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Materials and Methods 

 

Sequence data. We queried the GISAID database SARS-CoV-2 viral genome alignment for sequences 

collected by 14 February 2020 (57). We selected this date to have a data set whose size is appropriate 

for Bayesian phylodynamic analyses (i.e., under 1000 genomes). We restricted our data set to 

sequences that (i) were ≥29,000 nucleotides, (ii) had high coverage with ≤0.5% unique amino acid 

mutations, (iii) had fewer than 1% ‘N’s, (iv) were not identified as potentially problematic via 

NextStrain (67), and (v) had a year-month-day sampling date reported. We additionally queried for the 

National Genomics Data Center, part of the China National Center for Bioinformatics (CNCB), for 

additional genomes collected by 14 February 2020 not represented on GISAID. Genomes described in 

the WHO report (34) to have erroneous mutations were updated, and if the virus was sequenced 

multiple times, the corrections belonging to the genome with the highest coverage were used. The first 

88 and last 195 nucleotides of each genome were masked due to poor evidence of homology, and an 

additional 105 sites were masked based on the work by De Maio et al. (59), leading to a total of 388 

masked sites. Genomes with an ambiguous nucleotide (e.g., Y or N) at site 8782 or 28144 were 

excluded. We excluded an additional 20 genomes from the primary phylodynamic analyses, because 

these sequences contained either C8782T or T28144C, but not both, for reasons described in the main 

text and De Maio et al. (2020) (10). The final dataset from the early COVID-19 pandemic comprised 

787 taxa. A list of GISAID accessions are available in Data S1, and a list of CNCB and GenBank 

accessions are available in S2. All GISAID accessions are also available through GISAID when using 

the identifier EPI_SET_20220305ud.  

 

Examining shared mutations between early C/C and T/T genomes and lineages A and B. The 787 

SARS-CoV-2 genome dataset and the 20 genomes with either C8782T or T28144C were aligned with 

MAFFT v7.453 (58) (options --auto --keeplength --addfragments) to reference genome Hu-1 

(GenBank accession MN908947.3; GISAID accession EPI_ISL_402125). We then identified pairs of 

genomes comprising an intermediate genome (C/C or T/T) and a major lineage (lineage A or B) that 

shared derived mutations.  

 

We additionally examined 83 genomes from the Diamond Princess outbreak, aligned to reference 

genome Hu-1 with MAFFT. We inferred a maximum likelihood tree using IQ-TREE 2 v2.0.7 (60) 

under a GTR+F+I substitution model, which was visualized using FigTree (68). 

 

Sequencing quality of early C/C and T/T genomes. We aligned reads FASTQ files belonging to 

EPI_ISL_413017, a C/C genome from South Korean, and EPI_ISL_462306, a T/T genome from 

Singapore, using Minimap2 (69), sorted the subsequent SAM files using samtools (70), and called 

variants using iVar (71). The variant calls were then manually inspected for depth and indeterminacy 

at specific sites, including 8782 and 28144. The raw data for EPI_ISL_413017 and EPI_ISL_462306 

are available at https://www.ncbi.nlm.nih.gov/sra, with project IDs PRJNA806767 and 

PRJNA802993, respectively.  

 

https://paperpile.com/c/dzD5Bg/oGQMQ
https://paperpile.com/c/dzD5Bg/oGQMQ
https://paperpile.com/c/dzD5Bg/oGQMQ
https://paperpile.com/c/dzD5Bg/qPDjY
https://paperpile.com/c/dzD5Bg/qPDjY
https://paperpile.com/c/dzD5Bg/qPDjY
https://paperpile.com/c/dzD5Bg/hYtvU
https://paperpile.com/c/dzD5Bg/hYtvU
https://paperpile.com/c/dzD5Bg/hYtvU
https://paperpile.com/c/dzD5Bg/0x3DA
https://paperpile.com/c/dzD5Bg/0x3DA
https://paperpile.com/c/dzD5Bg/0x3DA
https://paperpile.com/c/dzD5Bg/ebFIp
https://paperpile.com/c/dzD5Bg/ebFIp
https://paperpile.com/c/dzD5Bg/ebFIp
https://paperpile.com/c/dzD5Bg/0cV8v
https://paperpile.com/c/dzD5Bg/0cV8v
https://paperpile.com/c/dzD5Bg/0cV8v
https://paperpile.com/c/dzD5Bg/G8NRY
https://paperpile.com/c/dzD5Bg/G8NRY
https://paperpile.com/c/dzD5Bg/G8NRY
https://paperpile.com/c/dzD5Bg/qY3Lx
https://paperpile.com/c/dzD5Bg/qY3Lx
https://paperpile.com/c/dzD5Bg/qY3Lx
https://paperpile.com/c/dzD5Bg/wOlra
https://paperpile.com/c/dzD5Bg/wOlra
https://paperpile.com/c/dzD5Bg/wOlra
https://paperpile.com/c/dzD5Bg/F9lm0
https://paperpile.com/c/dzD5Bg/F9lm0
https://paperpile.com/c/dzD5Bg/F9lm0
https://paperpile.com/c/dzD5Bg/3j0yN
https://paperpile.com/c/dzD5Bg/3j0yN
https://paperpile.com/c/dzD5Bg/3j0yN
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C/C and T/T genomes in San Diego. The SEARCH consortium has sequenced over 35,000 genomes 

from San Diego during the course of the pandemic, by 3 February 2022. We generated a multiple 

sequence alignment of these genomes using Minimap2 and gofasta (72). We queried this alignment for 

consensus genomes with both C8782T and T28144, or both C8782 and T28144C, and validated these 

mutations by checking the read depth and allele frequency in the original alignment files.  

 

The consensus genomes and associated BAM files are publicly available at 

https://github.com/andersen-lab/HCoV-19-Genomics, and the genome accessions are listed in Data S2. 

The tree figures were rendered using baltic (73). 

 

T/T genomes in NYC. Molecular surveillance conducted by the New York City Public Health 

Laboratory, part of the Department of Health and Mental Hygiene, has sequenced >5000 SARS-CoV-

2 genomes through the end of 2021. We queried these data for genomes with both C8782T and T28144 

in the consensus sequence and validated the consensus sequence by checking the read depth and allele 

frequency from the primer removed BAM files. The genome accessions are listed in Data S1. The tree 

figure was rendered using baltic. 

  

Constructing the recombinant common ancestor. We used the aligned sarbecovirus genomes (5’ non-

coding and poly-A tail excluded; includes the entirety of the SARS-CoV-2 genome; genome accession 

IDs available in Data S1 and S2) and 14 breakpoints inferred from GARD (74) and provided by Sarah 

Temmam and Marc Eloit (13) to infer the phylogenetic history of 15 non-recombinant regions. We 

inferred a maximum likelihood tree of the animal viruses in the alignment and Hu-1 for each non-

recombinant region using IQ-TREE 2 under a GTR+F+G+I substitution model. We midpoint-rooted 

each maximum likelihood tree and used TreeTime v0.8.1 (61) to perform ancestral sequence 

reconstruction for each fragment. The genome belonging to the parent node of Hu-1 for each non-

recombinant region was inferred, and these inferred regions were concatenated to construct the 

recombinant common ancestor (recCA) of SARS-CoV-2 in the sarbecovirus clade. The mid-point root 

of each tree is always separated from the parent node of SARS-CoV-2 by at least several internal nodes, 

indicating that the recCA inference would not be sensitive to rooting.  

 

There are 382 substitutions between Hu-1 and the recCA, and one of these sites is masked in the 

phylodynamic analyses. Ignoring the 387 masked sites of the remaining 29,521 sites, there are 29,134 

sites identical between Hu-1 and the recCA. When we used a different SARS-CoV-2 genome (e.g., 

WH04, WA1) to construct the recCA, the recCA sequence was consistent, indicating the recCA can 

reliably be used as an ancestor of SARS-CoV-2.  

 

We created a simplot of the sarbecovirus genomes and the recCA against Hu-1 using RDP4 (75), and 

our phylogenies were visualized using FigTree. The genome accessions are listed in Data S1 for 

genomes from GISAD and Data S2 for genomes from GenBank. 

 

recCA robustness analysis. To examine how sensitive the recCA and downstream analyses were to the 

recombination inference method, we constructed a second recCA. Using the alignment provided by 

https://paperpile.com/c/dzD5Bg/fMcgF
https://paperpile.com/c/dzD5Bg/fMcgF
https://paperpile.com/c/dzD5Bg/fMcgF
https://github.com/andersen-lab/HCoV-19-Genomics
https://paperpile.com/c/dzD5Bg/wsL1r
https://paperpile.com/c/dzD5Bg/wsL1r
https://paperpile.com/c/dzD5Bg/wsL1r
https://paperpile.com/c/dzD5Bg/O144c
https://paperpile.com/c/dzD5Bg/O144c
https://paperpile.com/c/dzD5Bg/O144c
https://paperpile.com/c/dzD5Bg/laePJ
https://paperpile.com/c/dzD5Bg/laePJ
https://paperpile.com/c/dzD5Bg/laePJ
https://paperpile.com/c/dzD5Bg/lWneG
https://paperpile.com/c/dzD5Bg/lWneG
https://paperpile.com/c/dzD5Bg/lWneG
https://paperpile.com/c/dzD5Bg/D6RWL
https://paperpile.com/c/dzD5Bg/D6RWL
https://paperpile.com/c/dzD5Bg/D6RWL
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Sarah Temmam and Marc Eloit, we re-inferred breakpoints with 3SEQ (76) with an approach based 

on Boni et al. (77). Briefly, after running 3SEQ on the 31-genome alignment, we (1) collected all 

inferred breakpoints into a single set, (2) complemented this set to generate the set of non-breakpoints, 

(3) grouped non-breakpoints into continuous breakpoint free regions, (4) reran 3SEQ on the all BFRs 

>3,000 nucleotides to examine them for mosaicism, (5) pooled the breakpoints from the first and 

second 3SEQ runs, and (6) collapsed all breakpoints within 100 nucleotides of each other into the most 

upstream (5’) breakpoint. This resulted in 21 breakpoints and 22 BFRs. We next constructed a recCA 

using the same methods as above.  

 

Reversions early in the pandemic. Here, we define mutations away from the Hu-1 reference genome 

toward the recCA, such as C8782T and T28144C, as reversions. The 787 genomes sampled by 14 

February 2020 were aligned with MAFFT to Hu-1 (GISAID accession EPI_ISL_402125). The 

phylogenetic history of SARS-COV-2 in China was first inferred in a maximum likelihood framework 

in IQ-TREE 2 using a GTR+F+I model. We used TreeTime to perform ancestral state reconstruction 

on the maximum likelihood tree of 787 genomes, rooted on Hu-1. We determined which branches had 

reversions. Each unique reversion and non-reversion substitution was only counted once to account for 

phylogenetic uncertainty. The tree figure was rendered using baltic. 

 

Reversions throughout the pandemic. We extended the reversion analysis from above to the following 

variants: Alpha (PANGO lineage B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), Epsilon 1 

(B.1.427), Epsilon 2 (B.1.429), Zeta (P.2), Iota (B.1.526), and Kappa (B.1.617.1). To match the 52-

day window for sequence collection from the early pandemic, we found the earliest 52-day window in 

GISAID for each variant that contained at least 750 sequences. The genomes for each lineage were 

then aligned using MAFFT to reference genome Hu-1. We next used IQ-TREE 2 and TreeTime as 

above to generate a phylogeny and perform ancestral state reconstruction. We followed the same 

protocol as above with the recCA to determine which branches had reversions. The tree figures were 

rendered using baltic. 

 

To examine reversions across a subsample of the entire pandemic, we extracted the global tree and 

associated public genomes from Nextstrain (67) on 14 January 2022 and constrained it to sequences 

before November 2021. We aligned the genomes using MAFFT as above, used TreeTime with the 

NextStrain tree and alignment to perform ancestral state reconstruction, and determined reversions 

with the recCA. The genomes used for the clade and global pandemic reversion analysis can be found 

in Data S1 and S2, respectively.  

 

Phylogenetic inference. Molecular clock phylodynamic inference was conducted using a Bayesian 

approach in BEAST v1.10.5 (62). For the primary analysis, we developed and employed a non-

reversible, random-effects substitution model (described below), a strict molecular clock, a non-

parametric skygrid prior with 20 grid points and a cut off of 0.37, which translates to 5 October 2019. 

To facilitate Markov chain Monte Carlo (MCMC) chain convergence, (i) we used our previous results 

of 7.9x10-4 and 6.8x10-5 substitutions/site/year as the mean and standard deviation, respectively, of a 

normal prior for the clock rate, and (ii) we initiated the MCMC sampling using the maximum likelihood 

https://paperpile.com/c/dzD5Bg/s9bqW
https://paperpile.com/c/dzD5Bg/s9bqW
https://paperpile.com/c/dzD5Bg/s9bqW
https://paperpile.com/c/dzD5Bg/BCdYy
https://paperpile.com/c/dzD5Bg/BCdYy
https://paperpile.com/c/dzD5Bg/BCdYy
https://paperpile.com/c/dzD5Bg/qPDjY
https://paperpile.com/c/dzD5Bg/qPDjY
https://paperpile.com/c/dzD5Bg/qPDjY
https://paperpile.com/c/dzD5Bg/wTult
https://paperpile.com/c/dzD5Bg/wTult
https://paperpile.com/c/dzD5Bg/wTult
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phylogeny that had been transformed into a chronogram via TempEst v1.5.3 (78). We ran four 

independent chains of 400 million generations, sub-sampling every 25 thousand iterations to 

continuous parameter log files, 100 thousand iterations for the tree file, and 100 thousand iterations for 

the ancestral state reconstruction of the most recent common ancestor (MRCA); the first 15% of the 

chains were discarded as burnin. Convergence and mixing was assessed in Tracer v1.7.1 (79) and all 

4 chains were combined in LogCombiner, such that all relevant effective sample size (ESS) values 

were >200. The accession IDs can be found in Data S1 and S2, and the XML files can be found at (65). 

The outputs can be found at (66). 

 

Random-effects substitution model. To accommodate the mutational bias in SARS-CoV-2 for C-to-T 

transitions (15–17), we developed a random-effects substitution model. This model employs a standard 

phylogenetic substitution model as a base model, incorporated as fixed effects, while the random 

effects allow each individual mutation rate (e.g., C-to-T, separate from T-to-C) to be elevated (or 

decreased) relative to that model. Note that this makes the model non-reversible. We use HKY as the 

base model, which is defined by the parameters κ (governing the relative rate of transitions versus 

transversions) and 𝞹 (governing the root and stationary frequencies). Working on the log-scale and 

denoting the random effect 𝜖ij, our HKY+RE model gives the log of the substitution rate matrix entries 

as, 

 

𝑙𝑜𝑔(𝑞𝑖𝑗)  = 𝑙𝑜𝑔(𝜋𝑗)  +  𝑙𝑜𝑔(𝜅)  + 𝜖𝑖𝑗  + 𝑙𝑜𝑔(𝜉) if i>j is a transition 

or, 

𝑙𝑜𝑔(𝑞𝑖𝑗)  = 𝑙𝑜𝑔(𝜋𝑗)  + 𝜖𝑖𝑗 + 𝑙𝑜𝑔(𝜉) if i>j is a transversion, 

 

where 𝜉 is a normalizing constant. 

 

To accommodate among-site rate variation, we employ a proportion of invariable sites in the model, 

with a Uniform(0,1) prior. We place independent and identical Normal(mean=0,SD=𝜎𝜖) priors on 𝜖ij, 

an improper infinite uniform prior on 𝜎𝜖, and a Normal(mean=0,SD=1.25) prior on log(𝜅). We fix 𝞹 

to the frequencies observed in the alignment. 

 

Quantifying the support for ancestral haplotypes. We assume equally likely prior probabilities for each 

sequence in the ancestral state reconstruction posterior. Therefore, the Bayes factor (BF) in favor of 

sequence S1 against another sequence S0, given the data D, can be expressed as follows:  

 

 

 

where P(S|D) is the posterior probability of a sequence. Note that all BFs were calculated with the 

sequence comprising the highest posterior probability as S1, and BFs for each phylodynamic model 

were calculated separately.  

 

https://paperpile.com/c/dzD5Bg/98JQk
https://paperpile.com/c/dzD5Bg/98JQk
https://paperpile.com/c/dzD5Bg/98JQk
https://paperpile.com/c/dzD5Bg/nmjMI
https://paperpile.com/c/dzD5Bg/nmjMI
https://paperpile.com/c/dzD5Bg/nmjMI
https://paperpile.com/c/dzD5Bg/MIrhX
https://paperpile.com/c/dzD5Bg/MIrhX
https://paperpile.com/c/dzD5Bg/MIrhX
https://paperpile.com/c/dzD5Bg/bWqQg+cZSxQ+oXGRW
https://paperpile.com/c/dzD5Bg/bWqQg+cZSxQ+oXGRW
https://paperpile.com/c/dzD5Bg/bWqQg+cZSxQ+oXGRW
https://paperpile.com/c/dzD5Bg/bWqQg+cZSxQ+oXGRW
https://paperpile.com/c/dzD5Bg/bWqQg+cZSxQ+oXGRW
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Phylogenetic inference with constrained roots and recCA. In a standard phylogenetic model, the 

sequences at all internal nodes (and the root) are integrated out. A prior distribution is required for the 

root sequence in order to compute the likelihood or sample ancestral states at nodes. Typically, the 

prior distribution for the root sequence assumes every site is drawn identically and independently from 

some multinomial distribution defining the prior probability of an A, C, G, or T nucleotide at any (and 

every) site. Here, we consider two novel approaches.  

 

The first approach constrains the character state of the MRCA of all human SARS-CoV-2 sequences 

to be identical to a specific hypothesized ancestral haplotype (Fig 4B). We consider 6 ancestral 

haplotypes that match the sequences belonging to Wuhan Hu-1, the C/C haplotype (Hu-1 with 

T28144C), the T/T haplotype (Hu-1 with C8782T), WH04 (lineage A, or Hu-1 with C8782T and 

T28144C), 20SF2012 (WH04 with C29095T), and WA1 (lineage A.1, or WH04 with C18060T) . Note 

that in this model, the root of the tree is the MRCA of all 787 human SARS-CoV-2 sequences, and all 

787 genomes, including the genomes that are identical to the ancestral haplotype, remain taxa—the 

tree is not rooted on them.  

 

The second approach places a per-site prior distribution on the ancestral haplotype. Specifically, we 

add a branch ancestral to the MRCA and fix the sequence at the root to be the sequence of the recCA 

(Fig 4D). This approach places a prior distribution on the ancestral haplotype, as the root and MRCA 

are distinct in this model. At each site, this prior is determined by the nucleotide present in the recCA, 

the length of the branch leading to the MRCA, and the substitution model parameters. Our primary 

analysis uses this approach with the recCA based on the 14 breakpoints from GARD. We performed a 

robustness analysis by using this approach with the recCA based on the 21 breakpoints from 3SEQ. 

 

BEAST sensitivity analyses. We performed a series of sensitivity analyses for the Bayesian 

phylogenetic inference: (i) unconstrained rooting with a GTR+F+I model; (ii) unconstrained rooting 

with unmasked sequences; (iii) unconstrained rooting excluding 15 market-associated genomes; (iv) 

unconstrained rooting excluding all genomes sampled from Wuhan; (v) unconstrained rooting 

including the 20 “intermediate” genomes sampled before 14 February 2020; (vi) unconstrained rooting 

but including the 16 C/C genomes sampled before 14 February 2020; (vii) unconstrained rooting but 

including the 4 T/T genomes sampled before 14 February 2020; (viii) recCA rooting using the recCA 

based on the 14 breakpoints from GARD and with a GTR+F+I model; (ix) outgroup rooting with 

RaTG13 as an outgroup; and (x) outgroup rooting with BANAL-20-52 as an outgroup. 

 

The 7 July 2020 sampling date of BANAL-20-52, which post-dates the last included SARS-CoV-2 

genome in the dataset by several months, creating a problematic months-long lineage for the coalescent 

skygrid prior. To accomodate this issue for sensitivity analysis rooted on BANAL-20-52, we truncate 

the branch leading to BANAL-20-52 at 14 February 2020. Compared to the overall duration of this 

branch (roughly 17 years), the effect of the truncation is negligible to the likelihood.  

 

Inferring empirical doubling times. To determine the appropriate doubling time for the epidemic 

simulations, we inferred the doubling time of the early pandemic. We extracted the daily number of 
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cases from the WHO report (34) through the end of December 2019 and coupled it with the data from 

Li et al. (80). Because the case data included early cases that were later found to not associated with 

SARS-CoV-2 infection, we (i) removed the case from 2 December 2019 [as per the WHO report (34)] 

and (ii) shifted the case from 8 December to 16 December [as per Worobey (8)]. Additionally, we (iii) 

added a case to 10 December [as per Worobey (8)]. We used EpiNow2 and its default parameters with 

the daily case count to infer the doubling time of SARS-CoV-2 through 15 January 2020 (81).  

 

Epidemic simulation. To explore the evolutionary dynamics during the beginning of the COVID-19 

pandemic, we developed FAVITES-COVID-Lite (63), a simplified individual-based simulation 

pipeline based on FAVITES (22), and performed a series of epidemic simulations. First, we generated 

static contact networks comprising 5 million individuals (nodes) using NiemaGraphGen (82) under a 

preferential-attachment model using the Barabási–Albert algorithm (83). We used this algorithm to 

generate the contact networks, because its scale-free properties recapitulate infectious disease spread 

(83), including the superspreading dynamics of SARS-CoV-2 (11, 23). We chose to simulate a static 

contact network because our focus is on the number of people infected at the beginning of the epidemic, 

and we used an intermediate value of 16 contacts per day (mean degree), based on Mossong et al. (85).  

 

We extended the SAPHIRE [Susceptible (S)-Ascertained (I)-Presymptomatic (P)-Hospitalized (H)-

Not Ascertained (A)-Removed (R)-Exposed (E)] model developed by Hao et al. (64), and implemented 

in our previous study on the timing of the primary case (23), to have two ascertained compartments. 

Individuals from the first ascertained compartment can either enter the recovered compartment or an 

“ascertained-pre-hospitalization” (IH) compartment, where they eventually transition to the 

hospitalized compartment. We extended the model with the IH compartment to decouple the proportion 

of people hospitalized with the amount of time until hospitalization. We did not include the travel 

component of the original SAPHIRE model (i.e., individuals flying into and out of Wuhan), because 

our focus was on the early dynamics of the pandemic before its spread outside of Wuhan. The dynamics 

of these compartments across time (t) are described by the following set of ordinary differential 

equations:  

 

 

 

 

 

 

 

https://paperpile.com/c/dzD5Bg/hYtvU
https://paperpile.com/c/dzD5Bg/hYtvU
https://paperpile.com/c/dzD5Bg/hYtvU
https://paperpile.com/c/dzD5Bg/8Pgvh
https://paperpile.com/c/dzD5Bg/8Pgvh
https://paperpile.com/c/dzD5Bg/8Pgvh
https://paperpile.com/c/dzD5Bg/hYtvU
https://paperpile.com/c/dzD5Bg/hYtvU
https://paperpile.com/c/dzD5Bg/hYtvU
https://paperpile.com/c/dzD5Bg/hgZpr
https://paperpile.com/c/dzD5Bg/hgZpr
https://paperpile.com/c/dzD5Bg/hgZpr
https://paperpile.com/c/dzD5Bg/hgZpr
https://paperpile.com/c/dzD5Bg/hgZpr
https://paperpile.com/c/dzD5Bg/hgZpr
https://paperpile.com/c/dzD5Bg/a3mOY
https://paperpile.com/c/dzD5Bg/a3mOY
https://paperpile.com/c/dzD5Bg/a3mOY
https://paperpile.com/c/dzD5Bg/XzCpr
https://paperpile.com/c/dzD5Bg/XzCpr
https://paperpile.com/c/dzD5Bg/XzCpr
https://paperpile.com/c/dzD5Bg/Js6SF
https://paperpile.com/c/dzD5Bg/Js6SF
https://paperpile.com/c/dzD5Bg/Js6SF
https://paperpile.com/c/dzD5Bg/3FIlU
https://paperpile.com/c/dzD5Bg/3FIlU
https://paperpile.com/c/dzD5Bg/3FIlU
https://paperpile.com/c/dzD5Bg/HCoUn
https://paperpile.com/c/dzD5Bg/HCoUn
https://paperpile.com/c/dzD5Bg/HCoUn
https://paperpile.com/c/dzD5Bg/i2nK7
https://paperpile.com/c/dzD5Bg/i2nK7
https://paperpile.com/c/dzD5Bg/i2nK7
https://paperpile.com/c/dzD5Bg/p8MOE+OpmwS
https://paperpile.com/c/dzD5Bg/p8MOE+OpmwS
https://paperpile.com/c/dzD5Bg/p8MOE+OpmwS
https://paperpile.com/c/dzD5Bg/p8MOE+OpmwS
https://paperpile.com/c/dzD5Bg/p8MOE+OpmwS
https://paperpile.com/c/dzD5Bg/j3K71
https://paperpile.com/c/dzD5Bg/j3K71
https://paperpile.com/c/dzD5Bg/j3K71
https://paperpile.com/c/dzD5Bg/xfrNG
https://paperpile.com/c/dzD5Bg/xfrNG
https://paperpile.com/c/dzD5Bg/xfrNG
https://paperpile.com/c/dzD5Bg/OpmwS
https://paperpile.com/c/dzD5Bg/OpmwS
https://paperpile.com/c/dzD5Bg/OpmwS
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We note that we rescale the transmission rate (b) reported in Table S3 and used for each analysis to the 

average degree centrality in the network (16). 

 

We performed forward simulations using this extended model to generate a viral transmission network 

using GEMF (86). Simulated epidemics started with a single seed infection among our 5 million 

susceptible individuals, and infected nodes infect other nodes via Poisson processes. The parameters 

were primarily determined by Hao et al. (64) (Table S3), except we required half the ascertained 

population to become hospitalized with an average of 11 days between symptom onset and 

hospitalization, matching reports of hospitalization of the early pandemic in Wuhan (87–89). Each 

simulation was run for 100 days and produced an output documenting when individuals transitioned 

from one compartment to another throughout the entire simulation. We used these outputs to determine 

the number of individuals in a given compartment (e.g., total infections, ascertained infections, 

unascertained infections, and hospitalized individuals) across each day in the simulation.  

 

Once the forward simulations were complete, we subsampled the first 50,000 infected individuals. If 

there were fewer than 50,000 infections, we used each infected individual for subsequent analyses. 

Then, we sample a sequencing time for each ascertained individual from a uniform distribution that 

starts when they enter the first ascertained compartment and ends when they were recovered. To match 

real-world data from December 2019, we include only individuals with genome sampling times that 

occur after the first hospitalization of the simulated epidemic. Additionally, the primary case (i.e., first 

infected individual in the simulation) is sampled regardless of ascertainment status. We sample the 

primary case regardless of ascertainment or hospitalization status to properly determine stable 

coalescence (described below). Unascertained individuals are not sampled.  

 

Lastly, we provide the genome sampling times and transmission network to CoaTran (82), which uses 

a coalescent process to generate time trees. We then use a constant substitution rate of 9.2x10-4 

substitutions/site/year (inferred from our primary BEAST results) to convert the branch lengths from 

years to substitutions per site to generate mutation trees.  

 

For the primary analysis, we ran successive epidemic simulations until we reached 1100 successful 

simulations, defined as those simulations in which ≥400 people had become infected and ≥1 person 

was still infectious at the end of the simulation. Failed epidemics were those simulations that did not 

become established (i.e., 0 infectious people at the end of the simulation) or had fewer than 400 people 

infected over the entire simulation; 3857 (77.8%) simulations failed to reach this epidemic threshold 

after 100 days. Our epidemics had a median doubling time of 3.47 days (95% range: 1.35-5.44), slightly 

shorter than the doubling times from Hao et al. (64) to match empirical estimates of the growth rate 

from before 1 January 2020 in Wuhan (24, 25). Twelve of the 4957 simulations (0.2%) did not reach 

https://paperpile.com/c/dzD5Bg/4uh3o
https://paperpile.com/c/dzD5Bg/4uh3o
https://paperpile.com/c/dzD5Bg/4uh3o
https://paperpile.com/c/dzD5Bg/xfrNG
https://paperpile.com/c/dzD5Bg/xfrNG
https://paperpile.com/c/dzD5Bg/xfrNG
https://paperpile.com/c/dzD5Bg/vciin+bvzyb+AJmZG
https://paperpile.com/c/dzD5Bg/vciin+bvzyb+AJmZG
https://paperpile.com/c/dzD5Bg/vciin+bvzyb+AJmZG
https://paperpile.com/c/dzD5Bg/vciin+bvzyb+AJmZG
https://paperpile.com/c/dzD5Bg/vciin+bvzyb+AJmZG
https://paperpile.com/c/dzD5Bg/3FIlU
https://paperpile.com/c/dzD5Bg/3FIlU
https://paperpile.com/c/dzD5Bg/3FIlU
https://paperpile.com/c/dzD5Bg/xfrNG
https://paperpile.com/c/dzD5Bg/xfrNG
https://paperpile.com/c/dzD5Bg/xfrNG
https://paperpile.com/c/dzD5Bg/Vp6ld+wbM1C
https://paperpile.com/c/dzD5Bg/Vp6ld+wbM1C
https://paperpile.com/c/dzD5Bg/Vp6ld+wbM1C
https://paperpile.com/c/dzD5Bg/Vp6ld+wbM1C
https://paperpile.com/c/dzD5Bg/Vp6ld+wbM1C
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400 infections but were still persisting at the end of the 100-day simulation. Given the rarity of these 

12 simulations, it is highly improbable that SARS-CoV-2 was characterized by their growth dynamics.  

 

All input parameters for the primary and sensitivity analyses can be found in (65), the output files and 

post-processed results can be found at doi (66). 

 

Doubling time inference. To characterize the growth dynamics of our epidemic simulations and 

compare them to empirical growth dynamics, we estimated the doubling time of the primary epidemic 

simulations. For our primary simulations, we calculated both the cumulative doubling time and 14-day 

doubling time at each day in the simulation (prior to day 14, the 14-day doubling time is identical to 

the cumulative doubling time). However, because of the stochasticity inherent in these epidemic 

simulations, the simulations can be more easily compared to one another when the same number of 

individuals are infected. Therefore, we also estimated the cumulative and 14-day doubling times at 

certain numbers of infections (e.g., 100 infections).  

 

Based on the doubling time results (Fig. S22), we reason that at 1,000 infections, there is sustained 

transmission, the variability in doubling times across simulations has slightly decreased, and the 5 

million node network has not yet started to saturate. Therefore, unless otherwise specified, the doubling 

times we report for each set of epidemic simulations is the 14-day doubling time when 1,000 

individuals are infected.  

 

Sensitivity analysis–faster rate of infection. We simulated epidemics for a more rapidly spreading virus 

using the same parameters from the primary analysis, except the transmission rate was increased from 

0.28 to 0.38 per day (1.36x) and the simulation time was decreased from 100 to 70 days (0.70x). We 

produced 1100 successful simulations with at least 400 infected individuals and a median epidemic 

doubling time of 2.65 days (95% range: 1.50-4.10), and 2204 (66.7%) simulations failed to reach the 

epidemic threshold.  

 

Sensitivity analysis–slower rate of infection. We simulated epidemics for a more slowly spreading 

virus using the same parameters from the primary analysis, except the transmission rate was decreased 

from 0.28 to 0.22 per day (0.79x) and the simulation time was increased from 100 to 150 days (1.50x). 

We produced 1100 successful simulations with at least 400 infected individuals and a median epidemic 

doubling time of 4.45 days (95% range: 1.50-7.44), and 7202 (92.8%) simulations failed to reach the 

epidemic threshold.  

 

Sensitivity analysis–higher ascertainment rate. We simulated epidemics with a higher ascertainment 

rate using the same parameters from the primary analysis, except the ascertainment rate was increased 

from 0.15 to 0.25 (1.67x) and the simulation time was increased from 100 to 120 days (1.20x). 

Additionally, we decreased the transmission rate from 0.28 to 0.255 (0.91x) to keep the doubling time 

consistent with the primary analysis. We produced 1100 successful simulations with at least 400 

infected individuals and a median epidemic doubling time of 3.52 days (95% range: 1.38-5.64), and 

3698 (77.1%) simulations failed to reach the epidemic threshold.  

https://paperpile.com/c/dzD5Bg/MIrhX
https://paperpile.com/c/dzD5Bg/MIrhX
https://paperpile.com/c/dzD5Bg/MIrhX
https://paperpile.com/c/dzD5Bg/dAygi
https://paperpile.com/c/dzD5Bg/dAygi
https://paperpile.com/c/dzD5Bg/dAygi
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Sensitivity analysis–lower ascertainment rate. We simulated epidemics with a lower ascertainment 

rate using the same parameters from the primary analysis, except the ascertainment rate was decreased 

from 0.15 to 0.05 (0.33x) and the simulation time was increased from 100 to 120 days (1.20x). 

Additionally, we increased the transmission rate from 0.28 to 0.295 (1.05x) to keep the doubling time 

consistent with the primary analysis. We produced 1100 successful simulations with at least 400 

infected individuals and a median epidemic doubling time of 3.50 days (95% range: 1.51-5.65), and 

4632 (80.8%) simulations failed to reach the epidemic threshold.  

 

Determining stable coalescence. As in our previous study (23), we define the stable coalescence as the 

tMRCA that does not shift forward in time by more than one day, even as new individuals become 

infected and previously infected individuals recover (i.e., the time to the most recent common ancestor 

[tMRCA]). The stable coalescence is reached the first day that the coalescence for the currently 

infected individuals is within one day of the time of MRCA after the simulation is complete or once 

50,000 total individuals have been infected. Therefore, the stable coalescence ignores the preceding 

basal lineages that have gone extinct. 

 

We extracted the tMRCA of infected and sampled individuals every day across each simulation using 

TreeSwift 1.1.14 (90). This tMRCA was calculated for each day of the 100 days or until 50,000 

individuals had been infected, whichever came first. We chose not to explore dynamics after 50,000 

infections due to a slowing in exponential growth arising from the saturation of the contact network. 

 

Determining the topological patterns of simulated phylogenies. We examined the topology of the 

phylogenetic trees resulting from the epidemic simulations. For each tree, after determining the point 

of stable coalescence, we extracted the subtree rooted at the internal node at stable coalescence (i.e., 

the MRCA of the sampled genomes). We then simulated mutations down the branches of the subtree 

using a substitution rate of 9x2x10-4 substitutions/site/year (the inferred substitution rate from the 

unconstrained Bayesian phylogenetic analysis). We then counted (i) the number of descendent lineages 

(i.e., the size of the basal polytomy, including basal taxa, tips with unique mutations, and clades) from 

the subtree root, (ii) the clade size of each descendant lineage that was one or two mutations from the 

root, and (iii) the number of lineages descending from each one- or two-mutation derived clade from 

(ii) (i.e., the size of the polytomy of the large derived clades). Note that (i) is represented in Fig. 2A 

(and the basal polytomy in Fig. 2C), and (ii) and (iii) describe the large clades in Fig. 2B and 2C. For 

clarity, we display the subtree rooted at stable coalescence (ignoring the preceding lineages that have 

gone extinct) in Fig. 2. 

 

We use the results of i–iii above to quantify the frequencies of different topologies in the simulated 

epidemics (𝜏). 

 

If there were at least n descendant lineages from the subtree root, the simulated phylogeny had a 

polytomy. We refer to this topology as 𝜏P.  

 

https://paperpile.com/c/dzD5Bg/OpmwS
https://paperpile.com/c/dzD5Bg/OpmwS
https://paperpile.com/c/dzD5Bg/OpmwS
https://paperpile.com/c/dzD5Bg/ZGqza
https://paperpile.com/c/dzD5Bg/ZGqza
https://paperpile.com/c/dzD5Bg/ZGqza
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When there were only two clades, each one mutation from the subtree root, the simulation matched the 

observed topology if there were a single introduction of the C/C or T/T ancestral haplotype. We refer 

to this topology as 𝜏2C. We first further constrained 𝜏2C to require each clade to be ≥30% and ≤70% of 

the simulated taxa, approximating lineage A and lineage B comprising 35.2% and 64.8% of all taxa, 

respectively. We constrained 𝜏2C once more to require at least n lineages descending from the root of 

the clade, to match the polytomies at the bases of the lineage A and lineage B clades.  

 

When there was a polytomy at the base of the simulated phylogeny and a large clade two mutations 

from the root with a large portion of the taxa, the topology matches the observed topology had there 

been a single introduction of the lineage A or B ancestral haplotype. We refer to this topology as 𝜏1C. 

As with 𝜏2C, we constrain 𝜏1C to require the two-mutation clade to comprise ≥30% of the taxa. We 

constrained 𝜏1C once more to require at least n lineages descending from the large two-mutation clade 

(i.e., a polytomy, as with lineage B if lineage A were the single introduction and vice-versa).  

 

The empirical phylogeny has 787 taxa and two large polytomies: the 108-descendant lineage A 

polytomy and the 231-descendant lineage B polytomy. Our primary results therefore require the 

polytomy size n to be 100 lineages, reflecting the empirical data. Importantly, this is a conservative 

requirement because 98.4% of the simulated phylogenies had more than 1,000 taxa.  

 

However, since 1.5% of the simulated phylogenies had fewer than 787 taxa, we also performed 

sensitivity analyses requiring n to be either 20 or 50 lineages. Additionally, since 96.7% of the 

simulated phylogenies had more than 5,000 taxa, we also performed sensitivity analyses requiring n to 

be 200 or 500 lineages.  

 

Quantifying the support for two introductions against a single introduction of SARS-CoV-2. Here we 

synthesize the posterior probabilities of inferred ancestral haplotypes, frequencies of topologies in the 

forward epidemic simulations, and the expected relationships between these haplotypes and topologies 

to quantify the support for a two-introduction scenario over a single-introduction scenario. Our goal is 

to obtain P(In | Y), the probability of n introductions (In) given our sequence data Y, so that we can 

compare the probabilities of single- and multiple-introduction hypotheses. 

 

We consider three phylogenetic topologies, or root-shapes: 𝜏P for a large polytomy at the root (stable 

coalescence), 𝜏1C for one well-defined clade two mutations from the root, and 𝜏2C for two well-defined 

clades each one mutation from the root, with no other lineages descending from the root. We define 

SMRCA as the ancestral haplotype of all sampled SARS-CoV-2 genomes, and we specifically consider 

the four most likely ancestral haplotypes (Table 1): SA for lineage A, SB for lineage B, ST/T for the 

intermediate T/T haplotype, and SC/C for the intermediate C/C haplotype.  

 

If there are n introductions, there are n distinct trees with n distinct root-shapes. We will use the vector 

𝜏 to track these. In the case that there was one introduction, this is a single root-shape; two introductions 

have two root-shapes; and we do not consider more than two introductions here.  
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We can rewrite the ratio of posterior probabilities as a ratio of joint probabilities,  

 

 
 

Marginalizing over SMRCA and assuming that In only affects Y through SMRCA,  

 

 
 

Therefore we get, 

 

 
 

As we did when computing the Bayes Factors above, we assume that all ancestral haplotypes are a 

priori equally probable, leading to 

 

 

   (1) 

 

 

The Bayesian phylogenetic inference provides P(SMRCA | Y), the probability of the ancestral haplotype 

of all human sequences given the sequence data. 

 

We can then marginalize the joint probability P(SMRCA, In) over the root-shape vector and apply 

conditional probability:  
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Since the length of 𝜏 depends on the number of introductions, In does not provide any additional 

information regarding the conditional probability of SMRCA. Therefore, 

 

  
 

The maximum likelihood tree (Fig. 1), likely ancestral haplotypes (Table 1), and forward epidemic 

simulations (Fig. 2) allow for the following compatibility statements:  

● 𝜏 = 𝜏2C is compatible with SMRCA ∈ {SC/C, ST/T} 

● 𝜏 = 𝜏1C is compatible with SMRCA ∈ {SA, SB} 

● 𝜏 = (𝜏P, 𝜏P) is compatible with SMRCA ∈ {SA, SB, SC/C, ST/T} 

● 𝜏 = (𝜏P, 𝜏1C) is compatible with SMRCA ∈ {SA, SB, SC/C, ST/T} 

● 𝜏 = (𝜏1C, 𝜏P) is compatible with SMRCA ∈ {SA, SB, SC/C, ST/T} 

● 𝜏 = (𝜏1C, 𝜏1C) is compatible with SMRCA ∈ {SA, SB, SC/C, ST/T} 

 

We can then define P(SMRCA | 𝜏) to be proportional to the vector of compatibilities: 

 

 
 

In the case where multiple root-shapes are compatible with an ancestral haplotype, we must 

renormalize the compatibility vector such that it sums to 1 to describe probabilities. However, note that 

some root-shapes are not compatible with any ancestral haplotypes. In this case, P(SMRCA | 𝜏) equals 0 

for each ancestral haplotype.  

 

The simulations provide P(𝜏 | I1), the probability of the root-shape(s) given one introduction. We 

assume each introduction is independent, allowing us to generalize this probability to P(𝜏 | In). For 

example, P(𝜏 = 𝜏P | In = I1) = 0.607 (Fig. 2, Table S5), and P(𝜏 = (𝜏P, 𝜏P) | In = I2) = P(𝜏 = 𝜏P | In = I1)
2 = 

0.368.  

 

Lastly, we assume equal prior probabilities for one and two introductions of SARS-CoV-2, allowing 

us to cancel out P(I1) and P(I2) when calculating equation (1). We can then use P(SMRCA | Y), P(SMRCA | 

𝜏), and P(𝜏 | I1) to calculate the posterior odds of equation (1). Although we solved for the posterior 

odds in support of two introductions, the prior odds comparing two introductions to a single 
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introduction is 1. Therefore, the posterior odds are equivalent to a Bayes factor in support of two 

introductions. The code used to calculate the Bayes factor comparing two introductions to a single 

introduction is available at (67).  

 

Combining epidemic simulations and BEAST via rejection sampling. We estimated the timing of the 

lineage B and lineage A primary cases. Our previous analysis (23) inferring the timing of the SARS-

CoV-2 primary case incorporated the date of index case ascertainment; however, uncertainty regarding 

the true index case persists (8, 34, 91) (supplementary text). To overcome this uncertainty, we extend 

our previously published approach, which combines the epidemic simulations and phylodynamics 

tMRCA inference (described in the above two sections), to condition the timing of the primary case on 

both the index case symptom onset date and earliest documented COVID-19 hospitalization date. We 

included hospitalization dates because they are less susceptible to recall bias than date of symptom 

onset. 

 

Our aim is to obtain a posterior distribution for the date 𝑋 of the primary case (the first case resulting 

from a SARS-CoV-2 cross-species transmission) in Wuhan, conditioned on the available sequencing 

data 𝐷𝑆, the date of the first reported COVID-19 case 𝐷𝐶 , and the date of the first hospitalization 𝐷𝐻 

due to COVID-19. We do this in a Bayesian framework by marginalizing over the date 𝑇 of the tMRCA 

as follows: 

 

                   (2) 

    

 

We assume that the sequencing data are informative only for the tMRCA; i.e., given 𝑇, 𝑋 does not 

depend on 𝐷𝑆: 𝑃(𝑋|𝑇, 𝐷𝑆 , 𝐷𝐶 , 𝐷𝐻)  =  𝑃(𝑋|𝑇, 𝐷𝐶 , 𝐷𝐻). We also assume that the first reported COVID-

19 case and hospitalization data are not informative for the tMRCA: 𝑃(𝑇|𝐷𝑠 , 𝐷𝑐 , 𝐷𝐻)  =  𝑃(𝑇|𝐷𝑠). 

This gives: 

 

                                (3) 

 

 

We further note that 

 

 
 

where 𝑌𝐶 and 𝑌𝐻 are the first simulated COVID-19 ascertained case and hospitalization, respectively. 

We model 𝑃(𝑋, 𝑌𝐶 , 𝑌𝐻|𝑇, 𝐷𝐶 , 𝐷𝐻) as proportional to 𝐼(𝑌𝐶 ≤ 𝐷𝐶  , 𝑌𝐻 ≤ 𝐷𝐻)𝑃(𝑋, 𝑌𝐶 , 𝑌𝐻|𝑇), where 

𝐼(𝑌𝐶 ≤ 𝐷𝐶  , 𝑌𝐻 ≤ 𝐷𝐻) is an indicator function with a value of 1 when 𝑌𝐶 and 𝑌𝐻 are consistent with 𝐷𝐶  

and 𝐷𝐻, respectively, and 0 otherwise. This approach allows us to sample from the posterior 

https://paperpile.com/c/dzD5Bg/OpmwS
https://paperpile.com/c/dzD5Bg/OpmwS
https://paperpile.com/c/dzD5Bg/OpmwS
https://paperpile.com/c/dzD5Bg/hYtvU+hgZpr+S04YS
https://paperpile.com/c/dzD5Bg/hYtvU+hgZpr+S04YS
https://paperpile.com/c/dzD5Bg/hYtvU+hgZpr+S04YS
https://paperpile.com/c/dzD5Bg/hYtvU+hgZpr+S04YS
https://paperpile.com/c/dzD5Bg/hYtvU+hgZpr+S04YS
https://paperpile.com/c/dzD5Bg/hYtvU+hgZpr+S04YS
https://paperpile.com/c/dzD5Bg/hYtvU+hgZpr+S04YS
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distribution of equation (3). The BEAST analysis provides values of 𝑇 sampled from the distribution 

𝑃(𝑇|𝐷𝑆), which we can use in conjunction with FAVITES-COVID-Lite to sample corresponding 

values of 𝑋, 𝑌𝐶, and 𝑌𝐻 from the distribution 𝑃(𝑋, 𝑌𝐶 , 𝑌𝐻|𝑇). We use a simple rejection sampling 

approach to continue sampling from 𝑃(𝑋, 𝑌𝐶 , 𝑌𝐻|𝑇) until a sample is obtained for which 

 𝐼(𝑌𝐶 ≤ 𝐷𝐶  , 𝑌𝐻 ≤ 𝐷𝐻) = 1. The resulting set of sample values for 𝑋 then follow the posterior 

distribution 𝑃(𝑋|𝐷𝑆 , 𝐷𝐶 , 𝐷𝐻).  

 

We require the first simulated case to be ascertained (SAPHIRE stage: I) and assign 𝐷𝐶  as 10 December 

2019. However, we note that this first ascertained case can be the primary case, unless a secondary or 

tertiary case progresses faster through the course of infection. We assign 𝐷𝐻 as 16 December 2019. 

Importantly, the rate at which cases were ascertained in the SAPHIRE model is based on real-time 

patterns in COVID-19 diagnosis from 1 through 22 January 2020 and may not reflect the actions that 

led to the retrospective diagnosis of earliest cases of COVID-19. Further, stable coalescence (i.e., the 

MRCA) can happen any time after the primary case is infected, and there is no requirement for stable 

coalescence to occur after the first ascertained and unascertained individuals. Justifications for dates 

used here and in the sensitivity analyses is discussed in the supplementary text.  

 

Sensitivity analysis–earliest case date of 8 December. We also condition single-introduction analyses 

on an 8 December case date, which was previously discounted by the WHO and 16 December 

hospitalization date (see supplementary text for full discussion).  

 

Sensitivity analysis–rejection sampling with hospitalization only. We remove the requirement for the 

first simulated case to be ascertained by a given date, and then condition analyses only on the tMRCA 

and date of the first hospitalization.  

 

Sensitivity analysis–recCA and constrained roots. We explored the sensitivity of the timing of the 

primary case to the phylodynamic model choice. We applied rejection sampling to the inferred 

phylogenies constrained by the recCA and SARS-CoV-2 ancestral haplotypes (e.g., lineage A.1) and 

the primary forward epidemic simulations, conditioning on the same dates as above.  

 

Rejection sampling for lineages A and B. We apply the above method to the tMRCA, first ascertained 

case date, and first hospitalized case date for each lineage to infer the timing of the primary case for 

each lineage. For lineage B, the earliest case and hospitalization dates are 13 December and 16 

December, respectively. For lineage A, the earliest case date is 15 December and the earliest 

hospitalization date is 25 December (see supplementary text for full discussion). After performing 

rejection sampling for both lineages, we combine the number of individuals in each compartment for 

each day in the dated simulations.  

 

Sensitivity analysis—earlier lineage B COVID-19 index case dates. We performed rejection sampling 

for lineage B using a case date and hospitalization date of 10 December and 16 December, matching 

the SARS-CoV-2 index case, which does not have an associated genome. We also performed rejection 

sampling for lineage B using a case date and hospitalization date of 8 December and 18 December, 
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respectively, under the alternate assumption that the earliest lineage B case occurred on 8 December 

(see supplementary text for full discussion). 

 

Simulating cross-species transmissions to achieve two successful introductions. Our epidemic 

simulations had a success rate of approximately 22.2% (1100 successful introductions; 3857 failed 

introductions). To simulate the number of cross-species transmissions needed to achieve two 

successful introductions, we treated successful introductions as Bernoulli trials, with a success rate of 

22.2% and simulated trials until there were two successful trials.  
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Supplementary Text 

 

Reduced genomic diversity in the early pandemic. Although the root of the SARS-CoV-2 phylogeny 

has often been inferred with Bayesian and maximum likelihood methods to fall on the branch leading 

to IPBCAMS-WH-01 (Lineage B) or other early genomes (18, 23, 35, 92, 93), reanalysis of sequence 

data from the earliest sampled viruses found that three previously reported mutations in IPBCAMS-

WH-01 were spurious, and the genome was, in fact, identical to the Hu-1 reference genome (34). Upon 

reexamination by WHO investigators, other early genomes were also found to have spurious mutations 

(34), thereby decreasing the overall genetic diversity of early SARS-CoV-2 sequence data. This 

decreased diversity suggests that prior studies, including our own (23), may have incorrectly rooted 

the SARS-CoV-2 phylogeny.  

 

C/C and T/T genomes through 14 February 2020. Of the 16 C/C genomes in our data set, we found 

four that share nucleotide substitutions—other than T28144C—found in some lineage A genomes (Fig. 

S1A). If the C/C intermediates actually existed, 11 of the 19 additional unique mutations in the C/C 

genomes would need to be homoplasies: identical mutations arising separately in the C/C and lineage 

A genomes. For example, a C/C genome from Anhui province (EPI_ISL_1069206) shares A11430G 

with 6 lineage A genomes sampled across China, and a genome from Sichuan province 

(EPI_ISL_451325) shares C1342T and C18060T with three lineage A genomes. The authors of the 

latter example confirmed that low sequencing depth at position 8782 led to the erroneous calling of the 

reference genome nucleotide at this position in this genome (L. Chen Personal Communication). 

Furthermore, these authors confirmed that incorrect base calls, often due to low sequencing depth, led 

to erroneous assignment of 11 additional C/C genomes sampled in Wuhan and Sichuan province (four 

of which share substitutions with lineage B genomes, see below). 

 

A similar pattern was observed in the five C/C genomes sharing substitutions found within lineage B 

(Fig. S1B), including a South Korean genome (EPI_ISL_413017) sharing G26640T, G26144T, and 

T26677C with another lineage B genome from South Korea. In this instance, we confirmed that low 

sequencing depth at position 28144 (<10x) resulted in this erroneous assignment. Critically, therefore, 

we are able to explain all C/C genomes as artifactual, with the exception of two genomes sampled in 

Beijing in late January and early February, whose additional mutations were not observed in early 

lineage A or B genomes and whose underlying data was not available. 

Unlike the C/C genomes, none of the four T/T genomes shared additional mutations with lineage A or 

B genomes that would clarify their veracity. However, we confirmed that the T/T genome sampled in 

Singapore on 14 February 2020 (EPI_ISL_462306) had low coverage at both 8782 and 28144 (≤10x). 

Moreover, the 3 T/T genomes sampled in Wuhan on 26 January (EPI_ISL_493179, EPI_ISL_493182, 

EPI_ISL_493180) had low sequencing depth and indeterminate C/T nucleotide assignment at position 

8782 (Table S1). These findings suggest all T/T genomes sampled by 14 February 2020 are similarly 

artifactual. 

T/T genomes aboard the Diamond Princess. Two high coverage T/T genomes sampled after 14 

February 2020 were from the Diamond Princess cruise ship outbreak. These two T/T genomes 

https://paperpile.com/c/dzD5Bg/LyJY0+OpmwS+lsIBK+M3QcA+3qLFG
https://paperpile.com/c/dzD5Bg/LyJY0+OpmwS+lsIBK+M3QcA+3qLFG
https://paperpile.com/c/dzD5Bg/LyJY0+OpmwS+lsIBK+M3QcA+3qLFG
https://paperpile.com/c/dzD5Bg/LyJY0+OpmwS+lsIBK+M3QcA+3qLFG
https://paperpile.com/c/dzD5Bg/LyJY0+OpmwS+lsIBK+M3QcA+3qLFG
https://paperpile.com/c/dzD5Bg/LyJY0+OpmwS+lsIBK+M3QcA+3qLFG
https://paperpile.com/c/dzD5Bg/LyJY0+OpmwS+lsIBK+M3QcA+3qLFG
https://paperpile.com/c/dzD5Bg/LyJY0+OpmwS+lsIBK+M3QcA+3qLFG
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possessed T11083G, a mutation defining the Diamond Princess outbreak, as well as G11410T, and 

were therefore identifiably descendants of the lineage B virus that initiated this outbreak (94, 95) (Fig. 

S2).  

T/T genomes in New York City. We found 3 SARS-CoV-2 genomes with both C8782T and T28144 

(T/T) in the NYC Public Health Laboratory surveillance data set. We placed these genomes on a global 

tree of 3 million genomes (v2022-01-21) using UShER (96), and all 3 appear to be descendants of 

lineage B. Two of these genomes (EPI_ISL_8953704 and EPI_ISL_8953705) belong to the B.1.526 

Iota lineage and have identical sequences, suggesting that a T/T genome may have been transmitted 

locally (Fig. S3). We note that although these genomes were sampled from different individuals in 

different parts of the city, their genomes were sequenced on the same sequencing plate. The third NYC 

T/T genome (EPI_ISL_1447116) belongs to the B.1.2 lineage and falls on a different part of the 

phylogeny, indicating an independent C8782T mutation. This third genome was sequenced on a 

separate run than the other two NYC T/T genomes. All three genomes at site 8782 and 28144 have 

read depth >4,000x, with coverage in both directions and 100% of the sequencing reads support the T 

allele. 

T/T and C/C genomes in San Diego. We found 24 T/T genomes in the San Diego SEARCH data set, 

with collection dates between December 2020 and December 2021 and 1 C/C genome that was 

collected on 15 January 2021. We placed these genomes on a global tree of 3 million genomes using 

UShER. Eight of the T/T genomes were classified as Delta sublineages: AY.26, AY.40, and AY.44; 

the remaining T/T genomes were classified as B.1 and its other descendant lineages (Fig. S4). The C/C 

genome was classified as B.1.1.432 (Fig. S5). Therefore, these and other T/T and C/C haplotypes are 

the result of convergent evolution at 8782 and 28144.  

The common occurrence of C/C and T/T genomes arising due to convergence provides further 

evidence that early intermediate genomes could have also been due to convergent evolution and do not 

represent transitional genomes.  

The recombinant common ancestor (recCA). The recCA differed from Hu-1 by just 381 reversions, 

including C8782T and T28144C. In this manner, lineage A (exemplified by Wuhan/WH04/2020) has 

two reversions, and hence has two fewer substitutions separating it from the recCA than lineage B. 

(Note that although these mutations are nominally ‘reversions’, if the true MRCA of SARS-CoV-2 

were a lineage A virus, those lineage B to lineage A reversions would not actually have occurred). 

Additional reversions, C18060T and C29095T, have been separately identified in USA/WA1/2020 and 

Guangdong/20SF012/2020, respectively, and it has been argued that these haplotypes are the ancestral 

form of SARS-CoV-2 (19, 21). We find that repeated substitutions at sites 8782, 18060, and 28144, 

are common among closely related sarbecoviruses (Fig. S11-S13). In contrast, 29095 is strongly 

conserved among these sarbecoviruses but highly polymorphic in humans (Fig. S14). Absent from the 

recCA are two mutations, C2416T and C23929T, previously suggested to have been present in the 

immediate ancestor of SARS-CoV-2 (21); these mutations occur on the branch to the related bat 

sarbecovirus RaTG13 (Fig. S8, S10) (97). 
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To ensure our downstream analyses are robust to the breakpoint inference and subsequent construction 

of the recCA, we reconstructed a second recCA using breakpoints 3SEQ, a recombination detection 

algorithm which examines triplets (two parents and one offspring sequence) (76). We then constructed 

this second recCA with the 21 new breakpoints, and this recCA differed from Hu-1 at 371 sites. The 

two recCAs were identical at sites previously suggested to have mutations present in the immediate 

ancestor (i.e., 2416, 8782, 18060, 19524, 23929, 28144, and 29095). 

Justification for a non-reversible substitution model. We developed a random-effects non-reversible 

substitution model for our phylogenetic inference because of the substantial C-to-T transition bias (15–

17) and frequent C-to-T reversions (described in Main Text). To compare the ancestral haplotype 

inference between the random-effects model and a standard reversible substitution model, we 

performed Bayesian phylodynamic inference with a GTR substitution model with both the 

unconstrained and recCA-rooted analyses. We find that C/C and T/T ancestral haplotypes were less 

common under the GTR model than the random-effects model (Data S3). Notably, the difference in 

posterior support for C/C and T/T ancestral haplotypes was negligible under the unconstrained GTR 

model, indicating the increased level of biological realism reflected in the random-effects substitution 

model inference. Importantly, ancestral haplotypes such as A.1 (BF>150) and A+C29095T (BF>50) 

were poorly supported under the GTR model, just as in the unconstrained and the recCA random-

effects model. 

Sensitivity analyses of ancestral haplotype inference with unconstrained rooting. We extended the 

analysis that excluded the 15 market-associated genomes to account for any potential ascertainment 

bias of early sampling, particularly of lineage B, by excluding all 96 genomes from Wuhan (59 lineage 

B, 37 lineage A). Upon excluding these genomes from Wuhan, the posterior support for a lineage B 

ancestral haplotype decreased, while the support for C/C and lineage A ancestral haplotypes increased, 

with all other lineages still unsupported (Data S3). Therefore, lineage A is only a plausible ancestral 

haplotype (BF<10) of SARS-CoV-2 under the unconstrained model if we do not include all the early 

genomes from Wuhan, which represent a substantial portion of the early genomic diversity. 

To understand the impact of excluding the C/C and T/T “intermediate” genomes, we performed 

Bayesian phylogenetic inference of SARS-CoV-2 with the original 787 genomes (see Methods) and 

the 20 excluded intermediate genomes, with unconstrained rooting. When including all 20 

“intermediate” genomes—16 C/C and 4 T/T genomes—the results were similar to the main 

unconstrained analysis (Data S3). These results were also consistent when we included only the C/C 

or the T/T genomes separately, indicating that the posterior support for a C/C or T/T ancestral 

haplotype does not increase when including intermediates, even if only including genomes with just 

one of the two intermediate ancestral haplotypes (Data S3).  

When we included the previously masked 388 genomic sites for ancestral haplotype inference of the 

787 genomes (i.e., an unmasked alignment), our results were consistent with our primary masked 

unconstrained rooting approach (Data S3).  

Ancestral haplotype inference with outgroup rooting. We used outgroup rooting with individual bat 

sarbecoviruses as a comparison for the recCA rooting inferences. We performed the Bayesian inference 
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with either RaTG13 or BANAL-20-52 as an outgroup. Relative to the recCA rooting results, posterior 

support for a lineage B and C/C ancestral haplotypes increased, whereas the support for the lineage A 

ancestral haplotype decreased (Data S3). All other previously suggested or inferred haplotypes, 

including lineage A.1, were rejected, consistent with the other rooting approaches (Data S3).  

These results indicate that decreasing the branch length from the MRCA of SARS-CoV-2 and its 

ancestor (i.e., the MRCA of SARS-CoV-2 and the outgroup, or the recCA) increases support for 

lineage A as the ancestral haplotype (when the recCA and the outgroup are identical at key sites—here, 

8782 and 28144). These findings indicate rooting with the recCA as opposed to an outgroup can help 

account for the effects of rate variation along the long branch leading to SARS-CoV-2.  

The tMCRA of SARS-CoV-2 is consistent across explored ancestral haplotypes. It has been suggested 

that a phylogenetic root in lineage A would produce older tMRCA estimates than a lineage B rooting 

(21). However, we find that SARS-CoV-2 tMRCA inference is generally robust to the rooting model 

and ancestral haplotype.  

The unconstrained rooting (Fig. S29A), which favored a lineage B ancestral haplotype (Table S2), and 

produced a median tMRCA of 11 December 2019 [95% highest posterior density (HPD): 25 November 

to 20 December] and a mean substitution rate of 9.2x10-4 substitutions/site/year (95% HPD: 8.1x10-4 

to 1.0x10-3). These tMRCA estimates are similar to our previous inference (23), although the 

substitution is slightly faster. This elevated rate is expected, given that shorter sampling windows are 

associated with the inference of a more rapid substitution rate in SARS-CoV-2 (23, 98, 99). The recCA-

constrained rooting (Fig. S18C), which favored a lineage A ancestral haplotype (Table 1), produced a 

median tMRCA of 6 December 2019 (95% HPD: 15 November to 19 December) and a mean 

substitution rate of 9.2x10-4 substitutions/site/year (95% HPD: 8.0x10-4 to 1.0x10-3).  

 

To explicitly explore the effect of ancestral haplotype on the SARS-CoV-2 tMRCA, we employed our 

novel phylodynamic framework that fixes the MRCA of the SARS-CoV-2 phylogeny to ancestral 

haplotypes (Fig. S18D, see methods), rather than using sampled taxon (e.g., Hu-1), an outgroup (e.g., 

RaTG13), or their inferred ancestor (e.g., recCA). We explored the plausible ancestral haplotypes 

(lineage A, lineage B, and C/C), as well A.1 (WA1) and A.1 + C29095T (20SF012) (see methods). 

The resulting tMRCAs were consistent across the ancestral haplotypes (Table S2), indicating the 

ancestral haplotype has minimal impact on tMRCA inference.  

 

The tMRCA of lineage B predates the tMRCA of lineage A when excluding market-associated genomes. 

We considered the possibility that the predominance of lineage B viruses in the beginning of the 

pandemic, particularly at the Huanan market, was biasing the earlier inference of the lineage B tMRCA. 

However, when we excluded all market-associated genomes, the median tMRCA of lineage B was 17 

December (95% HPD: 29 November to 26 December), still earlier than the median tMRCA of lineage 

A: 25 December (95% HPD: 15 December to 4 January). Therefore, the predominance of lineage B at 

the Huanan market is not biasing its tMRCA to predate the tMRCA of lineage A (Table S2). 
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Doubling time of the early pandemic. To properly parameterize the epidemic simulations, we 

characterized the epidemic growth dynamics of the early pandemic. We first extracted the daily case 

counts from the WHO report for December 2019 (34) and then adjusted the case counts reported in Li 

et al. (80) to properly reflect the earliest cases identified (Fig. S21A; see Methods). We used EpiNow2 

(81) to calculate the daily doubling time of SARS-CoV-2 through mid-January 2020, which resulted 

in a median doubling time of SARS-CoV-2 and 50% HPD consistently below 5 days through the end 

of December 2019 (Fig. S21B). On 15 December 2019, five days after the earliest known COVID-19 

case, the median doubling time was 3.74 days (50% HPD: 3.37–4.24; 95% HPD: 2.80–5.43). However, 

we are interested in the epidemic dynamics prior to the discovery of the earliest COVID-19 cases and 

the identification of SARS-CoV-2 as the etiological agent of what was then a pneumonia of unknown 

etiology, when viral spread was least inhibited by human behavior. 

  

The inferred doubling time is stochastic and dependent on which day it is estimated (Fig. S21B); it is 

therefore imprecise to report a single doubling time when describing general epidemic dynamics. In 

our simulations, we measure doubling time in four ways (Fig. S22): (i) cumulative doubling time since 

the start of the simulation, (ii) 14-day doubling time from day 14 until the end of the simulation, with 

cumulative doubling time reported prior to day 14, (iii) cumulative doubling time once a certain 

number of individuals are infected (e.g., the cumulative doubling time at the 100th infection), and (iv) 

14-day doubling time once a certain number of individuals are infected, with cumulative doubling time 

reported if that number of infections occurred before day 14 in the simulation. The 50% and 95% 

highest density intervals (HDIs) of the doubling time across simulations at cumulative infection counts 

[(iii) and (iv) above] narrows as more individuals are infected in the simulations (Fig. S22, bottom 

panels), although HDIs of the doubling time reported daily [(i) and (ii) above] in the simulation (Fig. 

S22, top panels) remain wide. 

 

These results suggest doubling time based on the number of individuals infected [(iii) and (iv) above] 

is a better metric for understanding simulation growth dynamics than daily doubling times [(i) and (ii) 

above], because the simulations will typically be at a similar “point” in the epidemic once they reach 

a similar number of infections. For example, the 14-day doubling time at the thousandth case in each 

simulation has a narrower HDI than the 14-day doubling time reported on the same day across each 

simulation, regardless of the day. We therefore focus on the doubling time once a specific number of 

infections has been reached, and as doubling time is proportional to the epidemic speed (100) at a 

specific time point, we report the 14-day doubling time. Specifically, we report the 14-day doubling 

time once there have been one thousand infections, as the epidemic network has not yet been saturated, 

but the doubling time has a narrower HDI than earlier in the simulations. 

 

We note that although the doubling time of SARS-CoV-2 was initially reported to be longer than 5 

days (101, 102), the case counts of the early pandemic have become more thorough (80), particularly 

with the release of the WHO report (34). A subsequent analysis of the doubling time in Wuhan used 

high resolution travel data and early case reports outside of Hubei province to avoid potential biases in 

reporting and case confirmation in Wuhan; their inferred doubling time was below 3.5 days (26). 

Additionally, doubling times reported for well-characterized early outbreaks outside of China, before 
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widespread non-pharmaceutical interventions were implemented, were often below four days (27, 103, 

104). 

 

Following from the empirical doubling times, we parameterize our primary simulations to have a 

median doubling time of 3.47 days (50% HDI: 2.71–4.15; 95% HDI: 1.35–5.44), slightly shorter than 

the inferred doubling time on 15 December 2019. We additionally perform sensitivity analyses with 

simulation parameterization resulting in a median doubling time of 2.65 days (50% HDI: 2.04–2.96; 

95% HDI: 1.50–4.10) and 4.45 days (50% HDI: 3.30–5.35; 95% HDI: 1.50–7.44).  

 

Importantly, the doubling times of the simulated data indicate that it is possible to infer a doubling time 

of greater than 5 days, even when the underlying parameters typically produce a shorter doubling time 

(Fig. S22). Similarly, our empirical doubling time estimates (Fig. S21) and the results from the 

literature suggest that it is possible to infer a doubling time of greater than 5 days (101, 105) even when 

the underlying biology would typically produce a shorter doubling time (26) (Fig. S22), especially if 

cases are particularly undersampled. Coupled with our results indicating the doubling time was likely 

below four days in the early pandemic in Wuhan, these analyses of epidemic doubling times both in 

and outside of Wuhan suggest our simulations likely capture the doubling time of SARS-CoV-2 before 

its identification as the etiological agent of COVID-19.  

 

Ascertainment rate of the early pandemic and parameterizing the simulations. Our epidemic 

simulations use an ascertainment rate of 15% (every 15/100 infections are ascertained) based on Hao et 

al. (64). Their ascertainment rate was informed by confirmed cases exported from Wuhan to Singapore. 

This ascertainment rate falls in the interquartile range (12.7–35.8%) reported in Chinazzi et al. (106) and is 

close to the 14% reported in Li et al. (107). 

  

However, some of the earliest inferred ascertainment rates were lower: Wu et al. (101) calculate an 

ascertainment rate of 1.8% (0.9–3.3%). This value was likely reflective of the data available at the time: 

Wu et al. only reported 44 confirmed cases by 3 January 2020. However, more complete data from Li et al. 

(80) reports 392 confirmed infections by 3 January 2020. With 392 confirmed infections, a crude calculation 

leads to an ascertainment rate approximately 10-fold higher: 392/(44/0.018) = 16.0%. Therefore, some of 

the earliest estimations of ascertainment rates were likely too low for our simulation parameterization 

because we base our simulations on inferences of more recent and complete data (34, 80). 

  

Nonetheless, as there are lower and higher ascertainment rates reported in the literature describing the early 

pandemic, we performed sensitivity analyses of our epidemic simulations using ascertainment rates of 5% 

and 25%. When doing so, we slightly adjusted the transmission factor for the simulations to keep the 

doubling time centered on 3.5 days. Specifically, we performed one set of simulations with an ascertainment 

rate of 5% and median doubling time of 3.52 days (50% HDI: 2.71–4.22; 95% HDI: 1.38–5.64), and 

another set of simulations with an ascertainment rate of 25% and median doubling time of 3.50 days (50% 

HDI: 2.78–4.16; 95% HDI: 1.51–5.65). 

 

Synthesizing evidence for multiple introductions of SARS-CoV-2. Both lineages A and B are 

characterized by large polytomies: many sampled lineages descending from a single node on the 
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phylogenetic tree. There are 108 and 231 lineages (including basal taxa) descendent from the base of 

lineages A and B, respectively (Fig. 1). To match the empirical data, we first examined the simulations 

for polytomies with at least 100 descendant lineages, and these were present in 47.5% of the simulated 

epidemics when the doubling time is 3.47 days (95% HDI: 1.35–5.44). (Fig. 2B). However, this is, in 

fact, a conservative estimate of the polytomy size in our simulated phylogenies, because 98.4% of these 

simulated phylogenies had more than 1,000 taxa.  

 

If C/C is the ancestral haplotype, then SARS-CoV-2 is characterized by two clades: lineages A and B, 

each one mutation from the root with no transitional genomes (Fig. 2A). This topology, where there 

are only two clades of any size, each one mutation from the root, was present in 10.5% of phylogenies 

from our simulated epidemics. However, both lineages A and B are large clades, comprising 35.2% 

and 64.8% of the early SARS-CoV-2 genomes, respectively, and the smaller clade in these simulations 

was rarely this large. If we require our simulated clades to more realistically comprise at least 1% of 

the taxa, only 6.7% of the simulations match the C/C topology. If we require both clades to comprise 

≥30% of the taxa—better reflecting empirical genomic diversity—only 1.5% of the simulations match 

the C/C topology. Finally, both lineages A and B comprise large polyomties. When we require each of 

these clades to have a basal polytomy of at least 100 descendant lineages—a conservative reflection of 

the 108- and 231-lineage polytomies characterizing lineages A and B, respectively—none of the 

simulations still match the C/C topology. These results indicate that a single introduction of C/C virus 

would not be expected to give rise to lineages A and B with no surviving ancestral C/C lineages. 

 

If lineage A or B is the ancestral haplotype, then SARS-CoV-2 is characterized by a large basal 

polytomy with the largest clade in the tree separated by two mutations from the root (lineage B is the 

descendant clade if lineage A is the root, and vice-versa) (Fig. 2C). Importantly, our simulations permit 

these two mutations to occur either within a single individual or during successive infected hosts (108), 

reflective of multiple mutations of SARS-CoV-2 occurring within the serial interval between 

transmission partners (109). We see a large clade comprising a substantial fraction of the sampled taxa 

(i.e., between 30% and 70%, reflecting either lineage A or B prevalence) in 10.8% of the epidemic 

simulations. When we require the large clade separated by at least two mutations from the basal 

polytomy of at least 100 descendant lineages, we observe this topology in 4.1% of epidemic 

simulations (Fig. 2C). However, if we also require the large clade to have at least a 100-lineage 

polytomy at its base, only 0.5% of the simulations match the topology if there were a single 

introduction of lineage A or B without any surviving transitional C/C lineages.  

 

We then quantified the support for two introductions versus a single introduction resulting in the 

observed phylogeny: two large polytomies separated by two mutations. There was strong support for 

two introductions with our primary analysis (BF=61.6 and BF=60.0 with the recCA and unconstrained 

rooting, respectively; see Methods), as well as with sensitivity analyses with varying transmission and 

ascertainment rates (Table S5). We observe that sensitivity analyses with longer doubling times 

increase the support for multiple introductions (Table S5). Although multiple mutations in a short 

transmission chain (and therefore between internal nodes in a phylogeny) are more likely to occur with 

a longer doubling time, there is a reduction in the probability of observing large polytomies occurring 

https://paperpile.com/c/dzD5Bg/mf8G4
https://paperpile.com/c/dzD5Bg/mf8G4
https://paperpile.com/c/dzD5Bg/mf8G4
https://paperpile.com/c/dzD5Bg/2FeHv
https://paperpile.com/c/dzD5Bg/2FeHv
https://paperpile.com/c/dzD5Bg/2FeHv
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in rapid succession as the length of the doubling time increases. Therefore, an even longer doubling 

time would be less likely to produce the empirical topology.  

 

Importantly, since 96.7% of the simulated phylogenies had more than 5,000 taxa, our primary analysis 

requiring polytomies to have at least 100 descendant lineages is quite conservative. We therefore 

performed sensitivity analyses requiring the polytomies to have either 200 or 500 descendant lineages. 

These increased polytomy sizes are more realistic when considering the size of the lineage A polytomy 

(108 descending lineages) relative to the empirical phylogeny (787 taxa). However, both polytomy 

sizes are still proportionally less than the 108 descendant lineages of lineage A from our empirical 787-

taxa phylogeny and are therefore still conservative. Regardless, the support for two introductions 

increased with both of these analyses (Table S5), again indicating the rarity of two polytomies 

occurring in rapid succession.  

 

Additionally, since 1.5% of the simulated phylogenies had fewer than 787 taxa, we also performed 

sensitivity analyses requiring the polytomies to have either 20 or 50 descendant lineages. Regardless 

of the polytomy size we conditioned on, there was still support for two introductions (Table S5).  

 

In sum, there is consistent support for two introductions of SARS-CoV-2 across multiple rooting 

constraints, longer and shorter doubling times, higher and lower ascertainment rates, and increased and 

decreased minimum polytomy sizes. Therefore, two introductions, rather than a single introduction, of 

SARS-CoV-2 are more likely to have produced the two polytomies near the base of the SARS-CoV-2 

phylogeny.  

 

Index case dates of SARS-CoV-2. The date of the index case informs our understanding of when the 

pandemic began, and we use this date when inferring the time of the primary case. An early report 

suggested an index case (i.e., first identified case) dating to 17 November 2019, with at least one case 

being reported each day thereafter (110). A different report suggested an index case date of 1 December 

2019 (102). However, the World Health Organization (WHO)-China report did not find evidence to 

support the veracity of these cases and identified the earliest case as having an illness onset of 8 

December (case S01 from Table 6 in the WHO report) (34). A subsequent review of the earliest 

COVID-19 cases suggested that the ‘8 December’ patient actually became ill on 16 December and 

concluded that the index case was a vendor from the Huanan Seafood Market who became ill on 10 

December and was hospitalized on 16 December (8). This shift in index case dates necessitates 

reexamining the timing of the primary case (i.e., the first human infected with a pathogen in an 

outbreak) of SARS-CoV-2, as case data is crucial to timing the first SARS-CoV-2 infection (23).  

 

When we perform rejection sampling to infer the date of the primary cases of lineages A and B 

separately, we use case and hospitalization dates associated with each lineage. The SARS-CoV-2 index 

case from 10 December does not have an associated published genome. However, every genome 

associated with the Huanan market and collected before 30 December was lineage B. Additionally, an 

environmental sample from the stall this vendor operated (EPI_ISL_408512) was also lineage B. We 

https://paperpile.com/c/dzD5Bg/pyPtZ
https://paperpile.com/c/dzD5Bg/pyPtZ
https://paperpile.com/c/dzD5Bg/pyPtZ
https://paperpile.com/c/dzD5Bg/k7v66
https://paperpile.com/c/dzD5Bg/k7v66
https://paperpile.com/c/dzD5Bg/k7v66
https://paperpile.com/c/dzD5Bg/hYtvU
https://paperpile.com/c/dzD5Bg/hYtvU
https://paperpile.com/c/dzD5Bg/hYtvU
https://paperpile.com/c/dzD5Bg/hgZpr
https://paperpile.com/c/dzD5Bg/hgZpr
https://paperpile.com/c/dzD5Bg/hgZpr
https://paperpile.com/c/dzD5Bg/OpmwS
https://paperpile.com/c/dzD5Bg/OpmwS
https://paperpile.com/c/dzD5Bg/OpmwS
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therefore assume this individual likely had a lineage B virus, and we used their illness onset and 

hospitalization dates to time the primary case of lineage B. 

 

The earliest case and hospitalization dates for lineage A belong to ‘Cluster 1’ from the WHO report 

(Annex E2) (34). The lineage A genome belongs to the individual in the cluster with illness onset on 

26 December (case S13 from Table 6 in the WHO report; IME-WH01; GISAID accession 

EPI_ISL_529213). However, the spouse of this individual was infected as well, becoming 

symptomatic on 15 December and hospitalized on 25 December. We can therefore reasonably assume 

the spouse was also infected with a lineage A virus and subsequently infected the earliest confirmed 

lineage A case. We thus use the dates belonging to the spouse when timing the primary case of lineage 

A.  

 

Robustness of lineage B primary case inference to date of index case. The earliest lineage B case with 

a published genome (IPBCAMS-WH-01; GISAID accession EPI_ISL_402123; case S02 from Table 

6 in the WHO report) became symptomatic and was hospitalized on 13 and 18 December, respectively 

(2). Although this individual was initially reported to have an illness onset date of 15 December, the 

WHO report subsequently determined he had an earlier onset of 13 December (34). The timing of the 

lineage B primary case is robust to these later symptom onset and hospitalization dates, occurring on 

21 November (95% HPD: 25 October–11 December) when rooting with recCA. 

 

Because the ‘8 December’ patient was lineage B (34), we examined the effect of conditioning on 8 

December as an index case date. The timing of the lineage B primary case was robust to this earlier 

index case date (Table S7), occurring on 17 November (95% HPD: 22 October to 6 December) when 

rooting with recCA. Therefore, even if the 8 December case were the index case, the first lineage B 

SARS-CoV-2 virus still likely jumped into humans at a time similar to our inference with the 10 

December index case date.  

 

Epidemiological dynamics of a single SARS-CoV-2 introduction scenario. As a counterfactual 

scenario, we examined the timing of the primary case if SARS-CoV-2 were the result of only a single 

introduction. Here, we condition on the tMRCA of all SARS-CoV-2 (Table S2) and the ascertainment 

(10 December) and hospitalization (16 December) dates belonging to the SARS-CoV-2 index case (the 

seafood vendor). The timing of the primary case in a single introduction scenario is similar to that of 

lineage B (Table S7, S14), even when using lineage A.1 or lineage A + C29095T as the ancestral 

haplotype, and is also robust to higher and lower ascertainment rates (Table S15). The number of 

infections and hospitalizations at specific dates resulting from a single introduction are similar to the 

combined infections and hospitalizations from lineages A and B (Fig. 4A, S24A, S29; Table S11, S12), 

even when using the ancestral haplotypes producing the oldest tMRCA estimates (lineage A.1 and 

lineage A + C29095T). These results indicate that there was likely not substantial cryptic spread even 

if lineage A.1 or A + C29095T were the sole introduction of SARS-CoV-2, and that standard epidemic 

modeling that does not account for phylogenetics will not be able to distinguish the number of 

introductions based on case-counts or hospitalizations alone. 

 

https://paperpile.com/c/dzD5Bg/hYtvU
https://paperpile.com/c/dzD5Bg/hYtvU
https://paperpile.com/c/dzD5Bg/hYtvU
https://paperpile.com/c/dzD5Bg/uKe0R
https://paperpile.com/c/dzD5Bg/uKe0R
https://paperpile.com/c/dzD5Bg/uKe0R
https://paperpile.com/c/dzD5Bg/hYtvU
https://paperpile.com/c/dzD5Bg/hYtvU
https://paperpile.com/c/dzD5Bg/hYtvU
https://paperpile.com/c/dzD5Bg/hYtvU
https://paperpile.com/c/dzD5Bg/hYtvU
https://paperpile.com/c/dzD5Bg/hYtvU
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Consistent timing of the primary case when conditioning only on hospitalization. Due to the 

controversy that remains about the true SARS-CoV-2 index case (8), we performed sensitivity analyses 

on our primary case timing by conditioning just on the tMRCA and the date of the earliest 

hospitalization. The timing of the primary case was robust to the exclusion of the index case date in 

our rejection sampling approach for both single- and multi-introduction scenarios, indicating that index 

case dates did not bias our results toward earlier dates (Table S7, S9, S14). Had there been extensive 

cryptic spread of SARS-CoV-2 in Wuhan, it would be reflected in earlier hospitalization dates. The 

consistency of our results when conditioning on (i) both the index case ascertainment and earliest 

hospitalization, versus (ii) only the earliest hospitalization, suggests there was a very limited period of 

cryptic spread before people began to be hospitalized for COVID-19 in late-2019. 

 

Minimal cryptic circulation before December 2019. Although we do not see any evidence for 

substantial cryptic circulation before December 2019 with the epidemic simulations (Fig. 4), we can 

quantify the expected number of infections before the tMRCA. We calculate the cumulative number 

of infections in the epidemic simulations once they reach stable coalescence, the point in time at which 

basal lineages cease to be lost. Importantly, the time to stable coalescence is the equivalent to the 

tMRCA for the epidemic simulations. We observed, at most, 63 cumulative infections by the time of 

stable coalescence in the primary simulated epidemics, and 99% of simulated epidemics reached stable 

coalescence by 19 cumulative infections. With the tMRCA of lineage B, likely the first lineage of 

SARS-CoV-2 introduced into humans, estimated to 13 December (95% HPD: 29 November to 23 

December), we would not expect more than a few dozen infections before 10 December, the date of 

the SARS-CoV-2 index case.  

 

Similarities to WA1 and WA outbreak clades. To understand the phylogenetic signal of a hypothetical 

singular introduction of SARS-CoV-2 into humans, it is helpful to seek an analogy with the earliest 

introductions of SARS-CoV-2 into a new location, such as Washington State, Louisiana, or Lombardy, 

each of which had a polytomy (11, 28, 29). Here, we consider the earliest introductions of SARS-CoV-

2 into North America. The first confirmed case of SARS-CoV-2 in the U.S. was associated with a virus 

strain (‘WA1’) isolated in Washington State from a traveler who returned from Wuhan, China, on 15 

January 2020. There was subsequently an outbreak (henceforth, ‘WA outbreak clade’) in Washington 

State, with cases confirmed starting in February 2020 (27). As we have previously shown, although 

the MRCA of the WA outbreak clade differed from WA1 by only two substitutions, WA1 and the WA 

outbreak clade were, in fact, separate introductions into Washington State (11). The WA outbreak clade 

showcases a basal polytomy, and although the WA1 introduction was contained, onward transmission 

would have likely led to a basal polytomy as well, as shown by the hypothetical polytomy in Fig. S23. 

Therefore, this pattern is remarkably similar to that seen with lineages A and B, with the exception of 

a successful prevention of onward transmission from the WA1 case: the MRCA of WA1 and the WA 

outbreak clades was in China, and as we have shown here, the MRCA of lineages A and B was likely 

in the intermediate host reservoir (Fig. S30). Both scenarios show introductions of SARS-CoV-2 from 

a prior location: China in the case of WA1 and the WA outbreak clades, and the intermediate host 

reservoir in the case of lineages A and B. Similarly, both scenarios lead to (or would lead to, in the 

case of WA1) basal polytomies from the onward transmission. Therefore, lineages A and B look like 

https://paperpile.com/c/dzD5Bg/hgZpr
https://paperpile.com/c/dzD5Bg/hgZpr
https://paperpile.com/c/dzD5Bg/hgZpr
https://paperpile.com/c/dzD5Bg/p8MOE+KKa60+b8cwy
https://paperpile.com/c/dzD5Bg/p8MOE+KKa60+b8cwy
https://paperpile.com/c/dzD5Bg/p8MOE+KKa60+b8cwy
https://paperpile.com/c/dzD5Bg/p8MOE+KKa60+b8cwy
https://paperpile.com/c/dzD5Bg/p8MOE+KKa60+b8cwy
https://paperpile.com/c/dzD5Bg/p8MOE+KKa60+b8cwy
https://paperpile.com/c/dzD5Bg/p8MOE+KKa60+b8cwy
https://paperpile.com/c/dzD5Bg/0NJn2
https://paperpile.com/c/dzD5Bg/0NJn2
https://paperpile.com/c/dzD5Bg/0NJn2
https://paperpile.com/c/dzD5Bg/p8MOE
https://paperpile.com/c/dzD5Bg/p8MOE
https://paperpile.com/c/dzD5Bg/p8MOE
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separate introductions because introductions with sustained onward transmission result in large basal 

polytomies.  

 

MRCA of multiple introductions and the possibility of intermediate genomes. Although the 

unconstrained and recCA-rooted phylogenetic inferences most strongly support a lineage B and lineage 

A ancestral haplotype, respectively, the moderate support for a C/C ancestral haplotype from both 

inferences, the repeated observation of C8782T convergent evolution, and the C-to-T mutational bias 

suggest a C/C ancestral haplotype is also plausible. However, we acknowledge that if the MRCA were 

in an animal where we have no evidence of a C-to-T mutational bias, the T/T ancestral haplotype would 

also be possible. 

 

If one of the “intermediate” genomes that shares additional mutations with lineage A or B (i.e., at sites 

besides 8782 and 28144) is resequenced and validated as an intermediate C/C or T/T genome, shared 

synapomorphies should allow us to identify whether this intermediate haplotype is the result of 

convergent evolution. Phylogenetic placement can confirm whether the intermediate genome 

potentially represents the transition from lineage A to B (or B to A). Additionally, finding a true 

transitional intermediate genome would not resolve the conundrum with the molecular clock: (i) the 

unconstrained rooting model disfavors a lineage A root, whereas the recCA- and outgroup-rooted 

models favor a lineage A root, and (ii) lineage A exhibits less divergence from the root than would be 

expected if it were the sole ancestral virus in humans.  

 

Lineages of SARS-CoV-2 introductions. The lineages introduced into humans are dependent on the 

viral diversity in the intermediate host, and the inferred ancestral haplotypes do not necessarily need 

to match the genomes of the introduced viruses. For example, lineages A and B are observed in 

humans, but the introduced viruses could have been of lineage A and C/C, with C/C quickly mutating 

into lineage B before leaving behind any descendant lineages. However, the simplest explanation 

would be lineage A and B progenitors circulating in animals and then these two lineages are separately 

introduced into humans, but other combinations of lineage introductions are plausible.  

  

Importantly, these scenarios do not preclude an intermediate C/C or T/T haplotype from being 

introduced. If lineages A and B were present in the animal reservoir, a C/C or T/T haplotype could 

have circulated among the animals and then been introduced into humans as well. Considering the 

genomic data and high frequency of failed introductions in the epidemic simulations, the intermediate 

haplotype could have spread briefly among humans and then gone extinct. Therefore, it is not 

unreasonable to assume that an intermediate genome could appear in an environmental sample or an 

additional cross-species transmission.  

 

Lastly, if a virus identical to or descendant from lineage B (or A) jumped into humans after the initial jump 

of B (or A), we would likely not have the phylogenetic resolution to detect this event as a separate 

introduction. Therefore, although the data are consistent with two introductions, it is possible that even 

more introductions into humans occurred at the Huanan market.   
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Table S1. Nucleotide variant calls at positions 8782 and 28144 for three SARS-CoV-2 genomes with 

intermediate T/T haplotypes1.  

GISAID accession 

8782 28144 

Depth Count Proportion Depth Count Proportion 

 A C G T A C G T  A C G T A C G T 

EPI_ISL_493179 64 0 39 1 24 0.000 0.609 0.016 0.375 61361 121 3784 195 57261 0.002 0.062 0.003 0.933 

EPI_ISL_493180 40 0 24 1 15 0.000 0.600 0.025 0.375 95374 226 5709 293 89146 0.002 0.060 0.003 0.935 

EPI_ISL_493182 29 0 10 0 19 0.000 0.345 0.000 0.655 69369 153 4051 232 64933 0.002 0.058 0.003 0.936 

1Variant calls and depths provided by Di Liu and Yi Yan.  
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Table S2. Inferred tMRCAs for SARS-CoV-2, lineage B, and lineage A under different rooting strategies. 

Phylodynamic analysis 
SARS-CoV-21 Lineage B1 Lineage A1 

Unconstrained 12-11 (11-25 to 12-20) 12-13 (11-29 to 12-23) 12-25 (12-17 to 12-30) 

recCA 
12-06 (11-15 to 12-19) 12-15 (12-05 to 12-23) 12-20 (12-05 to 12-29) 

Lineage B 
12-12 (11-27 to 12-19) 12-13 (11-29 to 12-21) 12-25 (12-18 to 12-29) 

C/C 
12-08 (11-19 to 12-19) 12-16 (12-06 to 12-23) 12-21 (12-12 to 12-29) 

T/T 
12-08 (11-19 to 12-19) 12-15 (12-06 to 12-23) 12-21 (12-12 to 12-29) 

Lineage A 
12-07 (11-18 to 12-19) 12-16 (12-08 to 12-23) 12-18 (12-04 to 12-28) 

Lineage A + C29095T 
12-05 (11-17 to 12-19) 12-17 (12-10 to 12-23) 12-05 (11-17 to 12-19) 

Lineage A.1 
12-04 (11-16 to 12-18) 12-16 (12-10 to 12-23) 12-04 (11-16 to 12-19) 

No markets 12-13 (11-25 to 12-26) 12-17 (11-29 to 12-26) 12-25 (12-15 to 01-04) 

1Median and 95% HPD in parentheses.  
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Table S3. Simulation parameters, with all parameters except b and h based on Hao et al. (64). The b value 

listed is for the main analysis. The h parameter is not included in the Hao et al. model.  

Parameter Definition Value 

b Transmission rate of ascertained cases 0.38 

r Ascertainment rate 0.15 

ɑ Ratio of transmission for unascertained 0.55 

h Hospitalization rate 0.5 

De Latent period (days) 2.9 

Dp Presymptomatic infectious period (days) 2.3 

Di Symptomatic infectious period (days) 2.9 

Dq Duration from illness onset to isolation (hospitalization) (days) 11 

Dh Isolation (hospitalization) period (days) 30 

  

https://paperpile.com/c/dzD5Bg/xfrNG
https://paperpile.com/c/dzD5Bg/xfrNG
https://paperpile.com/c/dzD5Bg/xfrNG
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Table S4. The inferred doubling time for each transmission rate (b) and ascertainment rate (r) combination 

used in the simulations. 

b r Doubling time2 

0.22 0.15 4.45 (1.50-7.44) 

0.281 0.15 3.47 (1.35-5.44) 

0.38 0.15 2.65 (1.50-4.10) 

0.295 0.05 3.52 (1.38-5.64) 

0.255 0.25 3.50 (1.51-5.65) 

1Primary analysis. 
2Median and 95% HDI in parentheses  
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Table S5. Frequencies of observed topologies in epidemic simulations and corresponding Bayes factor in 

favor of multiple introductions versus a single introduction across varying doubling times, varying 

ascertainment rate, minimum polytomy size, and phylogenetic rooting method. 

Analysis Topology Bayes factor 

DT Asc 
Min. polytomy 

size 
C/C A/B Polytomy Unconstrained recCA 

2.65 0.15 100 0.0 1.2 58.6 28.8 29.5 

3.471 0.15 100 0.0 0.5 47.5 60.0 61.6 

4.45 0.15 100 0.1 0.3 43.1 86.2 87.7 

3.50 0.05 100 0.0 0.5 45.7 57.7 59.2 

3.52 0.25 100 0.2 1.0 47.3 26.7 27.2 

3.47 0.15 20 0.1 1.6 60.7 21.5 22.0 

3.47 0.15 50 0.1 0.8 53.6 37.2 38.0 

3.47 0.15 200 0.0 0.3 40.7 85.4 87.7 

3.47 0.15 500 0.0 0.2 31.7 99.7 102.3 

DT, Median doubling time 

Asc, Ascertainment rate 

Min., Minimum 
1Primary analysis 

 

  



33 

Table S6. Number of days the timing of the primary case of lineage A occurs after the timing of the primary 

case of lineage B. 

Phylodynamic 

analysis 

Primary analysis1,2 Robustness analysis1 

DT: 3.47 

Asc: 15% 

DT: 2.65 

Asc: 15% 

DT: 4.45 

Asc: 15% 

DT: 3.50 

Asc: 5% 

DT: 3.52 

Asc: 25% 

Unconstrained 6.7 (-28.9 to 44.4) 7.2 (-45.3 to 59.0) 7.0 (-20.5 to 35.1) 6.5 (-53.1 to 61.3) 7.0 (-36.4 to 48.1) 

recCA 6.6 (-30.4 to 43.5) 6.6 (-44.9 to 58.9) 5.9 (-22.8 to 33.7) 6.2 (-48.7 to 63.4) 6.6 (-34.5 to 48.8) 

Lineage B 6.6 (-28.4 to 44.4) 7.2 (-43.6 to 60.3) 7.2 (-20.3 to 34.9) 6.6 (-52.9 to 61.5) 6.9 (-35.9 to 48.9) 

C/C 6.9 (-30.3 to 43.0) 7.2 (-45.5 to 59.4) 6.3 (-21.6 to 34.3) 6.5 (-47.5 to 65.8) 7.2 (-33.4 to 50.6) 

Lineage A 6.9 (-30.2 to 43.5) 7.1 (-44.2 to 59.3) 5.7 (-22.7 to 33.8) 6.1 (-50.6 to 62.3) 6.9 (-35.7 to 49.2) 

DT, Median doubling time 

Asc, Ascertainment rate  
1Median and 95% HPD in parentheses. 
2See Fig. 3D for graphical representation of the full distribution.  
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Table S7. Time of the lineage B primary case under different robustness analyses for different lineage B index 

case and hospitalization dates and conditioning only on hospitalization dates. 

Phylodynamic 

analysis 

Primary analysis1 Robustness analysis1 

Case: Dec 10 

Hosp: Dec 16 

Case: Dec 8 

Hosp: Dec 16 

Case: Dec 13 

Hosp: Dec 18 
Hosp: Dec 16 

Unconstrained 
11-18 

(10-22 to 12-09) 

11-18 

(10-22 to 12-06) 

11-21 

(10-24 to 12-11) 

11-20 

(10-22 to 12-11) 

recCA 
11-18 

(10-23 to 12-08) 

11-17 

(10-22 to 12-06) 

11-21 

(10-25 to 12-11) 

11-20 

(10-22 to 12-10) 

Lineage B 
11-19 

(10-22 to 12-08) 

11-17 

(10-21 to 12-06) 

11-21 

(10-24 to 12-11) 

11-20 

(10-22 to 12-11) 

C/C 
11-18 

(10-22 to 12-07) 

11-17 

(10-22 to 12-06) 

11-21 

(10-25 to 12-11) 

11-20 

(10-23 to 12-11) 

Lineage A 
11-18 

(10-23 to 12-08) 

11-17 

(10-23 to 12-06) 

11-21 

(10-24 to 12-11) 

11-20 

(10-23 to 12-10) 

Hosp, Hospitalization 
1Median and 95% HPD in parentheses.  
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Table S8. Time of the lineage B primary case under different robustness analyses for different doubling times 

and ascertainment rates. 

Phylodynamic 

analysis 

Primary analysis1 Robustness analysis1 

DT: 3.47 

Asc: 15% 

DT: 2.65 

Asc: 15% 

DT: 4.45 

Asc: 15% 

DT: 3.5 

Asc: 5% 

DT: 3.52 

Asc: 25% 

Unconstrained 
11-18 

(10-22 to 12-09) 

11-25 

(11-04 to 12-08) 

11-14 

(10-06 to 12-08) 

11-17 

(10-07 to 12-07) 

11-21 

(10-21 to 12-09) 

recCA 
11-18 

(10-23 to 12-08) 

11-26 

(11-05 to 12-08) 

11-14 

(10-05 to 12-07) 

11-17 

(10-06 to 12-08) 

11-21 

(10-21 to 12-09) 

Lineage B 
11-19 

(10-22 to 12-08) 

11-25 

(11-04 to 12-08) 

11-14 

(10-06 to 12-08) 

11-17 

(10-08 to 12-08) 

11-21 

(10-21 to 12-09) 

C/C 
11-18 

(10-22 to 12-07) 

11-26 

(11-05 to 12-08) 

11-14 

(10-05 to 12-07) 

11-17 

(10-06 to 12-08) 

11-21 

(10-21 to 12-09) 

Lineage A 
11-18 

(10-23 to 12-08) 

11-26 

(11-05 to 12-08) 

11-14 

(10-06 to 12-07) 

11-17 

(10-06 to 12-09) 

11-21 

(10-21 to 12-09) 

DT, Median doubling time 

Asc, Ascertainment rate  
1Median and 95% HPD in parentheses. 
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Table S9. Time of the lineage A primary case results when conditioning with either both the index and 

hospitalization dates or just the hospitalization date.  

Phylodynamic 

analysis 

Primary analysis1 Robustness analysis1 

Case: Dec 15 

Hosp: Dec 25 
Hosp: Dec 25 

Unconstrained 
11-25 

(10-31 to 12-13) 

11-28 

(10-31 to 12-19) 

recCA 
11-25 

(10-29 to 12-14) 

11-29 

(10-30 to 12-19) 

Lineage B 
11-25 

(11-01 to 12-13) 

11-28 

(11-01 to 12-19) 

C/C 
11-25 

(10-30 to 12-13) 

11-29 

(10-31 to 12-20) 

Lineage A 
11-25 

(10-29 to 12-14) 

11-29 

(10-30 to 12-19) 

Hosp, Hospitalization 
1Median and 95% HPD in parentheses.  
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Table S10. Time of the lineage A primary case under different doubling times and ascertainment rates. 

Phylodynamic 

analysis 

Primary analysis1 Robustness analysis1 

DT: 3.47 

Asc: 15% 

DT: 2.65 

Asc: 15% 

DT: 4.45 

Asc: 15% 

DT: 3.5 

Asc: 5% 

DT: 3.52 

Asc: 25% 

Unconstrained 
11-25 

(10-31 to 12-13) 

12-02 

(11-12 to 12-13) 

11-21 

(10-13 to 12-13) 

11-24 

(10-12 to 12-14) 

11-28 

(10-29 to 12-14) 

recCA 
11-25 

(10-29 to 12-14) 

12-02 

(11-10 to 12-14) 

11-21 

(10-12 to 12-13) 

11-23 

(10-13 to 12-13) 

11-28 

(10-29 to 12-14) 

Lineage B 
11-25 

(11-01 to 12-13) 

12-02 

(11-13 to 12-14) 

11-21 

(10-14 to 12-13) 

11-24 

(10-11 to 12-14) 

11-28 

(10-29 to 12-14) 

C/C 
11-25 

(10-30 to 12-13) 

12-02 

(11-11 to 12-14) 

11-21 

(10-13 to 12-13) 

11-24 

(10-13 to 12-12) 

11-28 

(10-29 to 12-14) 

Lineage A 
11-25 

(10-29 to 12-14) 

12-01 

(11-09 to 12-14) 

11-21 

(10-13 to 12-13) 

11-23 

(10-14 to 12-12) 

11-28 

(10-29 to 12-14) 

DT, Median doubling time 

Asc, Ascertainment rate 
1Median and 95% HPD in parentheses. 
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Table S11. Number of estimated infections on 1 December 2019 for lineage A, lineage B, lineages A and B 

combined, and single introduction simulations. 

Phylodynamic 

analysis 

Introductions1 

Lineage A Lineage B 

Lineages A and 

B combined 

Single 

introduction 

Unconstrained 2 (0, 23) 4 (0, 27) 8 (0, 38) 5 (0, 31) 

recCA 2 (0, 24) 4 (0, 25) 8 (0, 36) 6 (0, 85) 

Lineage B 2 (0, 23) 4 (0, 27) 8 (0, 38) 5 (0, 29) 

C/C 2 (0, 23) 4 (0, 25) 8 (0, 35) 5 (0, 51) 

Lineage A 2 (0, 23) 4 (0, 25) 8 (0, 35) 6 (0, 58) 

1Median and 95% HPD in parentheses.  
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Table S12. Number of estimated infections on 15 December 2019 for lineage A, lineage B, lineages A and B 

combined, and single introduction simulations. 

Phylodynamic 

analysis 

Introductions1 

Lineage A Lineage B 

Lineages A and 

B combined 

Single 

introduction 

Unconstrained 8 (1, 33) 16 (2, 251) 28 (3, 273) 17 (2, 517) 

recCA 9 (1, 57) 14 (2, 63) 26 (3, 153) 31 (2, 3094) 

Lineage B 8 (1, 33) 16 (2, 246) 28 (3, 259) 16 (2, 303) 

C/C 8 (1, 35) 14 (2, 62) 25 (3, 81) 24 (2, 1640) 

Lineage A 9 (1, 59) 13 (2, 52) 26 (3, 117) 26 (2, 2095) 

1Median and 95% HPD in parentheses. 
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Table S13. Number of infections at the tMRCA and hospitalizations on 1 December 2019.  

 

Time 

Primary 

analysis1 
Robustness analysis1 

DT: 3.47 

Asc: 15% 

DT: 2.65 

Asc: 15% 

DT: 4.45 

Asc: 15% 

DT: 3.50 

Asc: 5% 

DT: 3.52 

Asc: 25% 

Infections tMRCA 3 (1-18) 3 (1-12) 5 (1-39) 5 (1-29) 3 (1-18) 

Hospitalizations 1 Dec 2019 0 (0–2) 0 (0–1) 1 (0–3) 0 (0–2) 0 (0–3) 

DT, Median doubling time 

Asc, Ascertainment rate 
1Median and 95% HPD in parentheses.  
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Table S14. Time of the primary case of a hypothetical single-introduction scenario under different robustness 

analyses for different index case dates and conditioning on only hospitalization dates. 

Phylodynamic 

analysis 

Primary analysis1 Robustness analysis1 

Case: Dec 10 

Hosp: Dec 16 

Case: Dec 8 

Hosp: Dec 16 
Hosp: Dec 16 

Unconstrained 
11-18 

(10-22 to 12-08) 

11-18 

(10-21 to 12-06) 

11-20 

(10-21 to 12-11) 

recCA 
11-18 

(10-20 to 12-08) 

11-17 

(10-19 to 12-06) 

11-19 

(10-19 to 12-11) 

Hu-1 
11-19 

(10-23 to 12-09) 

11-18 

(10-22 to 12-06) 

11-20 

(10-22 to 12-11) 

C/C 
11-18 

(10-20 to 12-08) 

11-17 

(10-20 to 12-06) 

11-20 

(10-20 to 12-11) 

T/T 
11-18 

(10-20 to 12-08) 

11-17 

(10-20 to 12-07) 

11-20 

(10-20 to 12-11) 

Lineage A 
11-18 

(10-20 to 12-08) 

11-17 

(10-19 to 12-06) 

11-19 

(10-20 to 12-11) 

Lineage A + 

C29095T 

11-18 

(10-19 to 12-08) 

11-17 

(10-19 to 12-07) 

11-19 

(10-19 to 12-10) 

Lineage A.1 
11-18 

(10-19 to 12-08) 

11-17 

(10-19 to 12-07) 

11-19 

(10-18 to 12-09) 

Hosp, Hospitalization 
1Median and 95% HPD in parentheses.  
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Table S15. Time of the primary case of a hypothetical single-introduction scenario under different doubling 

times and ascertainment rates. 

Phylodynamic 

analysis 

Primary analysis1 Robustness analysis1 

DT: 3.47 

Asc: 15% 

DT: 2.65 

Asc: 15% 

DT: 4.45 

Asc: 15% 

DT: 3.5 

Asc: 5% 

DT: 3.52 

Asc: 25% 

Unconstrained 
11-18 

(10-22 to 12-08) 

11-25 

(11-03 to 12-08) 

11-14 

(10-05 to 12-08) 

11-17 

(10-08 to 12-07) 

11-21 

(10-21 to 12-09) 

recCA 
11-18 

(10-20 to 12-08) 

11-23 

(10-30 to 12-08) 

11-13 

(10-03 to 12-06) 

11-15 

(10-09 to 12-07) 

11-19 

(10-20 to 12-08) 

Lineage B 
11-19 

(10-23 to 12-09) 

11-25 

(11-03 to 12-08) 

11-14 

(10-05 to 12-08) 

11-17 

(10-08 to 12-08) 

11-21 

(10-21 to 12-09) 

C/C 
11-18 

(10-20 to 12-08) 

11-24 

(11-01 to 12-08) 

11-13 

(10-04 to 12-07) 

11-16 

(10-09 to 12-07) 

11-20 

(10-20 to 12-09) 

T/T 
11-18 

(10-20 to 12-08) 

11-24 

(11-01 to 12-08) 

11-13 

(10-03 to 12-07) 

11-16 

(10-10 to 12-07) 

11-20 

(10-20 to 12-09) 

Lineage A 
11-18 

(10-20 to 12-08) 

11-24 

(10-31 to 12-08) 

11-13 

(10-04 to 12-07) 

11-16 

(10-11 to 12-07) 

11-20 

(10-20 to 12-08) 

Lineage A + 

C29095T 

11-18 

(10-19 to 12-08) 

11-23 

(10-31 to 12-08) 

11-13 

(10-03 to 12-06) 

11-16 

(10-10 to 12-07) 

11-19 

(10-20 to 12-08) 

Lineage A.1 
11-18 

(10-19 to 12-08) 

11-23 

(10-30 to 12-08) 

11-13 

(10-04 to 12-07) 

11-16 

(10-10 to 12-07) 

11-19 

(10-20 to 12-08) 

DT, Median doubling time 

Asc, Ascertainment rate 
1Median and 95% HPD in parentheses. 
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Figure S1. Mutation map of SARS-CoV-2 intermediate C/C genomes and their shared mutations within 

lineages A and B. (A) Shared mutations across lineage A and C/C. (B) Shared mutations across lineage B and 

C/C. Mutations relative to the Hu-1 reference genome are shown above each branch. Lineage-defining 

mutations (8782 and 28144) are colored in red. Derived mutations not shared by both lineages are excluded. 

The taxon names are GISAID accession numbers, and the total number of additional matching homoplastic 

sequences are indicated. Sequences that share derived mutations are connected by the lines on the right, and 

brackets indicate that a group of sequences share the derived mutations that cannot be individually resolved. 
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Figure S2. Maximum likelihood phylogeny of SARS-CoV-2 genomes from the Diamond Princess 

outbreak. The tree is rooted on Hu-1. Substitutions found in T/T genomes relative to Hu-1 annotated on 

branches. The G11410T clade is colored blue, with the branch leading to the T/T genomes colored red.  
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Figure S3. Subtree showing the placement of T/T genomes in the NYC Public Health Laboratories 

dataset. 3 T/T genomes were placed on a global tree of 3 million genomes (v2022-01-21) using UShER. The 

node branches are colored by the assigned PANGO lineage. The T/T genomes are highlighted using circles.  
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Figure S4. Subtree showing the placement of T/T genomes in the San Diego SEARCH dataset. 24 T/T 

genomes were placed on a global tree of 3 million genomes (v2022-01-21) using UShER. The node branches 

are colored by the assigned PANGO lineage. The T/T genomes are highlighted using circles.  
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Figure S5. Subtree showing the placement of C/C genome in the San Diego SEARCH dataset. 1 C/C 

genome was placed on a global tree of 3 million genomes (v2022-01-21) using UShER. The node branches are 

colored by the assigned PANGO lineage. The C/C genome is highlighted using a circle.  
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Figure S6. Reconstructing the recombinant common ancestor (recCA) of SARS-CoV-2 infecting a non-

human animal. The figure identifies 15 non-recombinant regions of SARS-CoV-2-like sarbecovirus genomes. 

Subtrees from sarbecovirus maximum likelihood phylogenies of example regions 5, 9, and 11 show the 

genomes most closely related to SARS-CoV-2. Ancestral state reconstruction at the MRCA (purple square) of 

SARS-CoV-2 (Wuhan-Hu-1) and the most closely related sarbecovirus for each of the 15 fragments is 

concatenated to construct the recCA.   
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Figure S7. Simplot of closely related sarbecoviruses and recCA with Hu-1 as the reference.   
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Figure S8. Maximum likelihood tree of non-recombinant region 2 with branches colored based on the 

nucleotide at position 2416. Some substitution labels shifted for clarity.  
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Figure S9. Maximum likelihood tree of non-recombinant region 8 with branches colored based on the 

nucleotide at position 19524. Some substitution labels shifted for clarity.  
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Figure S10. Maximum likelihood tree of non-recombinant region 11 with branches colored based on the 

nucleotide at position 23929. Some substitution labels shifted for clarity.  
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Figure S11. Maximum likelihood tree of non-recombinant region 5 with branches colored based on 

nucleotide at position 8782. Some substitution labels shifted for clarity.  
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Figure S12. Maximum likelihood tree of non-recombinant region 8 with branches colored based on the 

nucleotide at position 18060.  
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Figure S13. Maximum likelihood tree of non-recombinant region 14 with branches colored based on the 

nucleotide at position 28144. Some substitution labels shifted for clarity.   



56 

 
Figure S14. Maximum likelihood tree of non-recombinant region 15 with branches colored based on the 

nucleotide at position 29095.   
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Figure S15. Maximum likelihood phylogenies of variants of concern (VOC) and variants of interest 

(VOI) with branches containing reversions colored.  
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Figure S16. Subsampled global phylogeny showing reversions. Subsampled SARS-CoV-2 time-resolved 

phylogeny from Nextstrain, with reversions colored blue if a C-to-T reversion and black otherwise. 
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Figure S17. Substitution process random-effects for the unconstrained rooting model. The random effects 

for transitions were rescaled with κ, and then all random effects were made relative to T-to-G (fixed to 0). The 

posterior probabilities that eC-to-T > eT-to-C and eG-to-T > eT-to-G is 1.00 for both, indicating the C-to-T transition 

and G-to-T transversion biases were present in every sample in the posterior. 
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Figure S18. Schematic depicting the rooting strategies used in different phylodynamic models. (A) An 

unconstrained rooting model with only SARS-CoV-2 where the root is inferred from the molecular clock 

calibrated using SARS-CoV-2 sampling dates. (B) An unconstrained rooting with SARS-CoV-2 and a 

sarbecovirus outgroup. (C) A constrained model where the ancestor of SARS-CoV-2 is constrained to be the 

recombinant common ancestor (recCA). (D) A constrained model with only SARS-CoV-2, but the MRCA 

forced to be a pre-specified haplotype.  
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Figure S19. SARS-CoV-2 maximum likelihood tree rooted on lineage A (n=787 taxa, through 14 

February 2020).   
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Figure S20. Substitution counts of SARS-CoV-2 genomes through 14 February 2020 from the root of the 

maximum likelihood tree when rooted on lineage A (Fig. S19). The plotted lines have a slope of 27.51 

substitutions/year, are fit to their respective lineages, and are separated by 2.04 substitutions, showcasing the 

greater divergence of lineage B than lineage A when the tree is rooted on lineage A.   



63 

Figure S21. Growth of the early pandemic. (A) Daily case count after combining the data from the WHO 

report (34) and Li et al. (80) through January 2020. Inset shows daily case count through 4 January 2020. See 

Methods for how data were combined. (B) Inferred doubling times of the pandemic in December 2019 and 

January 2020.   

https://paperpile.com/c/dzD5Bg/hYtvU
https://paperpile.com/c/dzD5Bg/hYtvU
https://paperpile.com/c/dzD5Bg/hYtvU
https://paperpile.com/c/dzD5Bg/8Pgvh
https://paperpile.com/c/dzD5Bg/8Pgvh
https://paperpile.com/c/dzD5Bg/8Pgvh
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Figure S22. Inferred doubling times of simulated epidemics. Inferred doubling times of the 1100 primary 

simulations. (A) Cumulative doubling time since the start of the simulation. (B) 14-day doubling time from 

day 14 until the end of the simulation, with cumulative doubling time reported prior to day 14. (C) cumulative 

doubling time once a certain number of individuals are infected (e.g., the cumulative doubling time at the 

100th infection). (D) 14-day doubling time once a certain number of individuals are infected, with cumulative 

doubling time reported if that number of infections occurred before day 14 in the simulation. The center blue 

line represents the median doubling time across the simulations. Darker and lighter shading represent the 50% 

and 95% HDI, respectively. 

 



65 

 
Figure S23. Early SARS-CoV-2 introductions into Washington state. Similar phylogenetic structure to the 

origins of SARS-CoV-2 in Wuhan is observed in Washington state, with two separate introductions of SARS-

CoV-2 from China differing by two mutations (with no intermediate genomes). Refer to the supplementary 

text for a discussion comparing the introductions to Washington State with the origins of SARS-CoV-2.  
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Figure S24. Dynamics of COVID-19 hospitalizations resulting from separate introductions of lineages A 

and B. Each row represents a  different rooting constraint in phylodynamic analysis, with lineage B, C/C, and 

lineage A representing a fixed ancestral haplotype. (A) Estimated number of hospitalizations. The header of 

each column indicates whether the number of infections are caused by lineage A, lineage B, or the two 

lineages combined. Darker and lighter shading represent the 50% and 95% HPD, respectively. (B) The log 

ratio of lineage B to lineage A infections on 1 January 2020. Posterior probability of having more lineage B 

hospitalizations than lineage A reported in the grey box.  
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Figure S25. The timing of the MRCA and primary case for lineage A and lineage B with a shorter 

doubling time. The simulations used here have a doubling time of 2.65 days (95% HDI: 1.50-4.10). Each row 

represents a different rooting constraint in phylodynamic analysis, with lineage B, C/C, and lineage A 

representing a fixed ancestral haplotype. (A) The tMRCA for lineages A and B. (B) The number of weeks the 

tMRCA of lineage A occurs after the tMRCA of lineage B. (C) The timing of the primary case for lineages A 

and B. (D) The number of weeks the time of the primary case of lineage A occurs after the time of the primary 

case of lineage B. Long dashed lines indicate the median and shading represents the 95% HPD for each 

distribution. Short dashed lines indicate 0 weeks difference between lineages A and B. Posterior probability 

that lineage A originated after lineage B is reported in the grey box.  
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Figure S26. The timing of the MRCA and primary case for lineage A and lineage B with a longer 

doubling time. The simulations used here have a doubling time of 4.45 days (95%: HDI: 1.50-7.44). Each row 

represents a different rooting constraint in phylodynamic analysis, with lineage B, C/C, and lineage A 

representing a fixed ancestral haplotype. (A) The tMRCA for lineages A and B. (B) The number of weeks the 

tMRCA of lineage A occurs after the tMRCA of lineage B. (C) The timing of the primary case for lineages A 

and B. (D) The number of weeks the time of the primary case of lineage A occurs after the time of the primary 

case of lineage B. Long dashed lines indicate the median and shading represents the 95% HPD for each 

distribution. Short dashed lines indicate 0 weeks difference between lineages A and B. Posterior probability 

that lineage A originated after lineage B is reported in the grey box.  
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Figure S27. Dynamics of SARS-CoV-2 resulting from separate introductions of lineages A and B and a 

shorter doubling time. The simulations used here have a doubling time of 2.65 days (95% HDI: 1.50-4.10). 

Each row represents a different phylodynamic analysis, with lineage B, C/C, and lineage A representing an 

enforced ancestral haplotype. (A) Estimated number of infections. The header of each column indicates 

whether the infections are caused by lineage A, lineage B, or the two lineages combined. Darker and lighter 

shading represent the 50% and 95% HPD, respectively. (B) The log ratio of lineage B to lineage A infections 

on 15 December 2019. (C) Estimated number of hospitalizations, with column headers and shading identical to 

(A). (D) The log ratio of lineage B to lineage A hospitalizations on 1 January 2020. The proportion of the 

posterior with more lineage B infections or hospitalizations than lineage A in (B, D) is reported in the grey 

box. 
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Figure S28. Dynamics of SARS-CoV-2 resulting from separate introductions of lineages A and B and a 

longer doubling time. The simulations used here have a doubling time of 4.45 days (95%: HDI: 1.50-7.44). 

Each row represents a different phylodynamic analysis, with lineage B, C/C, and lineage A representing an 

enforced ancestral haplotype. (A) Estimated number of infections. The header of each column indicates 

whether the infections are caused by lineage A, lineage B, or the two lineages combined. Darker and lighter 

shading represent the 50% and 95% HPD, respectively. (B) The log ratio of lineage B to lineage A infections 

on 15 December 2019. (C) Estimated number of hospitalizations, with column headers and shading identical to 

(A). (D) The log ratio of lineage B to lineage A hospitalizations on 1 January 2020. The proportion of the 

posterior with more lineage B infections or hospitalizations than lineage A in (B, D) is reported in the grey 

box.  
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Figure S29. Single-introduction timing of the MRCA and primary case and subsequent epidemic 

growth. (A) Posterior distributions of the timing of the MRCA (tMRCA) and primary case (tPrimary), with 

dashed lines indicating the median and shading representing the 95% HPD for each distribution. (B) Estimated 

number of infections in late 2019. Darker shading represents 50% HPD; lighter shading represents 95% HPD. 

(C) Estimated number of hospitalizations in late 2019. The legend indicates the phylodynamic model used: the 

unconstrained model uses just the SARS-CoV-2 genomes; the recCA-constrained model constrains the 

ancestor of the MRCA of SARS-CoV-2 as the recCA; the remaining models constrain the MRCA of SARS-

CoV-2 as a particular sequence (Fig. S20; see methods).   
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Figure S30. Schematic depicting the multiple zoonotic origin of SARS-CoV-2. A recCA-like virus was 

circulating in bats, and likely after gaining the ability to bind ACE2, jumped into an intermediate host. 

Therein, lineages A and B appeared and were separately introduced into humans shortly thereafter. An 

example phylogeny of viruses in the intermediate host is depicted, leading to separate phylogenies for lineages 

A and B. The resulting SARS-CoV-2 phylogeny from the combined lineage A and B viruses is presented in 

the black box. This scenario depicts a lineage A ancestral haplotype. See Figure S31 for intermediate and 

lineage B ancestral haplotypes.   
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Figure S31. Rooting orientations of observed SARS-CoV-2 phylogenies resulting from different MRCAs 

and multiple introductions from the intermediate host. See Figure S30 for host depictions. The haplotype 

of the MRCA (red square in the left-center panel) is depicted in the upper left of each box.  
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