-O atoms (influence of TiO,); (b) the RDFs of Ca-O

atoms (influence of TiO,); (c-f) the RDFs of Al-O atoms (influence of TiO, and

basicity).
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To facilitate analysis, the RDFs between various cations and oxygen ions of
representative samples were plotted and shown in Figure S1. The first peak of each
graph in Figure S1 is the most probable bond distances of the corresponding ion-pair,
which is used to estimate the corresponding bond length. The r; is the abscissa of the
first peak of the radial distribution function of the corresponding ion-pair,
representing the nearest neighbor bond length of the ion-pair. Previous experiments
and simulations 7-19 have proved that the r; of Si-O bonds should be between
1.61-1.62A, the r; of Ca-O bonds should be between 2.29-2.83A, the r; of Ti-O bonds

should be between 1.82-2.18A.

S6



20 r 20 <3
© (a) I (b)
| 6.0t
" 16 L0 »
5 2 15F
=
=} Z L
- 5.
% 12 5'%‘0 =] %.0 .
S r £ 10}
= . g o
g 8t Ti-O (Ti0,=10 wt.%, B=0.5) 5 i Ti-O (Ti0,=10 wt.%, B=0.9)
"g | Ti-0 (Ti0,=15 wt.%, B=0.5) 5 Ti-O (Ti0,=15 wt.%, B=0.9)
3 Ti-O (Ti0,=20 wt.%, B=0.5) S sk Ti-O (Ti0,=20 wt.%, B=0.9)
© o4t Ti-0 (Ti0,=25 wt.%, B=0.5) Ti-O (Ti0,=25 wt.%, B=0.9)
i Ti-O (Ti0,=30 wt.%, B=0.5) - Ti-0 (Ti0,=30 wt.%, B=0.9)
Ti-O (Ti0,=35 wt.%, B=0.5) Ti-O (Ti0,=35 wt.%, B=0.9)
0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 1 2 3 4 5 6
Interatomic distances (A) Interatomic distances (A)
20 20
6.5
I (0 I (d)
g 5
o 15F o 15F
g £
= 5
Z r 4 "
= = 3s
5 S :
2 10 - = 10 -
-,g L Ti-O (Ti0,=10 wt.%, B=1.3) ,g N Ti-O (Ti0,=10 wt.%, B=1.7)
5 Ti-O (Ti0,=15 wt.%, B=1.3) 5 Ti-O (Ti0,=15 wt.%, B=1.7)
S sk Ti-O (Ti0,=20 wt.%, B=1.3) S sk Ti-O (Ti0,=20 wt.%, B=1.7)
Ti-O (Ti0,=25 wt.%, B=1.3) Ti-O (Ti0,=25 wt.%, B=1.7)
3 Ti-0 (Ti0,=30 wt.%, B=1.3) - Ti-0 (Ti0,=30 wt.%, B=1.7)
Ti-O (Ti0,=35 wt.%, B=1.3) Ti-O (Ti0,=35 wt.%, B=1.7)
0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 1 2 3 4 5 6
Interatomic distances (A) Interatomic distances (A)

Figure S2. CNs of O atoms around Ti atoms under different TiO, contents and
basicity conditions. The part where the slope of the coordination number curve is
close to zero is enlarged and put into each figure and the straight lines parallel to the
abscissas in the partial enlarged view mark the maximum coordination number in the
samples: (a) variation of CNs with TiO, contents when basicity is 0.5; (b) variation of
CNs with TiO, contents when basicity is 0.9; (c) variation of CNs with TiO, contents

when basicity is 1.3; (d) variation of CNs with TiO, contents when basicity is 1.7.
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2.2. Bond Angle and Local Structure Evolution
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Figure S3. O-O RDFs under different TiO, contents and basicity conditions.
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Figure S4. Change situation of bond angle with the basicity. Part peak values are marked with straight
lines perpendicular to the abscissa axis, and the arrows on the way point to the change situation of peak
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2.3. Oxygen Network Structure and Global Structural Stability
For the microstructure of the system, it is very important to study the contents of bridge oxygen (BO)
and non-bridge oxygen (NBO). Besides BO and NBO, the network structure of oxygen also includes

free oxygen (FO) and oxygen triclusters (TO). Schematic diagrams of the percentage content of

different types of oxygen are shown in Figure S5.
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Figure S5. The concentrations of various types of oxygen with different TiO, contents and basicity.
Among them, the influence of TiO2 contents on different types of oxygen atoms is studied horizontally,
and the influence of basicity on different types of oxygen atoms is compared vertically: (a) effect of
basicity and TiO, contents on FO contents; (b) effect of basicity and TiO, contents on NBO contents;
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(c) effect of basicity and TiO, contents on BO contents; (d) effect of basicity and TiO, contents on TO
contents.

From the point of view of global structure, with the increase of TiO, contents in the system, free
oxygen and non-bridge oxygen in the system have been decreasing (Figure S5(a-b)), which is because
Ti*" ions tend to form TiOg octahedrons with O? ions, and the charge of non-bridge oxygen ions is not
saturated, there is an active site left. Therefore, Ti*" ions have strong binding ability with free oxygen
and non-bridge oxygen in the system, which leads to the decrease of free oxygen and non-bridge oxygen
contents in the system. Longitudinal analyses of Figure S5(a-b) show that the contents of free oxygen
and non-bridge oxygen in the system with higher basicity are higher than that in the system with lower
basicity. High basicity provides more Ca?" ions and O?  ions for the system, which alleviates the
situation that free oxygen and non-bridge oxygen can't satisfy Ti*" ions, which makes the system with
high basicity have higher free oxygen and unbridged oxygen contents.

Bridge oxygen, as the connecting bridge of polyhedral structures under the microscopic view of the
system, is very important to study the global atomic structure. The existing publications !'-13 have
explained that TiO, is an amphoteric oxide, and this simulation also proves that TiO, does have
amphoteric transformation behavior from the perspective of atomic structure, and the show acid-base
properties behavior is affected by the basicity of the system. In the text, the changes and reasons of the
bond angle in Figure S5c¢ are analyzed in detail. The variation of the content of system TO is shown in
Figure S5d. It could be found that the contents of TO always increase with the increase of TiO, contents
under any basicity conditions. Combined with Figure 5c¢, it could be proved that when excessive Ti*"
ions compete with other polyhedral structures for oxygen atoms, this part of the contended oxygen
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atoms is changed from BO to TO. Therefore, the BO contents of the system decrease and the TO
contents increase.

In addition, through the basic equivalent idea, the calculation model of oxide amphoteric
transformation can be established. There are three basic facts or assumptions in this model. First:
oxygen ion is the only negative charge carrier of the system, and the balance between supply and
demand of oxygen ion is the basic relationship of supply and demand theory Second: all polyhedral
structures of the system are connected by oxygen ions. Third: NBO is equivalent to 0.5 BO, and TO

oxygen is equivalent to 1.5 BO. The model calculation formula is as follows:

AN(0) = N(O)supplied — N(O0)demanded (3)

N(O)supplied =2XRXNp 4)
%(0.5 X Pygo + Pgo + 1.5 X Prp)

R = Nsample (5)

N(O)demanded = Z(Ni X P; X i) (6)

The core of the supply-demand relationship model is to virtualized break the complex network
structure of the system. Through N(O)gemanded> the number of equivalent oxygen atoms demanded by
the polyhedron in the system can be clarified. Then use N(O)gyppiieq to calculate the number of
equivalent oxygen atoms that the system can supply. The difference is the balance between supply and
demand. In which AN(O) is the function of oxygen atoms supplied and demanded. N(O)guppiied
N(O)gemanded represent the number of equivalent oxygen atoms supplied and demanded in the
supply-demand relationship, respectively. N, represents the initial number of oxygen atoms.

First, we equate all initial oxygen atoms as bridge oxygen atoms, and two polyhedrons share a bridge
oxygen atom. Therefore, the equivalent oxygen atoms that the system can supply are the product of
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twice the initial oxygen atoms and the limit factor. It should be emphasized that the initial oxygen atom
is the number of oxygen atoms when the system is set. Then, it is hardly possible for all oxygen atoms
in the system to be equivalent to bridge oxygen atoms, so the limit factor R is used for correction. R
represents the limit factor, that is, the maximum ratio of all oxygen atoms equivalent to BO. The
calculation idea of R is that all types of oxygen atoms in all sample is supposed to be BO, and then take
the percentage of all samples average value. The NBO is equivalent to 0.5 BO, and the TO is equivalent
to 1.5 bridging oxygen. Data statistics of NBO, BO and TO are performed for all samples, and the
equivalent calculation in equation (4) is performed. Nggmpe represents the sample size. The larger the
sample size, the closer the limit factor is to reality. Pygo, Pgo and Ppo respectively represents the
percentage content of NBO, BO and oxygen triclusters (TO) in the sample. Finally, the calculation idea
of N(O)demanded 1S to count the total number of oxygen atoms required by polyhedrons with different
coordination numbers. N; is the total number of cations corresponding to different coordination
structures. P is the percentage content, and the i is the coordination number of polyhedrons.

After analyzing the atomic structure, the content of different types of oxygen atoms can be obtained as
shown in Table S3.

Table S3. The content of different types of oxygen atoms

Basicity | Samples FO NBO BO TO

B=0.5 BITI 0.085 | 15.789 | 66.187 | 15.381
B1T2 0.061 | 11.958 | 65.831 | 18.632
BIT3 0.052 | 8974 | 62.222 | 23.258
B1T4 0.031 6.229 | 60.152 | 27.398
BITS 0.013 | 5.652 | 58.326 | 29.231
B1T6 0.005 | 4.265 | 57.265 | 31.231
B=0.9 B2T1 0.272 | 35.661 | 54.241 | 8.824
B2T2 0.19 | 28.723 | 58.503 | 11.131
B2T3 0.108 | 22.553 | 60.164 | 14.194
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B2T4 0.072 | 17.212 | 59.434 | 18.711
B2T5 0.068 | 12.616 | 57.894 | 22.232
B2T6 0.027 | 10.525 | 56.072 | 28.041
B=1.3 B3T1 0.63 45382 | 45.767 | 7.424
B3T2 0.63 45382 | 45.767 | 7.424
B3T3 0.606 | 37.494 | 50.179 | 10.362
B3T4 0.448 | 29.476 | 53.918 | 13.027
B3T5 0.281 | 23.636 | 56.877 | 16.296
B3T6 0.196 | 18.083 | 56.01 20.24
B=1.7 B4T1 4321 | 46.949 | 3946 | 7.364
B4T2 2.43 44.884 | 44.199 | 7.671
B4T3 1.984 | 38.198 | 48.277 | 11.131
B4T4 1.691 | 30.127 | 53.012 | 13.91
B4T5 1.314 | 24.323 | 54.426 | 17.416
B4T6 1.261 | 17.885 | 55.114 | 21.526

After the calculation of Equation 3, there is the result that R=0.92-0.93.

The calculation results of N(O)syppiica a0d N(O) gemandea are shown in Table S4.

Table S4. The calculation results of N(O)yppiica a0d N(O) dgemanded

N (O) supplied Ny (0) demanded il (0)
11653 12152 -499
11690 12809 -1119
11724 13459 -1735
11759 14114 -2355
11800 14766 -2966
11839 15425 -3586
11294 10168 1126
11350 10830 520
11404 11486 -82
11459 12100 -641
11515 12764 -1249
11573 13864 -2291
11043 9111 1932
11112 9900 1212
11182 10645 537
11251 11279 -28
11322 12051 -729
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11393 12792 -1399
10855 8305 2550
10937 8730 2207
11019 9144 1875
11100 10531 569
11182 10850 332
11262 11060 202
The calculation results of this simulation listed in Table S5.
Table S5. Results of model calculation
A(Sample 1-6) -499 -1119 -1735 -2355 -2966 -3586
A(Sample 7-12) 1126 519 -&2 -640 -1249 -2291
A(Sample 13-18) 1932 1212 538 -28 -730 -1400
A(Sample 19-24) 2550 2207 1874 569 332 202
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2.4. Applicability Verification of Supply-Demand Model
In order to verify the universality of the supply-demand relationship model and theory, we performed
the above calculations on the existing publication !4 1> on the amphoteric behavior of oxides. The result

is shown in Figure S6.
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Figure S6. The calculation results of the supply-demand relationship model on the existing publications:
(a-b) the data of bridge oxygen comes from the research results of Si0,-Ca0-Al,0; and Si0,-Ca0O-B,0;
systems by Bi et al. '#; (c-d) the data of bridge oxygen comes from the research results of
Si0,-Ca0-Al,03-B,0; systems by Bi et al. 5. (a-b) Reprinted (Adapted or Reprinted in part) with
permission from [Bi, Z.; Li, K.; Jiang, C.; Zhang, J.; Ma, S. Effects of amphoteric oxide (Al,O3 and
B,03) on the structure and properties of Si0,-CaO melts by molecular dynamics simulation. Journal of
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Non-Crystalline Solids. 2021, 559, 120687.] Copyright [2021], with permission from [Journal of
Non-Crystalline Solids]. (c-d) Reprinted (Adapted or Reprinted in part) with permission from [Bi, Z.;
Li, K.; Jiang, C.; Zhang, J.; Ma, S.; Sun, M.; Wang, Z.; Li, H. Performance and transition mechanism
from acidity to basicity of amphoteric oxides (Al,O; and B,03) in Si0,—CaO-Al,05-B,0; system: A
molecular dynamics study. Ceramics International. 2021, 47, 12252-12260.] Copyright [2021], with
permission from [Ceramics International].

The calculation results of the supply-demand relationship model of oxides in Figure S6 show that the
difference curves of the supply-demand relationship of the systems Si0,-CaO-Al,03, Si0,-Ca0O-B,0;
and S10,-Ca0-Al,05-B,05; do possess the clear zero points, and the zero points are indeed near the
concentration points of the amphoteric transition.

For more calculation details, see Table S6-S9

Table S6. The esults of the supply-demand relationship model of SiO,-CaO-Al,O; system !4, Reprinted
(Adapted or Reprinted in part) with permission from [Bi, Z.; Li, K.; Jiang, C.; Zhang, J.; Ma, S. Effects
of amphoteric oxide (AlI203 and B203) on the structure and properties of Si0O2-CaO melts by
molecular dynamics simulation. Journal of Non-Crystalline Solids. 2021, 559, 120687.] Copyright

[2021], with permission from [Journal of Non-Crystalline Solids]

Si Ca Al O N (O) supplied N (0) demanded A (0)
1746 2095 230 5932 10914.88 8134 2780.88
1641 1969 456 5935 10920.4 8844 2076.4

1538 1846 678 5939 10927.76 9542 1385.76
1436 1724 896 5940 10929.6 10224 705.6
1336 1604 1114 5947 10942.48 10914 28.48
1317 1580 1156 5948 10944.32 11048 -103.68
1297 1556 1198 5947 10942.48 11178 -235.52
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1277 1533 1242 5950 10948 11318 -370

1258 1509 1284 5951 10949.84 11452 -502.16
1238 1486 1326 5951 10949.84 11582 -632.16
1141 1369 1536 5955 10957.2 12244 -1286.8

Table S7. The esults of the supply-demand relationship model of SiO,-Ca0O-B,0; system 4. Reprinted
(Adapted or Reprinted in part) with permission from [Bi, Z.; Li, K.; Jiang, C.; Zhang, J.; Ma, S. Effects
of amphoteric oxide (Al203 and B203) on the structure and properties of Si02-CaO melts by
molecular dynamics simulation. Journal of Non-Crystalline Solids. 2021, 559, 120687.] Copyright

[2021], with permission from [Journal of Non-Crystalline Solids]

Si Ca B ) N(O)guppiied | N(O)demandea | A4(0)
1790 2148 134 5929 10553.62 8412 2141.62
1671 2005 390 5932 10558.96 89124 1646.56
1504 1805 752 5941 10574.98 9625.6 949.38
1400 1680 976 5944 10580.32 10064 516.32
1301 1561 1190 5948 10587.44 10484.4 103.04
1277 1532 1242 5949 10589.22 10586.8 242
1253 1504 1294 5951 10592.78 10689.2 -96.42
1230 1476 1344 5952 10594.56 10788 -193.44
1206 1448 1394 5951 10592.78 10882.4 -289.62
1184 1420 1444 5954 10598.12 10985.6 -387.48

Table S8. The results of the supply-demand relationship model of SiO,-Ca0O-Al,03-B,0; system 5.
Reprinted (Adapted or Reprinted in part) with permission from [Bi, Z.; Li, K.; Jiang, C.; Zhang, J.; Ma,
S.; Sun, M.; Wang, Z.; Li, H. Performance and transition mechanism from acidity to basicity of
amphoteric oxides (Al1203 and B203) in Si02-CaO-AlI203-B203 system: A molecular dynamics
study. Ceramics International. 2021, 47, 12252-12260.] Copyright [2021], with permission from

[Ceramics International]

| Si | Ca | Al B 0] | N(O)supplied 4 (O) |
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1686 2023 226 132 5932 10558.96 8402 2156.96
1570 1885 220 388 5937 10567.86 8932 1635.86
1409 1690 212 746 5945 10582.1 9680 902.1
1307 1569 208 970 5950 10591 10148 443
1211 1454 202 1182 5952 10594.56 10582 12.56
1382 1658 884 130 5943 11648.28 10468 1180.28
1277 1533 862 378 5947 11656.12 10930 726.12
1130 1356 830 730 5956 11673.76 11590 83.76
1037 1245 810 950 5959 11679.64 11998 -318.36
950 1139 790 1158 5961 11683.56 12382 -698.44
1092 1310 1514 128 5957 11914 11716.4 197.6
996 1196 1476 372 5960 11920 11889.6 30.4
862 1035 1424 714 5966 11932 12140.4 -208.4
778 934 1390 930 5970 11940 12296 -356
698 838 1358 1134 5972 11944 12440.8 -496.8

Table S9. The results of the supply-demand relationship model of SiO,-CaO-Al,03-B,0; system 3.
Reprinted (Adapted or Reprinted in part) with permission from [Bi, Z.; Li, K.; Jiang, C.; Zhang, J.; Ma,
S.; Sun, M.; Wang, Z.; Li, H. Performance and transition mechanism from acidity to basicity of
amphoteric oxides (Al203 and B203) in Si02-CaO-Al203-B203 system: A molecular dynamics

study. Ceramics International. 2021, 47, 12252-12260.] Copyright [2021], with permission from

[Ceramics International]

Si Ca Al B ) N(O)suppiied | N(O)demandea | A4(0)
1659 1991 326 90 5933 10560.74 8210 2350.74
1579 1894 324 266 5937 10567.86 8410 2157.86
1459 1751 322 526 5941 10574.98 8702 1872.98
1380 1657 320 698 5944 10580.32 8894 1686.32
1303 1563 318 868 5948 10587.44 9088 1499.44
1265 1518 1186 82 5950 11543 10369.2 1173.8
1193 1432 1180 242 5951 11544 .94 10696 848.94
1088 1305 1170 480 5956 11554.64 11186 368.64
1018 1222 1164 636 5958 11558.52 11504.8 53.72
950 1139 1158 790 5961 11564.34 11823.6 -259.26
936 1124 1904 74 5963 12045.26 11582 463.26
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872 1047 1894 222 5965 12049.3 11730 319.3
778 933 1880 440 5969 12057.38 11952 105.38
716 859 1870 584 5972 12063.44 12096 -32.56
654 785 1862 726 5975 12069.5 12242 -172.5

In addition, the research of Chen et al.!® is calculated by the model of supply and demand, and the
results show that the model of supply and demand is also applicable to Chen et al.'® Firstly, the number of
oxygen atoms supplied by the system is determined by the system setting in this paper. Then, the amount of oxygen
demanded by the system and the limit factor can be calculated by the coordination numbers of Si and Al and the
corresponding coordination numbers. Finally, the supply and demand function is calculated to judge the relationship
between the zero point and the turning point of A1203.

Figure S7 is the data figure of atomic structure change in molecular dynamics study by Chen et al.
Through data capture, the contents of various oxygen and coordination of Al in this study are counted in
Table S10. Table S11 counts the number of oxygen atoms required by the system and the size of the
limit factor. The related data of Table S10 and Table S11 are plotted as Figure S8. By analyzing the
turning point of the bridge oxygen curve and the zero point of the supply-demand function in Figure S8,
it can be seen that the calculation model of supply-demand relationship is also applicable to Dr. Chen's
research on the amphoteric behavior of oxides. The following analysis authors have been added to the

Supporting Information.
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Figure S7 Changes of oxygen network structure and coordination number of Al in Dr. Chen's research!®.
Reprinted (Adapted or Reprinted in part) with permission from [Chen, Y.; Pan, W.; Jia, B.; Wang, Q.
Zhang, X.; Wang, Q.; He, S. Effects of the amphoteric behavior of AI203 on the structure and
properties of CaO-Si02-A1203 melts by molecular dynamics. Journal of Non-Crystalline Solids. 2021,
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552, 120435.] Copyright [2021], with permission from [Journal of Non-Crystalline Solids].

Table S10 The contents of various oxygen and coordination of Al. Reprinted (Adapted or Reprinted in
part) with permission from [Chen, Y.; Pan, W.; Jia, B.; Wang, Q.; Zhang, X.; Wang, Q.; He, S. Effects
of the amphoteric behavior of AlI203 on the structure and properties of CaO-Si02-A1203 melts by
molecular dynamics. Journal of Non-Crystalline Solids. 2021, 552, 120435.] Copyright [2021], with

permission from [Journal of Non-Crystalline Solids]

AL203 NBO BO TO 4-coordination | 5-coordination | 6-coordination
(mol.%)
6.00 43.11 55.89 0.37 73.44 24.39 2.17
10.00 34.70 63.20 1.46 68.28 28.69 3.03
14.00 27.03 67.95 4.38 67.70 27.25 5.04
18.00 18.26 74.52 6.94 64.26 31.84 3.89
22.00 14.61 76.71 8.77 67.42 28.40 4.18
26.00 8.77 75.62 14.98 63.40 32.70 3.89
30.00 5.11 71.23 23.38 57.95 36.15 5.90
34.00 3.29 68.68 28.13 55.94 39.30 4.75
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Table S11 Calculation results of supply-demand model

Al203 | supplied | demanded AN
6.00 4560 3616.288 | 943.7123
10.00 4560 3880.787 | 679.2131
14.00 4560 4130.357 | 429.6426
R=0.95 18.00 4560 4369.4 190.6
22.00 4560 4568.486 | -8.48607
26.00 4560 4787.246 | -227.246
30.00 4560 5029.877 | -469.877
3400 | 4560 | 5220.349 | -660.349
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Figure S8 Calculation results of supply-demand model'®. Reprinted (Adapted or Reprinted in part) with
permission from [Chen, Y.; Pan, W.; Jia, B.; Wang, Q.; Zhang, X.; Wang, Q.; He, S. Effects of the
amphoteric behavior of A1203 on the structure and properties of CaO-Si02-A1203 melts by molecular
dynamics. Journal of Non-Crystalline Solids. 2021, 552, 120435.] Copyright [2021], with permission

from [Journal of Non-Crystalline Solids].
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