Science Advances

Supplementary Materials for

Conserved conformational dynamics determine enzyme activity

Kristiane R. Torgeson et al.

Corresponding author: Wolfgang Peti, peti@uchc.edu

Sci. Adv. **8**, eabo5546 (2022) DOI: 10.1126/sciadv.abo5546

This PDF file includes:

Tables S1 to S4 Figs. S1 to S11

Variant	k _{cat} (s ⁻¹)	f	K _M (μM)	f	k _{cat} / K _M (s⁻¹µM⁻¹)	f	R^2	Ν	ΔT _m (°C)
PTP1B	11.4 ± 0.9		496.1 ± 26.2		23.1 ± 3.7		0.990	13	(57.7)
PTP1B _{F2251}	6.8 ± 0.3	0.6	688.3 ± 38.3	1.4	9.9 ± 0.7	0.4	0.958	3	-11.6
PTP1B _{F225L}	7.6 ± 0.3	0.7	660.0 ± 44.5	1.4	11.5 ± 0.9	0.5	0.962	3	-7.9
PTP1B _{F225Y}	20.3 ± 0.9	1.8	600.8 ± 36.2	1.2	33.7 ± 2.5	1.5	0.974	4	-7.7
PTP1B _{R199N}	11.0 ± 0.5	1.0	530.7 ± 30.9	1.6	20.7 ± 1.6	0.9	0.985	3	-6.0
PTP1B _{FYRN}	25.1 ± 1.1	2.2	655.0 ± 30.7	1.3	38.3 ± 2.4	1.7	0.985	3	-10.0
PTP1B _{RNLR}	36.2 ± 1.7	3.2	868.8 ± 27.5	1.8	41.6 ± 2.3	1.8	0.995	4	-8.5
PTP1B _{FYRNLR}	45.0 ± 1.9	3.9	598.0 ± 25.7	1.2	75.3 ± 4.6	3.3	0.984	3	-10.6
PTP1BL204A	23.6 ± 1.0	2.1	505.7 ± 20.4	1.1	46.7 ± 2.7	2	0.990	4	-5.5
PTP1B _{P206G}	12.0 ± 0.6	1.1	551.1 ± 41.4	1.1	21.7 ± 1.9	0.9	0.952	3	-2.8
PTP1BGGGGG	21.6 ± 1.0	1.9	839.8 ± 26.1	1.7	25.7 ± 1.4	1.1	0.995	3	-11.6
PTP1B∆7	8.6 ± 0.2	-	900.6 ± 30.0		9.6 ± 0.4		0.989	4	(54.9)
$PTP1B\Delta7_{F225Y}$	16.1 ± 0.5	1.9	987.9 ± 25.0	1.1	16.3 ± 0.6	1.7	0.994	4	-6.8
$PTP1B\Delta7_{FYRN}$	18.0 ± 0.2	2.1	1054.4 ± 42.2	1.2	17.0 ± 0.7	1.8	0.987	4	-8.3
$PTP1B\Delta7_{FYRNLR}$	40.60 ± 1.0	4.7	843.9 ± 25.1	0.9	48.1 ± 1.8	5.0	0.992	4	-9.3

Table S1: Enzymatic activity (Michaelis-Menten analysis) and protein stability (T_M)

	PTP1B F225Y	PTP1B F225Y + TCS401	PTP1B∆7 FYRN	PTP1B∆7 FYRN+ TCS401	PTP1B∆7 FYRNLR	PTP1B FYRNLR + TCS401	PTP1B L204A	PTP1B L204A + TCS401
PDB	7MKZ	7MN7	7MN9	7MNA	7MOU	7MNB	7MNC	7MND
Data Collection								
Beamline	SSRL 12-2	SSRL 12-2	SSRL 12-2	SSRL 12-2				
Space group	P 3 ₂ 2 1	P 3 ₁ 2 1	P 3 ₂ 2 1	P 3 ₂ 2 1	P 3 ₂ 2 1	P 3 ₁ 2 1	P 3 ₂ 2 1	P 3 ₁ 2 1
Unit cell	88.6 88.6 72.6 90 90 120	88.5 88.5 104.2 90 90 120	88.5 88.5 72.4 90 90 120	88.0 88.0 72.3 90 90 120	88.4 88.4 72.5 90 90 120	88.8 88.8 106.0 90 90 120	87.6 87.6 71.1 90 90 120	88.3 88.3 105.0 90 90 120
Resolution (Å)	37.81 - 1.40 (1.42 - 1.40)	38.33 - 1.95 (2.00 - 1.95)	38.31 - 1.24 (1.26 - 1.24)	38.11 - 1.47 (1.49 - 1.47)	38.29 - 1.48 (1.50 - 1.48)	38.46 - 2.2 (2.27 - 2.2)	37.97 - 1.85 (1.89 - 1.85)	21.64 - 2.29 (2.37 - 2.29)
Multiplicity	10.0 (9.4)	11.3 (10.9)	8.1 (7.0)	3.7 (3.4)	11.1 (10.2)	11.1 (11.0)	11.2 (10.2)	6.5 (1.7)
Completeness (%)	99.6 (96.0)	99.7 (98.8)	99.5 (92.1)	98.9 (96.0)	99.8 (98.1)	98.5 (98.8)	97.6 (85.8)	99.3 (98.7)
l/sigma(l)	14.6 (1.5)	15.5 (1.9)	15.9 (1.6)	14.7 (2.42)	19.2 (2.2)	13.0 (2.4)	17.1 (4.8)	12.8 (2.3)
R-merge	0.076 (1.40)	0.115 (1.305)	0.056 (0.607)	0.045 (0.525)	0.073 (1.047)	0.138 (1.032)	0.087 (0.605)	0.0223 (0.341)
CC1/2	1.00 (0.67)	1.00	0.994	0.998	0.997	0.910	0.998	0.999
Refinement		(0.701)	(0.999)	(0.743)	(0.772)	(0.810)	(0.932)	(0.014)
Reflections								
used in refinement	64808	32918	92153	54665	54765	24596	26590	21743
Reflections used for R-free	3474	1775	4841	2974	2734	1372	1280	1024
R-work/	0.156	0.156	0.162	0.170	0.172	0.164	0.174	0.166
R-free	0.173	0.190	0.180	0.194	0.180	0.199	0.204	0.203
No of atoms	2629	2792	2722	2503	2619	2664	2331	2579
protein	2328	2487	2337	2257	2367	2424	2215	2400
ligands	22	53	28	36	23	43	13	43
solvent	279	252	357	210	229	197	103	136
RMS deviations								
Bond lengths (Å)	0.014	0.016	0.016	0.014	0.014	0.003	0.009	0.008
Bond angles (°)	1.3	1.29	1.5	1.34	1.32	0.56	1.05	1
Ramachandran								
Favored (%)	98.2	97.0	98.2	98.2	97.9	97.6	96.4	97.3
Allowed (%)	1.4	2.7	1.4	1.4	1.4	2.0	2.9	2.4
Outliers (%)	0.36	0.34	0.36	0.36	0.71	0.34	0.72	0.34
Clashscore	3.42	3.18	5.32	3.11	4	3.28	3.88	2.07
B-factors								
Average B- factor	26.2	33.5	25.6	22.7	22.4	38.2	32.7	27.7
Macro- molecules	25.0	32.32	23.69	22.24	21.82	37.74	32.63	27.57
ligands	41.4	41.67	41.75	21.7	30.18	43.62	48.93	32.26
solvent	34.6	43.11	36.66	27.4	27.35	43.12	31.43	28.4

 Table S2: Data Collection and Statistics of PTP1B Variant Crystal Structures

k _{ex} (s ⁻¹)	pB (%)	Residues
3000 ± 40	3.4 ± 0.2	
5000 ± 210	0.9 ± 0.1	L140(Cδ ₁ &Cδ ₂), L142(Cδ ₁ &Cδ ₂), L144(Cδ ₁), I281, L294(Cδ ₁)

 Table S3: PTP1BL204A residues: specific intermediate exchange group

k _{ex} (s ⁻¹)	pB (%)	Residues
3130 ± 280	0.3 ± 0.1	I19, L140(Cδ ₁ &Cδ ₂), L142(Cδ ₁ &Cδ ₂), L144 (Cδ ₁ &Cδ ₂), L294(Cδ ₁)
1340 ± 120	1.9 ± 0.9	L83(C δ_1), L110(C δ_1), V155(C γ_1), I171, L192(C δ_1), L195(C δ_1), V211(C γ_1), V213(C γ_1), L227(C δ_2), V244(C γ_1 &C γ_2) L250(C δ_1), L272(C δ_1), I275
680 ± 40	11 ± 1	V49(Cγ ₁), V107(Cγ ₁), V113(Cγ ₁), L119(Cδ ₁), V184(Cγ ₁), I261

 Table S4: PTP1BL204A residues in complex with TCS401; specific intermediate exchange group

Figure S1. Crystal structures of PTP1B\Delta7_{FYRN} and PTP1B\Delta7_{FYRNLR}. Cartoon overlay of PTP1B\Delta7 (PDB 5KA0, grey) with PTP1B\Delta7_{FYRN} (PBD 7MN9, light blue) and PTP1B\Delta7_{FYRNLR} (PBD 7MOU, teal). Residues mutated in a subset of variants are shown as yellow sticks; catalytic cysteine shown as red stick.

Figure S2. PTP1B_{FYRNLR} NMR spectroscopy data. Overlay of the 2D [¹H,¹⁵N] TROSY spectrum of PTP1B (black) and PTP1B_{FYRNLR} (teal).

Figure S3. CSP analysis of PTP1B_{FY} and PTP1B_{FYRNLR} vs TCS401. (A) CSP vs residue plots of PTP1B, PTP1B_{FY} and PTP1B_{FYRNLR} upon saturation with TCS401. Red bars indicate peaks that broaden beyond detection. PTP1B secondary structural elements are shown above, with the position of mutations indicated by diamonds. (B) Overlay of the 2D [1 H, 15 N] TROSY spectra of PTP1B_{FY} (blue) and PTP1B_{FY}:TCS401 (red; 1:3 ratio). (C) Overlay of the 2D [1 H, 15 N] TROSY spectra of PTP1B_{FYRNLR} (teal) and PTP1B_{FYRNLR}:TCS401 (red; 1:3 ratio).

Figure S4: Crystal structures of PTP1B_{FY} **and PTP1B**_{FYRNLR}. (**A**) Cartoon overlay of PTP1B (PDB 5K9VW; grey), PTP1B_{FY} (PDB 7MKZ, blue) and PTP1B_{FYRNLR} (PDB 7MNB, teal). (**B**) Close-up view of structural changes around F225; key residues shown as sticks.

Figure S5: Crystal structure of PTP1B_{L204A}. (**A**) Cartoon overlay of PTP1B (PDB 5K9V; grey) and PTP1B_{L204A} (PDB 7MNC, yellow) in the ligand free state. (**B**) Cartoon overlay of PTP1B (PDB 5K9W; dark grey) and PTP1B_{L204A} (PDB 7MND, dark yellow) in complex with TCS401.

Figure S6. Analysis of the PTP1B_{L204A} TCS401 interaction. (A) Overlay of the 2D [¹H,¹⁵N] TROSY spectrum of PTP1B (black) and PTP1B_{L204A} (yellow). (B) CSP vs residue plot of PTP1B and PTP1B_{L204A}. Red bars indicate peaks that broadened beyond detection. PTP1B secondary structural elements are shown above with L204A mutation indicated by yellow diamond. (C) Overlay of the 2D [¹H,¹⁵N] TROSY spectrum of PTP1B_{LA} (yellow) with PTP1B_{L204A}:TCS401 (red; 1:3 ratio). (D) CSP vs residue plot of PTP1B_{L204A} upon saturation with TCS401 (1:3 ratio). Red bars indicate peaks that broadened beyond detection. PTP1B secondary structural elements are shown above with L204A upon saturation with TCS401 (1:3 ratio). Red bars indicate peaks that broadened beyond detection. PTP1B secondary structural elements are shown above with L204A mutation.

Figure S7. PTP1B_{L204A} ¹⁵**N** fast timescale relaxation data. (**A**) 18.8 T (800 MHz ¹H Larmor) R₁ ¹⁵N relaxation data for PTP1B_{L204A} (black) and PTP1B_{L204A}:TCS401 (1:6 ratio; red) plotted against PTP1B sequence; PTP1B secondary structural elements shown above. L204A mutation indicated by yellow diamond. (**B**) R₂ ¹⁵N backbone relaxation data for PTP1B_{L204A} (black) and PTP1B_{L204A}:TCS401 (1:6 ratio; red) plotted against PTP1B sequence.

Figure S8. ¹³C ILV 2D [¹H,¹³C] HSQC spectrum of PTP1B and PTP1B_{L204A} saturated with TCS401. (A) Overlayed ¹³C ILV 2D [¹H,¹³C] HSQC spectrum of PTP1B (black) and PTP1B saturated with TCS401 (1:6 ratio, red). Moving peaks are annotated and indicated with arrows. (B) Overlayed ¹³C ILV 2D [¹H,¹³C] HSQC spectrum of PTP1_{L204A} (black) and PTP1B_{L204A} saturated with TCS401 (1:6 ratio, red). Moving peaks are annotated and indicated with arrows.

Figure S9. PTP1B_{L204A} ¹³**C ILV fast timescale relaxation data.** (**A**) 18.8 T T₁ ¹³C ILV relaxation data PTP1B_{L204A} (black) and PTP1B_{L204A}:TCS401 (1:6 ratio; red) plotted against PTP1B sequence; PTP1B secondary structural elements shown above. L204A mutation indicated by yellow diamond. (**B**) T₂ ¹³C ILV relaxation data for PTP1B_{L204A} (black) and PTP1B_{L204A}:TCS401 (1:6 ratio; red) plotted against PTP1B sequence.

Figure S10. Intermediate timescale ¹³C ILV relaxation dispersion dynamics of PTP1B_{L204A} upon TCS401 binding. (A) Examples of group 1 residues in PTP1B_{L204A} (black) and PTP1B_{L204A}:TCS401 saturated (purple). (B) Examples of group 2 residues for PTP1B_{L204A} (black) and PTP1B_{L204A}:TCS401 saturated (yellow).

Figure S11. PTP1B and YopH. (**A**) Overlay of PTP1B (PDB 5K9W, gray) with YopH (PDB 1LYV, wheat). (**B**) Overlay of the β -strands $\beta 3/\beta 4/\beta 10/\beta 11$ with conserved residues shown as sticks.