Supplementary Methods

Humoral assays

Spike and nucleocapsid protein were expressed as previously described¹³. All sera were heatinactivated at 56°C for 30 mins before use. High-binding ELISA plates (Corning, 3690) were coated with antigen (Spike or N) at 3 µg/mL (25 µL per well) in PBS, either overnight at 4°C or 2 hr at 37°C. Wells were washed with PBS-T (PBS with 0.05% Tween-20) and then blocked with 100 µL 5% milk in PBS-T for 1 hr at room temperature. Wells were emptied and sera (diluted at 1:50 in milk) added and incubated for 2 hr at room temperature. Control reagents included CR3009 (2 µg/mL), CR3022 (0.2 µg/mL), negative control plasma (1:25 dilution), positive control plasma (1:50) and blank wells. Wells were washed with PBS-T. Secondary antibody was added and incubated for 1 hr at room temperature. IgM was detected using Goat-anti-human-IgM-HRP (1:1,000) (Sigma: A6907) and IgG was detected using Goat-anti-human-Fc-AP (1:1,000) (Jackson: 109-055-098-JIR). Wells were washed with PBS-T and either AP substrate (Sigma) was added and read at 405 nm (AP) or 1-step TMB substrate (Thermo Scientific) was added and quenched with 0.5 M H₂S0₄ before reading at 450 nm (HRP)

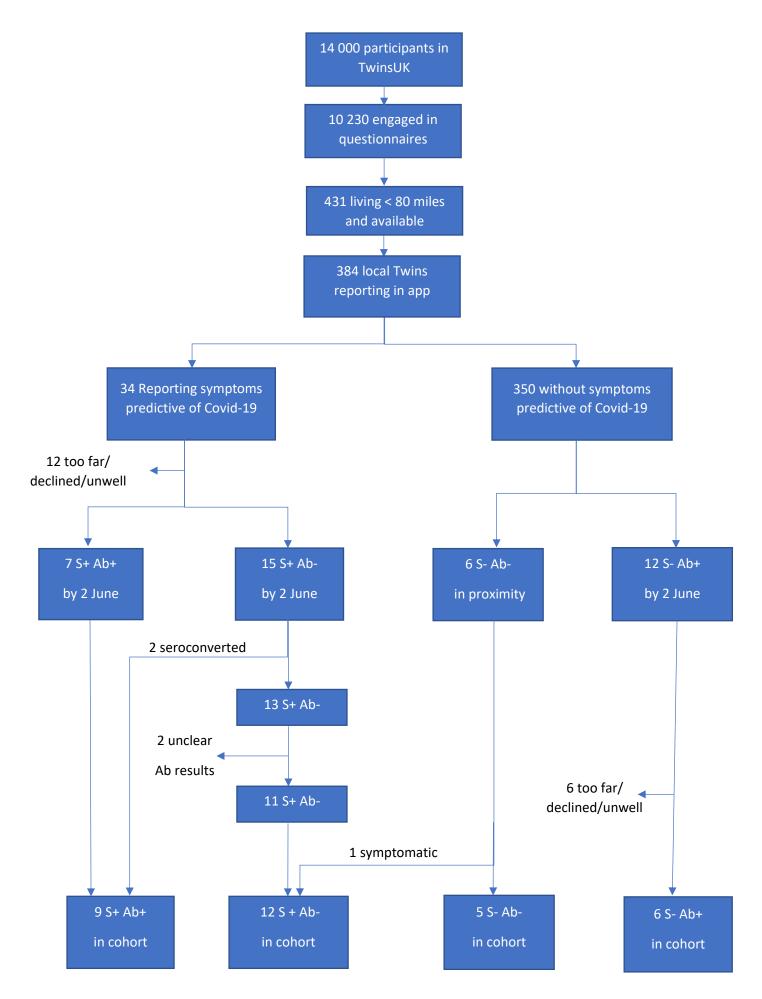
PBMC stimulation with SARS-CoV-2 overlapping peptide pools

PBMC were stimulated with pools of overlapping peptides spanning the whole sequence of the SARS-CoV-2 Matrix (M) and Nucleocapsid (N) proteins (Peptivator peptide pools, Miltenyi) and two pools spanning the S1 and S2 domains of the SARS-CoV-2 spike protein (Peptivator_Prot_S1 Miltenyi and PepMix SARS-CoV-2 vial 2, JPT Peptide Technologies). These peptide pools can stimulate both MHC-I and MHC-II restricted T cells without HLA bias²¹. Response to the S1 protein subunit is most comparable with IgG-S antibody testing. All peptides were used at a final concentration of 0.33 ng/µl. Superantigen Enterotoxin B (SEB) at 100ng/mL (Sigma Aldrich) was used as a positive control; Infanrix, a hexa-vaccine (GlaxoSmithKline) and Influvac, an Influenza surface antigen vaccine (Abbott Biologicals) were combined (HA + INF) and used to examine anamnestic responses induced by

vaccination or infection. Peptide diluent (DMSO) was used as a negative control. PBMC (1-2x106 /stimuli) were incubated for 18h at 37°C in 48-well plates in X-Vivo media (Lonza) supplemented with 5% human AB serum (Sigma) and 0.4µg/mL anti-CD40 antibody (BioXcell).

Flow Cytometry

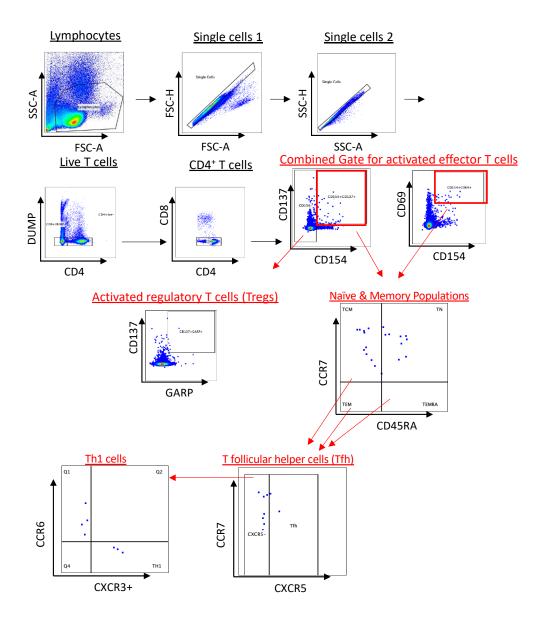
Following incubation, PBMC were stained with a live/dead cell marker (LIVE/DEAD[™] Fixable Near-IR Dead Cell Stain Kit - Invitrogen) and cell surface markers (Supplementary Table 1). Samples were acquired on a LSRFortessa Flow Analyser (BD Biosciences) and analysed using the software FlowJo (TreeStar Inc., version 10.7.2). As previously described, we defined activated conventional helper T cells based on the expression of CD69 and CD40L (CD154) and activated regulatory T cells based on upregulation of 4-1BB (CD137) and GARP in CD40L negative cells^{14–16}. We also further defined T-Cell subsets based on chemokine receptor expression (CXCR3, CCR6, CCR4 CXCR6 and CXCR5), and on memory status (CD45RA, CCR7), for presentation in supplementary data (Supplementary Figure 2+3).

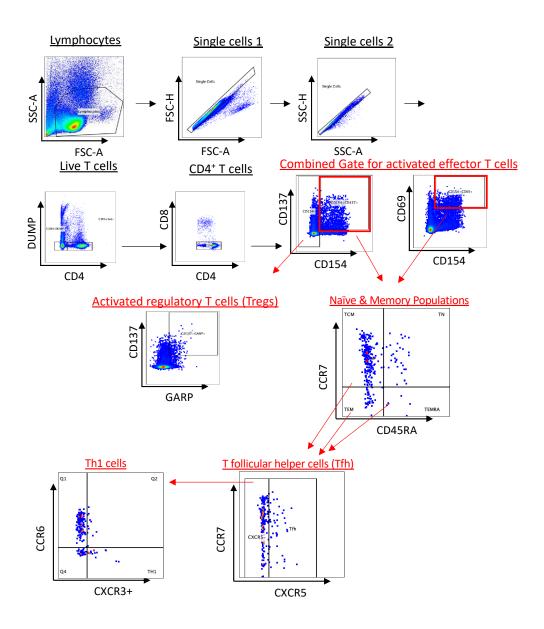

Antigen-specific T cell responses were described as the frequency of cells responding to each stimulus as a percentage of live total CD4⁺ T cells following subtraction of unstimulated controls. Negative values were set to zero.

Stored PBMCs from anonymised healthy controls recruited pre-pandemic were used to define thresholds for T cell responses to SARS-CoV-2 peptides in ROC analysis. A threshold of 0.22% increase in frequency of live T cells responding to SARS-CoV-2 peptide pools was established as optimal (sensitivity 76.9%, specificity 80%) (Figure 1A).

Cell Surface Marker	Clone/Fluorochrome	Manufacturer
GARP	Clone 7B11- APC	BioLegend
GARP	Clone G14D9-eFluor 660	eBioscience
CD19	Clone HIB19 -APC/Cy7	BioLegend
CD137	Clone 4B4-1 - BV421	BioLegend
CD134/OX-40	Clone Ber-ACT35 – BV605	BioLegend
CD154	Clone 24-31 - BV771	BioLegend
CD69	Clone FN50 - FITC	BioLegend
CD14	Clone HCD14 - APC/Cy7	BioLegend
	Clone L243 - PE-Dazzle	
HLA-DR	594	BioLegend
CD4	Clone RPA-T4 - BUV395	BD
CD8	Clone SK1 - BUV737	BD
CD45RA	Clone HI100 - BV785	BioLegend
CCR7	Clone 3D12 - APC-R700	BD
CCR6	Clone 11A9 - BV650	BD
CXCR6	Clone K041E5 - PE	BioLegend
CXCR3	Clone G025H7 - PE/Cy5	BD
CXCR5	Clone J252D4 - PE/Cy7	BioLegend

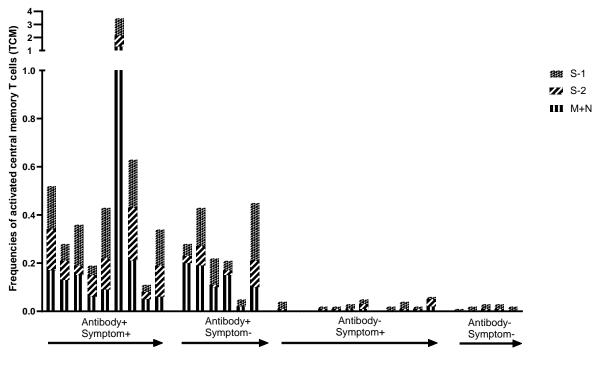
Supplementary Table S1: Cell Surface markers used to identify T cell subsets


Supplementary Fig 1: Flowchart of enrolment into cohort


Supplementary Figure 2

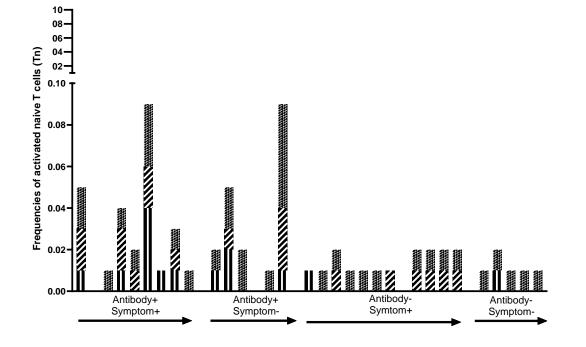
Α.

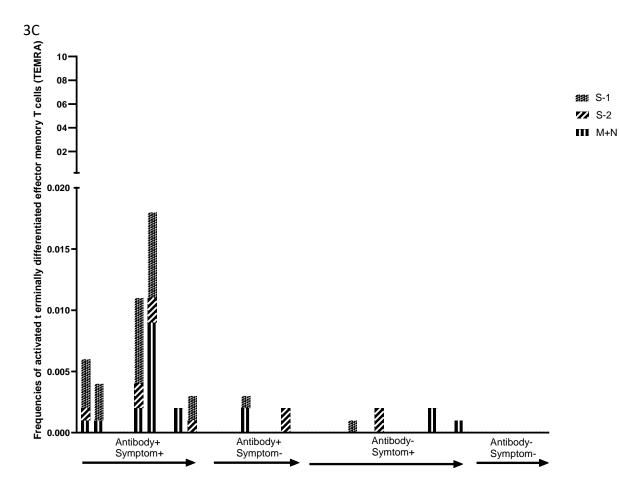
DMSO – T cell responses

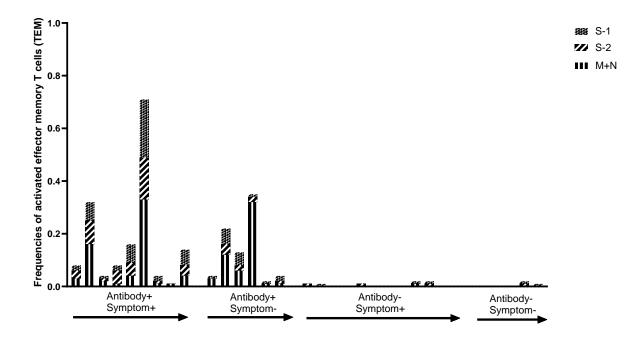

• Spike Protein Domain 1 - T cell responses

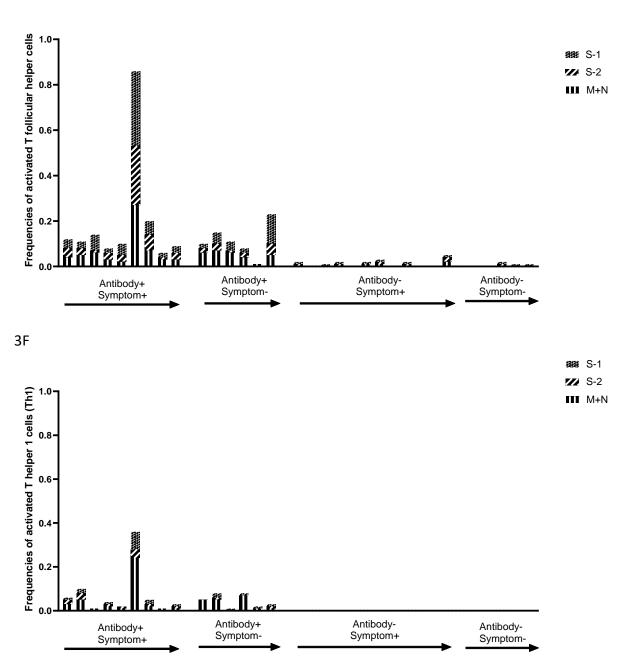
Β.

Supplementary Figure 2: Gating scheme for the identification of the antigen activated effector, regulatory T cells, memory and naïve populations and T helper 1 cells. This figure represents an example of the gating strategy identifying the activated CD4⁺ T cells by the used SARS-Cov-2 peptides. PBMCs were incubated with **A**) peptide diluent (DMSO) as a negative control and **B**) the domain 1 of the spike protein of SARS-CoV-2. Lymphocytes were gated based on SSC and FSC properties. From lymphocytes, doublet cells were excluded and live CD4⁺ T cells were gated based on the CD4 expression and the DUMP channel. Further selection of CD4⁺ T cells was achieved by excluding the CD8⁺ T cells. The activated effector T cell responses were gated by combining the expression of CD154, CD137 and CD69. After the exclusion of CD154⁺ cells, the regulatory T cell responses (Tregs) were gated based on the expression of CD154, TEMRA) and naïve populations (TN) was achieved based on the expression of CCR7 and CD45RA from the activated T effector populations. Then by excluding the naïve T cells, T follicular helper cells (Tfh) were gated based on the expression of CCR7 and CXCR5. Finally, after the exclusion of the Tfh cells, T heper 1 cells (Th1) were gated based on the expression of CXCR3 and CCR6.


3A







Supplementary Figure 3: T cell subset responses according to antibody and symptom status.

- A) Frequency of activated central memory T cells (TCM) for each participant, with bars subdivided into S-1, S-2, and M+N pools.
- B) Frequency of activated naive T cells (TN) for each participant, with bars subdivided into S-1, S-2, and M+N pools.
- C) Frequency of activated terminally differentiated effector memory T cells (TEMRA) for each participant, with bars subdivided into S-1, S-2, and M+N pools.
- D) Frequency of activated effector memory T cells (TEM) for each participant, with bars subdivided into S-1, S-2, and M+N pools.
- E) Frequency of activated T follicular helper cells (Tfh) for each participant, with bars subdivided into S-1, S-2, and M+N pools.

F) Frequency of activated T helper 1 cells (Th1) for each participant, with bars subdivided into S-1, S-2, and M+N pools.

All T cell subsets are expressed as a frequency of total CD4 T cells.