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SUPPLEMENTARY FIGURES 

Figure S1: Summary of the top significantly enriched pathways (adjusted P<0.1) by the genes 

whose conservation scores are correlated with cancer-resistance estimates (MLTAW), using gene 

set enrichment analysis (GSEA) with gene set annotations from the Reactome database.  

Figure S2: Scatter plots showing the correlation between the predicted cancer resistance (CR) 

scores computed based on gene conservation and for the cancer-resistance estimate MLTAW or 

‘(Maximum longevity)6 x (adult weight)’, with leave-one-out cross-validation, for all species.   

Figure S3: Scatter plots showing the correlation between the predicted cancer resistance (CR) 

scores computed based on gene conservation and for the cancer-resistance estimate MLTAW for 

Aves (birds).  

Figure S4: Random controls experiments for predicting cancer resistance using all species.  

 

Figure S5: Instead of human reference to compute gene conservation scores, we use Mus 

musculus (house mouse) and thirteen-lined ground squirrel (Ictidomys tridecemlineatus) as 

reference and predict cancer resistance in the all-species analysis.  

Figure S6: Robustness analysis using 12 non-human species as reference for computing the gene 

conservation scores.  

 

Figure S7: Plots show the distribution/frequency of Spearman’s ρ between the predicted cancer 

resistance (CR) scores computed based on gene conservation and each of the two cancer-

resistance estimates, using two-fold cross-validation (instead of LOOCV).  

Figure S8: Predicting cancer-resistance (CR) scores by altering various parameters.  

Figure S9: Predicting cancer-resistance (CR) scores by using both PC and NC genes (PC & NC 

genes); PC genes only; NC genes only.  



 

 

 

 

Figure S10: Cancer resistance predictions on the entire mammalian species.  

Figure S11: Predicting cancer resistance (CR) scores by identifying PC/NC genes by leaving out one 

class and testing on that left-out class (cross-validation; all-species analysis).  

Figure S12: Predicting cancer resistance (CR) scores by identifying PC/NC genes (using 

mammalian data) by leaving out one order of mammals and testing on that left-out order (cross-

validation; mammals-only analysis).  

Figure S13: Gene set enrichment analysis (GSEA) of the correlation between the gene 

conservation scores and cancer-resistance estimates including (maximum longevity)6 x (adult 

weight) (MLTAW), or the residue of maximum longevity after regressing out adult weight 

(MLCAW), for three classes of species: Mammalia (mammals), Aves (birds), and Teleostei (fish).  

Figure S14: Spearman’s correlation (ρ) in predicting cancer resistance (MLCAW) in all species 

using only TSGs, only oncogenes, both TSGs and oncogenes, using PC and NC genes in cross 

validation, using PC and NC genes after removing TSGs and oncogenes in cross validation is 

shown.  

Figure S15: Looking at loss-of-function genes observed in canine transmissible venereal tumors.  

Figure S16: The cancer resistance (CR) scores predicted on all species (in leave-one-out cross-

validation) analysis are individually tested on different classes of species: Mammalia (mammals), 

Aves (birds), Teleostei (fish), Reptilia (reptiles).  

Figure S17: Gene conservation profiles for all genes and species, before (left sub-figure) and 

after (right sub-figure) rank-normalization. 

 

 

  



 

 

 

 

SUPPLEMENTARY TABLES  

 

Supplementary Table S1: The predicted cancer resistance (CR) scores are provided for various 

species.  

 

Supplementary Table S2: Table contains Pearson correlation value of gene conservation and 

cancer resistance measures for all genes 

 

Supplementary Table S3: Table contains gene set enrichment analysis (GSEA) using the Pearson 

correlation values of gene conservation and cancer resistance measures for all genes 

(Reactome pathways are used for the enrichment analysis).  

 

Supplementary Table S4: Table contains Pearson correlation value of gene conservation and 

cancer resistance measures for all genes for various orders of mammals. 

 

Supplementary Table S5: Table contains gene set enrichment analysis (GSEA) using the Pearson 

correlation values of gene conservation and cancer resistance measures (for all genes), for 

various orders of mammals (Reactome pathways are used for the enrichment analysis).  

 

Supplementary Table S6: LOEUF and GSEA of PC and NC genes 

 

Supplementary Table S7: Pathway enrichment of the known human cancer genes that overlap 

with PC genes, or NC genes, or that do not overlap with either PC or NC genes. 

 

Supplementary Table S8: Table contains the analysis results on the mutated genes detected in 

a single phylogeny of a mouse melanoma tumor, their enrichment for PC/NC genes, and the 

pathway enrichment of the overlapping PC genes 

 



 

 

 

 

Supplementary Table S9: In this table, we summarize different lines of evidence supporting PC 

genes.  

 

Supplementary Table S10: In this table, we rank the PC genes based on the percentage of non-

silent mutations in the TCGA pan-cancer dataset.  

 

Supplementary Table S11: Table contains copy number of different genes in mammals from 

EggNOG database. 

 

Supplementary Table S12: Summary of PC and NC genes within each pathway. 

 

Supplementary Table S13: Genes (and their enriched pathways) that are specifically associated 

with cancer resistance estimates. All-species analysis. 

 

Supplementary Table S14: Genes (and their enriched pathways) that are specifically associated 

with cancer resistance estimates. Mammals-only analysis. 

 

Supplementary Table S15: Pearson correlation values of gene conservation and true cancer 

mortality risk (CMR) for all genes for 39 mammals. Gene set enrichment analysis (GSEA) using 

Reactome pathways are shown. PC and NC genes (from all-species and mammals-only analysis) 

that intersect with NCMR and PCMR genes respectively are also shown. 

  



 

 

 

 

SUPPLEMENTARY NOTES 

1. Short review of cancer resistance mechanisms in different species 

Different species have independently evolved unique cancer resistance mechanisms. Repression 

of somatic telomerase activity, and replicative senescence are important tumor-suppressing 

mechanisms evolved in species greater than approximately 10 kilograms (2). Cells of smaller but 

relatively long-lived animals are reported to have slower proliferation in culture (77). There have 

been a few reports of more efficient DNA repair in cancer-resistant and long-lived animals (3, 9). 

African elephants, the largest land mammals, have 19 extra retrogene copies of the tumor 

suppressor gene TP53 and are more sensitive to TP53-mediated DNA damage response (78, 79). 

The remarkable cancer resistance of naked mole rat has been previously partly attributed to the 

production of high molecular mass hyaluronan (HMM-HA) (80, 81) but this mechanism has been 

questioned in a recent study (82). Blind mole rats also have abundant HMM-HA and increased 

interferon-β expression that contribute to cancer resistance (3, 81, 83). Various large-bodied 

whales do not have additional TP53 copies, and their cancer resistance mechanisms are not 

clearly understood (3, 13). 

 

2. Summary of the numbers of PC and NC genes 

The table below summarizes the numbers of PC and NC genes identified (analysis done with 

humans as the reference for computing the gene conservation matrix) for the cancer resistance 

predictors: all-species, mammals, birds, and teleost fish, at FDR < 0.1. The table below 

summarizes the number of PC/NC genes at FDR<0.1 for the cancer resistance predictors (all-

species, mammals, birds) using the different MLTAW/MLCAW cancer resistance estimates 

(robustness was also shown for other FDR thresholds). Note that for birds with MLCAW and 

Teleost fish, no genes passed the FDR 0.1 cutoff.  

 



 

 

 

 

 MLTAW 
(all-
species) 
(n=193 
species) 

MLCAW 
(all-
species) 
(n=193 
species) 

MLTAW 
(Mamm
allia) 
(n=108 
species) 

MLCAW 
(Mamm
allia) 
(n=108 
species) 

MLTAW 
(Aves) 
(n=55 
species) 

No. of PC 
genes at 
FDR < 0.1 

3506 2797 2211 1912 428 

No. of NC 
genes at 
FDR < 0.1 
 

4108 2184 2079 1524 132 

 

For the LOEUF score analysis, we enclose a summary of the resulting numbers of PC and 

NC genes in the table below (we only used PC/NC genes identified from all species or mammals 

in these analyses): 

 

 MLTAW 
(all-
species) 
(n=193 
species) 

MLCAW 
(all-
species) 
(n=193 
species) 

MLTAW 
(Mamm
allia) 
(n=108 
species) 

MLCAW 
(Mamm
allia) 
(n=108 
species) 

No. of PC 
genes 

594 385 423 160 

No. of NC 
genes 
 

483 244 392 159 

 

 

3. Cancer resistance prediction in birds and teleost fishes 

Using leave-one-out cross-validation (LOOCV) we find a significant positive correlation between 

the predicted cancer resistance (CR) scores and MLTAW on all the bird species (Spearman’s ρ = 



 

 

 

 

0.43, P = 0.00094, Fig. S3A) though this is weaker than the corresponding predictions obtained 

by learning on all species (Spearman’s ρ = 0.57, P = 6.4e-6, Fig. S16A, using LOOCV). The 

correlation is stronger for the order Passeriformes (Spearman’s ρ = 0.79, P = 0.0012, Fig. S3B) for 

which we have the largest number of samples. Among Passeriformes, the highest CR scores are 

obtained for American crow (Fig. S3B). The MLCAW measure did not yield any PC/NC genes (FDR 

< 0.1) for birds, and hence no CR predictor could be built. We could not identify any PC/NC genes 

at FDR < 0.1 for teleost fishes (for both MLTAW and MLCAW measures) probably because of a 

small sample size (n=18); and hence we could not however build a cancer resistance predictor 

for them.  

A detailed pathway enriched analysis for mammals, birds, and teleost fishes are provided 

in Fig. 3A, S12C. Many pathways show group-specific enrichment. For example, many cell cycle 

and DNA repair-related pathways are enriched by the PC genes in mammals, but not or to a much 

lesser extent in birds or teleost fishes; complement activation is enriched by PC genes in teleost 

fishes, but by NC genes in mammals or birds (Fig. 3A, S12C, Table S3). Bird PC genes are uniquely 

enriched for certain processes including fatty acid and amino acid metabolism and PI3K-AKT 

signaling pathway despite sharing interleukin, interferon signaling and mRNA transcription with 

mammals (Fig. 3A, S12C). GPCR signaling is commonly enriched by the NC genes based on 

MLCAW in all three groups (Fig. 3A, S12C, Table S3). 

 

4. Control and robustness analysis 

Random control experiments 

Random controls experiments for predicting cancer resistance were done for using all species. 

We chose random PC/NC genes with the same size as the actual PC/NC genes identified from the 

all-species analysis at FDR < 0.1. We can predict cancer resistance using these genes. We do this 

for 1000 iterations and the empirical P-value is computed. We see that they are not correlated 

in comparison to the ‘true’ correlation obtained using the actual PC/NC genes (randomization 

test P < 0.001). The results for MLTAW/MLCAW are shown in Fig. S4.  



 

 

 

 

PC/NC genes and cancer resistance predictors are robust to the method of correlation used. 

To identify cancer resistance-associated genes (PC/NC genes) for all species, we used Pearson 

correlation between the conservation scores of each gene and the cancer-resistance estimates 

(MLTAW and MLCAW) across all species. Pearson correlation coefficient was used (instead of 

Spearman) in order to reduce the number of ties which will affect the gene set enrichment 

analysis (GSEA). We now show that the robust identification of PC/NC genes is possible even if 

we use Spearman’s correlation instead of Pearson. To do this, we recomputed PC/NC genes using 

Spearman’s correlation and compared it to those obtained using Pearson’s correlation (FDR < 

0.1). Using  Fisher’s exact test, we get a significant overlap in comparing cancer resistance-

associated genes obtained using Pearman and Spearman’s correlation (PC genes: Odds-ratio/OR 

= 111.64, P < 2.2e-16 for MLTAW and OR = 94.22, P < 2.2e-16 for MLCAW; NC genes: OR = 126.52, 

P < 2.2e-16 for MLTAW and OR = 184.78, P < 2.2e-16 for MLCAW). (Note: whenever the 

enrichment test software shows P = 0, we write as P < 2.2e-16.) Cancer-resistance (CR) predictors 

computed from PC/NC genes identified using Pearson or Spearman’s correlation works very 

similar across all species (Pearson-based PC/NC identification: MLTAW ρ=0.44, P=1.32e-10, 

MLCAW ρ=0.51, P=2.31e-14; Spearman’s-based PC/NC identification: MLTAW ρ=0.43, P=3.65e-

10, MLCAW ρ=0.51, P=5.16e-14; using LOOCV or ‘leave-one-out cross-validation’). 

PC/NC genes and cancer resistance predictors are robust to the choice of reference species 

We used the human genome as a reference, for computing gene conservation matrix as most of 

our downstream analysis was on human genes and we aimed to identify genes relevant to cancer 

resistance in humans. To check if our analysis is robust to changes in reference, we recomputed 

the gene conservation matrix using a few different species genomes including some cancer prone 

species like the house mouse (Mus Musculus) (in comparison humans are known to be relatively 

cancer resistant). The thirteen-lined ground squirrel was also chosen as a reference as it is likely 

to be cancer prone given that it is a species with poor longevity (it is relatively low MLTAW and 

MLCAW estimates). In the all-species analysis, the PC/NC genes obtained using mouse or squirrel 

genome as reference are extremely similar to the PC/NC genes obtained using humans as 

reference. Using Fisher’s exact test, we get a significant overlap in comparing the PC genes 



 

 

 

 

obtained using humans and mouse/squirrel genomes as reference (mouse: OR = 14.67, P < 2.2e-

16 for MLTAW and OR = 30.87, P < 2.2e-16 for MLCAW; squirrel: OR = 33.78, P < 2.2e-16 for 

MLTAW and OR = 55.31, P < 2.2e-16 for MLCAW). Similarly, we get a significant overlap in 

comparing the NC genes obtained using humans and mouse/squirrel genomes as reference 

(mouse: OR = 10.78, P < 2.2e-16 for MLTAW and OR = 27.73, P < 2.2e-16 for MLCAW; squirrel: 

OR = 24.29, P < 2.2e-16 for MLTAW; OR = 57.68, P < 2.2e-16 for MLCAW). Similarly, cancer-

resistance (CR) predictors computed from a gene conservation matrix which uses mouse or 

squirrel genomes as reference, show good prediction results between CR scores and cancer-

resistance estimates; similar to what was obtained using human as reference (Fig. S5; LOOCV). 

We also see that humans are predicted to be relatively cancer resistant as expected (Fig. S5).  

 

Furthermore, for the sake of a more comprehensive analysis, we recomputed the gene 

conservation scores using 12 non-human species genomes as a reference including many 

evolutionarily distant species from humans (includes mammals, birds, fish, even plants). Those 

are Mus musculus (house mouse), Ictidomys tridecemlineatus (thirteen-lined ground squirrel), 

Heterocephalus glaber (naked-mole rat; known to be cancer-resistant), Physeter catodon (sperm 

whale; large animal), Gallus gallus (chicken), Cyanistes caeruleus (Eurasian blue tit), Struthio 

camelus australis (ostrich), Danio rerio (zebrafish), Arabidopsis thaliana (thale cress), Petunia 

axillaris (large white petunia), Zea mays (corn), Solanum lycopersicum (tomato). We then 

recomputed the PC and NC genes (all-species analysis) using the gene conservation scores 

obtained from the analyses of each of these 12 reference species genomes (both the MLTAW and 

MLCAW measures), and checked if they significantly overlapped with the corresponding PC/NC 

genes identified using human genome as a reference (overlap enrichment test, using Fisher exact 

test) -- we see a very significant overlap in all 12 cases (FDR < 0.0005, Fig. S6).  As probably 

expected, we see the strongest overlap if we choose any mammal as a reference (irrespective of 

its size, longevity, or whether it is cancer-prone/resistant) in comparison to using birds, fish, or 

plants (Fig. S6).  

Next, we compared the overlap between the PC and NC genes identified using a cancer-

prone species like house mouse and a cancer-resistant species like naked mole rat as reference 



 

 

 

 

genomes. Notably, the PC/NC genes obtained using mouse genome as reference are very similar 

to the PC/NC genes obtained using naked-mole rat as reference: Using a Fisher’s exact test, we 

get a significant overlap in comparing the PC/NC genes obtained using mouse and naked mole 

rat genomes as reference (PC genes: OR = 15.06, P < 2.2e-16 for MLTAW and OR = 46.22, P < 

2.2e-16 for MLCAW; NC genes: OR = 8.72, P < 2.2e-16 for MLTAW and OR = 63.22, P < 2.2e-16 for 

MLCAW). Similarly, we compared the overlap between the PC and NC genes identified using a 

short-living species like house mouse and a long-living species like sperm whale as reference 

genomes. Like before, in the all-species analysis, the PC/NC genes obtained using mouse genome 

as reference are very similar to the PC/NC genes obtained using sperm whale as reference (PC 

genes: OR = 7.55, P < 2.2e-16 for MLTAW and OR = 53.91, P < 2.2e-16 for MLCAW; and NC genes: 

OR = 4.44, P < 1.02e-170 for MLTAW and OR = 48.18, P < 2.2e-16 for MLCAW). (Note that 

whenever the enrichment test software shows P = 0, we write as P < 2.2e-16.) Based on these 

results we can see that our identification of PC/NC genes is quite robust to the choice of 

reference.  

 

Using two-fold cross-validation instead of LOOCV 

We also did a two-fold cross-validation (instead of LOOCV) for predicting cancer-resistance 

scores, i.e., identifying PC and NC genes in the training group and testing the accuracy of the CR 

predictions in the left-out group. We see that our results using two-fold cross-validation is similar 

to that obtained by LOOCV in the all-species analysis (Fig. S7 in comparison to Fig. 2A, S2).   

Our results are robust to changes in FDR criteria and thresholds used 

We predicted cancer-resistance scores (CR) by altering various parameters. Our original predictor 

as described in the manuscript uses PC genes and NC genes which are significantly associated 

with cancer resistance at FDR < 0.1. We now show that our CR predictor is robust to changes in 

FDR thresholds from 0.1 to 0.01 or 0.2 (Fig. S8A,B). The original predictor also computes the 

number of PC genes whose conservation score > median conservation score; and the number of 

NC genes whose conservation score < median conservation score. We also show that the CR 

predictor is robust to altering the thresholds from median conservation score to top and bottom 



 

 

 

 

33 percentile of the conservation scores for PC and NC genes respectively (Fig. S8C). The same 

analysis was also done using the top and bottom 20 percentile (Fig. S8D). 

Alternative predictors using either PC or NC genes 

For the original predictor which uses both PC and NC genes, our cancer resistance (CR) score was 

measured using the following equation:  

Original predictor: CR score = [(No. of PC genes > MCS) + (No. of NC genes < MCS)] / (Total no. of 

genes) 

where MCS is the median conservation score of all genes in a species; PC and NC genes are chosen 

for FDR < 0.1.  

 Now to test the individual contribution of using PC-only and NC-only genes to predict a 

good cancer-resistance estimate, we build alternative predictors as follows:  

PC-only predictor: CR score = (No. of PC genes > MCS) / (Total no. of genes) 

NC-only predictor: CR score = (No. of NC genes < MCS) / (Total no. of genes) 

 We then compare the PC-only and NC-only predictor with the original predictor in Fig. S9 

for the all-species, Mammalia (mammals), and Aves (birds) analysis for both MLTAW and MLCAW 

measures. We see that both PC and NC genes have significant individual and comparable 

contributions to predict cancer resistance. 

 

5. Cancer resistance prediction within specific mammalian orders 

Using the predicted CR scores learnt from all mammalian species (in LOOCV), we further tested 

its association with cancer-resistance estimates for various orders with the class Mammalia, 

Rodentia, Primates, Carnivora, Artiodactyla, Cetacea, Chiroptera. We are able to predict at least 

one of the two cancer-resistance estimates effectively in Rodentia, Primates, Carnivora, and 

Chiroptera; but not for Artiodactyla, Cetacea (Fig. S10A,B). Just looking at rodents, we are able 



 

 

 

 

to get good CR scores in known cancer resistant species like the naked mole rat and low CR scores 

for cancer prone species like the house mouse (Fig. S10C). Among primates, we see that animals 

like chimpanzees and gorillas are predicted to be cancer resistant (Fig. S10D). Among carnivores, 

we see that Steller sea lion and California sea lion have high CR scores (Fig. S10E). Among bats, 

we again see that species like the Brandt’s bat which are known to live long for their body size 

are predicted to have high CR scores (Fig. 2D). Little brown bats are also seen to have high CR 

scores (Fig. 2D). 

 

6. Copy numbers of top PC and NC genes across mammals 

We have not explicitly considered the number of copies or paralogous genes in our analysis, and 

we have explained this as a limitation in the discussion section. To generally compute the copy 

numbers of genes in any species is not a trivial problem, requiring the careful choice of thresholds 

to find orthologues and paralogues. The appropriate thresholds depend on the phylogenetic 

distance between each pair of species and on sequence lengths. After determining the clusters 

of orthologous groups based on the normalized blast bit scores of each possible protein pair, 

gene copy numbers can be determined. A thorough investigation of the number of copies may 

be pursued in a future study. However, here we performed a smaller-scale analysis of top PC/NC 

gene copy numbers in mammalian species, as follows: From the EggNOG database (84), we 

obtained the gene orthologous group across mammals for each of the 5 top PC and NC genes 

correlated with MLTAW/MLCAW in the mammal-specific analysis. We found only one copy (a 

single orthologous gene per species) of most of these PC/NC genes in most species, and 

accordingly we do not see a significant correlation between copy-number and MLTAW/MLCAW 

measures. However, some of these PC/NC genes do have more than one copy (few paralogous) 

in well-known specific cancer resistance species (note that the term “single copy” is used here to 

describe the case where a gene is present on both chromosomes in a diploid genome). For 

example, we see that ZBED9 (a PC gene correlated with MLTAW) has 3 paralogues in the African 

elephant (the rest of the species have one copy) and KRBA2 (another PC gene correlated with 



 

 

 

 

MLTAW) has 2 copies in the naked mole rat. This suggests that some of the PC/NC genes we 

identified may indeed undergo copy number alterations. As a sanity check, we also checked the 

number of copies for p53, and confirmed that there are multiple copies of p53 (most of them 

pseudo genes) in the African elephant. However, in most of the other species p53 has no 

paralogous, consistent with previous literatures (78, 79). These gene copy number results are 

given in Table S11.  

 

 

7. Adaptation to different oxygen levels and cancer resistance 

In our study, we have not explicitly considered factors potentially linked to variations in cancer 

resistance that are not reflected through body size and lifespan. These factors are more difficult 

to quantify with limited data available. One example is the adaptation to different oxygen 

concentrations and oxidative stress levels. Reactive oxygen species (ROS) levels have a 

complicated role in cancers, although one of the effects of ROS is DNA damage, which is linked 

to cancer development (85), and tolerance to hypoxia is also associated with cancer resistance, 

as evident in several well-known cancer resistant species including the naked mole rat and certain 

bats (68, 86). This was not considered in our analysis due to the challenge to quantitate hypoxia 

resistance for each species, which may underlie some notable outliers in our cancer resistance 

predictions. For example, the predicted gene conservation-based CR score was high for the small 

and short-lived star nosed mole (55 grams, 2.5 years; Fig. 2A, S2), which largely lives underground 

and is hypoxia-tolerant (87). When more phenotypic data across species become available in the 

future, further studies are required to refine and update our findings here. 

 

8. Enrichment of PC and NC genes on the sex chromosomes of mammals and birds 

To investigate whether the abundances of PC/NC genes on the sex chromosomes differ between 

mammals and birds, we downloaded the Mammalia genes that exist in X and Y mammalian-sex-

chromosomes and birds’ genes that exist in Z and W bird-sex-chromosomes. We then computed 



 

 

 

 

the abundance of both PC and NC genes in sex chromosomes of birds and mammals. For each 

species in mammals or birds, we computed the total number of sex genes the species has and 

the number of sex genes that are present in PC/NC genes, and measured the enrichment of 

PC/NC genes in these sex chromosomes by odds ratios (ORs). The ORs for each set of PC or NC 

genes in the sex chromosomes of mammals (XY) were then compared to those for the birds (ZW) 

with Wilcoxon rank-sum tests. A summary of the distributions of the ORs and the two-sided 

Wilcoxon rank-sum test P-values are summarized in the table below. We see that the PC genes 

tend to be over-represented on the sex chromosomes of both mammals and birds (i.e., OR>1), 

while the NC genes tend to be under-represented (OR<1) on the sex chromosomes. However, 

the extent of under-representation for NC genes is significantly stronger in birds than in 

mammals. The extent of over-representation for PC genes are also different between birds and 

mammals, however, here the direction of the difference depends on whether MLTAW or MLCAW 

was used to identify the PC genes. MLCAW PC genes are more strongly over-represented on the 

sex chromosomes in birds than in mammals, while MLTAW PC genes exhibit the opposite trend.  

genes species OR Min. OR 1st Qu. OR Median OR Mean OR 3rd Qu. OR Max. P-value 

MLCAW PC mammals (XY) 0.8807208336 1.116401695 1.165427249 1.193734882 1.189015498 2.355205658 3.48E-05 

MLCAW PC birds (ZW) 1.133449703 1.249361475 1.259597386 1.272658813 1.307364157 1.408332487 3.48E-05 

MLCAW NC mammals (XY) 0.7985345012 0.9139980765 0.9612346404 1.006265209 1.007656418 1.643790751 2.39E-07 

MLCAW NC birds (ZW) 0.338397378 0.3688231375 0.3904344464 0.3935403498 0.4063078041 0.4923647457 2.39E-07 

MLTAW PC mammals (XY) 0.5215046227 1.4511353 1.49583152 1.442961816 1.50863158 1.591965573 8.42E-08 

MLTAW PC birds (ZW) 0.9190058898 0.9963760673 1.030014239 1.031453072 1.072284008 1.127438833 8.42E-08 

MLTAW NC mammals (XY) 0.4492870386 0.4860804856 0.5077636619 0.5602773981 0.5707946462 1.057688892 6.36E-08 

MLTAW NC birds (ZW) 0.356980346 0.3734042482 0.3816719458 0.3965563195 0.3974321429 0.5778710576 6.36E-08 

 

 
9. Rank-normalization 

In general, a higher gene conservation score (for most genes) would be expected in species 

that are phylogenetically closer to humans than more distant species (as we use humans as 

a reference to compute gene conservation scores).  To confirm this, we checked if the gene 

conservation scores are significantly higher in mammals in comparison to birds and teleost 



 

 

 

 

fish and found that to be true (one-sided Wilcoxon rank-sum test, P < 2.2e-16; Fig. S17). 

However, reassuringly, after rank-normalization, we do not see any overall differences 

between the conservation profiles of mammals, birds, and teleost fish (one-sided Wilcoxon 

rank-sum test, P = 0.5; Fig. S17). 

 

As we already noted, the gene conservation scores were obtained by rank-normalizing the 

protein length normalized bit scores across genes within each species, to control for the 

evolutionary distance between human and each species. These rank-normalized values range 

from 0 to 1, with higher values corresponding to higher levels of conservation. For ranking 

ties, we used the ‘rank’ function in R 

(https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/rank). Although we 

used ties.method = first for ranking ties, we could have also used ties.method = min. The 

overall results for identifying PC and NC genes are robust irrespective of whether we use 

ties.method = first or ties.method = min.  

 

10. Cancer resistance estimates and Peto’s paradox 

As explained in the main manuscript, since the strength of intrinsic cancer resistance 

mechanisms of a species is a “latent” property that is not directly observable, we used two 

proxy cancer-resistance estimates that have been proposed in the literature – MLTAW and 

MLCAW. As per Peto’s paradox cancer incidence within the normal lifespan of a species 

appears to have comparable orders of magnitudes across large or small, and long-lived or 

short-lived species. It follows that the intrinsic level of cancer resistance in a given species 

needs to roughly counteract its risk of cancer development due to cell division, which 

accordingly to a simple cancer development model is proportional to ML6 × AW, where ML 

denotes the species maximum longevity and AW denotes its adult weight. This is our MLTAW 

measure.  

Recently, Vincze et al. (20) published cancer-related mortality (cancer mortality risk or 

CMR) of 191 mammalian species using data on adult zoo mammals (110,148 individuals). 

They also published "Adult life expectancy" and "Species body mass (kg)" for each of these 

https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/rank


 

 

 

 

species (there was no maximum longevity information provided). So, we recomputed 

MLTAW and MLCAW measures for these 39 species "Adult life expectancy" instead of 

"Maximum longevity", and "Species body mass (kg)" instead of "Adult weight” (referred to 

as MLTAW’ and MLCAW’ respectively). As expected, we do not see a correlation between 

MLTAW’ and CMR (Spearman’s ρ=0.04, P=0.58) showing that Peto’s paradox is correct, that 

is, cancer mortality risk is not very dependent on body mass or adult weight (as already 

discussed in Vincze et al.). This justifies the use of MLTAW as an intrinsic level of cancer 

resistance. There was however a small positive correlation between MLCAW’ and CMR 

(Spearman’s ρ=0.24, P=0.00078). 

  



 

 

 

 

SUPPLEMENTARY FIGURES 

 

 

 

Figure S1: Summary of the top significantly enriched pathways (adjusted P<0.1) by the genes 

whose conservation scores are correlated with cancer-resistance estimates (MLTAW), using 

gene set enrichment analysis (GSEA) with gene set annotations from the Reactome database. 

The cancer-resistance estimate used is MLTAW or ‘(Maximum longevity)6 x (adult weight)’. The 

normalized enrichment score is plotted on the Y-axis, where positive values correspond to 

enrichment by the positively correlated (PC) genes and negative values correspond to enrichment 

by the negatively correlated (NC) genes. The dot color represents the significance of the 

enrichment (negative log10 GSEA P-value), and the dot size represents the number of genes in the 

“leading edge”, i.e., the set of genes that are enriched in a pathway. For the sake of clarity, only 



 

 

 

 

a subset of the enriched pathways (FDR<0.1) are shown and long pathway names have been 

shortened (using “...”). The complete pathway enrichment results are given in Table S3A. 

 

 

Figure S2: Scatter plots showing the correlation between the predicted cancer resistance (CR) 

scores computed based on gene conservation and for the cancer-resistance estimate MLTAW 

or ‘(Maximum longevity)6 x (adult weight)’, with leave-one-out cross-validation, for all species.  

Species with the top and bottom 10% MLTAW values are labeled by their common names for the 

sake of clarity. Spearman’s ρ and p-values (P) are shown.  



 

 

 

 

 

 

Figure S3: Scatter plots showing the correlation between the predicted cancer resistance (CR) 

scores computed based on gene conservation and for the cancer-resistance estimate MLTAW 



 

 

 

 

for Aves (birds). (A) Cancer resistance (CR) predictions are done by identifying PC/NC genes using 

only Aves (bird) species (in cross validation). Scatter plots showing the Spearman’s correlation 

between the predicted cancer-resistance estimates and ‘(Maximum longevity)6 x (adult weight)’ 

or MLTAW is shown. Only species names for the top and bottom 10 percentile of the MLTAW 

measure are labeled for display clarity. (B) Scatter plots using the predicted scores in (A) are 

shown for only order Passeriformes (n=14) within the bird species. Spearman’s ρ and p-values (P) 

are reported for (E, F). No CR predictor was built for birds using the MLCAW measure as we did 

not identify any PC/NC genes at (FDR < 0.1) for this measure. 

 

 

 

 

 

Figure S4: Random controls experiments for predicting cancer resistance using all species. We 

chose random PC/NC genes of the same size as the actual PC/NC genes identified from the all-

species analysis at FDR < 0.1. We can predict cancer resistance using these genes. We do this for 

1000 iterations and the empirical P-value is computed. We see that they are not correlated in 

comparison to the ‘true’ correlation obtained using the actual PC/NC genes (randomization test 

P < 0.001). Cancer-resistance estimates used are: (A) MLTAW; (B) MLCAW.  



 

 

 

 

 

 

 

Figure S5: Instead of human reference to compute gene conservation scores, we use Mus 

musculus (house mouse) and thirteen-lined ground squirrel (Ictidomys tridecemlineatus) as 

references and predict cancer resistance in the all-species analysis. Scatter plots along with the 



 

 

 

 

Spearman’s correlation between the predicted cancer-resistance estimates (in cross-validation, 

LOOCV) and the cancer-resistance estimates like (A) MLTAW or ‘(Maximum longevity)6 x (adult 

weight)’ for mouse; (B) MLCAW or ‘Maximum longevity controlled for adult weight’ for mouse; 

(C) MLTAW for squirrel; (D) MLCAW for squirrel, are shown. Both Spearman’s ρ and p-values (P) 

are reported. Only species names for the top and bottom 5 percentile of the MLTAW/MLCAW 

measures are labeled for display clarity. We see that humans are predicted to be relatively cancer 

resistant as expected. The results obtained are quite similar to the corresponding results using 

human reference.  

 



 

 

 

 

 



 

 

 

 

Figure S6: Robustness analysis using 12 non-human species as reference for computing the gene 

conservation scores. Bar plots showing the odds ratio (OR) and p-values for this gene overlap 

enrichment test (Fisher exact test) for: (a) all-species PC genes for MLTAW, (b) all-species NC 

genes for MLTAW, (c) all-species PC genes for MLCAW, (d) all-species NC genes for MLCAW; 

identified from gene conservation scores computed using these 12 different references in 

comparison to identifying the corresponding PC/NC genes using humans as reference. We get 

significant overlap in all species (FDR < 0.0005). The dashed red line is at OR=1; OR > 1 signifies 

enrichment of gene sets.  

 

 

 

Figure S7: Plots show the distribution/frequency of Spearman’s ρ between the predicted cancer 

resistance (CR) scores computed based on gene conservation and each of the two cancer-

resistance estimates, using two-fold cross-validation (instead of LOOCV). (A) MLTAW, i.e., 

(Maximum longevity)6 x (adult weight); (B) MLCAW, i.e., maximum longevity controlled for adult 

weight). The two-fold cross validation was carried out 1000 times (2000 data points). Median 

Spearman’s ρ and p-values (P) are mentioned.  



 

 

 

 

 

 



 

 

 

 

Figure S8: Predicting cancer-resistance (CR) scores by altering various parameters. CR predictors 

for different FDR thresholds (0.01, 0.01, or 0.2) are shown using (A) MLTAW; and (B) MLCAW 

measures. The original predictor also computes the number of PC genes whose conservation score 

> median conservation score; and the number of NC genes whose conservation score < median 

conservation score. CR predictor results are shown to be robust by altering the thresholds from 

median conservation score to top and bottom 33/20 percentile of the conservation scores for PC 

and NC genes respectively (C, D). Both Spearman’s ρ and p-values (P) are reported.  

 

 



 

 

 

 

 



 

 

 

 

Figure S9: Predicting cancer-resistance (CR) scores by using both PC and NC genes (PC & NC 

genes); PC genes only; NC genes only. Results for MLTAW or ‘(Maximum longevity)6 x (adult 

weight)’; and MLCAW or ‘Maximum longevity controlled for adult weight’ are shown for the all-

species analysis (A,B), Mammalia-only analysis (C,D), and Aves-only (E) analysis. MLCAW analysis 

is not shown for birds as we could not identify PC/NC genes at FDR < 0.1 and therefore could not 

build a CR predictor.  
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Figure S10: Cancer resistance predictions on the entire mammalian species. Cancer resistance 

predictions were done on the entire mammalian species (LOOCV, by learning PC/NC genes from 

mammals). Using these predictions, Spearman’s correlation (ρ and p-values) for different orders 

(sub-groups) of mammals: Rodentia (rodents), Chiroptera (bats), Cetacea (aquatic mammals like 

whales), Carnivora (carnivores), Primates, Artiodactyla (even-toed hoofed mammals) are shown 

for (A) MLTAW or ‘(Maximum longevity)6 x (adult weight)’ and (B) MLCAW or ‘Maximum longevity 

controlled for adult weight’.  Scatter plots showing the Spearman’s correlation between the 

predicted cancer-resistance estimates and the MLTAW cancer-resistance estimate for some of the 

orders are shown in (C-E). Spearman’s ρ and p-values (P) are reported.  

 

 

 

 

 



 

 

 

 

 

Figure S11: Predicting cancer resistance (CR) scores by identifying PC/NC genes by leaving out 

one class and testing on that left-out class (cross-validation; all-species analysis). We show the 

accuracies for the following classes: Mammalia (mammals), Aves (birds), Teleostei (fish), and 

Reptilia (reptiles). Spearman’s ρ and p-values (P) are reported using the two cancer-resistance 

estimates: (A) MLTAW; and (B) MLCAW. 

 



 

 

 

 

 

Figure S12: Predicting cancer resistance (CR) scores by identifying PC/NC genes (using 

mammalian data) by leaving out one order of mammals and testing on that left-out order 

(cross-validation; mammals-only analysis). We show the accuracies for the following orders: 

Rodentia (rodents), Chiroptera (bats), Cetacea (aquatic mammals like whales), Carnivora 

(carnivores), Primates, Artiodactyla (even-toed hoofed mammals). Spearman’s ρ and p-values (P) 

are reported using the two cancer-resistance estimates: (A) MLTAW; and (B) MLCAW. 
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Figure S13: Gene set enrichment analysis (GSEA) of the correlation between the gene 

conservation scores and cancer-resistance estimates including (maximum longevity)6 x (adult 

weight) (MLTAW), or the residue of maximum longevity after regressing out adult weight 

(MLCAW), for three classes of species: Mammalia (mammals), Aves (birds), and Teleostei (fish). 

(A,B) Venn diagram showing the number of positively and negatively enriched gene sets in the 

three classes based on correlations with: (A) MLTAW and (B) MLCAW. (C) Summary visualization 

of the GSEA result for the top significantly enriched gene sets in the three classes (Mammalia, 

Aves, Teleostei) based on correlations with MLCAW. A selected subset of top gene sets are shown 

to save space, all with adjusted P<0.1 in at least one of the classes. GSEA significance (negative 

log10 adjusted P-values) is encoded by dot color, with two sets of colors (red-orange and blue-

purple) representing positive or negative enrichment, respectively; grey color means adjusted 

P>=0.1. Dot size represents the absolute value of normalized enrichment scores (NES) measuring 

the effect size of enrichment. The complete GSEA results are given in Table S3. (D) GSEA analysis 

of the correlation between the gene conservation scores and cancer-resistance estimates such as 

MLTAW were performed for different orders of mammalian species including Rodentia (rodents), 

Primates (primates), Chiroptera (bats), Carnivora (carnivores), Artiodactyla (even-toed hoofed 

animals), and Cetacea (whales). A heatmap showing the similarity (Jaccard index) between the 

significantly enriched gene sets (FDR<0.1) from each pair of mammalian orders, based on the 

MLTAW correlation. The dendrogram on the left is the phylogenetic tree of the mammalian 

orders, and the rows of the heatmap are arranged accordingly. The dendrogram on the top 

represents the hierarchical clustering of the orders based on their similarities in the GSEA results. 

(E) Summary visualization of the GSEA result for the top significantly enriched gene sets in the 

mammalian orders based on MLTAW correlation. A selected subset of top gene sets are shown to 

save space, all with adjusted P<0.1 in at least one of the orders (complete results in Table S5). The 

color code and dot size are as described in (C).  

  

 



 

 

 

 

 

 

 

 

 

 

 

Figure S14: Spearman’s correlation (ρ) in predicting cancer resistance (MLCAW) in all species 

using only TSGs, only oncogenes, both TSGs and oncogenes, using PC and NC genes in cross 

validation, using PC and NC genes after removing TSGs and oncogenes in cross validation is 

shown.  

 

 



 

 

 

 

 

Figure S15: Looking at loss-of-function genes observed in canine transmissible venereal tumors. 

Gene set enrichment analysis (GSEA) plot showing a significant enrichment of the PC genes in 

mammals (using MLTAW measure) for the loss-of-function genes observed in canine transmissible 

venereal tumors. 

 

 



 

 

 

 

 

Figure S16: The cancer resistance (CR) scores predicted on all species (in leave-one-out cross-

validation) analysis are individually tested on different classes of species: Mammalia 

(mammals), Aves (birds), Teleostei (fish), Reptilia (reptiles). Spearman’s ρ and p-values (P) are 

reported using the two cancer-resistance estimates: (A) MLTAW or ‘(Maximum longevity)6 x 

(adult weight)’; and (B) MLCAW or ‘Maximum longevity controlled for adult weight’. 

 
 
 
 
 
 
 
 



 

 

 

 

 
Figure S17: Gene conservation profiles for all genes and species, before (left sub-figure) and 

after (right sub-figure) rank-normalization. Box plots show the range of gene conservation scores 

(obtained using humans as reference species) for mammals (Mammalia), birds (Aves), and fish 

(Teleostei). One-sided Wilcoxon rank-sum test comparing mammals to the other two classes are 

shown (whenever the p-value was computed as 0 by the Wilcoxon rank-sum test software, we 

wrote P < 2.2e-16 in the left figure).  
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