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Supplementary Figure 1: Details of exclusions
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Supplementary Figure 2: Distribution of image phenotype measures: a) Original data
and b) after rank normalisation for distensibility measures has been applied.
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Supplementary Figure 2, panel c) Distribution of image phenotype measures in non-
Caucasian individuals (excluded from GWAS analysis).
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Supplementary Figure 3: Correlation between imaging phenotypes. Upper panels display
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Supplementary Figure 4
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Supplementary Figure 4. Genetic correlation between traits using LD score
regression (see Methods for details). Correlation coefficients are presented (r,),
with green representing positive correlation and red a negative correlation
coefficient. AA_max: maximum ascending aortic area; AA_min: minimum
ascending aortic area; DA_max: maximum descending aortic area; DA_min:
minimum descending aortic area; rnAAdistens: rank-normalised ascending aortic
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Asterisk indicates p value (uncorrected) of correlation <0.05. Exact p values and full
results can be found in Supplementary Table 4
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Supplementary Figure 5: Manhattan plots - Stage 1 GWAS
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Supplementary Figure 5: Single-trait genome-wide analysis results were obtained using BOLT-
LMM. Summary statistics (P values from infinitesimal mixed model associations as described
in Methods) are shown as Manhattan plots with red dashed line showing the genome-wide
significance threshold of P =5 x 1078, a= ascending aortic distensibility (AAdis), b=descending
aortic distensibility (DAdis), c= ascending aortic minimum area (AAmin), d= descending aortic
minimum area (DAmin), e= ascending aortic maximum area (AAmax), f= descending aortic
maximum area (DAmax).



Supplementary Figure 6: QQ plots - Stage 1 GWAS
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Supplementary Figure 6: QQ plots showing observed versus expected -log,, p values for stage 1 GWAS (from infinitesimal
mixed model associations using BOLT-LMM), with genomic inflation factor in insert. a= ascending aortic distensibility
(AAdis), b=descending aortic distensibility (DAdis), c= ascending aortic minimum area (AAmin), d= descending aortic minimum
area (DAmin), e= ascending aortic maximum area (AAmax), f= descending aortic maximum area (DAmax).
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Supplementary Figure 7: Manhattan plots - Stage 2 (MTAG) GWAS
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Supplementary Figure 7 Manhattan plots showing multi-trait (MTAG) GWAS results using all six

aortic traits..Unadjusted p values shown are derived from MTAG analysis as described in Methods.
Summary statistics from MTAG are shown as Manhattan plots with red dashed line showing the

genome-wide significance threshold of P =5 x 1078, a= AAdis, b=DAdis, c=AAmin, d=DAmin,

e=AAmax, f=DAmax.



Supplementary Figure 8

a. AAdis b. DAdis
604 @mmoo © o o
A=1.021 8 A=1.031 J
54
o
o 40 o,
g ° g
3 ° 3
c b4
[ [0}
8 a
O 0] e}
0.
0 2 4 6 0 2 2 6
Expected -log,oP Expected -log,oP
c. AAmin d. DAmin
Qmmmo o foo o
-_ o -
A=1.113 g w0 A=1.116
60 8
54
8
o o,
g g
kel e}
2 2
[9) [}
& 8
(o] [e]

0 2 4 6 0 2 4 6
Expected -log;oP Expected -log,oP

e. AAmax f. DAmax

EI00 O 301 fpoo o
604 A=1.106 A=1.122 &
8

40

Observed -log,oP
Observed -log,oP

0 2 4 6 0 2 4 6
Expected -log;oP Expected -log;oP
Supplementary Figure 8: QQ plots showing observed versus expected -log,,p values (unadjusted) for stage 2
(multi-trait) GWAS analysis using MTAG, with genomic inflation factor (A) in insert. Please see Methods for
details of analysis. a= ascending aortic distensibility (AAdis), b=descending aortic distensibility (DAdis), c=
ascending aortic minimum area (AAmin), d= descending aortic minimum area (DAmin), e= ascending aortic
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Supplementary Figure 9: FUMA results: a) Overlap of genes detected for FUMA for
different traits; b) Gene types detected by FUMA
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Supplementary Figure 10: Manhattan plots showing gene-based analysis results from
MAGMA (implemented in FUMA). The top 21 genes associated with each trait are labelled. a)
Ascending aortic distensibility (AAdis); b) Descending aortic distensibility (DAdis)
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Supplementary Figure 10 cont: Manhattan plots showing gene-based analysis results from
MAGMA (implemented in FUMA). The top 50 genes associated with each trait are labelled. c)
Ascending aortic minimum area (AAmin); d) Descending aortic minimum area (DAmin)
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Supplementary Figure 11: Heat map showing tissue expression analysis, with
the scale showing the —log10 p value of enrichment. Analysis in MAGMA,
implemented in FUMA.
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Supplementary Figure 12: MAGMA gene set enrichment Threshold FDR < 0.05 for at

least one trait. Colour scale shows p value, adjusted for multiple comparisons in
MAGMA.
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Supplementary Figure 13: Average normalised effect size (NES) of eQTLs mapped to
selected candidate genes by FUMA. NES for the different imaging phenotypes is
indicated by colour. a) NES for genes associated with TGF-b, IGF, VEGF or PDGF

pathways based on the KEGG (hsa04350, hsa04910 , hsa04370, hsa04512) and GO
databases (G0O:0048009, G0:0048010, GO:0048008, GO:0007179). b) NES for genes
associated with the extracellular matrix (ECM) by KEGG (hsa04512) and GO
(G0:0031012) databases.
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Supplementary Figure 14: Extended coexpression networks: AAdis (MTAG) Co-expression
networks for aortic GWAS genes generated with primate single cell expression data for the aorta33.
Shown are co-expression networks derived from extended models (r>0.1) in a) endothelial and b)

smooth muscle cells. Round circles represent genes which were significantly associated with an
aortic trait in the current GWAS. Diamonds represent other genes significantly co-expressed in the
published single cell data for the cell-type indicated. The deeper the shade of red, the more highly
that gene is expressed in the cell-type. The strength of co-expression is denoted by the colour of the
lines joining genes with higher correlations indicated by darker lines. Hub genes are therefore found
in the centres of these modules.



Supplementary Figure 15

Supplementary Figure 15: Extended coexpression networks: DAdis (MTAG).Co-expression
networks for aortic GWAS genes generated with primate single cell expression data for the aorta33.
Shown are co-expression networks derived from extended models (r>0.1) in a) endothelial and b)
smooth muscle cells. Round circles represent genes which were significantly associated with an
aortic trait in the current GWAS. Diamonds represent other genes significantly co-expressed in the
published single cell data for the cell-type indicated. The deeper the shade of red, the more highly
that gene is expressed in the cell-type. The strength of co-expression is denoted by the colour of the
lines joining genes with higher correlations indicated by darker lines. Hub genes are therefore found
in the centres of these modules.
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Supplementary Figure 16: Extended coexpression networks: AAmin. Co-expression networks for
aortic GWAS genes generated with primate single cell expression data for the aorta33. Shown are co-
expression networks derived from extended models (r>0.1) in a) endothelial and b) smooth muscle

cells. Round circles represent genes which were significantly associated with an aortic trait in the

current GWAS. Diamonds represent other genes significantly co-expressed in the published single
cell data for the cell-type indicated. The deeper the shade of red, the more highly that gene is
expressed in the cell-type. The strength of co-expression is denoted by the colour of the lines
joining genes with higher correlations indicated by darker lines. Hub genes are therefore found in
the centres of these modules.
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Supplementary Figure 17: Extended coexpression networks: DAmin. Co-expression networks for
aortic GWAS genes generated with primate single cell expression data for the aorta33. Shown are co-
expression networks derived from extended models (r>0.1) in a) endothelial and b) smooth muscle

cells. Round circles represent genes which were significantly associated with an aortic trait in the

current GWAS. Diamonds represent other genes significantly co-expressed in the published single
cell data for the cell-type indicated. The deeper the shade of red, the more highly that gene is
expressed in the cell-type. The strength of co-expression is denoted by the colour of the lines
joining genes with higher correlations indicated by darker lines. Hub genes are therefore found in
the centres of these modules.
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Supplementary Figure 18: Power heatmaps showing a) Power given a sample size of
32590 to detect genome-wide significant associations at a range of standardized betas
and minor allele frequencies. b) Power calculations as above, given a sample size of
15817, our smallest sample size for males in sex-specific GWAS. Power calculations
performed using the gwas -power functions in R as described in Visscher et al &



Supplementary Information: Replication cohort methods: Study of Health in
Pomerania (SHIP)

Study Population

SHIP is a population-based project in West Pomerania, a region in the northeast of
Germany, that consists of two independent prospectively collected cohorts (SHIP and SHIP-
Trend) assessing the prevalence and incidence of common population-based diseases and
their risk factors. The study design has been previously described in detail'. Briefly, a sample
from the population aged 20 to 79 years was drawn from population registries. First, the
three cities of the region (with 17,076 to 65,977 inhabitants) and the 12 towns (with 1,516 to
3,044 inhabitants) were selected, and then 17 out of 97 smaller towns (with less than 1,500
inhabitants), were drawn at random. Second, from each of the selected communities,
subjects were drawn at random, proportional to the population size of each community and
stratified by age and gender. Only individuals with German citizenship and main residency in
the study area were included.

For SHIP, baseline examinations were carried out from 1997 until 2001, and the sample
finally comprised 4,308 participants. Baseline examinations for SHIP-Trend were carried out
between 2008 and 2012, finally comprising 4420 participants. Whole-body MRI was
assessed in the second 5-year follow-up of SHIP (SHIP-2) and in SHIP-Trend, and
subsequently included in this project.

The medical ethics committee of the University of Greifswald approved the study protocol,
and oral and written informed consents were obtained from each of the study participants.

MR Imaging

MR imaging was performed on a 1.5-T MR system (Magnetom Avanto; Siemens Medical
Systems, Erlangen, Germany) using integrated coil elements and phased-array surface coils.
The axial 3D-T1-VIBE sequences (volume interpolated breath-hold examination) with ECG
triggering and breath-hold technique were used to display the ascending and descending
aorta (field of view: 450 mm x 365 mm, matrix: 256 x 256). Additionally, the following
sequences were included in the reading procedure: T1-VIBE thorax (TR of 3.1 ms; TE of 1.1
ms; 8° flip angle; voxel size of 1.8 x 1.8 x 3.0 mm; scan time 21s) and abdomen (2 image
stacks, TR of 7.5 ms; TE of 2.4 ms; 10° flip angle; voxel size of 2.4 x 1.6 x 4.0 mm; scan
time 38s).

The post-processing and measurements of the vessel diameters were carried out with the
image viewing and editing software OsiriX (version 3.6.1, 64-bit; http://www.osirix-
viewer.com). For this purpose, eight measurement points were defined. Measurement was
taken from vessel outer wall to outer wall (outer diameter). For oval vessels, the smallest
vessel diameter was selected.

Reading was performed by two trained and certified observers. The quality of the diameter
reading was assigned using four categories: very good, good, difficult to measure, and not
measurable. Results of the latter category were excluded from the analyses.

Genotyping

Nonfasting blood samples were drawn from the cubital vein in the supine position. The
samples were taken between 07:00 AM and 04:00 PM, and serum aliquots were prepared for
immediate analysis and for storage at -80 °C in the Integrated Research Biobank (Liconic,
Liechtenstein).



The SHIP samples were genotyped using the Affymetrix Genome-Wide Human SNP Array
6.0. Hybridisation of genomic DNA was done in accordance with the manufacturer’s standard
recommendations. Genetic data were stored using the database Caché (InterSystems).
Genotypes were determined using the Birdseed?2 clustering algorithm. For quality control
purposes, several control samples where added. On the chip level, only subjects with a
genotyping rate on QC probesets (QC callrate) of at least 86% were included. Finally, all
arrays had a sample callrate > 92%. Duplicate samples (based on estimated IBD), and
mismatches between reported and genotyped sex were removed, leaving 4070 arrays for
subsequent analyses. SNPs with a Hardy-Weinberg-Equilibrium p-value <0.0001, a call rate
<0.95, and monomorphic SNPs were removed before imputation, as well as SNPs having
position mapping problem from genome build b36 to b37, or duplicate IDs.

A subset of the SHIP-Trend samples was genotyped using the lllumina Human Omni 2.5
array. Hybridisation of genomic DNA was done in accordance with the manufacturer’s
standard recommendations at the Helmholtz Zentrum Muinchen. Genotypes were determined
using the GenomeStudio Genotyping Module v1.0 (GenCall algorithm) or the GenomeStudio
2.0 Genotyping Module (GenCall algorithm). Arrays with a genotyping call rate <94%,
duplicates (based on estimated IBD), and mismatches between reported and genotyped sex
were removed, leaving 986 arrays for subsequent analyses. SNPs with a Hardy-Weinberg-
Equilibrium p-value <0.0001, a call rate <0.95, or monomorphic SNPs were removed before
imputation, as well as SNPs having position mapping problem from genome build b36 to b37,
duplicate IDs.

The remaining SHIP-Trend samples was genotyped using the lllumina GSA chip.
Hybridisation of genomic DNA was done in accordance with the manufacturer’s standard
recommendations at the LIFE & BRAIN GmbH, Bonn, Germany. Genotypes were
determined using the GenomeStudio 2.0 Genotyping Module (GenCall algorithm). Prior to
subsequent quality control, SNPs with a MAC <10 were excluded. Arrays with a genotyping
call rate <94%, duplicates (based on estimated IBD), mismatches between reported and
genotyped sex, genetic PCA outliers (>8 SD of the mean in one of the first 10 PCs in 5
iterations), and arrays with extreme heterozygosity (>4 SD of the mean) were removed,
leaving 3,133 arrays for subsequent analyses. SNPs with a Hardy-Weinberg-Equilibrium p-
value <0.0001, a call rate <0.95, and a MAF <1% or a minor allele count <10 were removed
before imputation.

Imputation of the genotypes was performed using the HRCv1.1 reference panel and the
Eagle and minimac3 software implemented in the Michigan Imputation Server for pre-
phasing and imputation, respectively. Only genotyped SNPs with consistent reference site
alleles were included in the imputation process.

Statistical Analyses

In total, MRI and genetic data was available from 986 SHIP and 1801 SHIP-Trend
participants for subsequent analyses. Genome-wide linear regression analyses were
performed in each cohort separately using EPACTS-3.2.9
(https://github.com/statgen/EPACTS) adjusted for sex, age, mean arterial pressure, body
height, body weight, array type (SHIP-Trend only), and the first two genetic principal
components. The results of both cohorts were subsequently meta-analyzed using an inverse-
variance weighted method implemented in METAL?.
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