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REVIEWER COMMENTS 

Reviewer #1 (Remarks to the Author): 

This manuscript leverages MRI imaging in the UK Biobank (n~32K white individuals) to generate 6 

quantitative thoracic aortic traits, including aortic distensibility. The authors performed GWAS and 

identified ~100 loci, with many harboring genes in the TGF-b, IGF, VEGF and PDGF pathways. 

Mendelian randomization provided evidence for a causal role for aortic distensibility in 

development of aortic aneurysms and cerebral white matter hyperintensities (a marker of small vessel 

disease). 

Specific comments: 

1. Early in the results section the authors should comment on the relationship between distensibility 

(and other aortic measures) and demographic/clinical factors including age, sex, blood pressure, 

diabetes, etc. A supplementary table showing the basic demographic/clinical features of the cohort 

studies and the relationship to distensibility would be helpful. 

2. All non-white individuals were excluded from this analysis. Were the aortic measures quantitated in 

these individuals? It would be of interest to report on them even though they were not included in the 

GWAS analyses. 

3. The GWAS lacks replication. Are there any different cohorts with aortic imaging and genotyping that 

could be utilized for replication? 

4. The UK Biobank also has publicly available whole exome data. What is the overlap of these 

individuals with the ~32K used for aortic measures? The authors should consider examining genes 

nominated by their GWAS for coding variants detected by exome sequencing that are associated, 

singly or via gene burden analysis, with the same aortic trait. 

5. The authors should clarify the directionality of the effects of the TGF-b, IGF, PDGF and VEGF 

signaling pathways on aortic distensibility. For example, do the aggregated data support that 

increased or decreased TGF-b signalling is associated with lower aortic distensibility? This should be 

clarified for all the major pathways identified by these analyses, as well as key genes such as elastin 

and other ECM proteins. Here again, an analysis of a burden of pLOFs in selected genes from the 

exome sequencing data could help to support inferences around directionality. 

Reviewer #2 (Remarks to the Author): 

1. Table 1 should report the other allele as well as the effect allele. The effect allele frequency should 

also be reported rather than the MAF. 

2. Did the applicants perform power calculations for each of six traits included in the analyses? Both 

overall and sex-specifically? 

3. Table 2 should report the other allele as well as the effect allele. The effect allele frequency should 

also be reported. 

4. Line 380 -381 – why didn’t the applicants adjust for array design and principal components in these 

analyses as well as for age and sex? 

5. It is well known that UK biobank is not representative of the UK population. Could selection bias 

have influenced any of these results and did the authors take any steps to mitigate the potential for 

selection bias to affect the findings? 

6. Lines 540-549: The findings of associations between aortic traits and small vessel disease are very 

interesting. Did the authors consider replication of these findings in an external cohort? 

7. Lines 601-602: What was the accuracy of the CNN? Are there kappa statistics and other measures 

of reliability and accuracy reported? 

8. Line 615: Details of what sort of QC was performed should be given and the results should be 

reported in the supplementary materials. 

9. Lines 630-634: Why didn’t the authors adjust for array design and prinicipal components in these 



analyses? 

10. Lines 642-646: the MTAG methodology is not very clearly described – I assume it is some form of 

joint modelling approach. Can the authors provide more detail on how this method increases power? 

11. Lines 732-735: The authors used the contamination mixture method to test the validity of 

instrumental variables. Did they consider other approaches such as MR-GRAPPLE that is used for two-

sample MR with heterogeneous instruments as well? 

12. Lines 791-792: The authors state that “The PheWAS model was adjusted for age, sex, genotype 

array, and its four principal components for population stratification.” Why are genotype array 

adjusted and PCs adjusted for in these analyses and not in others? Why were only 4 PCs and not at 

least 10 PCs out of the 40 PCs available in UKB?



We wish to thank the reviewers for their careful consideration of our data and their insightful 
comments. We address specific points and questions raised by the reviewers below with all 
revisions in the manuscript text highlighted in red font. 
 
We are also aware of an additional paper which has been published since this research was 
submitted (Benjamins et al1), which reports some GWAS data for ascending aortic distensibility, 
and aortic areas. They report only four loci reaching genome-wide significance for ascending aortic 
distensibility. Using more accurate phenotyping (see: Dice metrics in Methods) and joint modelling 
(MTAG), we identify an additional 22 loci associated with ascending aortic distensibility and 13 
additional loci for descending aortic distensibility, adding significantly to the understanding of 
these clinically relevant phenotypes. We have incorporated the new publication into our 
comparative table to highlight which of our associations are novel.  
 
We have demonstrated reproducibility of our data (both stage 1 GWAS and MTAG “hits”) by 
replicating effect directions for aortic areas in a smaller population cohort. Our exploratory 
analysis of the possible causal relationship between aortic traits and white matter hyperintensities 
also adds to the novelty of our findings.  
 
 
REVIEWER COMMENTS 
 
Reviewer #1 (Remarks to the Author): 
 
This manuscript leverages MRI imaging in the UK Biobank (n~32K white individuals) to generate 6 
quantitative thoracic aortic traits, including aortic distensibility. The authors performed GWAS and 
identified ~100 loci, with many harboring genes in the TGF-b, IGF, VEGF and PDGF pathways. 
Mendelian randomization provided evidence for a causal role for aortic distensibility in 
development of aortic aneurysms and cerebral white matter hyperintensities (a marker of small 
vessel disease).  
 
Specific comments: 
1. Early in the results section the authors should comment on the relationship between distensibility 
(and other aortic measures) and demographic/clinical factors including age, sex, blood pressure, 
diabetes, etc. A supplementary table showing the basic demographic/clinical features of the cohort 
studies and the relationship to distensibility would be helpful. 
 
Thank you for this suggestion. This is indeed interesting and important information. We have added 
a Supplementary Table 1c for the relationships of demographic and clinical factors such as age, BMI, 
diabetes and hypertension to aortic traits, and we have added comments on these relationships to 
the Results section.  
 
2. All non-white individuals were excluded from this analysis. Were the aortic measures quantitated 
in these individuals? It would be of interest to report on them even though they were not included 
in the GWAS analyses. 
 
We did indeed measure the aortic traits in the non-white individuals, and now have reported this 
data for interest in the supplementary information. The data is now included in Supplementary 
figure S2C and Supplementary table S1b 
 
3. The GWAS lacks replication. Are there any different cohorts with aortic imaging and genotyping 
that could be utilized for replication? 



 
We have used a smaller population cohort (SHIP) which also included both genotyping and MRI data 
(N=2787). Whilst underpowered for discovery, the additional data has allowed us to demonstrate 
replication in an independent cohort, with consistent effect direction in >89% of the overlapping 
lead SNPs for aortic dimensions, both in our stage 1 GWAS and our MTAG analysis. This has 
confirmed the robustness and validity of the MTAG analysis findings, as well as the stage 1 GWAS 
results.  This replication data has been added to the manuscript (with detailed methods for the SHIP 
cohort in a new Supplementary Information file), and look-ups are included in Supplementary Tables 
7a-d.  
 
We were not able to find a sufficiently large cohort to allow direct replication of our associations 
with distensibility (distensibility data was not acquired as part of the SHIP study), but as distensibility 
is a phenotype derived from measures of aortic dimensions, we believe that the robustness of our 
reported associations is supported by the replication data for aortic dimensions described above. 
Note that we approached the investigators of the only other large population study (MESA) that we 
are aware of for which MRI-derived distensibility data was obtained, but they were unable to share 
their data with us at this time. 
 
4. The UK Biobank also has publicly available whole exome data. What is the overlap of these 
individuals with the ~32K used for aortic measures? The authors should consider examining genes 
nominated by their GWAS for coding variants detected by exome sequencing that are associated, 
singly or via gene burden analysis, with the same aortic trait. 
 
The overlap of subjects at present is 18,571. Exploration of rare variant associations in the available 
whole exome data is beyond the scope of this paper. We agree that it would be of value and will 
assemble a group for this purpose as part of future research plans, but are awaiting the release from 
UK Biobank of the full 450,000+ exomes (which will allow full overlap with our aortic traits cohort) 
before undertaking this, to ensure a well-powered study.  
 
5. The authors should clarify the directionality of the effects of the TGF-b, IGF, PDGF and VEGF 
signaling pathways on aortic distensibility. For example, do the aggregated data support that 
increased or decreased TGF-b signalling is associated with lower aortic distensibility? This should be 
clarified for all the major pathways identified by these analyses, as well as key genes such as elastin 
and other ECM proteins. Here again, an analysis of a burden of pLOFs in selected genes from the 
exome sequencing data could help to support inferences around directionality. 
 
The reviewer asks an important question, but one which is extremely difficult to address.  Not only is 
inferring the effect of a detected variant on the activity of a mapped pathway gene by itself a 
formidable task, the complexity of signalling pathways makes any general assessment of their 
signalling activity highly challenging, particularly where not only organ-specific but also lineage-
specific effects on signalling pathways are seen to play an important role in phenotype. 
Nevertheless, to gain initial insights, we utilised information from GTEX for the detected eQTLs to 
putatively link gene expression to the phenotypic variables (aortic area and distensibility) in our 
study. Aligning the directionality of the effects (beta) in our study with the directionality of 
expression changes in GTEX for aortic tissue enabled us to predict associations between the 
expression of candidate genes and the phenotypic measures. While we could align over 8000 eQTLs 
mapped to 164 genes, the coverage of signalling pathway and ECM remains limited. Furthermore, 
this mapping was only possible for candidate genes with mapped significant eQTLs, which excluded 
some interesting candidates such as elastin. Despite these limitations, the exploratory analysis 
suggested relationships of interest between for example, distensibility and genes known to influence 
TGF-B signalling  (such as positively signed correlations between distensibility and FGF9 or THSD4 



expression).  Although these exploratory data warrant cautious interpretation present, we present 
them in a supplementary figure S13 and supplementary table S15c.   
 
As noted above, we felt that investigation of the WES – and potential LOF associations-  was beyond 
the scope of this paper. We plan to examine this once the full 450+ exomes (allowing full overlap 
with this dataset for a well-powered analysis) have been released by UK Biobank.  
 
 
 
Reviewer #2 (Remarks to the Author): 
 
1. Table 1 should report the other allele as well as the effect allele. The effect allele frequency 
should also be reported rather than the MAF. 
This has now been amended 
 
2. Did the applicants perform power calculations for each of six traits included in the analyses? Both 
overall and sex-specifically? 
We performed power calculations using assumptions derived from previously published studies 
which suggest that standardised effect sizes for aortic traits average around 0.05. The largest effect 
sizes are around 0.2. Power heatmaps are provided in a new Supplementary Figure S18 for a range 
of MAF and standardised betas, given our cohort sizes (whole cohort and sex-specific). Calculation 
using gwas-power in R (which uses the formulae in Appendix 1 of Visscher et al2) and checked with 
Quanto (https://pphs.usc.edu/download-quanto/) suggest that the power with our full cohort size of 
32590 for a beta of 0.05 at a MAF of 0.3 is 0.66 to detect genome-wide significant associations at 
p<5x10-8. Increasing the sample size by 10,000 individuals would increase our power to detect a 
beta of 0.05 at a MAF of 0.3, to 0.89. These figures motivated us to increase power using MTAG as 
described in the paper.  
 
 
3. Table 2 should report the other allele as well as the effect allele. The effect allele frequency 
should also be reported. 
 
This has now been included. 
 
4. Line 380 -381 – why didn’t the applicants adjust for array design and principal components in 
these analyses as well as for age and sex? 
 
We included adjustment for array design and 4PCs in the MR-PheWAS analysis – this was an 
omission in the text, now corrected.  
 
 
5. It is well known that UK biobank is not representative of the UK population. Could selection bias 
have influenced any of these results and did the authors take any steps to mitigate the potential for 
selection bias to affect the findings? 
 
We agree that the UK Biobank is not representative of the UK population and has a well-recognised 
“healthy volunteer” selection bias.  However,  genotype -phenotype association should be 
generalisable, as they do not rely on the assumption of population representativeness.   We have 
added a note to the limitations section of the discussion to this effect:  
 



“The GWAS was restricted to the analysis of Caucasian individuals and additionally it is well-
recognised that UK Biobank is not representative of the UK population as a whole3. While genotype-
phenotype associations can be biased by population stratification, our analysis was adjusted for 
ethnicity and relatedness.  Nonetheless, the “healthy volunteer” selection bias of the cohort could 
be a potential confound if it significantly influenced the aortic traits of interest4.  To address this 
potential confound we now have demonstrated replication in an independent European population 
cohort (SHIP) for our primary GWAS findings and have shown that the findings in UK Biobank can be 
used to predict related cardiovascular traits (WMH) in another independent cohort (CHARGE).” 
 
 
 
6. Lines 540-549: The findings of associations between aortic traits and small vessel disease are very 
interesting. Did the authors consider replication of these findings in an external cohort?  
 
We attempted replication in the only independent cohort for which we had access to both imaging-
derived WMH and genotyping data (the Rhineland study). The analysis was underpowered with 
N=3317 (as compared with N>50,000 for the primary analysis using the CHARGE cohort); the 
conditional f-stat was very low (F<10) for the MVMR (see new Supplementary Table S25). We were 
therefore not able fully to replicate our primary findings. We noted that effect directions were 
consistent for the distensibility traits, but not for the area traits. We therefore have characterised 
the associations of aortic traits with WMH that we report as exploratory analyses. This data that we 
used in our attempt to replicate has been added to the manuscript.  
 
 
7. Lines 601-602: What was the accuracy of the CNN? Are there kappa statistics and other measures 
of reliability and accuracy reported? 
 
In terms of segmentation accuracy, the neural network achieves a Dice metric of 0.960 for the 
ascending aorta and 0.953 for the descending aorta. The Dice metric is a commonly used metric for 
evaluating image segmentation accuracy. A Dice metric of over 0.95 is typically regarded as of high 
accuracy. Furthermore, the aortic segmentations underwent an automated quality control step and 
a manual checking step, as explained in the response to Line 615. This data has now been added to 
the manuscript.  
 
8. Line 615: Details of what sort of QC was performed should be given and the results should be 
reported in the supplementary materials. 
 
In detail, the automated segmentation was quality controlled using the following criteria: 1) the 
aorta appears in all the time frames of the image sequence; 2) there is no abrupt change of aortic 
areas between adjacent time frames; 3) the aortic segmentation should be a single connected 
component. Any segmentation that did not fulfil these criteria were excluded in the quality control. 
Subsequently, an image analyst visually assessed the segmentation screenshot. The aortic images 
were available for 37,891 subjects. After image analysis and quality control, the imaging phenotypes 
were available for 36,995 subjects.  
 
 
9. Lines 630-634: Why didn’t the authors adjust for array design and principal components in these 
analyses? 
 
Here, we did not adjust for principal components as we used BOLT-LMM linear mixed modelling, 
which allows correction for population stratification and relatedness.  



 
The array design was not included as exploratory analysis suggested that there was no inflation of 
lambda nor effect on the lead SNPs reported with inclusion of this as a covariate. We re-ran a full 
GWAS of aortic area including array design as a covariate, and lambda was unaffected, as were the 
lead SNPs – so this would not affect the reported loci (this data can be made available upon 
request). 
 
10. Lines 642-646: the MTAG methodology is not very clearly described – I assume it is some form of 
joint modelling approach. Can the authors provide more detail on how this method increases 
power? 

MTAG has been described in detail in Turley et al5 and used across many published GWAS studies 
including from our group to boost power6-8.  The basic idea is that when there is correlation between 
GWAS estimates from different traits, it is possible to improve the accuracy and power of the effect 
estimates for each individual trait by including information contained in the GWAS estimates for the 
other traits. It is a generalisation of inverse-variance-weighted meta-analysis, assuming a constant 
variance:covariance matrix of effect sizes across traits. This data and the MTAG reference paper has 
been added to the manuscript 

 
11. Lines 732-735: The authors used the contamination mixture method to test the validity of 
instrumental variables. Did they consider other approaches such as MR-GRAPPLE that is used for 
two-sample MR with heterogeneous instruments as well? 
 
MR-GRAPPLE was not available at the time we planned this study. The technique uses a flexible p-
value threshold for instrument selection to avoid weak instrument bias, particularly for multiple risk 
factors, based on the profile likelihood framework9. It claims to address pervasive pleiotropy and 
correlated risk factors in an integrated framework.  
 
We have however used MR contamination mixture method, also a likelihood-based method, for 
obtaining valid causal inferences with some invalid instrumental variables10. The two methods serve 
similar purposes. In this study, we applied contamination mixture method to MR with a single target 
risk factor, as our group has previously applied this method. We are unaware of any study that has 
independently compared these two methods, and therefore it is hard to know which one is superior. 
Both methods appear to be valid. If the editor finds it necessary, we are happy to run MR-GRAPPLE. 
 
12. Lines 791-792: The authors state that “The PheWAS model was adjusted for age, sex, genotype 
array, and its four principal components for population stratification.” Why are genotype array 
adjusted and PCs adjusted for in these analyses and not in others? Why were only 4 PCs and not at 
least 10 PCs out of the 40 PCs available in UKB? 
 
We adjusted for PCs and genotype array here as the technique used for association in our PheWAS 
does not account for population stratification and relatedness (as BOLT-LMM does in the main 
GWAS analyses). We have restricted our analysis to the Caucasian participants, thus we did not 
adjust for more PCs. Our group has previously performed PheWAS adjusting for 4 PCs and found it 
sufficient for this avoid population stratification whilst not introducing more error11. 
 
 
We believe that these revisions have made this a stronger paper and, in particular that the 
replication supports the biological and clinical relevance of our findings. We hope that we have 



addressed these comments in a satisfactory manner and are grateful for your renewed 
consideration of the paper with the additional data and revisions.  
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REVIEWERS' COMMENTS

Reviewer #1 (Remarks to the Author): 

None 

Reviewer #2 (Remarks to the Author): 

I am happy with the responses to my comments.



REVIEWERS' COMMENTS

Reviewer #1 (Remarks to the Author): 

None 

Reviewer #2 (Remarks to the Author): 

I am happy with the responses to my comments. 

Response: we are pleased to have addressed the reviewers’ previous comments and thank them 
for their careful consideration and oversight of our work.  

We include previous comments and responses below for completeness.  


