Supporting Information: Photo-induced Ligand Substitution of $Cr(CO)_6$ in 1-pentanol Probed by Time Resolved X-Ray Absorption Spectroscopy

Eric Johnn Mascarenhas,^{1,2} Mattis Fondell,¹ Robby Büchner,^{1,2}

Sebastian Eckert,¹ Vinícius Vaz da Cruz,¹ and Alexander Föhlisch^{1,2}

¹Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Institute for Methods and Instrumentation for Synchrotron Radiation Research, 12489 Berlin, Germany. ²Institute of Physics and Astronomy, University of Potsdam,

Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany

COMPUTATION

All spectrum simulations were performed at the TD-DFT level with def2-TZVP basis set and def2/J auxiliary basis set. Three functionals were compared: PBE0[1], M06[2], and B3LYP[3, 4]. The comparison of the spectras for the Cr L-edge is presented in Fig. S1 and for the O K-edge in Fig. S2. Atomic positions in Angstroms used for computation of the x-ray absorption spectra are presented in tables S1-S8.

Figure S1 Comparison of the theoretical Cr L-edge spectra of $Cr(CO)_6$ computed with different functionals

Figure S2 Comparison of the theoretical O K-edge spectra of $Cr(CO)_6$ computed with different functionals

Atom	$\mathrm{x}(\mathrm{\AA})$	$\mathrm{y}(\mathrm{\AA})$	$\mathrm{z}(\mathring{A})$
Cr	-0.00001	-0.00001	-0.00003
С	0.38831	-0.00194	1.88034
С	-0.38831	0.00192	-1.88039
Ο	0.61593	-0.00739	2.99773
0	-0.61591	0.00737	-2.99779
С	-0.91183	1.67679	0.18752
С	0.91181	-1.67681	-0.18758
Ο	-1.45069	2.67575	0.29759
Ο	1.45065	-2.67577	-0.29764
С	1.63887	0.93511	-0.34536
С	-1.63889	-0.93512	0.34531
Ο	2.61207	1.49221	-0.55251
Ο	-2.61209	-1.49221	0.55247

Table S1 Atomic positions of $Cr(CO)_6$ in Angstroms optimized in DFT with B3LYP functional forcomputation of the O K, and $Cr-L_{3,2}$ edges x-ray absorption computations.

KINETIC MODEL DETAILS

Table S9 shows the fit parameters acquired for the delay traces. In the table, the first three energies displayed correspond to the peaks at the O K-edge. a_{sl} corresponds to the short lived coefficient acquired in the numerical fit, while a_{ll} corresponds to the long lived coefficient. The last two wavelengths correspond to the peaks seen in the Cr L₃-edge transient spectrum. The chromium L₃-edge delay traces were fitted by a step function where the coefficients considered where presented in the table in the column of the long lived component. Furthermore, k is the time constant of the decay of the functions at the O K-edge. σ is the width of the Gaussian used for the instrument response convolution and is related to the time resolution of the experiment by the Gaussian function FWHM = $2\sqrt{2 \ln 2} \sim 2.35482 \cdot \sigma$.

- [1] C. Adamo and V. Barone, The Journal of Chemical Physics, 1999, 110, 6158–6170.
- [2] Y. Zhao and D. G. Truhlar, Theoretical Chemistry Accounts, 2008, 120, 215–241.
- [3] A. D. Becke, The Journal of Chemical Physics, 1993, 98, 5648–5652.
- [4] C. Lee, W. Yang and R. G. Parr, Physical Review B, 1988, 37, 785–789.

Atom	$\mathbf{x}(\mathring{A})$	$\mathrm{y}(\mathrm{\AA})$	$\mathrm{z}(\mathring{A})$
Cr	0.01115	0.02549	-0.17364
Ο	0.78575	-0.20910	1.87629
\mathbf{C}	-0.59400	0.29253	-1.89704
Ο	-0.96701	0.45698	-2.97819
\mathbf{C}	-1.10274	1.45161	0.46093
\mathbf{C}	1.09541	-1.42878	-0.78560
Ο	-1.79340	2.29747	0.80112
Ο	1.71446	-2.29852	-1.19840
\mathbf{C}	1.43016	1.26845	-0.51911
\mathbf{C}	-1.44099	-1.18872	0.09523
Ο	2.24825	2.02216	-0.78720
Ο	-2.33674	-1.89719	0.17892
С	0.09771	-1.01999	2.86239
С	0.77636	-0.94052	4.21362
Η	0.04746	-2.05125	2.50377
Η	-0.91306	-0.61719	2.90477
С	0.04276	-1.77044	5.26674
Η	0.82328	0.10582	4.52902
Η	1.80822	-1.29684	4.11904
С	0.70847	-1.71222	6.64024
Η	-0.01241	-2.81315	4.93584
Η	-0.99054	-1.41672	5.35080
С	-0.03154	-2.53559	7.69173
Η	0.76796	-0.66869	6.96601
Η	1.74040	-2.06772	6.55404
Η	-1.05791	-2.18018	7.81522
Η	0.46242	-2.47603	8.66383
Η	-0.07731	-3.58893	7.40293
Η	1.71540	-0.47296	1.86511

Table S2 Atomic positions of $Cr(CO)_5(OHPent)$ in Angstroms optimized in DFT with B3LYPfunctional for computation of the O K, and Cr-L_{3,2} edges x-ray absorption computations.

Atom	$ \mathbf{x}(\mathring{A}) $	$\mathrm{y}(\mathrm{\AA})$	$z(\mathring{A})$
Cr	-0.29712	0.35264	0.69301
\mathbf{C}	0.76374	1.94706	0.68788
\mathbf{C}	-1.36294	-1.24362	0.66332
\mathbf{C}	-1.86691	1.40013	1.02347
\mathbf{C}	1.27612	-0.68476	0.34444
\mathbf{C}	-0.03294	0.17315	2.51261
Ο	1.40416	2.89313	0.72346
Ο	0.12873	0.06484	3.64728
Ο	-1.99248	-2.19655	0.68207
Ο	2.22052	-1.30477	0.17380
Ο	-2.79503	2.02331	1.26043
\mathbf{C}	-0.53478	0.39540	-2.16000
Η	-0.75196	0.76279	-1.11374
Η	-0.04899	-0.57465	-2.12931
Ο	-1.78059	0.19532	-2.79092
Η	-2.24744	1.04021	-2.84250
\mathbf{C}	0.35771	1.44538	-2.79970
Η	0.54378	1.15073	-3.83661
Η	1.31995	1.41618	-2.27982
\mathbf{C}	-0.21547	2.85906	-2.74210
Η	-0.48922	3.09659	-1.70817
Η	-1.13969	2.91489	-3.32718
\mathbf{C}	0.75908	3.91516	-3.25810
Η	1.03461	3.67654	-4.29031
Η	1.68211	3.86298	-2.67178
\mathbf{C}	0.18725	5.32890	-3.19120
Η	0.90418	6.06612	-3.55840
Н	-0.07215	5.59578	-2.16343
Η	-0.71971	5.41311	-3.79554

Table S3 Atomic positions of $Cr(CO)_5(PentOH)$ bound to C1 in Angstroms optimized in DFT with B3LYP functional for computation of the O K, and $Cr-L_{3,2}$ edges x-ray absorption computations.

Atom	$ \mathbf{x}(\mathring{A}) $	$\mathrm{y}(\mathrm{\AA})$	$\mathrm{z}(\mathrm{\AA})$
Cr	-0.42939	0.91111	0.66147
\mathbf{C}	-0.53768	2.80713	0.39101
\mathbf{C}	-0.34224	-0.98459	0.91917
\mathbf{C}	-2.34175	0.83850	0.78735
\mathbf{C}	1.47893	0.99423	0.55417
\mathbf{C}	-0.31600	1.17171	2.48346
Ο	-0.59728	3.94204	0.27795
Ο	-0.24117	1.33983	3.62078
Ο	-0.29209	-2.10697	1.13008
Ο	2.62103	1.05264	0.54632
Ο	-3.47597	0.80153	0.91987
\mathbf{C}	-0.78082	0.42979	-2.13073
Η	-1.51214	-0.29541	-1.77420
Η	-0.22063	0.88323	-1.27675
\mathbf{C}	-1.48801	1.57273	-2.84604
Η	-0.77375	2.36187	-3.08343
Η	-1.90219	1.19620	-3.78721
Ο	-2.51108	2.18873	-2.06421
Η	-3.23110	1.55442	-1.95508
\mathbf{C}	0.26832	-0.25822	-3.00094
Η	1.01018	0.47977	-3.32192
Η	-0.22648	-0.62106	-3.90769
\mathbf{C}	0.97154	-1.42417	-2.31151
Η	0.22371	-2.15604	-1.99173
Η	1.46169	-1.06584	-1.40229
\mathbf{C}	2.00596	-2.09950	-3.20832
Η	2.77867	-1.38960	-3.51401
Η	1.54015	-2.49562	-4.11421
Η	2.49618	-2.92755	-2.69250

Table S4 Atomic positions of $Cr(CO)_5(PentOH)$ bound to C2 in Angstroms optimized in DFT with B3LYP functional for computation of the O K, and $Cr-L_{3,2}$ edges x-ray absorption computations.

Atom	$\mathbf{x}(\mathbf{A})$	$\mathrm{y}(\mathrm{\AA})$	$\mathrm{z}(\mathrm{\AA})$
Cr	-0.33385	0.80167	0.74882
\mathbf{C}	-0.29145	2.71035	0.58833
\mathbf{C}	-0.38165	-1.10523	0.94626
\mathbf{C}	-2.23380	0.84930	1.01319
\mathbf{C}	1.56651	0.75563	0.51426
\mathbf{C}	-0.08134	0.97146	2.56802
Ο	-0.25058	3.85175	0.55216
Ο	0.08133	1.08153	3.70249
Ο	-0.41217	-2.23200	1.13235
Ο	2.70648	0.74349	0.43412
Ο	-3.35381	0.87302	1.23572
\mathbf{C}	-0.85696	0.40550	-2.07748
Η	-1.59929	-0.30480	-1.71258
Η	-0.32656	0.88143	-1.21320
\mathbf{C}	0.20562	-0.31248	-2.90658
Η	1.00540	0.38535	-3.16822
Η	-0.26175	-0.63285	-3.84383
\mathbf{C}	-1.54197	1.53467	-2.84670
Η	-1.91019	1.10992	-3.78536
Η	-0.79373	2.28478	-3.11738
\mathbf{C}	-2.69992	2.19341	-2.10625
Η	-2.36355	2.69642	-1.19873
Η	-3.45262	1.45512	-1.82102
Η	-3.18379	2.94227	-2.73598
\mathbf{C}	0.80425	-1.53363	-2.22701
Η	0.00987	-2.23183	-1.94048
Η	1.33883	-1.24883	-1.32134
Ο	1.77449	-2.19340	-3.04714
Η	1.32661	-2.50731	-3.84335

Table S5 Atomic positions of $Cr(CO)_5$ (PentOH) bound to C3 in Angstroms optimized in DFT withB3LYP functional for computation of the O K, and $Cr-L_{3,2}$ edges x-ray absorption computations.

Atom	$\mathbf{x}(\mathbf{\mathring{A}})$	$\mathrm{y}(\mathrm{\AA})$	$\mathrm{z}(\mathring{A})$
Cr	-0.75161	-0.50819	-0.60406
С	0.72013	0.42940	-1.39813
С	-2.24167	-1.43153	0.16741
\mathbf{C}	-1.74613	-0.31109	-2.22795
\mathbf{C}	0.21832	-0.64570	1.04482
Ο	1.60813	0.95300	-1.89077
Ο	-3.12097	-2.02104	0.59821
Ο	-2.33039	-0.22404	-3.20610
Ο	0.80973	-0.75123	2.01628
С	-1.74377	2.99924	-1.01035
Η	-2.02066	4.03126	-0.78458
Η	-2.42647	2.62780	-1.77663
Η	-0.73424	3.00308	-1.42176
С	-1.83114	2.16174	0.25444
С	-3.22990	2.08305	0.85146
Η	-2.73949	1.95497	2.94733
Ο	-4.64589	0.48649	3.95440
Η	-5.55244	0.30847	4.23340
Η	-1.53405	1.10917	0.03968
Η	-1.10965	2.50225	0.99894
\mathbf{C}	-3.27400	1.36484	2.19728
Η	-3.60894	3.10329	0.96833
Η	-3.89109	1.58459	0.13571
\mathbf{C}	-4.69366	1.12515	2.67030
Η	-2.76008	0.40228	2.12863
Η	-5.22281	0.48923	1.95152
Η	-5.23394	2.07626	2.74145
С	-0.06034	-2.11761	-1.18848
0	0.36837	-3.12187	-1.55392

Table S6 Atomic positions of $Cr(CO)_5$ (PentOH) bound to C4 in Angstroms optimized in DFT withB3LYP functional for computation of the O K, and $Cr-L_{3,2}$ edges x-ray absorption computations.

Atom	$\mathbf{x}(\mathring{A})$	$\mathrm{y}(\mathrm{\AA})$	$\mathrm{z}(\mathrm{\AA})$
Cr	-0.92754	-0.29363	-0.23242
С	0.18681	1.21478	-0.61080
С	-2.03621	-1.80976	0.14769
С	-2.19633	0.33692	-1.52508
С	0.33191	-0.91969	1.06686
Ο	0.87483	2.08722	-0.87542
Ο	-2.66896	-2.73844	0.34951
Ο	-2.93335	0.69726	-2.31886
Ο	1.10242	-1.32250	1.80758
С	-2.47848	1.01921	1.63161
Η	-2.59765	2.10386	1.61868
Η	-3.21491	0.60017	0.94992
Η	-1.42785	0.87393	1.28763
С	-2.62738	0.43449	3.03043
С	-4.02367	0.67770	3.59872
Η	-3.47517	0.58750	5.68431
Ο	-5.67779	-0.17737	6.87461
Η	-6.56747	-0.01786	7.21197
Н	-2.42821	-0.64043	3.00079
Η	-1.87666	0.87354	3.69368
С	-4.19990	0.12121	5.00936
Η	-4.22857	1.75383	3.60264
Η	-4.76407	0.22386	2.93086
С	-5.59706	0.35799	5.54746
Η	-3.99468	-0.95412	5.01151
Η	-6.33552	-0.12739	4.89841
Η	-5.81633	1.43224	5.55973
С	-0.04573	-1.25080	-1.53660
Ο	0.51162	-1.84443	-2.35020

Table S7 Atomic positions of $Cr(CO)_5(PentOH)$ bound to C5 in Angstroms optimized in DFT with B3LYP functional for computation of the O K, and $Cr-L_{3,2}$ edges x-ray absorption computations.

Table S8 Atomic positions of free CO in Angstroms optimized in DFT with B3LYP functional for computation of the O K-edge x-ray absorption computations.

Atom	$\mathbf{x}(\mathring{A})$	$\mathrm{y}(\mathrm{\AA})$	z(A)
С	-3.62024	0.13173	0.00000
Ο	-2.49548	0.13173	0.00000

Table S9 Delay traces fit parameters. a_{sl} stands for the short lived prefactor. a_{ll} stands for the longlived prefactor.

Wavelength	a_{sl}	a_{ll}	k	σ
532.50	$6.2e-04\pm 2e-5$	$4.71e-04 \pm 1e-5$		
533.40	$1.38e-3\pm 2e-5$	$6.8\text{e-}04{\pm}1\text{e-}5$	790 ± 60	20 ± 2
534.30	$9.0e-04\pm 2e-5$	$8.2e-04{\pm}1e-5$		
578.84	-	$9.9e-04 \pm 1e-5$	-	26 ± 4
579.30	-	$1.329e-3\pm 1e-5$	-	2014