Supporting Information

Chiral Oxazolidines Acting as Transient Hydroxyalkyl-Functionalized N-Heterocyclic Carbenes: An Efficient Route to Air Stable Copper and Gold Complexes for Asymmetric Catalysis[†]

Delphine Pichon-Barré,^a Ziyun Zhang,^d Aël Cador,^a Thomas Vives,^a Thierry Roisnel,^a Olivier Baslé,^{a,b} Lucie Jarrige,^a Luigi Cavallo,^{*d} Laura Falivene^{*c} and Marc Mauduit^{*a}

^a Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR UMR 6226, F-35000 Rennes, France.

Emails: regis.gautier@ensc-rennes.fr; marc.mauduit@ensc-rennes.fr

^b LCC-CNRS, Université de Toulouse, CNRS, Toulouse, France.

^c Dipartimento di Chimica, Università di Salerno, Via Ponte don Melillo,I-84084 Fisciano, Italy.

Email: lafalivene@unisa.it

^{*d}* King Abdullah University of Science and Technology (KAUST), Chemical and Life Sciences and Engineering, Kaust Catalysis Center, Thuwal 23955-6900, Saudi Arab.</sup>

Email: luigi.cavallo@kaust.edu.sa

1.1.	GENI	ERAL INFORMATION:						
1.2.	REPR	REPRESENTATIVE PROCEDURE FOR THE PREPARATION OF OXAZOLIDINE DERIVATIVES:						
1.3. DERIV	REPR ATIVES	RESENTATIVE PROCEDURE FOR THE SYNTHESIS OF GOLD COMPLEXES FROM THE OXAZOLIDINE						
1.4. DERIV	REPR ATIVES	RESENTATIVE PROCEDURE FOR THE SYNTHESIS OF COPPER COMPLEXES FROM THE OXAZOLIDINE						
1.5.	ASYN	MMETRIC ALLYLIC ALKYLATION OF ZINC REAGENTS TO ALLYL PHOSPHATES:6						
1.5	.1.	REPRESENTATIVE PROCEDURE FOR ALLYL PHOSPHATE PREPARATION:						
1.5	.2.	REPRESENTATIVE PROCEDURE FOR COPPER-CATALYSED ALLYLIC ALKYLATION OF ZINC REAGENTS TO ALLYL PHOSPHATES: 9						
Ĺ	1.5.2.1.	General procedure 1 using imidazolium salt in situ:9						
Ĺ	1.5.2.2.	General procedure 2 using oxazolidine ligand in situ:9						
Ĺ	1.5.2.3.	General procedure 3 for AAA with isolated Cu complex:10						
1.5	.3.	REPRESENTATIVE PROCEDURE FOR COPPER-FREE ALLYLIC ALKYLATION USING ZINC REAGENTS TO ALLYL PHOSPHATES: 10						
1.5	.4.	CHARACTERIZATION OF CATALYSIS PRODUCTS:						
1.6.	ASYN	/IMETRIC CONJUGATED ADDITION:						
1.6	.1.	DATA OF SUBSTRATES:						
1.6	.2.	GENERAL PROCEDURE FOR 1,4-ADDITION:						
i	1.6.2.1.	General procedure 1 using imidazolium salt in situ:27						
Ĺ	1.6.2.2.	General procedure 2 using oxazolidine in situ:						
Ĺ	1.6.2.3.	General procedure 3 using isolated complex:						
Ĺ	1.6.2.4.	General procedure 4 using Grignard reagent:29						
1.6	.3.	GENERAL PROCEDURE FOR 1,6-ADDITION:						
1	1.6.3.1.	General procedure 1 using imidazolium salt in situ:29						
Ĺ	1.6.3.2.	General procedure 2 using oxazolidine in situ:						
Ĺ	1.6.3.3.	General procedure 3 using isolated complex:						
Ĺ	1.6.3.4.	General procedure 4 using Grignard reagent:						
1.6	.4.	CATALYSIS PRODUCTS:						
1.7.	NMR	SPECTRA:						
1.8.	X-RA	Y CRYSTALLOGRAPHY:74						
1.9.	DFT (CALCULATIONS						

1.1. General information:

Unless indicated otherwise, all reactions were performed under inert atmosphere using Schlenk line techniques. Reactions at elevated temperature were maintained by thermostatically controlled oil-bath. Tetrahydrofuran, toluene, dichloromethane and diethyl ether were purified using MBraun MB-SPS-5 Solvent Purification System. Other solvents were distilled over Sodium/Benzophenone or Calcium hydride. (L)-leucine was purchased from Fluorochem, potassium hexafluorophosphate was purchased from Alfa Aesar, Copper (II) triflate was purchased from Strem and Copper (I) triflate.toluene complex was purchased from Sigma Aldrich. Other chemicals were used as received unless otherwise noted. (L)-tert-leucinol and alkoxy-imidazolinium salts L1aH·Cl and L1bH·Cl were synthesized according to literature procedure.¹ Solution of *n*-butyllithium was titrated using a solution of 1,10 phenanthridine in dry propanol and dry toluene according to Sigma Aldrich procedure.² Silica gel chromatography was performed with Sigma-Aldrich's silica gel high-purity grade, pore size 60 Å, 230-400 mesh particle size, 40-63 µm particle size. Reactions were monitored by thinlayer chromatography (TLC) carried out on silica gel plates (60F254) using UV light as visualizing agent and by staining with KMnO₄. ¹H (400 MHz), ¹³C (101 MHz), ¹⁹F (376 MHz), ³¹P (162 MHz) NMR spectra were acquired on 400 MHz Bruker instruments with complete proton decoupling for nucleus other than ¹H. Chemicals shifts were reported relative to residual solvent peaks (CDCl₃ = 7.26 ppm for ¹H and 77.16 ppm for ¹³C; THF- d_8 = 3.58 and 1.73 ppm for ¹H and 67.57 and 25.37 ppm for ¹³C); ¹⁹F chemical shifts are reported with CFCl₃ ($\delta = 0.0$ ppm) as the internal standard; ³¹P chemical shifts are reported with H₃PO₄ ($\delta = 0.0$ ppm) as the internal standard; ¹¹B chemical shifts are reported with BF₃.Et₂O ($\delta = 0.0$ ppm) as the internal standard. Coupling constants are reported in Hertz (Hz). Abbreviations are used as follows: s = singlet, d = doublet, t = triplet, q = quartet, p = pentuplet, quint = quintet, h = heptet, m = multiplet, dd = doublet of doublets, ddd = doublet of doublets of doublets, dddd = doublet of doublets of doublets dt = doublet of triplet, dq = doublet of quartet, td = triplet ofdoublet, dtd = oublet of triplet of doublet, pd = pentuplet of doublet, qd = quartet of doublet, br = broad. Mass spectrometric analyses were performed at Centre Régional de Mesures

¹ a) M. Nakamura, T. Hatakeyama, K. Hara, E. Nakamura, *J. Am. Chem. Soc.* **2003**, *125*, 6362-6363; b) H. Clavier, L. Coutable, L. Toupet, J.-C. Guillemin, M. Mauduit, *J. Organomet. Chem.* **2005**, *690*, 5237-5254; c) T. Jennequin, J. Wencel-Delord, D. Rix, J. Daubignard, C. Crévisy, M. Mauduit, *Synlett* **2010**, *2010*, 1661-1665; d) C. Jahier-Diallo, M. S. T. Morin, P. Queval, M. Rouen, I. Artur, P. Querard, L. Toupet, C. Crévisy, O. Baslé, M. Mauduit, *Chem. Eur. J.* **2015**, *21*, 993-997.

²*Titration of n-Butyllithium* :<u>https://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Aldrich/Datasheet/1/689327dat.pdf</u>

Physiques de l'Ouest (CRMPO), Université de Rennes 1. Data for oxazolidines **2a** and **2b** were acquired on a Bruker Maxis 4G device while gold (AuCl-**1a** and AuCl-**1b**) and copper complexes (CuBr-**1a** and CuBr-**1b**) were analyzed on a Thermo Fisher Q-Exactive apparatus. Optical rotations were recorded on a JASCO P=2000 polarimeter using a 1 mL cell with 1 dm path length. All samples were carried out in CHCl₃ in 2 or 5 mL volumetric flask (concentration in g/100mL). Specific rotations are reported in deg.dm⁻¹.cm³.g⁻¹ for a wave length related to sodium line spectrum (λ =589 nm). Melting points were determined on a Stuart® SMP 10 melting point apparatus and are uncorrected. Enantiomeric excesses were determined by GC analysis (Gas Chromatography) with a Shimadzu 2014 chromatograph or HPLC analysis (High Performance Liquid Chromatography) on Alliance e2695 Waters® HPLC with a UV/visible detector 2489 Waters® at 254nm.

1.2. Representative procedure for the preparation of oxazolidine derivatives:

General procedure:

In a round bottom flask, the imidazolinium salt (1.0 equiv) and the base (3.0 or 1.0 equiv) were dissolved in dry THF over 1 h. Then, the mixture was filtrated through celite pad and the solvent was removed under vacuum to afford the pure oxazolidine.

Entry	ntry Base scale (equiv) (mmol)		NMR conv. (isolated yield) (%)	dr (2a) evaluated by NMR
1	KHMDS (1.0)	0.021	100	100/0
2	KH (2.0)	0.027	100 (quant.)	100/0
3	KH (2.0)	0.82	100 (96)	100/0
4	KHMDS (1.0)	1.36	100 (95)	100/0

Optimization Table:

(3S,7aS)-3-(*tert*-butyl)-7-(2,6-diisopropylphenyl)hexahydroimidazo[2,1-b]oxazole (2a):

Imidazolinium salt L1aH·Cl (499 mg, 1.36 mmol), KHMDS (272 mg, 1.36 mmol) and THF (10 mL). White solid (427 mg, 95% yield).

Chemical Formula: C₂₁H₃₄N₂O Molecular Weight: 330,52

¹**H NMR** (CDCl₃, 400 MHz): δ 7.30 – 7.26 (m, 1H), 7.20 – 7.18 (m, 2H), 5.35 (s, 1H, N-C<u>H</u>(O)-N), 4.11 (t, J = 8.3 Hz, 1H), 3.88 – 3.82 (m, 1H), 3.69 – 3.50 (m, 3H), 3.36 – 3.31 (m, 2H), 3.28 – 3.21 (m, 1H), 2.79 (t, J = 7.3 Hz, 1H), 1.35 – 1.21 (m, 12H), 0.99 (s, 9H). ¹³**C NMR** (CDCl₃, 101 MHz): δ 150.7, 148.4, 140.0, 127.4, 124.8, 123.4,

110.8 (N-<u>C</u>H(O)-N), 73.8, 64.2, 55.8, 54.1, 33.9, 28.0, 27.1, 26.2, 25.3, 24.6, 24.5. **HRMS** (ESI, CH₃OH, positive mode) calcd for C₂₁H₃₅N₂O [M+H]⁺: m/z 331.2743, found: 331.2743 (0 ppm). **mp:** 48-52 °C.

(**3S**,**7aS**)-**3**-(**tert-butyl**)-**7**-**mesitylhexahydroimidazo**[**2**,**1**-**b**]**oxazole** (**2b**) : Imidazolinium salt **L1b**H·Cl (500 mg, 1.54 mmol), KHMDS (310 mg, 1.55 mmol), THF (25 mL). Colourless oil (444 mg, 99% yield).

Chemical Formula: C₁₈H₂₈N₂O

¹**H** NMR (CDCl₃, 400 MHz): δ 6.89 (s, 2H), 5.39 (s, 1H, N-C<u>H</u>(O)-N), 4.11 – 4.02 (m, 1H), 3.60 – 3.52 (m, 2H), 3.46 (m, 1H), 3.26 (q, J = 7.7, 7.0 Hz, 1H), 3.17 (q, J = 8.3 Hz, 1H), 2.76 (t, J = 7.2 Hz,

Molecular Weight: 288,44 1H), 2.36 (s, 6H), 2.28 (s, 3H), 0.96 (s, 9H). ¹³C NMR (CDCl₃, 101 MHz): δ 139.9, 136.0, 129.4, 109.8 (N-<u>C</u>H(O)-N), 74.1, 64.2, 56.0, 51.2, 34.0, 26.2, 21.0, 18.3. HRMS (ESI, CH₃OH, positive mode) calcd for C₁₈H₂₉N₂O [M+H]⁺: m/z 289.2274, found:

289.2278 (1 ppm).

1.3. Representative procedure for the synthesis of gold complexes from the oxazolidine derivatives:

General procedure:

In a round bottom flask under argon atmosphere, the oxazolidine (1.0 equiv) and AuCl·SMe₂ (1.1 equiv) were dissolved in dry THF. The reaction mixture was stirred at 40 °C over 2 h. Then, the reaction mixture was filtered on celite pad to remove the purple precipitate and the solvent was removed under reduced pressure. The crude was purified on silica gel with an

eluent gradient (100% DCM to 9:1 DCM/acetone) to afford the corresponding gold chloride complex as a white/grey solid.

AuCl-1a complex: Oxazolidine 2a (83 mg, 0.25 mmol), AuCl·SMe₂ (81 mg, 0.27 mmol), THF (5.0 mL). white/grey solid (118.1 mg, 84% yield).

AuCI-1a Chemical Formula: C₂₁H₃₄AuCIN₂O Molecular Weight: 562,94 ¹**H NMR** (CDCl₃, 400 MHz): δ 7.35 (t, J = 7.8 Hz, 1H), 7.17 (d, J = 7.8 Hz, 2H), 4.65 (brs, 1H), 4.05 – 3.97 (m, 2H), 3.91 – 3.78 (m, 5H), 2.98 (p, J = 6.9 Hz, 1H), 2.88 (p, J = 6.8 Hz, 1H), 1.33 (dd, J = 16.3, 6.8 Hz, 6H), 1.22 (dd, J = 12.1, 6.9 Hz, 6H), 1.09 (s, 9H). ¹³**C NMR** (CDCl₃, 101 MHz): δ 196.4 (C_{carbene}), 146.9,

149.9, 134.5, 129.8, 124.6, 124.5, 70.5, 58.0, 53.5, 34.0, 28.7, 28.4, 28.3, 25.1, 25.06, 24.4, 24.37. **HRMS** (ESI, CH₂Cl₂, negative mode) calcd for C₂₁H₃₄N₂OCl₂Au [M+Cl]⁻: m/z 597.1719, found: 597.1720 (0 ppm).

AuCl-1b complex: Oxazolidine 2b (80 mg, 0.28 mmol), AuCl·SMe₂ (89.6 mg, 0.30 mmol), THF (4.0 mL). white/grey solid (57.4 mg, 40% yield).

AuCI-1b Chemical Formula: C₁₈H₂₈AuCIN₂O Molecular Weight: 520,86

¹**H NMR** (CDCl₃, 400 MHz): δ 6.90 – 6.87 (m, 2H), 4.62 (s, 1H), 4.04 – 3.93 (m, 2H), 3.91 – 3.72 (m, 5H), 2.27 (s, 3H), 2.21 (s, 3H), 2.20 (s, 3H), 1.09 (s, 9H). ¹³**C NMR** (CDCl₃, 101 MHz): δ 195.8 (C_{carbene}), 138.6, 135.8, 135.6, 134.9, 129.6, 129.5, 70.4, 57.9, 50.6, 33.9, 28.3, 21.1, 18.0. **HRMS** (ESI, CH₂Cl₂, negative mode) calcd

for C₁₈H₂₈N₂OCl₂Au [M+Cl]⁻: m/z 555.1249, found: 555.1252 (0 ppm).

1.4. Representative procedure for the synthesis of copper complexes from the oxazolidine derivatives:

In a round bottom flask under argon, the oxazolidine (1.0 equiv) and CuBr·SMe₂ (1.1 equiv) were dissolved in dry THF. The reaction mixture was stirred at 40 °C over 1 h. Then, the reaction mixture was filtered on celite pad to remove the precipitate and the solvent was removed under reduced pressure. The crude was purified on silica gel with an eluent gradient (100% DCM to 9:1 DCM/acetone) to afford the corresponding copper complex as a white/greenish solid.

CuBr-1a complex: Oxazolidine **2a** (83.2 mg, 0.25 mmol), CuBr·SMe₂ (56.5 mg, 0.275 mmol), THF (5.0 mL). white/greenish powder (64.1 mg, 54% yield). Relatively unstable in solution.

¹**H** NMR (CDCl₃, 400 MHz): δ 7.41 – 7.31 (m, 1H), 7.19 (d, J = 7.8 Hz, 2H), 4.17 (brs, 1H), 4.08 – 3.82 (m, 7H), 2.95 (m, 2H), 1.36 – 1.21 (m, 12H), 1.10 (s, 9H). ¹³C NMR (CDCl₃, 101 MHz): δ 204.0 (C_{carbene}), 146.9, 146.8, 134.8, 129.6, 124.5, 124.4, 70.8, 58.7, 53.2, 34.3, 28.6, 28.4, 28.2, 25.3, 24.0. **HRMS** (ESI,

CH₂Cl₂, negative mode) calcd for C₂₁H₃₄N₂OBr₂Cu [M+Br]⁻: m/z 551.0339, found: 551.0343 (1 ppm).

CuBr-1b complex: Oxazolidine **2b** (70 mg, 0.24 mmol), CuBr·SMe₂ (55 mg, 0.27 mmol), THF (4.0 mL). yellow/greenish powder (56.6 mg, 55% yield). Relatively unstable in solution (during the ¹³C spectrum acquisition, a signal appears at 160 ppm that could be the oxidation of the carbene species, longer the ¹³C acquisition is, more this signal is intense).

CuBr-1b Chemical Formula: C₁₈H₂₈BrCuN₂O Molecular Weight: 431,89

¹**H NMR** (500 MHz, CD₂Cl₂) δ 6.96 (s, 2H), 4.07 (s, 1H), 4.03 – 3.71 (m, 7H), 2.29 (s, 3H), 2.23 (d, *J* = 8.4 Hz, 6H), 1.08 (s, 9H). ¹³**C NMR** (126 MHz, CD₂Cl₂) δ 203.9 (C_{carbene}), 138.8, 136.3, 136.2, 135.9, 129.8, 129.7, 71.2, 50.8, 34.4, 28.3, 21.2, 18.2, 18.1. **HRMS** (ESI, CH₂Cl₂, negative mode) calcd for C₁₈H₂₈N₂OBr₂Cu

[M+Br]: m/z 508.9869, found: 508.9869 (0 ppm).

1.5. Asymmetric Allylic Alkylation of zinc reagents to allyl phosphates:

1.5.1. Representative procedure for allyl phosphate preparation:

The (*E*)-Allylic phosphates were synthesized from the corresponding allylic alcohols using known procedure.³ The allylic alcohols were synthesized from the corresponding aldehyde by two-step Horner-Wadsworth-Emmons olefination⁴/dibal-H reduction⁵ sequence. Only the

³ C. A. Luchaco-Cullis, H. Mizutani, K. E. Murphy, A. H. Hoveyda, *Angew. Chem. Int. Ed.* **2001**, *40*, 1456-1460.

⁴ K.-s. Lee, A. H. Hoveyda, J. Org. Chem. 2009, 74, 4455-4462.

⁵ D. L. J. Clive, E. J. L. Stoffman, Chem. Commun. 2007, 2151-2153.

phosphate **S1** was synthesized from the commercially available cinnamyl alcohol (98% purity, purchased from Sigma Aldrich).

Cinnamyl diethyl phosphate (S1): colourless oil (3.99 g, 99% global yield).

 $\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \label{eq:sigma} \label{eq:sigma} \end{tabular} \end{tabular} & \end{tabular} \end{tabular} \end{tabular} \end{tabular} \end{tabular} & \end{tabular} \end{tabular} \end{tabular} \end{tabular} \end{tabular} & \end{tabular} \end{$

(E)-diethyl (3-(naphthalen-2-yl)allyl) phosphate (S2): colourless oil (3.91 g, 47% global yield).

(*E*)-diethyl (3-(naphthalen-1-yl)allyl) phosphate (S3): pale yellow oil (3.857 g, 44% global vield)

OP(O)(OEt)₂ s3 Chemical Formula: C₁₇H₂₁O₄P Molecular Weight: 320,32 ¹**H NMR** (CDCl₃, 400 MHz): δ 8.14 – 8.05 (m, 1H), 7.93 – 7.75 (m, 2H), 7.60 (dt, J = 7.3, 1.0 Hz, 1H), 7.56 – 7.49 (m, 2H), 7.49 – 7.42 (m, 2H), 6.35 (dt, J = 15.6, 6.1 Hz, 1H), 4.82 (ddd, J = 8.6, 6.1, 1.5 Hz, 2H), 4.23 – 4.11 (m, 4H), 1.37 (td, J = 7.1, 1.0 Hz, 6H). ¹³C NMR

(CDCl₃, 101 MHz): δ 134.0, 133.7, 131.3, 131.2, 128.7, 128.6, 127.0 (d, J = 6.5 Hz), 126.4, 126.0, 125.7, 124.3, 123.8, 68.1 (d, J = 5.5 Hz), 64.0 (d, J = 5.8 Hz), 16.3 (d, J = 6.8 Hz). ³¹**P NMR** (CDCl₃, 162 MHz) δ -0.65.

(E)-3-cyclohexylallyl diethyl phosphate (S4): colourless oil (2.004 g, 26% global yield)

OP(O)(OEt)₂ **S4** Chemical Formula: C₁₃H₂₅O₄P Molecular Weight: 276,31 ¹**H NMR** (CDCl₃, 400 MHz): δ 5.86 – 5.67 (m, 1H), 5.54 (dtd, J = 15.5, 6.4, 1.3 Hz, 1H), 4.47 (dddd, J = 8.3, 6.4, 1.2, 0.8 Hz, 2H), 4.10

(dq, J = 7.9, 7.1 Hz, 4H), 1.98 (ddd, J = 14.1, 11.0, 2.5 Hz, 1H), 1.83 - 1.63 (m, 6H), 1.33 (td, J = 7.1, 1.0 Hz, 6H), 1.29 - 0.94 (m, 4H).¹³**C NMR** (CDCl₃, 101 MHz): δ 142.20, 122.07 (d, J = 6.6 Hz), 68.54 (d, J = 5.6 Hz), 63.76 (d, J = 5.8 Hz), 40.39, 32.62, 26.22, 26.06, 16.28 (d, J = 6.8 Hz).³¹**P NMR** (CDCl₃, 162 MHz) δ -0.77.

(E)-diethyl (3-phenylbut-2-en-1-yl) phosphate (S5):

¹**H NMR** (400 MHz, CDCl₃): δ 7.36 – 7.31 (m, 2H), 7.29 – 7.16 (m, 3H), 5.88 (tq, J = 6.9, 1.4 Hz, 1H), 4.69 (ddd, J = 8.4, 6.9, 0.8 Hz, 2H), 4.06 (dq, J = 8.0, 7.1 Hz, 4H), 2.04 (dd, J = 1.4, 0.7 Hz, 3H), 1.27 (td, J = 7.1, 1.0 Hz, 6H). ¹³**C NMR** (101 MHz, CDCl₃): δ 142.5,

140.5, 128.4, 127.8, 126.0, 122.0 (d, J = 6.9 Hz), 64.4 (d, J = 5.4 Hz), 63.9 (d, J = 5.9 Hz), 16.3 (d, J = 2.7 Hz), 16.2. ³¹**P** NMR (CDCl₃, 162 MHz) $\delta - 0.50$

(E)-diethyl (3-(naphthalen-2-yl)but-2-en-1-yl) phosphate (S6):

¹**H** NMR (400 MHz, CDCl₃) δ 7.92 – 7.72 (m, 4H), 7.58 (dd, J = 8.6, 1.9 Hz, 1H), 7.52 – 7.41 (m, 2H), 6.11 (tq, J = 6.9, 1.4 Hz, 1H), 4.83 (ddq, J = 8.4, 7.0, 0.8 Hz, 2H), 4.15 (dq, J = 7.9, 7.1 Hz, 4H), 2.22 (dd, J = 1.4, 0.7 Hz, 3H), 1.36 (td, J = 7.1, 1.0 Hz,

6H). ¹³**C NMR** (101 MHz, CDCl₃) δ 140.3, 139.7, 133.4, 133.0, 128.3, 128.0, 127.7, 126.4, 126.2, 124.9, 124.2, 122.6 (d, *J* = 6.8 Hz), 64.5 (d, *J* = 5.4 Hz), 63.9 (d, *J* = 5.8 Hz), 16.4 (d, *J* = 2.6 Hz), 16.3. ³¹**P NMR** (CDCl₃, 162 MHz) δ – 0.48.

diethyl ((2*E*,4*E*)-5-phenylpenta-2,4-dien-1-yl) phosphate (S7):

1.5.2. Representative procedure for copper-catalysed allylic alkylation of zinc reagents to allyl phosphates:

1.5.2.1. General procedure 1 using imidazolium salt in situ:

In a flame-dried Schlenk tube under Argon, (CuOTf)2-toluene complex (0.0025 mmol, 0.5 mol%) and imidazolium salt (0.0055 mmol, 1.1 mol%) were dissolved in dry THF (0.5 mL) and the mixture was stirred for 10 min. The mixture was cooled down to 0 $^{\circ}$ C and *n*-BuLi (2.5M in hexane, 2.5 mol%) was added dropwise. The mixture was stirred for 10 min at 0 °C, then, allowed to warm up to room temperature and stirred 10 min at room temperature. Then, the reaction was cooled down to 0 °C and Et₂Zn (1M in hexane, 1.5 mmol, 3.0 equiv) was added dropwise. The resulting mixture was stirred at 0 °C for 10 min. After this time, the reaction was allowed to warm up to room temperature, stirred over 10 min and a solution of phosphate (0.5 mmol, 1.0 equiv) in dry THF (0.5 mL) was added dropwise. The reaction mixture was stirred at room temperature over 0.5 h (completion of the reaction followed by TLC analysis (eluent: pentane/EtOAc, 8/2). The reaction was quenched at 0 °C with HCl (1.0 mL, 1N). The SN₂/SN₂' ratio was determined by ¹H NMR of the crude mixture. The reaction was then, extracted with diethyl ether (3x5 mL). Organic layers were gathered, dried over anhydrous MgSO₄, filtered and the solvent was carefully removed under reduced pressure. The crude was filtered on silica gel with pentane as eluent to afford the corresponding product as a colourless oil.

1.5.2.2. General procedure 2 using oxazolidine ligand in situ:

In a flame-dried Schlenk tube under Argon, the oxazolidine (0.006 mmol, 1.2 mol%) and Copper salt (0.005 mmol, 1.0 mol%) were dissolved in dry THF (0.5 mL). Then, the reaction was cooled down to 0 °C and Et₂Zn (1M in hexane, 1.5 mmol, 3.0 equiv) was added dropwise. The resulting mixture was stirred at 0 °C for 10 min. After this time, the reaction was allowed to warm up to room temperature and a solution of phosphate (0.5 mmol, 1.0 equiv) in dry THF (0.5 mL) was added dropwise. The reaction mixture was stirred at room temperature over 0.5 h (completion of the reaction followed by TLC analysis (eluent: pentane/EtOAc, 8/2). The reaction was quenched at 0 °C with HCl (1.0 mL, 1N). The SN₂/SN₂' ratio was determined by ¹H NMR of the crude mixture. The reaction was then, extracted with diethyl ether (3x5 mL). Organic layers were gathered, dried over anhydrous MgSO₄, filtered and the solvent was carefully removed under reduced pressure. The crude was filtered on silica gel with pentane as eluent to afford the corresponding product as a colourless oil.

1.5.2.3. General procedure 3 for AAA with isolated Cu complex:

In a flame-dried Schlenk tube under Argon, Cu complex (0.005 mmol, 1.0 mol%) was dissolved in dry THF (0.5 mL). Then, the reaction was cooled down to 0 °C and Et₂Zn (1M in hexane, 1.5 mmol, 3.0 equiv) was added dropwise. The resulting mixture was stirred at 0 °C for 10 min. After this time, the reaction was allowed to warm up to room temperature and a solution of phosphate (0.5 mmol, 1.0 equiv) in dry THF (0.5 mL) was added dropwise. The reaction mixture was stirred at room temperature over 0.5 h (completion of the reaction followed by TLC analysis (eluent: pentane/EtOAc, 8/2). The reaction was quenched at 0 °C with HCl (1.0 mL, 1N). The SN₂/SN₂' ratio was determined by ¹H NMR of the crude mixture. The reaction was then extracted with diethyl ether (3x5 mL). Organic layers were gathered, dried over anhydrous MgSO₄, filtered and the solvent was carefully removed under reduced pressure. The crude was filtered on silica gel with pentane as eluent to afford the corresponding product as a colourless oil.

1.5.3. Representative procedure for Copper-free allylic alkylation using zinc reagents to allyl phosphates:

In a flame-dried Schlenk tube under Argon, the oxazolidine (0.025 mmol, 5.0 mol%) was dissolved in dry THF (0.5 mL). Then, the reaction was cooled down to 0 °C and Et₂Zn (1M in hexane, 1.5 mmol, 3.0 equiv) was added dropwise. The resulting mixture was stirred at 0 °C for 10 min. After this time, the reaction was allowed to warm up to room temperature and a solution of phosphate (0.5 mmol, 1.0 equiv) in dry THF (0.5 mL) was added dropwise. The reaction mixture was stirred at room temperature over 12 h. The reaction was quenched at 0 °C with HCl (1.0 mL, 1N). The SN₂/SN₂' ratio was determined by ¹H NMR of the crude mixture. The reaction was then extracted with diethyl ether (3x5 mL). Organic layers were gathered, dried over anhydrous MgSO₄, filtered and the solvent was carefully removed under reduced pressure. The crude was filtered on silica gel with pentane as eluent to afford the corresponding product as a colourless oil.

1.5.4. Characterization of catalysis products:

(pent-1-en-3-yl)benzene (γ-P1):

¹**H** NMR (CDCl₃, 400 MHz): δ 7.36 – 7.27 (m, 2H), 7.24 – 7.14 (m, 3H), 6.03 – 5.87 (m, 1H), 5.07 – 5.03 (m, 1H), 5.03 – 4.98 (m, 1H), 3.14 (q, J = 7.5 Hz, 1H), 1.74 (pd, J = 7.4, 4.1 Hz, 2H), 0.87 (t, J = 7.4 Hz, 3H).

Chemical Formula: C₁₁H₁₄ Molecular Weight: 146,23 ¹³C NMR (CDCl₃, 101 MHz): δ 144.6, 142.4, 128.5, 127.8, 126.2, 114.2, 51.9, 28.5, 12.3. [*a*]**p**²⁵ (c = 0.16, CHCl₃) = + 25 (89% ee). Analytical data for this compound were consistent with the previously reported data.⁶

Entry	Catalytic system (mol%)	Time (h)	Conv. (yield) (%)	γ/a ratio	ee (%)
1	L1a H·PF ₆ /(CuOTf) ₂ .toluene $(1.2/1)$	0.5	>99 (62)	>99:1	90
2	2a /(CuOTf) ₂ .toluene (1.2/1)	0.5	>99 (92)	>99:1	89
3	$2a/CuBr \cdot SMe_2 (1.2/1)$	0.5	>99 (97)	>99:1	88
4	CuBr-1a (1)	0.5	>99 (99)	>99:1	89
5	2a (5)	12	>99 (98)	>99:1	90
6	2a (1)	23	87 (76) ^a	97:3	91
7	CuBr-1b (1)	0.5	>99 (88)	>99:1	87
8	2b (5)	12	Nr	Nd	Nd
9	CuBr-1a (1) with EtMgBr	0.5	>99 (92)	>99:1	90
10	2a (5) with EtMgBr	0.5	>99 (Nd)	21:79	39

^{*a*} Conversions and yields were determined by ¹H NMR spectroscopy using mesitylene as external standard (0.33 equiv regarding the substrate S1).

Analytical parameters:

GC method 1: capillary column: GTA: 30 m x 0.25 mm x 0.12 μ m, injector temperature: 250 °C, detector (FID) temperature: 250 °C, injection volume: 1 μ L. Helium as carrier gas (40 cm/sec), 20.0 split ratio, temperature program (Rate - Temperature - Hold Time): 50 °C - 80 min; 10 °C/min – 160 °C – 10 min.

• Racemic mixture:

⁶ M. A. Kacprzynski, A. H. Hoveyda, J. Am. Chem. Soc. 2004, 126, 10676-10681.

• Table 1, entry 1

• Table 1, entry 2

• Table 1, entry 3

• Table 1, entry 4

• Table 1, entry 7:

• Table 1, entry 9:

•

94.710

2	64.333	1284306	14768
Table 1, entry 10:	:		

2-(pent-1-en-3-yl)naphthalene (γ-P2):

	Entry	Catalytic system (mol%)	Time (h)	Conv. (yield) (%)	γ/a ratio	ee (%)
Chemical Formula: CurHur	1	CuBr-1a	0.5	>99 (96)	>99:1	89
Molecular Weight: 196,29	2	2a	12	>99 (84)	>99:1	89

¹**H NMR** (CDCl₃, 400 MHz): δ 7.87 (ddd, J = 8.2, 4.2, 2.7 Hz, 3H), 7.71 (d, J = 1.7 Hz, 1H), 7.59 – 7.48 (m, 2H), 7.42 (dd, J = 8.5, 1.8 Hz, 1H), 6.18 - 6.04 (m, 1H), 5.22 – 5.16 (m, 1H), 5.14 (d, J = 1.1 Hz, 1H), 3.39 (q, J = 7.4 Hz, 1H), 1.92 (pd, J = 7.4, 1.3 Hz, 2H), 0.99 (t, J =7.4 Hz, 3H). ¹³**C NMR** (CDCl₃, 101 MHz): δ 142.3, 142.0, 133.8, 132.4, 128.1, 127.8, 127.7, 126.5, 126.1, 126.0, 125.4, 114.4, 51.9, 28.3, 12.4. [α] \mathbf{p}^{25} (c = 0.5, CHCl₃) = + 5 (89% ee). Analytical data for this compound were consistent with the previously reported data.⁶

Analytical parameters:

HPLC method 1: OJ-H column (0.46 cm x 25 cm) as stationary chiral phase and with hexane (100%) at 1.0 mL/min as mobile phase at 25°C and $\lambda = 254$ nm.

• Racemic mixture:

Peak	Retention time	Area	Height	% Area
1	15.613	17761103	487161	49.77
2	17.332	17926199	383228	50.23

• With CuBr-1a:

Peak	Retention time	Area	Height	% Area
1	16.089	569810	26240	5.81
2	17.264	9229969	251652	94.19

• With **2a**:

Peak	Retention time	Area	Height	% Area
1	16.611	587751	26408	5.68
2	17.838	9758712	253482	94.32

1-(pent-1-en-3-yl)naphthalene (γ-P3a):

	Entry	Catalytic system (mol%)	Time (h)	Conv. (yield) (%)	γ/a ratio	ee (%)
γ-P3a	1	CuBr-1a	0.5	>99 (68)	>99:1	94
Chemical Formula: C ₁₅ H ₁₆ Molecular Weight: 196,29	2	2a	12	>99 (79)	>99:1	94

¹**H NMR** (CDCl₃, 400 MHz): δ 8.18 (ddd, J = 8.8, 1.5, 0.7 Hz, 1H), 7.95 – 7.83 (m, 1H), 7.77 (ddd, J = 8.1, 1.5, 0.8 Hz, 1H), 7.66 – 7.35 (m, 4H), 6.22 – 5.99 (m, 1H), 5.22 – 5.09 (m, 2H), 4.06 (q, J = 7.2 Hz, 1H), 2.05 – 1.89 (m, 2H), 1.01 (td, J = 7.4, 0.5 Hz, 3H). ¹³**C NMR** (CDCl₃, 101 MHz): δ 141.9, 140.6, 134.2, 132.0, 129.1, 126.8, 125.8, 125.7, 125.4, 124.1, 123.6, 114.8,

46.2, 28.2, 12.5. $[\alpha]_{D^{25}}$ (c = 0.52, CHCl₃) = -21 (94% ee). Analytical data for this compound were consistent with the previously reported data.⁷

Analytical parameters:

HPLC method 2: OD-H column (0.46 cm x 25 cm) as stationary chiral phase and with hexane (100%) at 1.0 mL/min as mobile phase at 25°C and $\lambda = 254$ nm.

Racemic mixture: •

25359233

154668

2297

50.23

3.14

194856

With CuBr-1a:

2

39.104

38.751

⁷ M. Magrez, Y. Le Guen, O. Baslé, C. Crévisy, M. Mauduit, Chem. Eur. J. 2013, 19, 1199-1203.

• With **2a**:

Peak	Retention time	Area	Height	% Area
1	32.556	4182405	44782	97.13
2	41.146	123590	1320	2.87

1-(but-3-en-2-yl)naphthalene (γ-P3b):

Me *	Entry	Catalytic system (mol%)	Time (h)	Conv. (yield) (%)	γ/a ratio	ee (%)
γ-P3b	1	CuBr-1a	0.5	>99 (99)	>99:1	96
Molecular Weight: 182,27	2	2a	12	>99 (68)	>99:1	96

¹**H NMR** (CDCl₃, 400 MHz): δ 8.19 (ddd, J = 8.4, 1.5, 0.7 Hz, 1H), 8.01 – 7.86 (m, 1H), 7.78 (dt, J = 8.0, 1.1 Hz, 1H), 7.62 – 7.34 (m, 4H), 6.32 – 6.14 (m, 1H), 5.25 – 5.08 (m, 2H), 4.36 (qd, J = 7.0, 5.4 Hz, 1H), 1.58 (d, J = 7.0 Hz, 3H). ¹³**C NMR** (CDCl₃, 101 MHz): δ 143.3, 141.9, 134.4, 131.9, 129.3, 127.2, 126.2, 126.1, 125.8, 124.1, 123.9, 114.1, 38.3, 20.7. [α]p²⁵ (c = 0.31, CHCl₃) = – 22 (96% ee). Analytical data for this compound were consistent with the previously reported data.⁷

Analytical parameters:

GC method 2: capillary column: β -dex 325: 30 m x 0.25 mm x 0.25 μ m, injector temperature: 250 °C, detector (FID) temperature: 250 °C, injection volume: 1 μ L. Helium as carrier gas (40 cm/sec), 5.0 split ratio, temperature program (Rate - Temperature - Hold Time): 120 °C - 95 min; 10 °C/min – 170 °C – 10 min.

• Racemic mixture:

• With **CuBr-1a**:

• With 2**a**:

(pent-1-en-3-yl)cyclohexane (γ-P4):

	Entry	Catalytic system (mol%)	Time (h)	Conv. (yield) (%)	γ/a ratio	ee (%)
γ-Ρ4	1	CuBr-1a	0.5	>99 (71)	>99:1	82
Chemical Formula: C ₁₁ H ₂₀ Molecular Weight: 152,28	2ª	2a	24	64 (25)	>99:1	81

regarding the substrate S4).

^a The conversion and yield were determined by ¹H NMR using mesitylene as external standard (0.33 equiv

¹**H** NMR (CDCl₃, 400 MHz): δ 5.55 (ddd, J = 17.0, 10.2, 9.3 Hz, 1H), 5.08 – 4.80 (m, 2H), 1.77 – 1.60 (m, 6H), 1.54 – 1.46 (m, 1H), 1.31 – 1.08 (m, 5H), 1.07 – 0.87 (m, 2H), 0.84 (t, J = 7.4 Hz, 3H). ¹³**C** NMR (CDCl₃, 101 MHz): δ 141.6, 115.1, 52.2, 41.6, 31.3, 29.9, 27.0, 26.9, 26.8, 24.5, 12.2. [α] p^{25} (c = 0.36, CHCl₃) = +6 (82% ee). Analytical data for this compound were consistent with the previously reported data.⁷

Analytical parameters:

GC method 3: capillary column: β -dex 325: 30 m x 0.25 mm x 0.25 μ m, injector temperature: 250 °C, detector (FID) temperature: 250 °C, injection volume: 1 μ L. Helium as carrier gas (40 cm/sec), 5.0 split ratio, temperature program (Rate - Temperature - Hold Time): 50 °C - 80 min; 0.3 °C/min - 65 °C - 0 min; 10 °C/min - 180 °C - 10 min.

• Racemic mixture:

• With **CuBr-1a**:

Peak	Retention time	Area	Height	% Area
1	92.494	18126	605	9.959
2	93.457	163886	3717	90.0441

(3-methylpent-1-en-3-yl)benzene (γ-P5):

Chemical Formula: C₁₂H₁₆ Molecular Weight: 160,26

The general procedure 3 for Cu-AAA reactions was followed using S5 (142.3 mg, 0.5 mmol, 1.0 equiv), Et₂Zn (1 M in hexane, 1.5 mL, 1.5 mmol, 3.0 equiv) and a stock solution of the complex CuBr-1a (2.37 mg, 0.005 mmol, 1.0 mol%). The desired product γ -P5 was obtained as a colourless oil (63.3 mg, 89% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.35 – 7.28 (m, 4H), 7.22 – 7.16 (m, 1H), 6.04 (ddd, J = 17.5, 10.8, 1.6 Hz, 1H), 5.17 - 5.00 (m, 2H), 1.93 - 1.70 (m, 2H), 1.36 (s, 3H), 0.78 (td, J = 7.4, 1.6Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 147.6, 147.1, 128.2, 126.9, 125.8, 111.9, 44.7, 33.6, 24.5, 9.1. $[\alpha]_D^{25}$ (c = 0.16, CHCl₃) = +10 (85% ee). Analytical data for this compound were consistent with the previously reported data.⁷

Analytical parameters:

GC method 4: capillary column: β-dex 325: 30 m x 0.25 mm x 0.25 μm, injector temperature: 250 °C, detector (FID) temperature: 250 °C, injection volume: 1µL. Helium as carrier gas (30 cm/sec), 10 split ratio, temperature program (Rate - Temperature - Hold Time): 80 °C - 55 min; 10 °C/min – 160 °C – 10 min.

Racemic mixture: .

Peak	Retention time	Area	Height	% Area
1	42.051	793030	41563	49.942
2	43.049	794871	36502	50.058

With CuBr-1a:

(S)-2-(3-methylpent-1-en-3-yl)naphthalene (γ-P6):

Molecular Weight: 210,32

The general procedure 3 for Cu-AAA reactions was followed using S6 (134.0 mg, 0.4 mmol, 1.0 equiv), Et₂Zn (1 M in hexane, 1.2 mL, 1.2 mmol, 3.0 equiv) and a stock solution of the complex CuBr-1a (1.90 mg, 0.004 mmol, 1.0 mol%). The desired product γ -P6 was obtained as a colourless oil (79.9 mg, 95% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.90 – 7.74 (m, 4H), 7.58 – 7.39 (m, 3H), 6.16 (ddd, J = 17.5, 10.6, 2.1 Hz, 1H), 5.25 – 5.09 (m, 2H), 2.05 – 1.84 (m, 2H), 1.51 (s, 3H), 0.85 (td, J = 7.6, 2.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 147.0, 145.0, 133.5, 132.0, 128.1, 127.7, 127.5, 125.94, 125.9, 125.5, 125.0, 112.3, 44.9, 33.4, 24.5, 9.1. $[\alpha]p^{25}$ (c = 0.2, CHCl₃) = +17 (84% ee). Analytical data for this compound were consistent with the previously reported data.⁸

Analytical parameters:

HPLC method 2: OJ-H column (0.46 cm x 25 cm) as stationary chiral phase and with hexane (100%) at 1.0 mL/min as mobile phase at 25°C and $\lambda = 254$ nm.

• Racemic mixture:

Peak	Retention time	Area	Height	% Area
1	13.235	12971188	417622	50.16
2	15.432	12889462	303250	49.84

• With CuBr-1a:

Peak	Retention time	Area	Height	% Area
1	14.160	3788473	126433	91.76
2	16.806	340047	9689	8.24

⁸ W. Xiong, G. Xu, X. Yu, W. Tang, Organometallics 2019, 38, 4003-4013.

(S,E)-(3-ethylpenta-1,4-dien-1-yl)benzene (γ -P7a):

Chemical Formula: C13H16 Molecular Weight: 172,27

The general procedure 3 for Cu-AAA reactions was followed using S7 (148.5 mg, 0.5 mmol, 1.0 equiv), Et₂Zn (1 M in hexane, 1.5 mL, 1.5 mmol, 3.0 equiv) and a stock solution of the complex CuBr-1a (2.37 mg, 0.005 mmol, 1.0 mol%). The desired product γ -P7a was obtained as a colourless oil (77.5 mg, 90% yield).

¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.42 (m, 2H), 7.39 – 7.34 (m, 2H), 7.30 – 7.24 (m, 1H), 6.51 - 6.39 (m, 1H), 6.20 (dd, J = 15.9, 7.7 Hz, 1H), 5.88 (ddd, J = 17.5, 10.3, 7.3 Hz, 1H), 5.18 - 5.11 (m, 2H), 2.90 - 2.80 (m, 1H), 1.62 (p, J = 7.3 Hz, 2H), 1.02 (t, J = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 141.3, 137.8, 133.2, 129.8, 128.6, 127.1, 126.2, 114.5, 49.0, 27.8, 11.9. $[\alpha]_D^{25}$ (c = 0.22, CHCl₃) = +61 (71% ee). Analytical data for this compound were consistent with the previously reported data.6

Analytical parameters:

GC method 5: capillary column: β-dex 325: 30 m x 0.25 mm x 0.25 μm, injector temperature: 250 °C, detector (FID) temperature: 250 °C, injection volume: 1µL. Helium as carrier gas (39.1 cm/sec), 2.5 split ratio, temperature program (Rate - Temperature - Hold Time): 80 °C - 175 min; 10 °C/min – 160 °C – 10 min.

Racemic mixture:

With CuBr-1a:

(*E*)-(3-methylpenta-1,4-dien-1-yl)benzene (γ-P7b):

Chemical Formula: C12H14

Molecular Weight: 158,24

The general procedure 3 for Cu-AAA reactions was followed using S7 (148.3 mg, 0.5 mmol, 1.0 equiv), Me₂Zn (1.2 M in Toluene, 1.3 mL, 1.56 mmol, 3.1 equiv) and a stock solution of the complex CuBr-1a (2.37 mg, 0.005 mmol, 1.0 mol%). The desired product γ -P7b was obtained as a colourless oil (68.1 mg, 86% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.49 – 7.41 (m, 2H), 7.40 – 7.32 (m, 2H), 7.32 – 7.22 (m, 1H), 6.46 (dd, J = 16.0, 1.2 Hz, 1H), 6.25 (dd, J = 15.9, 7.0 Hz, 1H), 5.95 (ddd, J = 17.0, 10.2, 6.5 Hz, 1H), 5.20 – 5.05 (m, 2H), 3.11 (ddddd, J = 13.7, 8.2, 6.8, 5.4, 1.3 Hz, 1H), 1.28 (d, J = 6.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 142.6, 137.8, 134.4, 128.8, 128.6, 127.1, 126.2, 113.5, 40.8, 19.9. $[\alpha]_D^{25}$ (c = 0.17, CHCl₃) = +47 (88% ee). Analytical data for this compound were consistent with the previously reported data.⁷

Analytical parameters:

GC method 6: capillary column: β-dex 325: 30 m x 0.25 mm x 0.25 μm, injector temperature: 250 °C, detector (FID) temperature: 250 °C, injection volume: 1µL. Helium as carrier gas (39.1 cm/sec), 2.5 split ratio, temperature program (Rate - Temperature - Hold Time): 80 °C - 100 min; 10 °C/min - 160 °C - 10 min.

• Racemic mixture:

409531

11843

50.059

• With CuBr-1a:

2

76.157

1.6. Asymmetric Conjugated Addition:

1.6.1. Data of substrates:

3-Methyl-2-cyclohexenone **S8** and cyclohexenone **S9** were purchased from Alfa Aesar and used without further purification. (*E*)-3-(prop-1-enyl)cyclohex-2-enone **S10** and (*E*)-3-(hex-1-en-1-yl)cyclohex-2-en-1-one **S11** were prepared using known procedures.⁹

⁹ H. Hénon, M. Mauduit, A. Alexakis, Angew. Chem. Int. Ed. 2008, 47, 9122-9124.

(E)-3-(prop-1-enyl)cyclohex-2-enone (S10):

¹**H** NMR (CDCl₃, 400 MHz): δ 6.24 – 6.18 (m, 2H, 2C<u>H</u>_{Alkene}), 5.86 (s, 1H, C<u>H</u>_{Alkene}), 2.44 (td, J = 6.1, 1.3 Hz, 2H, C<u>H</u>₂), 2.43 – 2.35 (m, 2H, C<u>H</u>₂), 2.10 – 1.95 (m, 2H, C<u>H</u>₂), 1.88 (dd, J = 5.2, 0.6 Hz, 3H, C<u>H</u>₃). ¹³C NMR (101 MHz, CDCl₃) δ 200.71, 157.75, 134.01, 132.89, 126.34, 37.79, 25.15, 22.47, 19.00. Analytical data for this compound were

Chemical Formula: C₉H₁₂O Molecular Weight: 136,19

consistent with the previously reported data.9

(*E*)-3-(hex-1-en-1-yl)cyclohex-2-en-1-one (S11):

^o ^hH NMR (400 MHz, CDCl₃) δ 6.27 – 6.12 (m, 2H), 5.88 – 5.83 (m, ^hH NMR (400 MHz, CDCl₃) δ 6.27 – 6.12 (m, 2H), 5.88 – 5.83 (m, ^hH), 2.45 (td, J = 6.1, 1.4 Hz, 2H), 2.41 – 2.35 (m, 2H), 2.22 – 2.15 (m, ^hH), 2.45 (td, J = 6.1, 1.4 Hz, 2H), 2.41 – 2.35 (m, 2H), 2.22 – 2.15 (m, ^hH), 2.45 (td, J = 6.1, 1.4 Hz, 2H), 2.41 – 2.35 (m, 2H), 2.22 – 2.15 (m, ^hH), 2.45 (td, J = 6.1, 1.4 Hz, 2H), 2.41 – 2.35 (m, 2H), 2.22 – 2.15 (m, ^hH), 2.45 (td, J = 7.2 Hz, 3H), 1.46 – 1.36 (m, 2H), 1.36 – 1.28 (m, 2H), 0.90 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 200.4, 157.7, 139.3, 131.4, 126.4, 37.8, 33.0, 31.1, 25.1, 22.4, 22.3, 13.9. Analytical data for this compound were consistent with the previously reported data.¹⁰

1.6.2. General procedure for 1,4-addition:

1.6.2.1. General procedure 1 using imidazolium salt in situ:

In a flame-dried Schlenk tube under Argon, (CuOTf)₂-toluene complex (0.005 mmol, 0.5 mol%) and imidazolium salt (0.012 mmol, 1.2 mol%) were dissolved in dry EtOAc (0.5 mL) and the mixture was stirred for 10 min. The mixture was cooled down to 0 °C and *n*-BuLi (2.5M in hexane, 2.5 mol%) was added dropwise. The mixture was stirred for 10 min at 0 °C, then, allowed to warm up to room temperature and stirred 10 min at room temperature. Then, Et_2Zn (1M in hexane, 3.0 mL, 3.0 mmol, 3.0 equiv) was added dropwise and the reaction mixture was stirred 10 min at room temperature. The reaction mixture was cooled down to 0 °C and a solution of 3-methylcyclohexenone (115 µL, 1.0 mmol, 1.0 equiv) in EtOAc (0.5 mL, 0.2 mL and 0.3 mL to rince) was added dropwise. As soon as the addition of the substrate was completed, the ice bath was removed. The reaction mixture was stirred at room temperature over 16 h. Upon completion of the reaction (TLC monitoring), HCl (1N, 1.0 mL) was added at 0 °C and the compound was extracted with diethylether (3x5.0 mL). The combined organic layers were then washed with saturated NaHCO₃ aqueous solution (15 mL), brine (15 mL), and dried over MgSO₄. The solvents were carefully removed under vacuum. The crude product

¹⁰ J. Wencel-Delord, A. Alexakis, C. Crévisy, M. Mauduit, Org. Lett. 2010, 12, 4335-4337.

was purified by silica gel chromatography (pentane/Et₂O: 5/1) to isolate the corresponding product as a colourless oil.

1.6.2.2. General procedure 2 using oxazolidine in situ:

In a flame-dried Schlenk tube under Argon, (CuOTf)₂·toluene complex (0.005 mmol, 0.5 mol%) or CuBr·SMe₂ (0.01 mmol, 1.0 mol%) and the oxazolidine (0.012 mmol, 1.2 mol%) were dissolved in dry EtOAc (0.5 mL) and the mixture was stirred for 10 min. Then, Et₂Zn (1M in hexane, 3.0 mL, 3.0 mmol, 3.0 equiv) was added dropwise and the reaction mixture was stirred 10 min at room temperature. The reaction mixture was cooled down to 0 °C and a solution of 3-methylcyclohexenone (115 μ L, 1.0 mmol, 1.0 equiv) in EtOAc (0.5 mL, 0.2 mL and 0.3 mL to rince) was added dropwise. As soon as the addition of the substrate was completed, the ice bath was removed. The reaction mixture was stirred at room temperature over 16 h. Upon completion of the reaction (TLC monitoring), HCl (1N, 1.0 mL) was added at 0 °C and the compound was extracted with diethylether (3x5.0 mL). The combined organic layers were then washed with saturated NaHCO₃ aqueous solution (15 mL), brine (15 mL), and dried over MgSO₄. The solvents were carefully removed under vacuum. The crude product was purified by silica gel chromatography (pentane/Et₂O: 5/1) to isolate the corresponding product as a colourless oil.

1.6.2.3. General procedure 3 using isolated complex:

In a flame-dried Schlenk tube under Argon, copper complex (0.01 mmol, 1.0 mol%) was dissolved in dry EtOAc (0.5 mL) and the mixture was stirred for 10 min. Then, R_2Zn (3.0 or 6.0 equiv) was added dropwise and the reaction mixture was stirred 10 min at room temperature. The reaction mixture was cooled down to 0 °C and a solution of enone (1.0 mmol, 1.0 equiv) in EtOAc (0.5 mL, 0.2 mL and 0.3 mL to rince) was added dropwise. As soon as the addition of the substrate was completed, the ice bath was removed. The reaction mixture was stirred at room temperature over 16 h. Upon completion of the reaction (TLC monitoring), HCl (1N, 1.0 mL) was added at 0 °C and the compound was extracted with diethylether (3x5.0 mL). The combined organic layers were then washed with saturated NaHCO₃ aqueous solution (15 mL), brine (15 mL), and dried over MgSO₄. The solvents were carefully removed under vacuum. The crude product was purified by silica gel chromatography (pentane/Et₂O: 5/1) to isolate the corresponding product as a colourless oil.

1.6.2.4. General procedure 4 using Grignard reagent:

A flame-dried Schlenk tube was charged with copper complex (3.0 mol%). The system was again dried in vacuo at rt. for 15 minutes. Then, dry Et₂O (1.3 mL) was added and the mixture was cooled down to 0 °C in an ethanol cold bath. The EtMgBr (3M in Et₂O, 1.2 equiv) was added dropwise to the solution for 5 minutes. A solution of the 3-methyl-2-cyclohexenone (0.5 mmol) in Et₂O (5.0 mL) was then added dropwise to the solution at 0 °C over 15 minutes with a syringe pump, then the solution was stirred for 30 minutes at 0 °C. The reaction was hydrolyzed at 0 °C by addition of HCl 1M (1.0 mL) and the aqueous layer was separated and extracted further with diethyl ether (3x10 mL). The combined organic layers were dried on MgSO₄, filtrated and concentrated in vacuo to give an oily residue. That crude was purified by flash chromatography on a silica gel (pentane/Et₂O: 5/1) to give the pure product as a colourless oil.

1.6.3. General procedure for 1,6-addition:

1.6.3.1. General procedure 1 using imidazolium salt in situ:

A flame-dried Schlenk tube was charged with $Cu(OTf)_2$ (0.022 mmol, 4.0 mol%), and the imidazolium salt (0.03 mmol, 6.0 mol%). The system was flushed with argon, and dry THF (1.0 mL) was added. The solution was stirred for 10 min and *n*-BuLi (2.5M in hexane, 0.08 mmol, 16 mol%) was added and stirred again for 10 min. 0.5 mL of this solution was transferred to a flame-dried Schlenk tube. Then, R₂Zn (1.5 mmol, 3.0 equiv) was added dropwise to the Schlenk and the reaction mixture was stirred 10 min at room temperature and 10 min at 0 °C. A solution of dienone (70.0 mg, 0.51 mmol, 1.0 equiv) in dry THF (0.5 mL) was added to the reaction at 0 °C and the solution was stirred at room temperature for 1.5 h. The reaction was quenched with NH₄Cl solid (500 mg). The solution was stirred for 1 h and then dry DCM (4.0 mL) and DBU (110 μ L, 0.74 mmol, 1.44 equiv) was added to the solution. The reaction was stirred for 5 h and then filtered on a small pad of silica, washed with ethyl acetate, and concentrated under vacuum. The crude product was purified by flash chromatography on silica gel (pentane/Et₂O: 85/15) to afford the desired compound as colourless oil.

1.6.3.2. General procedure 2 using oxazolidine in situ:

A flame-dried Schlenk tube under argon was charged with $Cu(OTf)_2$ or $CuBr \cdot SMe_2$ (0.011 mmol, 2.0mol%), and the oxazolidine (0.015 mmol, 3.0mol%) and dry THF (0.5 mL).

Then, the solution was stirred 10 min and R₂Zn (1.5 mmol, 3.0 equiv) was added dropwise to the Schlenk. The reaction mixture was stirred 10 min at room temperature and 10 min at 0 °C. A solution of dienone (70.0 mg, 0.51 mmol, 1.0 equiv) in dry THF (0.5 mL) was added to the reaction at 0 °C and the solution was stirred at room temperature for 1.5 h. The reaction was quenched with NH₄Cl solid (500 mg). The solution was stirred for 1 h and then dry DCM (4.0 mL) and DBU (110 μ L, 0.74 mmol, 1.44 equiv) was added to the solution. The reaction was stirred for 5 h and then filtered on a small pad of silica, washed with ethyl acetate, and concentrated under vacuum. The crude product was purified by flash chromatography on silica gel (pentane/Et₂O: 85/15) to afford the desired compound as colourless oil.

1.6.3.3. General procedure 3 using isolated complex:

A flame-dried Schlenk tube under argon was charged with the copper complex (0.011 mmol, 2.0 mol%) and dry THF (0.5 mL). Then, the solution was stirred 10 min and R₂Zn (3.0 equiv) was added dropwise to the Schlenk. The reaction mixture was stirred 10 min at room temperature and 10 min at 0 °C. A solution of dienone (70.0 mg, 0.51 mmol, 1.0 equiv) in dry THF (0.5 mL) was added to the reaction at 0 °C and the solution was stirred at room temperature for 1.5 h. The reaction was quenched with NH₄Cl solid (500 mg). The solution was stirred for 1 h and then dry DCM (4.0 mL) and DBU (110 μ L, 0.74 mmol, 1.44 equiv) was added to the solution. The reaction was stirred for 5 h and then filtered on a small pad of silica, washed with ethyl acetate, and concentrated under vacuum. The crude product was purified by flash chromatography on silica gel (pentane/Et₂O: 85/15) to afford the desired compound as colourless oil.

1.6.3.4. General procedure 4 using Grignard reagent:

A flame-dried Schlenk tube was charged with copper complex (3.0 mol%). The system was again dried in vacuo at rt. for 15 minutes. Then, dry DCM (1.5 mL) was added and the mixture was cooled down to 0 °C in an ethanol cold bath. The Grignard reagent (1.2 equiv) was added dropwise to the solution for 5 minutes. A solution of the dienone (0.5 mmol) in DCM (5.0 mL) was then added dropwise to the solution at -10 °C over 15 minutes with a syringe pump, then the solution was stirred for 1 h at -10 °C. The reaction was hydrolysed at -10 °C with a saturated solution of NH₄Cl (0.5 mL). The solution was stirred for 1 h and then dry DCM (4.0 mL) and DBU (110 μ L, 0.74 mmol, 1.44 equiv) was added to the solution. The reaction was stirred for 5 h and then filtered on a small pad of silica, washed with ethyl acetate, and concentrated under

vacuum. The crude product was purified by flash chromatography on silica gel (pentane/Et₂O: 85/15) to afford the desired compound as colourless oil.

1.6.4. Catalysis products:

3-ethyl-3-methylcyclohexanone (P8a):

¹**H NMR** (CDCl₃, 400 MHz): δ 2.21 (t, J = 6.8 Hz, 2H, C<u>H</u>₂), 2.12 (d, J = 13.5 Hz, 1H, C<u>H</u>₂), 2.04 (d, J = 13.5 Hz, 1H, C<u>H</u>₂), 1.85 – 1.76 (m, 2H, C<u>H</u>₂), 1.61 – 1.53 (m, 1H, C<u>H</u>₂), 1.53 – 1.43 (m, 1H, C<u>H</u>₂), 1.31 – 1.21 (m, 2H, C<u>H</u>₂), 0.83 (s, 3H, C<u>H</u>₃), 0.78 (t, J = 7.5 Hz, 3H, C<u>H</u>₃). ¹³C NMR (CDCl₃, 101 MHz): δ 211.72 (<u>C</u>O), 52.52 (<u>C</u>H₂), 40.19

Molecular Weight: 140,23 ¹³C N

(<u>C</u>H₂), 37.81 (<u>C</u>_{quat}), 34.51 (<u>C</u>H₂), 33.08 (<u>C</u>H₂), 23.56 (<u>C</u>H₂), 21.26 (<u>C</u>H₃), 6.88 (<u>C</u>H₃). [α] \mathbf{p}^{25} (c = 0.53, CHCl₃) = +5.4 (99% ee). Analytical data for this compound were consistent with the previously reported data.¹¹

Entry	Catalytic system (mol%)	Conv. (yield) (%)	ee (%)
1	L1bH·PF ₆ /(CuOTf) ₂ .toluene (1.2/1)	>99 (80)	99
2	2b /(CuOTf) ₂ .toluene (1.2/1)	35 (23)	97
3	2b /CuBr·SMe ₂ $(1.2/1)$	>99 (97)	>99
4	CuBr-1b (1)	>99 (67)	99
5	2b (5)	Nr	Nd
6	CuBr-1a (1)	>99 (84)*	85
7	2a (5)	Nr	Nd
8	CuBr-1b (1) with EtMgBr	>99 (86)	77
9	2b (5) with EtMgBr	>99 (Mr)	Nd

Analytical parameters:

GC method 7: capillary column: β -dex 325: 30 m x 0.25 mm x 0.25 µm, injector temperature: 250 °C, detector (FID) temperature: 250 °C, injection volume: 1µL. Helium as carrier gas (40 cm/sec), 5.0 split ratio, temperature program (Rate - Temperature - Hold Time): 100 °C - 20 min; 3.0 °C/min – 125 °C – 0 min; 20 °C/min – 160 °C – 10 min.

¹¹ C. Jahier-Diallo, M. S. T. Morin, P. Queval, M. Rouen, I. Artur, P. Querard, L. Toupet, C. Crévisy, O. Baslé, M. Mauduit, *Chem. Eur. J.* **2015**, *21*, 993-997.

• Racemic mixture:

Peak	Retention time	Area	Height	% Area
1	13.485	43482	6076	50.008
2	14.200	43468	5728	49.992

• Table 2, entry 1:

Peak	Retention time	Area	Height	% Area	
1	13.397	2147649	129741	99.297	
2	14.486	15207	1465	0.703	

• Table 2, entry 2:

• Table 2, entry 3:

Peak	Retention time	Area	Height	% Area	
1	13.607	635263	58140	99.738	
2	14.527	1671	206	3.555	

• Table 2, entry 4:

• Table 2, entry 6:

• Table 2, entry 8:

3-isopropyl-3-methylcyclohexan-1-one (P8b):

Chemical Formula: C₁₀H₁₈O Molecular Weight: 154.25 The general procedure 3 for 1,4-ACA reactions was followed using **S8** (115 μ L, 1.0 mmol, 1.0 equiv), ^{*i*}Pr₂Zn (1M in Toluene, 3.0 mL, 3.0 mmol, 3.0 equiv) and a stock solution of the complex **CuBr-1b** (4.31 mg, 0.01 mmol, 1.0 mol%). The desired product **P8b** was obtained as a colourless oil (112.6 mg, 73% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 2.33 – 2.18 (m, 3H), 2.08 (dt, *J* = 13.5, 1.7 Hz, 1H), 1.96 – 1.74 (m, 2H), 1.68 – 1.46 (m, 3H), 0.85 (d, *J* = 6.8 Hz, 6H), 0.79 (s, 3H). ¹³**C** NMR (101 MHz, CDCl₃) δ 213.1, 52.0, 41.3, 41.2, 36.4, 34.2, 22.1, 19.9, 17.1, 16.9. [α] p^{25} (c = 0.29, CHCl₃) = +16 (93% ee). Analytical data for this compound were consistent with the previously reported data.¹²

Analytical parameters:

GC method 8: capillary column: Lipodex E: 25 m x 0.25 mm x 0.25 μ m, injector temperature: 250 °C, detector (FID) temperature: 250 °C, injection volume: 1 μ L. Helium as carrier gas (90 cm/sec), 40.0 split ratio, temperature program (Rate - Temperature - Hold Time): 60 °C - 0 min; 1.0 °C/min – 130 °C – 0 min; 10 °C/min – 160 °C – 10 min.

¹² S. Kehrli, D. Martin, D. Rix, M. Mauduit, A. Alexakis, Chem. Eur. J. 2010, 16, 9890-9904.
• Racemic mixture:

• With CuBr-1b:

3-methyl-3-phenylcyclohexan-1-one (P8c):

P8c Chemical Formula: C₁₃H₁₆O Molecular Weight: 188,27

The general procedure 3 for 1,4-ACA reactions was followed using **S8** (29 μ L, 0.25 mmol, 1.0 equiv), a solution of Ph₂Zn (330 mg, 1.5 mmol, 6.0 equiv) in Toluene (3.0 mL) and a stock solution of the complex **CuBr-1b** (1.08 mg, 0.0025 mmol, 1.0 mol%). The desired product **P8c** was obtained as a colourless oil (36.7 mg, 78% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.32 (s, 4H), 7.24 – 7.17 (m, 1H), 2.88 (dt, *J* = 14.4, 1.1 Hz, 1H), 2.44 (dq, *J* = 14.1, 0.8 Hz, 1H), 2.32 (ddt, *J* = 7.3, 6.5, 0.8 Hz, 2H), 2.19 (dddd, *J* = 13.6, 8.0, 3.6, 1.6 Hz, 1H), 1.98 – 1.82 (m, 2H), 1.72 – 1.61 (m, 1H), 1.33 (s, 3H). ¹³**C** NMR (101 MHz, CDCl₃) δ 211.6, 147.6, 128.6, 126.3, 125.7, 53.2, 42.9, 40.9, 38.1, 29.9, 22.1. [α] α ²⁵ (c = 0.51, CHCl₃) = – 37 (99% ee). Analytical data for this compound were consistent with the previously reported data.¹¹

Analytical parameters:

GC method 9: capillary column: β -dex 325: 30 m x 0.25 mm x 0.25 μ m, injector temperature: 250 °C, detector (FID) temperature: 250 °C, injection volume: 1 μ L. Helium as carrier gas (30 cm/sec), 2.5 split ratio, temperature program (Rate - Temperature - Hold Time): 120 °C - 90 min; 3.0 °C/min – 170 °C – 10 min.

• Racemic mixture:

• With CuBr-1b:

3-phenylcyclohexan-1-one (P9):

The general procedure 3 for 1,4-ACA reactions was followed using **S9** (24.0 mg, 0.25 mmol, 1.0 equiv), a solution of Ph_2Zn (165 mg, 0.75 mmol, 3.0 equiv) in Toluene (1.5 mL) and a stock solution of the complex **CuBr-1b** (1.08 mg, 0.0025 mmol, 1.0 mol%). The desired product **P9** was obtained as a colourless oil (30.9 mg, 71% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.32 – 7.23 (m, 2H), 7.22 – 7.09 (m, 3H), 2.94 (tt, *J* = 11.6, 4.0 Hz, 1H), 2.57 – 2.25 (m, 4H), 2.13 – 1.97 (m, 2H), 1.85 – 1.64 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 211.1, 144.3, 128.7, 126.7, 126.6, 47.0, 44.8, 41.2, 32.8, 25.6. [α] \mathbf{p}^{25} (c = 0.16, CHCl₃) = + 4.7 (76% ee). Analytical data for this compound were consistent with the previously reported data.¹¹

Analytical parameters:

GC method 10: capillary column: β -dex 325: 30 m x 0.25 mm x 0.25 μ m, injector temperature: 250 °C, detector (FID) temperature: 250 °C, injection volume: 1 μ L. Helium as carrier gas (30 cm/sec), 2.5 split ratio, temperature program (Rate - Temperature - Hold Time): 120 °C - 90 min; 3.0 °C/min – 160 °C – 10 min.

• Racemic mixture:

• With CuBr-1b:

1	101.737	17151	1710	12.178
2	102.153	123682	10324	87.822

3-(2-methylbutyl)cyclohex-2-enone (1,6-P10a):

7,6-P10a Chemical Formula: C₁₁H₁₈O Molecular Weight: 166,26 ¹**H NMR** (CDCl₃, 400 MHz): δ 5.85 (h, J = 1.2 Hz, 1H), 2.42 – 2.32 (m, 2H), 2.32 – 2.17 (m, 3H), 2.03 – 1.92 (m, 3H), 1.72 – 1.58 (m, 1H), 1.43 – 1.28 (m, 1H), 1.22 – 1.13 (m, 1H), 0.96 – 0.81 (m, 6H). ¹³**C NMR** (CDCl₃, 101 MHz): δ 199.9, 165.9, 127.1, 45.8, 37.5, 32.8, 29.8, 29.6, 22.9, 19.2, 11.4. [α]_D²⁵ (c = 0.26, CHCl₃) = + 8.8 (65% ee).

Analytical data for this compound were consistent with the previously reported data.¹¹

Entry	Catalytic system (mol%)	Conv. (yield) (%)	Selectivity 1,6/1,4	ee (%)
1	L1bH·PF ₆ /(CuOTf) ₂ (3/2)	Mr	Nd	Nd
2	2b /(CuOTf) ₂ (3/2)	>99 (Nd)	100/0	53
3	$2a/CuBr \cdot SMe_2 (3/2)$	>99 (Nd)	100/0	74
4	CuBr-1b (2)	>99 (68)	100/0	85
5	CuBr-1a (2)	>99 (90)	100/0	65
6	2b (5)	Nr	Nd	Nd
7	2a (5)	Nr	Nd	Nd
8	CuBr-1b (3) with EtMgBr	>99 (84)	0/100	95

Analytical parameters:

GC method 11: capillary column: β -dex 325: 30 m x 0.25 mm x 0.25 μ m, injector temperature: 250 °C, detector (FID) temperature: 250 °C, injection volume: 1 μ L. Helium as carrier gas (40 cm/sec), 20.0 split ratio, temperature program (Rate - Temperature - Hold Time): 100 °C - 45 min; 1.0 °C/min - 150 °C - 5.0 min; 10 °C/min - 170 °C - 10 min.

• Racemic mixture:

Peak	Retention time	Area	Height	% Area
1	86.592	249993	6276	49.949
2	88.319	250505	5206	50.051

• Table 3, entry 2:

• Table 3, entry 3:

Peak	Retention time	Area	Height	% Area
1	87.202	68844	1782	87.108
2	89.080	10189	247	12.892

• Table 3, entry 4:

_	Peak	Retention time	Area	Height	% Area	
	1	86.383	428678	8806	92.684	
	2	88.804	33838	734	7.316	

• Table 3, entry 5:

1	86.781	205340	5033	82.222
2	88.826	44397	1006	17.778

(*E*)-3-ethyl-3-(prop-1-en-1-yl)cyclohexan-1-one (*1*,4-P10a):

1,4-P10a Chemical Formula: C₁₁H₁₈O Molecular Weight: 166,26

The general procedure 4 for 1,6-ACA reactions was followed using **S10** (68.1 mg, 0.5 mmol, 1.0 equiv), EtMgBr (3M in diethyl ether, 0.2 mL, 0.6 mmol, 1.2 equiv) and the complex **CuBr-1b** (6.5 mg, 0.015 mmol, 3.0 mol%). The desired product *1,4-***P10a** was obtained as a colourless oil (69.8 mg, 84% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 5.39 – 5.28 (m, 1H), 5.15 (dq, *J* = 15.8, 1.6 Hz, 1H), 2.45 (dt, *J* = 14.1, 1.7 Hz, 1H), 2.32 – 2.14 (m, 2H), 2.11 (dd, *J* = 14.1, 1.3 Hz, 1H), 1.83 – 1.78 (m, 1H), 1.71 – 1.56 (m, 6H), 1.36 (q, *J* = 7.5 Hz, 2H), 0.77 (td, *J* = 7.5, 0.7 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 212.1, 136.7, 125.4, 49.9, 44.3, 41.5, 35.3, 34.3, 21.9, 18.4, 8.0. [α] p^{25} (c = 0.72, CHCl₃) = + 3.3 (95% ee). Analytical data for this compound were consistent with the previously reported data.⁹ The enantiomeric excess has been determined on the hydrogenated compound following reported procedure.⁹

Analytical parameters:

GC method 12: capillary column: G-TA: 30 m x 0.25 mm x 0.12 μ m, injector temperature: 250 °C, detector (FID) temperature: 250 °C, injection volume: 1 μ L. Helium as carrier gas (30 cm/sec), 50.0 split ratio, temperature program (Rate - Temperature - Hold Time): 85 °C - 70 min; 1.0 °C/min – 100 °C – 0 min; 5 °C/min – 160 °C – 10 min.

• Racemic mixture:

• With CuBr-1b:

(*E*)-3-(but-3-en-1-yl)-3-(prop-1-en-1-yl)cyclohexan-1-one (*1*,4-P10b):

1,4-P10b

Chemical Formula: C₁₃H₂₀O Molecular Weight: 192,30 The general procedure 4 for 1,6-ACA reactions was followed using **S10** (68.1 mg, 0.5 mmol, 1.0 equiv), but-3-en-1-ylMgBr (1M in diethyl ether, 0.6 mL, 0.6 mmol, 1.2 equiv) and the complex **CuBr-1b** (6.5 mg, 0.015 mmol, 3.0 mol%). The desired product *1,4*-P10b was obtained as a colourless oil (23.0 mg, 24% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 5.77 (ddt, J = 16.8, 10.2, 6.5 Hz, 1H), 5.35 (dq, J = 15.8, 6.3 Hz, 1H), 5.17 (dq, J = 15.8, 1.7 Hz, 1H), 5.02 – 4.88 (m, 2H), 2.48 (dt, J = 14.1, 1.8 Hz, 1H), 2.33 – 2.17 (m, 2H), 2.14 (dd, J = 14.4, 1.1 Hz, 1H), 2.00 – 1.90 (m, 2H), 1.85 – 1.76 (m, 2H), 1.71 – 1.58 (m, 5H), 1.47 – 1.37 (m, 2H). ¹³C **NMR** (101 MHz, CDCl₃) δ 212.0, 139.3, 136.9, 126.0, 114.8, 50.6, 44.4, 41.6, 41.4, 36.1, 28.4, 22.1, 18.7. [α] ρ ²⁵ (c = 0.1, CHCl₃) = + 83 (97% ee). Analytical data for this compound were consistent with the previously reported data.⁹ The enantiomeric excess has been determined on the hydrogenated compound following reported procedure.⁹

Analytical parameters:

GC method 13: capillary column: G-TA: 30 m x 0.25 mm x 0.12 μ m, injector temperature: 250 °C, detector (FID) temperature: 250 °C, injection volume: 1 μ L. Helium as carrier gas (30 cm/sec), 20.0 split ratio, temperature program (Rate - Temperature - Hold Time): 105 °C - 80 min; 5 °C/min – 160 °C – 10 min.

• Racemic mixture:

• With CuBr-1b:

3-(2-phenylhexyl)cyclohex-2-en-1-one (1,6-P11a):

1,6-P11a Chemical Formula: C₁₈H₂₄O Molecular Weight: 256,39 The general procedure 3 for 1,6-ACA reactions was followed using **S11** (45 mg, 0.25 mmol, 1.0 equiv), Ph_2Zn (164.7 mg, 0.75 mmol, 3.0 equiv) in Toluene (2.0 mL) and a stock solution of the complex **CuBr-1b** (2.16 mg, 0.005 mmol, 2.0 mol%). The desired product *1,6*-P11a was obtained as a colourless oil (45.0 mg, 70% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.29 – 7.24 (m, 2H), 7.21 – 7.15 (m, 1H), 7.13 – 7.09 (m, 2H), 5.76 (t, *J* = 1.3 Hz, 1H), 2.78 (tt, *J* = 9.0, 6.1 Hz, 1H), 2.55 (dd, *J* = 13.8, 6.4 Hz, 1H), 2.43 (dd, *J* = 13.8, 8.8 Hz, 1H), 2.31 – 2.22 (m, 2H), 2.22 – 2.13 (m, 1H), 2.12 – 2.02 (m, 1H), 1.90 – 1.81 (m, 2H), 1.69 – 1.53 (m, 2H), 1.34 – 1.04 (m, 4H), 0.82 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 199.9, 164.9, 144.3, 128.6, 127.6, 127.5, 126.5, 45.8, 44.5, 37.4, 36.4, 30.0, 29.8, 22.8, 22.7, 14.1. [*a*] \mathbf{p}^{25} (c = 0.24, CHCl₃) = – 62 (90% ee). Analytical data for this compound were consistent with the previously reported data.¹¹

Analytical parameters:

HPLC method 3: OJ-H column (0.46 cm x 25 cm) as stationary chiral phase and with hexane/iPrOH (95/5) at 0.5 mL/min as mobile phase at 25°C and $\lambda = 254$ nm.

• Racemic mixture:

With CuBr-1b:

•

Peak	Retention time	Area	Height	% Area
1	29.595	457885	9609	5.78
2	41.216	7459072	98969	94.22

3-(2-isopropylhexyl)cyclohex-2-en-1-one (1,6-P11b):

The general procedure 3 for 1,6-ACA reactions was followed using **S11** (90 mg, 0.5 mmol, 1.0 equiv), ${}^{i}Pr_{2}Zn$ (1 M in Toluene, 1.5 mL, 1.5 mmol, 3.0 equiv) and a stock solution of the complex **CuBr-1b** (4.32 mg, 0.01 mmol, 2.0 mol%). The desired product *1,6*-P11b was obtained as a colourless oil (82.3 mg, 74% yield).

1,6-P11b Chemical Formula: C₁₅H₂₆O Molecular Weight: 222,37

¹**H** NMR (400 MHz, CDCl₃) δ 5.86 (p, J = 1.3 Hz, 1H), 2.38 – 2.31 (m, 2H), 2.29 – 2.21 (m, 2H), 2.17 (ddd, J = 13.9, 6.6, 1.1 Hz, 1H), 2.04 (ddd, J = 13.9, 7.8, 1.1 Hz, 1H), 1.96 (dq, J = 7.9, 6.2 Hz, 2H), 1.69 (hd, J = 6.8, 3.6 Hz, 1H), 1.51 – 1.38 (m, 1H), 1.31 – 1.17 (m, 5H), 1.17 – 1.05 (m, 1H), 0.92 – 0.78 (m, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 199.9, 166.9, 127.3, 41.7, 40.1, 37.5, 29.9, 29.8, 29.7, 29.0, 23.1, 22.9, 18.9, 18.8, 14.2. [α] p^{25} (c = 0.52, CHCl₃) = -4.5 (66% ee). Analytical data for this compound were consistent with the previously reported data.¹¹

Analytical parameters:

GC method 14: capillary column: β -dex 325: 30 m x 0.25 mm x 0.25 μ m, injector temperature: 250 °C, detector (FID) temperature: 250 °C, injection volume: 1 μ L. Helium as carrier gas (40 cm/sec), 30.0 split ratio, temperature program (Rate - Temperature - Hold Time): 100 °C – 80 min; 0.20 °C/min – 120 °C – 15.0 min; 5 °C/min – 160 °C – 10 min.

• Racemic mixture:

• With CuBr-1b:

References:

¹ a) M. Nakamura, T. Hatakeyama, K. Hara, E. Nakamura, J. Am. Chem. Soc. 2003, 125, 6362-6363;
b) H. Clavier, L. Coutable, L. Toupet, J.-C. Guillemin, M. Mauduit, J. Organomet. Chem. 2005, 690, 5237-5254; c) T. Jennequin, J. Wencel-Delord, D. Rix, J. Daubignard, C. Crévisy, M. Mauduit, Synlett 2010, 2010, 1661-1665; d) C. Jahier-Diallo, M. S. T. Morin, P. Queval, M. Rouen, I. Artur, P. Querard, L. Toupet, C. Crévisy, O. Baslé, M. Mauduit, Chem. Eur. J. 2015, 21, 993-997.

² *Titration of n-Butyllithium* :<u>https://www.sigmaaldrich.com/content/dam/sigma-</u> aldrich/docs/Aldrich/Datasheet/1/689327dat.pdf

³ C. A. Luchaco-Cullis, H. Mizutani, K. E. Murphy, A. H. Hoveyda, *Angew. Chem. Int. Ed.* **2001**, *40*, 1456-1460.

- ⁴ K.-s. Lee, A. H. Hoveyda, J. Org. Chem. 2009, 74, 4455-4462.
- ⁵ D. L. J. Clive, E. J. L. Stoffman, *Chem. Commun.* **2007**, 2151-2153.
- ⁶ M. A. Kacprzynski, A. H. Hoveyda, J. Am. Chem. Soc. 2004, 126, 10676-10681.
- ⁷ M. Magrez, Y. Le Guen, O. Baslé, C. Crévisy, M. Mauduit, *Chem. Eur. J.* 2013, 19, 1199-1203.

⁸ W. Xiong, G. Xu, X. Yu, W. Tang, Organometallics 2019, 38, 4003-4013.

⁹ H. Hénon, M. Mauduit, A. Alexakis, Angew. Chem. Int. Ed. 2008, 47, 9122-9124.

¹⁰ J. Wencel-Delord, A. Alexakis, C. Crévisy, M. Mauduit, Org. Lett. 2010, 12, 4335-4337.

¹¹ C. Jahier-Diallo, M. S. T. Morin, P. Queval, M. Rouen, I. Artur, P. Querard, L. Toupet, C.

Crévisy, O. Baslé, M. Mauduit, Chem. Eur. J. 2015, 21, 993-997.

¹² S. Kehrli, D. Martin, D. Rix, M. Mauduit, A. Alexakis, *Chem. Eur. J.* **2010**, *16*, 9890-9904.

1.7. NMR spectra:

¹H NMR (CDCl₃, 400 MHz) of 2b:

¹H NMR (CDCl₃, 400 MHz) of AuCl-1a:

¹H NMR (CDCl₃, 400 MHz) of AuCl-1b:

¹H NMR (CDCl₃, 400 MHz) of CuBr-1a:

¹H NMR (CD₂Cl₂, 500 MHz) of CuBr-1b:

¹H NMR (CDCl₃, 400 MHz) of γ-P1:

¹H NMR (CDCl₃, 400 MHz) of γ-P2:

H2O

-2 30 220 210 200 190 110 100 f1 (ppm) -10

¹H NMR (CDCl₃, 400 MHz) of γ -P3a:

8.8.8 8.8.19 8.8.10 8.8.10 8.8.10 8.8.11 8.8.17

Chemical Formula: C₁₅H₁₆ Molecular Weight: 196,29

¹H NMR (CDCl₃, 400 MHz) of γ-P3b:

Chemical Formula: C₁₄H₁₄ Molecular Weight: 182,27

¹H NMR (CDCl₃, 400 MHz) of γ-P4:

S60

¹H NMR (CDCl₃, 400 MHz) of γ-P5:

¹H NMR (CDCl₃, 400 MHz) of γ-P6:

¹³C NMR (CDCl₃, 101 MHz) of γ-P6:

--- 9.10

Chemical Formula: C₁₆H₁₈ Molecular Weight: 210,32

¹H NMR (CDCl₃, 400 MHz) of γ-P7a:

¹H NMR (CDCl₃, 400 MHz) of γ-P7b:

¹H NMR (CDCl₃, 400 MHz) of P8a:

¹H NMR (CDCl₃, 400 MHz) of P8b:

¹H NMR (CDCl₃, 400 MHz) of P8c:

¹H NMR (CDCl₃, 400 MHz) of P9:

¹H NMR (CDCl₃, 400 MHz) of 1,6-P10a:

¹H NMR (CDCl₃, 400 MHz) of 1,4-P10a:

¹H NMR (CDCl₃, 400 MHz) of 1,4-P10b:

¹H NMR (CDCl₃, 400 MHz) of 1,6-P11a:

¹³C NMR (CDCl₃, 101 MHz) of *1,6*-P11a:

¹H NMR (CDCl₃, 400 MHz) of 1,6-P11b:

7,22 5,25 5,58

1.8. X-Ray crystallography:

Data were collected on a D8 VENTURE Bruker AXS diffractometer equipped with a (CMOS) PHOTON 100 detector using MoK α radiation (0.71073 Å) at T = 150 K.

All the structures were solved by dual-space algorithm using the *SHELXT* program^[1], and then refined with full-matrix least-squares methods based on F^2 (*SHELXL*).^[2] All non-hydrogen atoms were refined with anisotropic atomic displacement parameters. H atoms were finally included in their calculated positions and treated as riding on their parent atom with constrained thermal parameters.

The CIF files of (*S*,*S*)-**2a**, AuCl-**1a** and AuCl-**1b** have been deposited with CCDC numbers: (*S*,*S*)-**2a** (2090324), AuCl-**1a** (2090326), AuCl-**1b** (2090325).

^[1] Sheldrick, G. M. SHELXT – Integrated space-group and crystal-structure determination. *Acta Crystallogr. Sect. Found. Adv.* **71**, 3–8 (2015).

^[2] Sheldrick, G. M. Crystal structure refinement with SHELXL. *Acta Crystallogr. Sect. C Struct. Chem.* **71**, 3–8 (2015)

• X-Ray structure of oxazolidine (*S*,*S*)-2a:

Bond precision:	C-C = 0.0030 A	Wavelen	gth=0.71073	
Cell:	a=6.1890(4) alpha=90	b=12.3978(9) beta=90	c=26.4025(15) gamma=90	
Temperature:	150 K		5	
	Calculated	Report	ed	
Volume	2025.9(2)	2025.9	(2)	
Space group	P 21 21 21	P 21 2	1 21	
Hall group	P 2ac 2ab	P 2ac	2ab	
Moiety formula	C21 H34 N2 O	C21 H3	4 N2 O	
Sum formula	C21 H34 N2 O	C21 H3	4 N2 O	
Mr	330.50	330.50	1	
Dx,g cm-3	1.084	1.084		
Z	4	4		
Mu (mm-1)	0.066	0.066		
F000	728.0	728.0		
F000'	728.25			
h,k,lmax	8,16,34	8,16,3	3	
Nref	4616[2667]	4572		
Tmin,Tmax	0.981,0.989	0.838,	0.989	
Tmin'	0.962			
Correction method= # Reported T Limits: Tmin=0.838 Tmax=0.989 AbsCorr = MULTI-SCAN				
Data completeness= 1.71/0.99 Theta(max)= 27.466				
R(reflections) = 0.0406(4348) wR2(reflections) = 0.1051(4572)				
S = 1.067	Npar=	226		

• X-Ray structure of complex AuCl-1a:

Bond precision: C-C = 0.0322 A Wavelength=0.71073 Cell: a=9.7764(12) b=14.6129(18) c=16.587(2) alpha=90 beta=90 gamma=90 150 K Temperature: Calculated Reported Volume 2369.6(5) 2369.7(5) P 21 21 21 P 21 21 21 Space group P 2ac 2ab Hall group P 2ac 2ab Moiety formula C21 H34 Au Cl N2 O Sum formula C21 H34 Au Cl N2 O C21 H34 Au Cl N2 O C21 H34 Au Cl N2 O Mr 562.92 562.92 1.578 1.578 Dx,g cm-3 \mathbf{Z} 4 4 Mu (mm-1) 6.332 6.332 F000 1112.0 1112.0 F000' 1105.21 h,k,lmax 12,19,21 12,18,21 5472[3085] 5320 Nref Tmin,Tmax 0.510,0.827 0.530,0.827 Tmin' 0.057 Correction method= # Reported T Limits: Tmin=0.530 Tmax=0.827 AbsCorr = MULTI-SCAN Data completeness= 1.72/0.97 Theta(max) = 27.548 R(reflections) = 0.0544(4340) wR2(reflections) = 0.1361(5320) S = 1.025Npar= 231

• X-Ray structure of complex AuCl-1b:

Bond precision: C-C = 0.0140 A Wavelength=0.71073 Cell: a=28.311(3) b=9.3672(9) c=15.1782(16) alpha=90 beta=102.115(4) gamma=90 Temperature: 150 K Calculated Reported Volume 3935.5(7) 3935.6(7) Space group C 2 C 2 Hall group C 2y C 2y Moiety formula C18 H28 Au Cl N2 O Sum formula Mr 520.84 520.84 1.758 1.758 Dx,g cm-3 \mathbf{Z} 8 8 Mu (mm-1) 7.618 7.617 F000 2032.0 2032.0 F000′ 2018.47 h,k,lmax 36,12,19 36,12,19 9072[4814] Nref 8916 Tmin, Tmax 0.381,0.766 0.536,0.766 Tmin' 0.180 Correction method= # Reported T Limits: Tmin=0.536 Tmax=0.766 AbsCorr = MULTI-SCAN Data completeness= 1.85/0.98 Theta(max) = 27.527 R(reflections) = 0.0290(8163) wR2(reflections) = 0.0619(8916) S = 1.024Npar= 428

1.9. DFT Calculations

• Computational details

Geometries were optimized with the Gaussian09 [D. J. *Gaussian 16 Rev. B.01*, Wallingford, CT, 2016] package using the B3LYP functional. [*Physical Review A* **1988**, *38* (6), 3098-3100][*Physical Review B* **1986**, *33* (12), 8822-8824] The electronic configuration of the system was described with the split-valence SVP basis set [*The Journal of Chemical Physics* **1992**, *97* (4), 2571-2577] for main group atoms (C, H, S, N and O) and the relativistic Stuttgart-Dresden effective core potential with the associated valence triple- ζ basis set for Au. All geometries were confirmed as minimum or transition state through frequency calculations. The reported free energies were built through single point energy calculations on the B3LYP geometries using the B3LYP-D3 [*The Journal of Chemical Physics* **2010**, *132* (15), 154104][*Journal of Computational Chemistry* **2004**, *25* (12), 1463-1473] functional and the triple- ζ TZVP basis set [*The Journal of Chemical Physics* **2003**, *119* (24), 12753-12762] for main group atoms. Solvent effects were included with the PCM model using 1,4-dioxane as the solvent, [*The Journal of Physical Chemistry A* **1998**, *102* (11), 1995-2001] To this B3LYP/SVP electronic energy in solvent, zero point and thermal corrections were added from the gas-phase frequency calculations at the B3LYP-D3/TZVP level.

• Cartesian coordinates of species reported in the context with solvent energies (in a.u.).

		2a -(<i>S</i> , <i>S</i>)		Η	1.425792	-2.345002	0.676593
	E= -100	5.88698357	A.U.	С	3.424514	-3.009760	1.106748
С	1.787351	0.157793	0.114400	Η	3.098931	-4.033591	1.354070
С	2.740682	-0.871423	-0.094903	Η	4.421613	-3.089032	0.642499
С	4.007689	-0.523443	-0.585343	Η	3.541083	-2.454287	2.051259
Η	4.751361	-1.305332	-0.758410	С	2.234320	-3.116629	-1.138943
С	4.334153	0.803268	-0.860751	Η	1.425967	-2.682578	-1.745249
Η	5.327064	1.055355	-1.243020	Η	3.161854	-3.114070	-1.736238
С	3.392077	1.808585	-0.649838	Η	1.972129	-4.167508	-0.930853
Η	3.657608	2.845700	-0.871217	С	1.110452	2.647176	0.046070
С	2.111059	1.511658	-0.161654	Η	0.176199	2.207503	0.423166
С	2.404061	-2.334106	0.175788	С	0.771015	3.360070	-1.275804

Η	-4.997071	-0.102289	1.785326
Η	-5.619077	1.266763	0.833053
С	-5.239257	-0.903219	-0.846443
Η	-6.163860	-0.343880	-1.062564
Η	-5.499625	-1.718612	-0.150553
Н	-4.905369	-1.360602	-1.791897

TS1-(*S*,*S*)

E= -1005.85251466 A.U.				
С	1.799039	0.135689	0.159487	
С	2.551926	-1.037085	-0.089103	
С	3.809225	-0.884304	-0.690960	
Н	4.411900	-1.768072	-0.908074	
С	4.302113	0.376213	-1.026348	
Н	5.283745	0.468796	-1.498393	
С	3.547440	1.517468	-0.763045	
Н	3.945111	2.498640	-1.032771	
С	2.282924	1.423777	-0.163636	
С	2.019913	-2.430946	0.240826	
Н	1.224004	-2.312023	0.992464	
С	3.094136	-3.335768	0.868745	
Н	2.635828	-4.272914	1.222510	
Н	3.873612	-3.616098	0.142061	
Н	3.591681	-2.853726	1.726033	
С	1.372905	-3.099655	-0.990600	
Н	0.448507	-2.587803	-1.310564	
Н	2.081249	-3.129240	-1.835404	
Н	1.101424	-4.140645	-0.747410	
С	1.463713	2.687491	0.083388	
Н	0.574132	2.402689	0.665121	

Η	1.653655	3.861957	-1.704991
Н	-0.002317	4.129101	-1.114570
Η	0.393162	2.651898	-2.029964
С	1.599125	3.653685	1.103777
Н	1.817554	3.156891	2.062241
Н	0.834714	4.426650	1.287624
Н	2.519136	4.167343	0.780044
Ν	0.498478	-0.194687	0.619538
С	0.135286	-0.013655	2.020058
Н	0.295968	1.029317	2.358061
Н	0.721294	-0.668693	2.687697
С	-1.348921	-0.384109	2.025311
Н	-1.471376	-1.466985	2.228120
Н	-1.917838	0.168023	2.789668
Ν	-1.795821	-0.036475	0.668248
С	-0.651183	-0.276223	-0.203093
Η	-0.618226	0.436855	-1.052385
0	-0.872121	-1.584399	-0.766511
С	-2.256367	-1.621016	-1.038008
Η	-2.583564	-2.669906	-1.072852
Η	-2.479846	-1.160155	-2.019875
С	-2.918804	-0.818954	0.127222
Η	-3.244506	-1.540337	0.898836
С	-4.169297	0.027391	-0.244779
С	-3.822706	1.147525	-1.242156
Η	-3.479879	0.753874	-2.211978
Η	-3.032042	1.796395	-0.835935
Η	-4.708818	1.772326	-1.439892
С	-4.719422	0.665862	1.043947
Н	-3.968257	1.327390	1.502130

Η	-3.179173	1.971289	1.070803
Η	-4.599041	1.084831	1.689780
Η	-4.788196	2.272011	0.379147
С	-5.258149	-0.248017	-0.616216
Η	-5.970292	0.532715	-0.928446
Η	-5.693910	-0.767433	0.254114
Н	-5.180040	-0.974513	-1.437954

Carbene C

E= -1005.86847669 A.U.

С	1.846372	0.150953	0.156387
С	2.716518	-0.951740	-0.017862
С	4.006514	-0.703305	-0.507342
Н	4.696618	-1.535462	-0.659761
С	4.423594	0.592352	-0.811922
Н	5.433323	0.764659	-1.193960
С	3.553359	1.665733	-0.634978
Н	3.888494	2.674681	-0.886909
С	2.252382	1.470042	-0.147289
С	2.250809	-2.380195	0.253459
Н	1.413910	-2.321650	0.966357
С	3.331742	-3.263085	0.896268
Н	2.902842	-4.235166	1.188206
Н	4.160904	-3.474927	0.202001
Η	3.759598	-2.795269	1.797334
С	1.698173	-3.027661	-1.031763
Н	0.846416	-2.459790	-1.434813
Н	2.475709	-3.074853	-1.811943
Н	1.357231	-4.057100	-0.831539
С	1.303611	2.657547	-0.012497

С	0.958437	3.288830	-1.241180
Η	1.797386	3.609568	-1.880210
Η	0.324522	4.170429	-1.051550
Η	0.364911	2.558155	-1.811975
С	2.232302	3.730092	0.913764
Η	2.582515	3.308335	1.869331
Η	1.586400	4.594207	1.138878
Η	3.114424	4.112408	0.375603
Ν	0.496846	-0.001511	0.748703
С	0.234295	-0.024559	2.200193
Η	0.450084	0.965578	2.638040
Η	0.872758	-0.763636	2.706670
С	-1.268956	-0.377724	2.259246
Η	-1.437354	-1.426514	2.558945
Η	-1.831866	0.270311	2.947210
Ν	-1.707924	-0.189889	0.865865
С	-0.652558	-0.055663	0.064875
Η	-0.824432	-0.317794	-1.016572
0	-1.637805	-1.652701	-1.521160
С	-2.589394	-1.938523	-0.612358
Η	-2.308457	-2.768298	0.100418
Η	-3.558194	-2.280351	-1.054988
С	-2.974562	-0.724534	0.334761
Η	-3.516347	-1.126039	1.208631
С	-3.893917	0.384592	-0.274431
С	-3.299255	1.010852	-1.551021
Η	-3.021093	0.234166	-2.276636
Η	-2.391657	1.594982	-1.328125
Η	-4.026025	1.703514	-2.007650
С	-4.124599	1.487421	0.778322

С	-4.011140	1.259355	1.167684
Η	-3.042361	1.717607	1.419848
Η	-4.375576	0.710077	2.052658
Η	-4.719911	2.080513	0.973824
С	-5.303498	-0.206040	-0.389993
Η	-6.019607	0.623821	-0.501992
Η	-5.679541	-0.860236	0.415470
Η	-5.317684	-0.778111	-1.329547

TS2

E= -2080.06204983 A.U.				
С	-2.148073	1.085665	0.395359	
С	-2.755397	1.633526	-0.766107	
С	-4.083347	1.279798	-1.047011	
Н	-4.571175	1.686503	-1.935770	
С	-4.799161	0.430832	-0.204483	
Н	-5.834708	0.171173	-0.440450	
С	-4.196363	-0.075258	0.944326	
Н	-4.767998	-0.729846	1.605721	
С	-2.867633	0.238433	1.271497	
С	-2.050485	2.643827	-1.672157	
Н	-0.977152	2.623968	-1.441236	
С	-2.554654	4.073384	-1.390472	
Н	-2.007060	4.807510	-2.004058	
Н	-3.627220	4.170013	-1.626492	
Н	-2.425559	4.352003	-0.332826	
С	-2.179212	2.313738	-3.168247	
Н	-1.836618	1.291480	-3.386585	
Н	-3.217208	2.406644	-3.526609	
Н	-1.562283	3.005388	-3.763233	

Η	0.413200	2.310991	0.531893
С	0.820744	3.128542	-1.396878
Н	1.661579	3.495252	-2.008702
Н	0.093081	3.950930	-1.297288
Н	0.336368	2.306169	-1.944704
С	1.910631	3.816211	0.795915
Н	2.251774	3.482663	1.789099
Н	1.164119	4.613693	0.943127
Н	2.773987	4.270353	0.282974
Ν	0.525735	-0.083095	0.664483
С	0.232200	-0.027342	2.116083
Н	0.371060	0.999931	2.496673
Н	0.907068	-0.686840	2.683331
С	-1.235767	-0.477897	2.157445
Η	-1.349396	-1.504515	2.550741
Η	-1.869265	0.185106	2.764294
Ν	-1.612973	-0.440449	0.726458
С	-0.563141	-0.285483	-0.100567
Η	-1.370802	-1.029873	-1.693870
0	-2.169301	-1.533529	-1.992752
С	-2.799876	-1.949847	-0.814803
Η	-2.255291	-2.793390	-0.335136
Η	-3.796501	-2.338560	-1.078113
С	-2.948706	-0.857289	0.269533
Η	-3.411481	-1.367064	1.134267
С	-3.899623	0.345026	-0.069291
С	-3.402360	1.185266	-1.260961
Η	-3.338905	0.583100	-2.176353
Η	-2.401050	1.599355	-1.068034
Н	-4.090052	2.030093	-1.433756

С	-2.262832	-0.304304	2.561321
Η	-1.175127	-0.157701	2.513165
С	-2.483143	-1.815943	2.732172
Η	-3.544305	-2.067506	2.896359
Η	-1.911411	-2.180578	3.598606
Η	-2.123886	-2.370077	1.852113
С	-2.798491	0.464849	3.785010
Η	-2.618938	1.548738	3.701730
Η	-2.308102	0.110477	4.706202
Н	-3.885493	0.320866	3.905678
N	-0.794475	1.461023	0.704535
С	-0.493814	2.583755	1.617063
Η	-0.503921	2.235333	2.663543
Η	-1.233489	3.390447	1.514311
С	0.910888	2.981426	1.163222
Η	0.906927	3.856766	0.485938
Η	1.568901	3.210449	2.007786
N	1.352872	1.783361	0.407659
С	0.304248	0.993776	0.080292
0	1.331258	1.298543	-2.422389
С	2.494156	1.024263	-1.672876
Η	3.353901	1.265003	-2.312483
Η	2.557632	-0.050237	-1.426224
С	2.605919	1.857649	-0.377151
Η	2.668894	2.917342	-0.694093
С	3.935680	1.561166	0.413485
С	4.101906	0.069400	0.759214
Η	4.218383	-0.558934	-0.136995
Η	3.249376	-0.316815	1.337145
Н	5.010302	-0.069985	1.368105

С	3.985624	2.359241	1.730882
Η	3.234223	2.001425	2.44981
Н	3.840440	3.440501	1.568508
Н	4.971786	2.229179	2.204330
С	5.127477	2.025068	-0.453948
Η	6.066253	1.919877	0.112486
Н	5.032329	3.085210	-0.744385
Η	5.238523	1.430001	-1.372663
Au	0.596848	-1.635185	0.003495
S	0.310083	-2.625385	-2.162208
Cl	1.128044	-1.656026	2.332909
С	-0.554377	-1.457792	-3.265093
С	-0.982147	-3.898199	-1.953334
Н	-0.748018	-1.951717	-4.228462
Η	-1.492979	-1.115791	-2.807673
Н	0.123322	-0.604489	-3.407889
Η	-1.194805	-4.357405	-2.929787
Н	-0.576708	-4.653235	-1.267245
Η	-1.894082	-3.461834	-1.523937
Η	0.608557	0.999205	-1.826722

AuCl-1a

E= -1602.01926817 A.U.

Au	0.296075	1.342075	-0.617538
Cl	0.208630	3.516703	-1.435812
С	0.376301	-0.540815	0.096954
N	-0.700133	-1.255720	0.475762
С	-0.329265	-2.567821	1.027378
Η	-0.955927	-3.365178	0.601724
Н	-0.470762	-2.572202	2.122872

С	-2.064151	-0.800069	0.478797
С	-2.564503	-0.116849	1.611479
С	-3.909788	0.277882	1.596259
Н	-4.321573	0.815048	2.453961
С	-4.728431	0.006882	0.501534
Н	-5.773235	0.327968	0.508540
С	-4.214039	-0.664993	-0.605962
Η	-4.862253	-0.860290	-1.463371
С	-2.877071	-1.085073	-0.642914
С	-1.695511	0.216196	2.820909
Η	-0.684976	-0.171646	2.624766
С	-1.557040	1.737154	3.014512
Η	-2.527245	2.203719	3.250307
Η	-1.161485	2.219822	2.107676
Η	-0.870755	1.957854	3.848407
С	-2.209439	-0.468123	4.100762
Η	-3.210297	-0.102145	4.381663
Η	-1.533670	-0.263022	4.947071
Η	-2.280485	-1.561147	3.978585
С	-2.336969	-1.786105	-1.886315
Η	-1.313032	-2.121296	-1.664371
С	-2.236549	-0.807961	-3.071832
Η	-1.605186	0.058406	-2.821252
Η	-3.229598	-0.428183	-3.363110
Η	-1.796989	-1.309436	-3.949603
С	-3.156384	-3.034611	-2.255977
Η	-4.186328	-2.777196	-2.551544
Η	-3.220081	-3.744197	-1.415083
Η	-2.693474	-3.557631	-3.108527
С	1.146082	-2.679719	0.622530

Η	1.776805	-3.071854	1.430411
Η	1.277185	-3.311968	-0.270497
N	1.487087	-1.284267	0.280893
С	2.821625	-0.880085	-0.183093
Η	2.643359	0.043102	-0.754613
С	3.361157	-1.908072	-1.186258
Η	4.274294	-1.495837	-1.646868
Η	3.650167	-2.848172	-0.674961
0	2.358507	-2.144998	-2.156064
Η	2.738340	-2.661762	-2.877323
С	3.818254	-0.497481	0.968489
С	4.153957	-1.675214	1.905325
Η	3.277743	-1.999242	2.487515
Η	4.921802	-1.365623	2.632282
Η	4.553161	-2.548656	1.365621
С	5.125593	0.027869	0.336253
Η	5.770053	0.464250	1.115480
Η	4.924199	0.816691	-0.406749
Η	5.707473	-0.767251	-0.155657
С	3.199235	0.637336	1.806693
Η	3.900719	0.951501	2.596157
Η	2.266624	0.318120	2.294901
Η	2.963719	1.517528	1.188696

AuCl·SMe₂

E= -1074.18126143 A.U.

Au	-0.409676	-0.000026	-0.077411
S	1.908626	0.000037	-0.483047
Cl	-2.682994	0.000084	0.262282
С	2.591874	-1.403833	0.465268
С	2.592000	1.403840	0.465245
Η	3.687301	-1.391643	0.372701
Η	2.286916	-1.350053	1.518701
Н	2.192564	-2.319555	0.009816
Н	3.687453	1.391220	0.373079
Н	2.193198	2.319622	0.009475
Н	2.286641	1.350395	1.518581

SMe₂

E= -478.080470814 A.U.

S	0.000000	0.660509	0.000015
С	1.391435	-0.512103	0.000014
С	-1.391435	-0.512103	0.000014
Η	1.384995	-1.148085	0.899641
Η	1.384016	-1.148829	-0.899085
Η	2.314591	0.085455	-0.000760
Η	-1.385017	-1.148059	0.899660
Η	-2.314591	0.085455	-0.000799
Η	-1.383994	-1.148855	-0.899066

L1aH

E= -1006.35203589 A.U.

С	0.507484	-0.030590	-0.344450	
N	-0.543574	-0.012579	0.449191	

С	-0.094150	-0.087889	1.856794
Н	-0.639844	-0.880685	2.386597
Н	-0.303570	0.870121	2.358855
С	-1.924984	0.108197	0.040251
С	-2.486473	1.399038	-0.090043
С	-3.834616	1.475163	-0.467138
Η	-4.305432	2.453257	-0.585855
С	-4.586100	0.323377	-0.695026
Η	-5.635560	0.408406	-0.986699
С	-4.005586	-0.936163	-0.554165
Н	-4.609355	-1.827228	-0.738723
С	-2.661651	-1.078583	-0.181433
С	-1.690483	2.681499	0.140267
Η	-0.680228	2.402255	0.480962
С	-1.517965	3.477314	-1.167217
Η	-2.488617	3.817403	-1.560894
Η	-1.037778	2.872937	-1.953426
Η	-0.897190	4.371045	-0.996725
С	-2.310748	3.553938	1.246825
Η	-3.308858	3.921806	0.961972
Η	-1.678981	4.435199	1.439537
Η	-2.419559	2.998019	2.191396
С	-2.056203	-2.473280	-0.040414
Η	-1.003204	-2.365062	0.263828
С	-2.051460	-3.224756	-1.384789
Η	-1.515833	-2.660192	-2.164387
Η	-3.074089	-3.407461	-1.750790
Η	-1.558789	-4.203749	-1.275801
С	-2.763708	-3.292377	1.054940
Н	-3.817399	-3.485875	0.799649

Η	-2.749737	-2.773679	2.026834
Η	-2.271076	-4.269132	1.183014
С	1.418592	-0.375943	1.716583
Η	2.034146	0.279974	2.342353
Η	1.659351	-1.424541	1.944275
N	1.670084	-0.136554	0.272293
С	2.933314	-0.443124	-0.437020
Η	2.641206	-0.507311	-1.497303
С	3.386923	-1.854997	-0.040261
Η	4.192465	-2.164884	-0.725383
Η	3.806397	-1.861495	0.984243
0	2.255663	-2.697139	-0.146474
Η	2.531530	-3.618111	-0.050108
С	4.013061	0.684182	-0.344791
С	4.468922	0.976185	1.098591
Н	3.673727	1.442012	1.700725
Η	5.307571	1.688908	1.082953
Η	4.822128	0.074892	1.623236
С	5.236311	0.250707	-1.181366
Η	5.940184	1.091447	-1.273506
Η	4.948517	-0.050932	-2.201936
Η	5.787563	-0.581964	-0.718782
С	3.427577	1.970689	-0.957877
Η	4.172932	2.779837	-0.931058
Η	2.542858	2.323316	-0.404605
Η	3.139755	1.822825	-2.011946
Η	0.415557	0.034175	-1.430653

	E= -100	5.84221194	A.U.
С	1.888789	-0.017519	0.065929
С	2.718435	-1.140810	-0.157229
С	4.080670	-0.916756	-0.405069
Н	4.743817	-1.767757	-0.579576
С	4.598263	0.375837	-0.446855
Н	5.662512	0.532203	-0.642098
С	3.757195	1.471667	-0.256959
Н	4.173035	2.479402	-0.313260
С	2.387941	1.307282	-0.000237
С	2.176871	-2.568421	-0.171138
Н	1.094345	-2.519260	0.014734
С	2.798928	-3.433001	0.939920
Н	2.353310	-4.441224	0.944002
Н	3.885528	-3.551753	0.798709
Н	2.643016	-2.987903	1.935696
С	2.353733	-3.223579	-1.553106
Н	1.878512	-2.621443	-2.342781
Н	3.417995	-3.340418	-1.814405
Н	1.896140	-4.226359	-1.566370
С	1.490069	2.525824	0.209922
Н	0.454094	2.236712	-0.021124
С	1.808946	3.679036	-0.754316
Н	2.785427	4.150235	-0.551130
Н	1.039398	4.460772	-0.659052
Н	1.801097	3.336700	-1.800223
С	1.548330	3.006271	1.672569
Н	1.262837	2.211220	2.380017
Н	0.862668	3.855028	1.828310

TS1-(*R*,*S*)

Η	2.564796	3.337841	1.944918
N	0.503403	-0.224870	0.386142
С	0.027159	-0.624058	1.722929
Η	0.455743	0.017954	2.505908
Η	0.315300	-1.667316	1.942004
С	-1.496910	-0.465037	1.577968
Η	-2.051490	-1.269978	2.078773
Η	-1.839251	0.501306	1.986134
N	-1.682839	-0.483950	0.112008
С	-0.514854	-0.180718	-0.484086
Н	-0.674932	0.589793	-1.374415
С	-2.648518	1.573649	-0.823535
Η	-3.473285	1.903307	-1.496258
Η	-2.836285	2.087718	0.154297
С	-2.865321	0.026425	-0.614640
Η	-2.753305	-0.408207	-1.621786
С	-4.248409	-0.473720	-0.106416
С	-4.704864	0.160908	1.225253
Η	-4.708111	1.260003	1.171685
Η	-4.078655	-0.133376	2.079501
Η	-5.732917	-0.161744	1.457889
С	-4.219398	-2.009623	0.032686
Η	-5.213760	-2.390529	0.317960
Η	-3.502880	-2.346860	0.796591
Η	-3.936902	-2.487745	-0.919279
С	-5.300752	-0.118481	-1.181574
Η	-6.278173	-0.549651	-0.911505
Η	-5.018418	-0.520206	-2.168217
Η	-5.433831	0.968157	-1.286613
0	-1.414893	1.836756	-1.338524

2a -(R , S)					
	E= -1005.88006165 A.U.				
С	-1.851186	0.076101	0.109304		
С	-2.387160	1.370464	-0.117287		
С	-3.749604	1.486322	-0.430222		
Н	-4.179342	2.475100	-0.611633		
С	-4.567436	0.360917	-0.517439		
Н	-5.626856	0.472321	-0.764092		
С	-4.032076	-0.906407	-0.293302		
Η	-4.680349	-1.783066	-0.370012		
С	-2.676294	-1.074467	0.023682		
С	-1.527385	2.630946	-0.041690		
Н	-0.500380	2.324357	0.202585		
С	-1.997359	3.579452	1.076162		
Н	-1.324801	4.449516	1.155660		
Н	-3.013255	3.962294	0.884469		
Н	-2.013578	3.072768	2.054042		
С	-1.467246	3.362977	-1.394982		
Н	-1.109056	2.697857	-2.196477		
Н	-2.457431	3.741766	-1.697112		
Н	-0.784065	4.226404	-1.339290		
С	-2.110560	-2.474055	0.240349		
Η	-1.087926	-2.344105	0.621630		
С	-1.988301	-3.234998	-1.092226		
Η	-2.969758	-3.356923	-1.581007		
Η	-1.569228	-4.241374	-0.924456		
Η	-1.316221	-2.703060	-1.781305		
С	-2.909760	-3.279053	1.278287		
Η	-2.995768	-2.736558	2.233568		
Н	-2.414322	-4.243097	1.479777		

Η	-3.931644	-3.505858	0.931526
Ν	-0.472891	-0.092840	0.439993
С	0.039168	0.130500	1.784526
Η	-0.348655	-0.607235	2.508410
Η	-0.221046	1.137776	2.166745
С	1.548886	-0.014169	1.581056
Η	2.123790	0.593528	2.294840
Η	1.844135	-1.072094	1.712760
N	1.738022	0.464164	0.198974
С	0.569466	-0.004706	-0.519329
Н	0.300561	0.646382	-1.370898
С	2.347058	-1.445885	-1.040839
Н	2.740948	-1.743031	-2.027122
Н	2.616980	-2.239309	-0.317805
С	2.858904	-0.049637	-0.605557
Η	2.845197	0.574963	-1.517607
С	4.304407	0.090613	-0.057855
С	4.629244	-0.791565	1.166280
Η	4.392319	-1.852194	0.989470
Η	4.100997	-0.470919	2.073797
Η	5.707868	-0.731377	1.384460
С	4.552389	1.568756	0.299432
Η	5.589627	1.716543	0.642093
Η	3.875943	1.911314	1.096452
Η	4.388875	2.221424	-0.573461
С	5.263071	-0.314881	-1.199663
Η	6.309532	-0.143725	-0.901051
Н	5.075363	0.272615	-2.113195
Н	5.164908	-1.381481	-1.457745
0	0.940171	-1.293018	-1.106612

Alcoholate				
	E= -1005	5.84132451	A .U.	
С	-1.863174	0.064995	0.060392	
С	-2.251899	1.396420	-0.225974	
С	-3.509225	1.595566	-0.815228	
Н	-3.834746	2.611077	-1.052420	
С	-4.350653	0.522761	-1.103907	
Н	-5.326029	0.703131	-1.563081	
С	-3.950522	-0.779911	-0.809794	
Н	-4.617924	-1.612325	-1.044908	
С	-2.703663	-1.038024	-0.223460	
С	-1.364414	2.599804	0.082730	
Н	-0.422550	2.234323	0.517044	
С	-2.014577	3.529889	1.123661	
Н	-1.328265	4.351490	1.383271	
Н	-2.944516	3.981264	0.741232	
Н	-2.265469	2.990618	2.051293	
С	-0.984398	3.372511	-1.193080	
Н	-0.483021	2.719862	-1.924012	
Η	-1.868880	3.813543	-1.681436	
Η	-0.290343	4.192007	-0.949733	
С	-2.284738	-2.475881	0.068299	
Η	-1.303884	-2.439641	0.565702	
С	-2.098694	-3.283120	-1.229425	
Η	-3.045839	-3.380304	-1.784613	
Н	-1.738092	-4.299876	-1.004481	
Н	-1.367714	-2.804585	-1.899783	
С	-3.260539	-3.178867	1.028387	
Η	-3.377510	-2.618215	1.969465	
Н	-2.896859	-4.189013	1.276775	

Η	-4.262136	-3.289874	0.582435	С	3.012036	0.018328	0.528863
N	-0.588866	-0.178794	0.674071	Н	3.569067	-0.097203	1.471840
С	-0.364245	-0.185295	2.129603	С	3.727302	-0.868823	-0.536199
Η	-0.983832	-0.952905	2.616623	С	3.373278	-0.456894	-1.979406
Η	-0.632854	0.794710	2.559970	Н	3.618553	0.604190	-2.131649
С	1.150282	-0.480650	2.234732	Н	2.310365	-0.626624	-2.224322
Η	1.677133	0.228911	2.887013	Н	3.956816	-1.060449	-2.693774
Η	1.355604	-1.502829	2.593557	С	3.398729	-2.356896	-0.314331
N	1.634724	-0.339921	0.848339	Н	2.335228	-2.585084	-0.496469
С	0.603297	-0.161474	0.040947	Н	3.640519	-2.673536	0.714738
Η	0.685073	-0.092046	-1.040309	Н	3.991344	-2.985146	-0.999754
0	4.049774	2.131085	-0.239547	С	5.241509	-0.645494	-0.331716
С	2.957130	1.597483	0.159117	Н	5.817702	-1.172563	-1.110180
Η	2.070462	1.572194	-0.596961	Н	5.568425	-1.032451	0.648921
Η	2.447050	2.047695	1.087365	Н	5.450997	0.433421	-0.375118

• Alternative reaction pathways investigated.

Alternative reaction pathways for the formation of AuCl-1a have been investigated and reported in Figure S1 (see below).

1) The concerted pathway A that requires an unaffordable energy barrier of 47.6 kcal/mol;

2) The stepwise mechanism **B** assisted by gold coordination to the carbon atom that involves a very energy demanding H transfer step with a barrier of 50 kcal/mol.

3) The stepwise mechanisms **C** and **D** assisted by gold coordination to the oxygen atom occuring with a determining energy barrier around 33 kcal/mol.

All these alternative pathways are unfavorable with respect to the one reported in Figure 5 and thus ruled out.

Figure S1

		A1-B1		Н	4.514995	0.746107	-3.286344
	E= -208	0.00535731	A.U.	Ν	1.282640	1.467597	-0.085237
С	2.416705	0.602107	0.114712	С	1.414494	2.895352	-0.413707
С	2.938732	0.426444	1.419059	Н	2.208452	3.048494	-1.155793
С	4.043676	-0.425421	1.570910	Н	1.666115	3.474155	0.493022
Н	4.459234	-0.586808	2.568252	С	0.014891	3.220787	-0.952495
С	4.623857	-1.060948	0.476357	Н	-0.344015	4.207798	-0.629351
Η	5.482526	-1.722199	0.619349	Н	-0.011810	3.195973	-2.054826
С	4.118049	-0.844844	-0.804447	Ν	-0.844508	2.155588	-0.397513
Н	4.591309	-1.336757	-1.656742	С	-0.022627	1.172207	0.105259
С	3.013993	-0.008575	-1.018677	Н	-0.385180	0.293869	0.791848
С	2.377998	1.147303	2.641725	0	-0.671114	1.388045	1.994376
Η	1.485783	1.708286	2.337456	С	-1.981021	1.692328	1.702385
С	3.401045	2.151030	3.206467	Н	-2.421281	2.327296	2.496444
Н	2.961970	2.712059	4.047457	Н	-2.621637	0.786931	1.632771
Н	4.307659	1.646813	3.580365	С	-2.058208	2.502652	0.363235
Н	3.719813	2.879614	2.443258	Н	-1.947599	3.572829	0.616796
С	1.906433	0.165063	3.727394	С	-3.389630	2.384779	-0.436732
Н	1.141034	-0.519361	3.333310	С	-3.633326	0.961739	-0.967774
Н	2.737319	-0.435415	4.134035	Н	-3.709605	0.220721	-0.158590
Н	1.450700	0.718190	4.563668	Н	-2.825268	0.638925	-1.642469
С	2.546797	0.260914	-2.448207	Н	-4.575622	0.926052	-1.538149
Η	1.569529	0.763806	-2.391180	С	-3.343655	3.354342	-1.634041
С	2.342972	-1.020332	-3.273652	Н	-2.549680	3.076080	-2.344601
Н	3.291521	-1.556659	-3.437727	Н	-3.167120	4.393518	-1.308736
Н	1.938994	-0.765453	-4.266756	Н	-4.298288	3.336615	-2.184178
Н	1.634375	-1.709531	-2.791953	С	-4.546727	2.801256	0.493350
С	3.524018	1.213807	-3.167529	Н	-5.497682	2.815009	-0.062713
Н	3.673620	2.155161	-2.614768	Н	-4.389375	3.811542	0.907450
Н	3.150503	1.465202	-4.173647	Н	-4.669315	2.105317	1.337297

Au	-0.557414	-0.989710	-0.570342
S	-2.072744	-2.281628	2.022164
Cl	-0.878912	-2.905413	-1.854512
С	-0.764215	-3.533479	2.224861
С	-3.284017	-3.253570	1.069738
Η	-1.124085	-4.381609	2.827139
Η	-0.412505	-3.885927	1.243818
Η	0.067807	-3.046521	2.753063
Η	-3.620070	-4.129349	1.645686
Н	-4.146689	-2.597398	0.884801
Н	-2.854744	-3.564506	0.105437

B2

E= -2080.03932883 A.U.

С	-2.462228	0.275927	0.371436
С	-3.348571	1.127626	-0.340148
С	-4.589738	0.615577	-0.748108
Η	-5.276230	1.257521	-1.305637
С	-4.970690	-0.688532	-0.446373
Η	-5.941056	-1.068497	-0.776857
С	-4.117315	-1.501395	0.295934
Η	-4.434921	-2.514721	0.551683
С	-2.863643	-1.042463	0.723156
С	-3.041497	2.595735	-0.627462
Η	-2.029005	2.798422	-0.260666
С	-4.011317	3.524315	0.127658
Η	-3.734757	4.580592	-0.027251
Η	-5.050209	3.400620	-0.219696
Η	-4.000439	3.326476	1.211635
С	-3.033492	2.905043	-2.133700

Η	-2.301341	2.273725	-2.657266
Η	-4.022358	2.740254	-2.592300
Η	-2.762684	3.959907	-2.308240
С	-2.010936	-1.949788	1.605909
Η	-1.012581	-1.490894	1.667827
С	-1.839240	-3.366027	1.031571
Η	-2.797844	-3.906719	0.981335
Η	-1.171593	-3.961054	1.676328
Η	-1.402951	-3.349105	0.021783
С	-2.583435	-2.011794	3.036627
Н	-2.691213	-1.009638	3.480786
Η	-1.928867	-2.607266	3.695020
Н	-3.580274	-2.482644	3.043954
N	-1.179723	0.752076	0.803301
С	-1.023222	1.471061	2.063124
Н	-1.528829	0.943949	2.887011
Η	-1.441463	2.498345	2.020738
С	0.500999	1.487840	2.219839
Η	0.863658	2.371327	2.759757
Η	0.850017	0.594052	2.765605
N	1.012851	1.468548	0.846423
С	-0.008555	0.877823	-0.004347
Η	-0.583111	-0.770269	-1.772589
0	-0.138366	1.749152	-1.113142
С	1.048105	2.510285	-1.219946
Η	0.811377	3.445969	-1.743853
Η	1.808907	1.960086	-1.804033
С	1.489721	2.719907	0.236336
Н	0.914068	3.578374	0.645189
С	2.997290	3.063631	0.439139

С	3.915259	1.909158	0.007293	
Н	3.803046	1.660507	-1.059536	
Н	3.696368	1.008055	0.596818	
Н	4.970745	2.179257	0.172538	
С	3.276694	3.378412	1.921680	
Н	3.142226	2.491734	2.559627	
Н	2.618266	4.178952	2.298666	
Н	4.317052	3.718473	2.049972	
С	3.311468	4.323445	-0.394019	
Н	4.345025	4.657443	-0.210688	
Н	2.641492	5.159185	-0.130657	
Н	3.214672	4.139747	-1.475806	
Au	0.601400	-1.035429	-0.790625	
Au S	0.601400 2.520511	-1.035429 -1.548708	-0.790625 0.917499	
Au S Cl	0.601400 2.520511 1.154271	-1.035429 -1.548708 -3.189161	-0.790625 0.917499 -1.891164	
Au S Cl C	0.601400 2.520511 1.154271 3.922934	-1.035429 -1.548708 -3.189161 -1.963666	-0.790625 0.917499 -1.891164 -0.174854	
Au S Cl C C	0.601400 2.520511 1.154271 3.922934 2.095052	-1.035429 -1.548708 -3.189161 -1.963666 -3.227704	-0.790625 0.917499 -1.891164 -0.174854 1.488687	
Au S Cl C C C H	0.601400 2.520511 1.154271 3.922934 2.095052 4.721614	-1.035429 -1.548708 -3.189161 -1.963666 -3.227704 -2.417778	-0.790625 0.917499 -1.891164 -0.174854 1.488687 0.428802	
Au S Cl C C C H H	0.601400 2.520511 1.154271 3.922934 2.095052 4.721614 3.569640	-1.035429 -1.548708 -3.189161 -1.963666 -3.227704 -2.417778 -2.643777	-0.790625 0.917499 -1.891164 -0.174854 1.488687 0.428802 -0.963351	
Au S Cl C C H H H	0.601400 2.520511 1.154271 3.922934 2.095052 4.721614 3.569640 4.283014	-1.035429 -1.548708 -3.189161 -1.963666 -3.227704 -2.417778 -2.643777 -1.026018	-0.790625 0.917499 -1.891164 -0.174854 1.488687 0.428802 -0.963351 -0.617308	
Au S Cl C C H H H	0.601400 2.520511 1.154271 3.922934 2.095052 4.721614 3.569640 4.283014 2.950809	-1.035429 -1.548708 -3.189161 -1.963666 -3.227704 -2.417778 -2.643777 -1.026018 -3.648240	-0.790625 0.917499 -1.891164 -0.174854 1.488687 0.428802 -0.963351 -0.617308 2.035910	
Au S Cl C C H H H H	0.601400 2.520511 1.154271 3.922934 2.095052 4.721614 3.569640 4.283014 2.950809 1.236150	-1.035429 -1.548708 -3.189161 -1.963666 -3.227704 -2.417778 -2.643777 -1.026018 -3.648240 -3.133170	-0.790625 0.917499 -1.891164 -0.174854 1.488687 0.428802 -0.963351 -0.617308 2.035910 2.166120	

B2-C2

	E= -208	0.00477573	A.U.
С	2.161032	-0.880370	0.287178
С	2.809204	-0.992956	-0.969334
С	4.038623	-0.338604	-1.146945
Η	4.540314	-0.401129	-2.115233

С	4.640188	0.370220	-0.111898
Н	5.598235	0.871625	-0.272747
С	4.028233	0.415610	1.139640
Н	4.525978	0.941370	1.957709
С	2.792755	-0.205602	1.370022
С	2.267649	-1.856974	-2.104107
Н	1.260985	-2.190227	-1.828505
С	3.134663	-3.119936	-2.277451
Η	2.709691	-3.773870	-3.056759
Н	4.166190	-2.869591	-2.576792
Н	3.193091	-3.701794	-1.343397
С	2.139925	-1.091055	-3.431498
Н	1.539710	-0.175734	-3.314788
Н	3.122018	-0.798362	-3.838530
Η	1.647379	-1.723305	-4.187799
С	2.224330	-0.205948	2.789351
Η	1.183463	-0.554473	2.729539
С	2.193533	1.183148	3.446453
Η	3.204456	1.598906	3.583789
Η	1.730270	1.119701	4.444481
Η	1.604212	1.898563	2.857443
С	3.008038	-1.186345	3.687533
Η	3.059144	-2.198332	3.257162
Η	2.541123	-1.262396	4.683429
Η	4.045769	-0.842944	3.830188
N	0.880639	-1.495776	0.506306
С	0.730835	-2.772146	1.217056
Η	1.521899	-2.904077	1.965237
Н	0.773575	-3.623973	0.512842
С	-0.661307	-2.602391	1.825336

Η	-1.217194	-3.548400	1.892716
Η	-0.605803	-2.176115	2.842182
N	-1.338491	-1.664070	0.906773
С	-0.354490	-1.057215	0.078217
Н	-0.548302	-0.327087	-1.840045
0	-0.831070	-1.825538	-1.432076
С	-2.223428	-1.937400	-1.309826
Η	-2.587606	-2.795493	-1.897870
Н	-2.729384	-1.030803	-1.696913
С	-2.534883	-2.140847	0.199314
Н	-2.606847	-3.228467	0.380461
С	-3.879817	-1.538869	0.706060
С	-3.881946	-0.002166	0.645236
Н	-3.773751	0.378730	-0.381529
Η	-3.056446	0.404893	1.248241
Η	-4.828545	0.394574	1.047352
С	-4.089713	-1.973420	2.169316
Η	-3.289707	-1.582927	2.817548
Η	-4.103268	-3.072187	2.266447
Η	-5.049493	-1.593963	2.556123
С	-5.027139	-2.104328	-0.153034
Η	-6.001895	-1.767550	0.234950
Η	-5.030738	-3.207528	-0.144979
Н	-4.960761	-1.774338	-1.201759
Au	-0.502732	0.861947	-0.760062
S	-0.529592	2.689775	1.321659
Cl	-0.752483	2.732242	-2.248204
С	-2.036886	3.647023	0.956352
С	0.736041	3.876679	0.759516
Н	-2.047921	4.564229	1.562760

Η	-2.073734	3.878934	-0.117899
Η	-2.894113	3.017569	1.231167
Η	0.692179	4.784667	1.378081
Η	1.713735	3.391972	0.886623
Η	0.574518	4.107587	-0.302970

A1-B3

E= -2080.06298648 A.U.

С	-2.441310	-0.904133	-0.117254
С	-2.187513	-2.064711	-0.887914
С	-2.555024	-3.308265	-0.355293
Η	-2.369922	-4.217485	-0.932696
С	-3.151141	-3.404700	0.900894
Η	-3.425885	-4.383629	1.302807
С	-3.398263	-2.252638	1.643900
Η	-3.866082	-2.339589	2.627292
С	-3.059494	-0.982986	1.154198
С	-1.555866	-1.992570	-2.275580
Η	-1.243488	-0.950899	-2.436337
С	-2.569517	-2.363358	-3.374726
Η	-2.121498	-2.242170	-4.374915
Η	-2.898341	-3.411724	-3.282141
Η	-3.471817	-1.732615	-3.328320
С	-0.288590	-2.856149	-2.384541
Η	0.452525	-2.561495	-1.624314
Η	-0.507021	-3.928818	-2.254458
Η	0.179128	-2.730332	-3.374722
С	-3.392992	0.249851	1.991357
Η	-2.989417	1.131892	1.472594
С	-2.735149	0.202933	3.381884

Η	-3.149569	-0.614587	3.995052
Η	-2.923554	1.145065	3.923172
Η	-1.647456	0.054428	3.301479
С	-4.917063	0.449956	2.102518
Η	-5.396816	0.512179	1.112184
Н	-5.146444	1.378417	2.650901
Η	-5.392244	-0.382720	2.646649
N	-2.115600	0.376358	-0.680420
С	-3.092548	1.118066	-1.480065
Н	-4.014914	1.281531	-0.894011
Н	-3.370276	0.580305	-2.400178
С	-2.353277	2.426380	-1.767889
Н	-1.881172	2.394292	-2.768273
Н	-3.010467	3.307924	-1.731368
N	-1.330385	2.489800	-0.706011
С	-1.071153	1.173831	-0.304129
Н	-0.602954	0.951957	0.662416
0	0.403727	0.901032	-1.228281
С	0.799260	2.163410	-1.727277
Η	0.665766	2.184978	-2.825475
Η	1.860123	2.361624	-1.517899
С	-0.119248	3.237558	-1.057270
Η	-0.419522	3.973041	-1.819983
С	0.510387	4.080061	0.096175
С	1.171602	3.224658	1.190029
Η	1.984588	2.597415	0.793044
Η	0.471051	2.550092	1.700918
Η	1.612751	3.879771	1.959105
С	-0.594043	4.952038	0.722463
Н	-1.375316	4.332434	1.185389

Η	-1.075940	5.596079	-0.033068
Н	-0.170934	5.609269	1.498935
С	1.574070	5.006669	-0.529089
Н	2.016944	5.654672	0.243631
Н	1.138224	5.660636	-1.303261
Н	2.399505	4.440692	-0.990087
Au	1.865254	-0.424246	-0.320320
S	3.633856	-1.892479	0.283309
Cl	0.831844	-0.356127	2.254703
С	2.720412	-3.212295	1.160173
С	4.346975	-1.031315	1.730424
Н	3.447741	-3.855044	1.676588
Н	2.011129	-2.739557	1.856848
Н	2.180424	-3.793801	0.401224
Н	5.026850	-1.723519	2.247817
Н	4.912297	-0.170063	1.350264
Η	3.522873	-0.696501	2.378906

B3

	E= -2080	0.07363201 A	A.U.
С	-2.910785	-0.615742	-0.204486
С	-2.723827	-1.820764	-0.917061
С	-3.384725	-2.963982	-0.446612
Η	-3.254867	-3.912849	-0.972261
С	-4.190707	-2.914153	0.688918
Η	-4.694053	-3.818319	1.041197
С	-4.343392	-1.717359	1.386119
Η	-4.959056	-1.696594	2.288132
С	-3.710105	-0.542401	0.958268
С	-1.799252	-1.921865	-2.125956

Н	-1.392434	-0.920966	-2.329437	С	1.296547	2.012296	-1.847337
С	-2.538938	-2.392028	-3.390324	Н	1.105811	2.188348	-2.930566
Н	-1.854762	-2.401347	-4.254326	Н	2.336256	2.346029	-1.669088
Н	-2.937928	-3.413133	-3.274925	С	0.340970	2.992908	-1.064025
Н	-3.387625	-1.732880	-3.636949	Н	0.136855	3.845186	-1.732085
С	-0.590213	-2.819958	-1.807128	С	0.883681	3.652234	0.250384
Н	-0.079559	-2.466365	-0.898698	С	1.542812	2.664167	1.228024
Н	-0.897326	-3.866801	-1.645433	Н	2.410001	2.162344	0.770992
Н	0.131152	-2.801025	-2.639641	Н	0.869686	1.873435	1.591715
С	-3.867678	0.737566	1.774032	Н	1.909363	3.215066	2.110355
Н	-3.350917	1.547888	1.236753	С	-0.267499	4.387918	0.964624
С	-3.180017	0.602245	3.146538	Н	-1.020689	3.687954	1.355582
Н	-3.687561	-0.153354	3.769007	Н	-0.776448	5.098108	0.290388
Н	-3.219222	1.561074	3.689995	Н	0.122801	4.964282	1.818563
Н	-2.127535	0.296309	3.035262	С	1.934200	4.701947	-0.173694
С	-5.340128	1.161634	1.916608	Н	2.349411	5.204506	0.714024
Н	-5.829487	1.282112	0.936214	Н	1.495149	5.478900	-0.822358
Н	-5.412675	2.120924	2.454496	Н	2.777020	4.246045	-0.716154
Н	-5.922937	0.421514	2.488225	Au	2.292747	-0.490546	-0.389871
N	-2.314467	0.588316	-0.724494	S	3.681600	-1.894704	0.876527
С	-3.037270	1.463804	-1.662688	Cl	0.205768	-0.761633	1.968231
Н	-3.953107	1.846038	-1.181583	С	2.598676	-3.316704	1.265346
Н	-3.333660	0.907428	-2.564099	С	3.701422	-1.092398	2.519775
С	-2.004877	2.571656	-1.943060	Н	3.118601	-3.959213	1.990632
Н	-1.565662	2.481805	-2.951217	Н	1.646699	-2.927743	1.659995
Н	-2.420608	3.584775	-1.838150	Н	2.436397	-3.866604	0.328909
N	-0.961779	2.328848	-0.929709	Н	4.186538	-1.775841	3.231850
С	-1.157528	1.139517	-0.364780	Н	4.295018	-0.173697	2.422907
Н	-0.518819	0.651909	0.395575	Н	2.662537	-0.859736	2.804070
0	1.062811	0.688409	-1.547739				

B3-C3

E= -2080.03913353 A.U.

С	-2.796790	-1.284940	0.023986
С	-2.683371	-2.395462	-0.842794
С	-2.938962	-3.669119	-0.317812
Н	-2.850044	-4.544062	-0.966052
С	-3.277685	-3.840867	1.022332
Η	-3.466546	-4.843437	1.414854
С	-3.352175	-2.736412	1.868097
Η	-3.590264	-2.885910	2.923613
С	-3.116996	-1.438815	1.392288
С	-2.233174	-2.258533	-2.293939
Η	-2.077395	-1.187717	-2.493538
С	-3.292511	-2.766061	-3.288003
Η	-2.956824	-2.608848	-4.326367
Η	-3.479256	-3.845186	-3.163176
Η	-4.258215	-2.249206	-3.161080
С	-0.874394	-2.951836	-2.510754
Η	-0.136245	-2.615986	-1.765165
Η	-0.967767	-4.046785	-2.418688
Η	-0.491165	-2.736657	-3.522645
С	-3.139499	-0.264381	2.364751
Η	-3.097071	0.662980	1.774375
С	-1.882218	-0.290833	3.256052
Η	-1.905057	-1.156516	3.938626
Η	-1.822524	0.621775	3.872516
Η	-0.966102	-0.375103	2.651878
С	-4.426757	-0.201780	3.203530
Η	-5.326476	-0.168866	2.567811
Η	-4.425969	0.699173	3.838732

Η	-4.524400	-1.070683	3.874042
N	-2.633227	0.035563	-0.524788
С	-3.758058	0.702268	-1.224871
Η	-4.572997	0.902920	-0.507481
Η	-4.159997	0.062900	-2.023349
С	-3.103792	1.991992	-1.745525
Н	-2.869373	1.938813	-2.824555
Н	-3.723325	2.882967	-1.577164
N	-1.852482	2.027571	-0.962193
С	-1.595421	0.856857	-0.353209
Η	-0.148889	0.950080	-0.028237
0	0.823994	1.512605	-0.161165
С	0.559570	2.386541	-1.241143
Н	0.562770	1.835838	-2.202633
Н	1.352404	3.146392	-1.302427
С	-0.823359	3.070975	-1.101522
Н	-1.011517	3.557574	-2.075776
С	-0.926928	4.208631	-0.023733
С	-0.637609	3.702302	1.401573
Н	0.389212	3.326470	1.501353
Η	-1.315735	2.882304	1.683589
Н	-0.784156	4.521349	2.124908
С	-2.346508	4.810979	-0.056707
Η	-3.105809	4.083095	0.267713
Н	-2.617337	5.171811	-1.063612
Η	-2.409092	5.671061	0.628744
С	0.073897	5.324948	-0.383921
Η	-0.061872	6.185728	0.289641
Η	-0.072028	5.686781	-1.416161
Н	1.118901	4.996257	-0.282377

Au	2.544487	0.196266	-0.014611
S	4.659489	-0.890103	0.097196
Cl	1.098883	-1.978731	0.700115
С	4.324569	-2.392633	-0.891006
С	4.563831	-1.625867	1.769616
Н	5.131967	-3.117707	-0.712700
Н	3.337600	-2.786087	-0.600991
Н	4.321501	-2.090823	-1.946924
Н	5.371555	-2.364539	1.875386
Н	4.706983	-0.810437	2.491121
Н	3.567325	-2.077173	1.893841

C3

	E= -208	0.04623564	A.U.
С	3.551068	-0.392886	0.097420
С	3.608021	-1.669829	0.702494
С	4.384315	-2.657487	0.079009
Η	4.437220	-3.656160	0.518540
С	5.080918	-2.390846	-1.098092
Η	5.677119	-3.176293	-1.569581
С	5.012207	-1.125483	-1.678575
Η	5.555386	-0.931784	-2.606373
С	4.252016	-0.101417	-1.095981
С	2.829484	-2.009169	1.970445
Η	2.379489	-1.077328	2.344630
С	3.739135	-2.555193	3.084974
Η	3.159465	-2.717889	4.007935
Η	4.189966	-3.521772	2.808303
Η	4.561744	-1.859539	3.316849
С	1.669730	-2.977429	1.669678

Η	0.982490	-2.568011	0.913091
Н	2.041478	-3.944043	1.292782
Н	1.085195	-3.178011	2.582261
С	4.166630	1.261162	-1.778403
Н	3.648374	1.947283	-1.092334
С	3.313497	1.183157	-3.058100
Н	3.771949	0.512731	-3.803284
Н	3.212070	2.179111	-3.519657
Н	2.304330	0.801618	-2.840234
С	5.551857	1.866144	-2.063967
Н	6.162371	1.932670	-1.149195
Н	5.449089	2.881967	-2.478892
Н	6.117422	1.270208	-2.798145
N	2.774008	0.641256	0.724248
С	3.361834	1.556262	1.731335
Н	4.144232	2.179986	1.266279
Н	3.827899	0.987329	2.549650
С	2.139667	2.378476	2.180187
Н	1.795825	2.104153	3.193400
Н	2.328065	3.460868	2.170034
N	1.121958	1.987296	1.181550
С	1.507293	0.947908	0.423937
Н	0.111505	0.428326	-0.128570
0	-0.957513	0.476244	-0.068232
С	-1.219327	1.255878	1.101689
Н	-1.079010	0.634729	2.005562
Н	-2.270493	1.573544	1.071916
С	-0.269743	2.469295	1.206703
Н	-0.432282	2.869313	2.223378
С	-0.549966	3.663519	0.227230

С	-0.464612	3.250484	-1.253620	C
Η	-1.229735	2.507416	-1.515319	Н
Η	0.517746	2.817529	-1.498605	C
Η	-0.607837	4.135786	-1.894613	Н
С	0.477899	4.782935	0.489151	C
Η	1.500544	4.468195	0.229277	С
Η	0.470103	5.109343	1.542964	Н
Η	0.242206	5.663691	-0.128688	C
С	-1.956416	4.221437	0.524491	Н
Η	-2.143579	5.116237	-0.089922	Н
Η	-2.058082	4.520664	1.581642	Н
Н	-2.753790	3.497587	0.299780	C
Au	-1.963625	-1.361988	-0.376406	Н
Au S	-1.963625 -5.189378	-1.361988 1.413751	-0.376406 0.237556	H H
Au S Cl	-1.963625 -5.189378 -3.046632	-1.361988 1.413751 -3.349455	-0.376406 0.237556 -0.738485	н н н
Au S Cl C	-1.963625 -5.189378 -3.046632 -5.635577	-1.361988 1.413751 -3.349455 -0.125388	-0.376406 0.237556 -0.738485 1.106787	н н с
Au S Cl C C	-1.963625 -5.189378 -3.046632 -5.635577 -5.208575	-1.361988 1.413751 -3.349455 -0.125388 0.815779	-0.376406 0.237556 -0.738485 1.106787 -1.484053	н н с
Au S Cl C C H	-1.963625 -5.189378 -3.046632 -5.635577 -5.208575 -6.646558	-1.361988 1.413751 -3.349455 -0.125388 0.815779 -0.456238	-0.376406 0.237556 -0.738485 1.106787 -1.484053 0.822679	Н Н С Н С
Au S Cl C C H H	-1.963625 -5.189378 -3.046632 -5.635577 -5.208575 -6.646558 -4.910224	-1.361988 1.413751 -3.349455 -0.125388 0.815779 -0.456238 -0.925932	-0.376406 0.237556 -0.738485 1.106787 -1.484053 0.822679 0.896207	Н Н С Н С Н
Au S Cl C C H H H	-1.963625 -5.189378 -3.046632 -5.635577 -5.208575 -6.646558 -4.910224 -5.626500	-1.361988 1.413751 -3.349455 -0.125388 0.815779 -0.456238 -0.925932 0.098145	-0.376406 0.237556 -0.738485 1.106787 -1.484053 0.822679 0.896207 2.183394	н н С н С н
Au S Cl C C H H H H	-1.963625 -5.189378 -3.046632 -5.635577 -5.208575 -6.646558 -4.910224 -5.626500 -6.216107	-1.361988 1.413751 -3.349455 -0.125388 0.815779 -0.456238 -0.925932 0.098145 0.476922	-0.376406 0.237556 -0.738485 1.106787 -1.484053 0.822679 0.896207 2.183394 -1.770795	н н С н С н н н
Au S Cl C H H H H	-1.963625 -5.189378 -3.046632 -5.635577 -5.208575 -6.646558 -4.910224 -5.626500 -6.216107 -4.923815	-1.361988 1.413751 -3.349455 -0.125388 0.815779 -0.456238 -0.925932 0.098145 0.476922 1.663891	-0.376406 0.237556 -0.738485 1.106787 -1.484053 0.822679 0.896207 2.183394 -1.770795 -2.123162	н н С н С н н н С
Au S Cl C H H H H H	-1.963625 -5.189378 -3.046632 -5.635577 -5.208575 -6.646558 -4.910224 -5.626500 -6.216107 -4.923815 -4.485869	-1.361988 1.413751 -3.349455 -0.125388 0.815779 -0.456238 -0.925932 0.098145 0.476922 1.663891 -0.002139	-0.376406 0.237556 -0.738485 1.106787 -1.484053 0.822679 0.896207 2.183394 -1.770795 -2.123162 -1.626937	H H C H C H H C H

C3-D3

E= -2080.03028049 A.U.				
С	2.269384	-1.131036	0.462849	
С	1.945406	-2.418009	0.959659	
С	2.601654	-3.524159	0.402876	
Η	2.362284	-4.526159	0.765120	

С	3.538515	-3.372625	-0.616708
Н	4.028505	-4.250614	-1.045244
С	3.847250	-2.100092	-1.090215
Η	4.584286	-1.991298	-1.889257
С	3.235516	-0.955484	-0.558327
С	0.924723	-2.642436	2.073324
Η	0.401138	-1.688385	2.238908
С	1.614975	-3.048136	3.391123
Η	0.877023	-3.141885	4.204793
Н	2.119258	-4.022641	3.286201
Н	2.380357	-2.321108	3.707673
С	-0.149078	-3.676157	1.690458
Н	-0.638572	-3.421290	0.739160
Η	0.276945	-4.688401	1.596262
Η	-0.922119	-3.723074	2.475197
С	3.634930	0.413592	-1.103436
Η	3.127927	1.179026	-0.499136
С	3.159917	0.600710	-2.555688
Η	3.646046	-0.120921	-3.232260
Н	3.403187	1.613380	-2.917727
Η	2.072342	0.455604	-2.640552
С	5.147325	0.670160	-0.973833
Н	5.489635	0.554420	0.066999
Η	5.392452	1.693722	-1.301447
Н	5.736701	-0.022384	-1.595953
N	1.629588	0.019636	1.042651
С	2.063535	0.542412	2.359710
Н	3.095305	0.931319	2.279542
Н	2.053055	-0.238840	3.129506
С	1.041892	1.651868	2.607081

Η	0.204453	1.314364	3.245337
Н	1.481860	2.546427	3.063222
N	0.546190	1.903351	1.235411
С	0.817355	0.877077	0.400285
Н	-0.129683	1.681146	-1.067478
0	-1.050441	1.997901	-1.228829
С	-1.496462	2.554507	0.018226
Η	-2.094186	1.806822	0.565065
Η	-2.162618	3.396129	-0.216964
С	-0.351873	3.029574	0.927184
Н	-0.843604	3.290791	1.881471
С	0.397591	4.337396	0.464963
С	1.082305	4.182152	-0.906244
Η	0.356464	4.018212	-1.714617
Η	1.791712	3.339627	-0.910382
Η	1.654289	5.094131	-1.142887
С	1.471329	4.720900	1.503441
Η	2.283557	3.979663	1.547542
Η	1.044918	4.835297	2.514014
Η	1.928736	5.684872	1.230355
С	-0.623410	5.491729	0.395124
Η	-0.105265	6.440632	0.185384
Η	-1.165058	5.614446	1.348308
Η	-1.366909	5.347252	-0.402848
Au	-1.165247	-0.426318	-1.152381
S	-4.265281	-0.051449	1.310725
Cl	-1.920919	-2.590717	-1.540005
С	-4.086474	-1.831758	1.655191
С	-5.123046	-0.137829	-0.295166
Н	-5.073382	-2.307750	1.766362

Η	-3.513180	-2.325665	0.856293
Η	-3.541224	-1.924526	2.605677
Η	-6.118742	-0.594755	-0.183524
Η	-5.243646	0.893846	-0.655606
Η	-4.526078	-0.707224	-1.022954

A1-B4

E= -2080.06341895 A.U.

С	0.755469	2.292883	-0.330594
С	-0.416880	2.880891	-0.873812
С	-0.977915	3.986227	-0.217027
Η	-1.880513	4.449725	-0.621936
С	-0.406281	4.503638	0.943995
Η	-0.862460	5.361839	1.444720
С	0.757821	3.933585	1.456581
Н	1.210470	4.360005	2.355398
С	1.370265	2.838281	0.828414
С	-1.047681	2.374781	-2.167704
Н	-0.557736	1.420534	-2.408905
С	-0.775854	3.352991	-3.327780
Η	-1.170366	2.949266	-4.274555
Η	-1.262496	4.326986	-3.152089
Η	0.301006	3.543390	-3.462162
С	-2.552601	2.095265	-2.031726
Η	-2.759237	1.375452	-1.224411
Η	-3.129513	3.013120	-1.830980
Η	-2.944738	1.658424	-2.963752
С	2.687997	2.308357	1.394899
Н	3.019437	1.469406	0.767224
С	2.532892	1.773169	2.830357

Η	2.269210	2.579100	3.534824
Η	3.477862	1.326415	3.180572
Η	1.746375	1.005327	2.897707
С	3.797941	3.374476	1.324767
Η	3.934803	3.747978	0.297691
Η	4.758650	2.953887	1.664419
Η	3.570890	4.242061	1.965371
N	1.335668	1.172714	-1.010006
С	2.375553	1.385669	-2.018959
Η	3.163850	2.062454	-1.637176
Η	1.972849	1.830897	-2.942922
С	2.908011	-0.025906	-2.253298
Η	2.350544	-0.517850	-3.074426
Η	3.977242	-0.036838	-2.513926
N	2.666864	-0.694787	-0.965191
С	1.461702	-0.104297	-0.428020
Η	1.427143	-0.090202	0.674402
0	0.396065	-1.062452	-0.824896
С	0.988527	-2.349565	-0.661436
Η	0.477029	-3.051203	-1.333695
Η	0.855463	-2.702526	0.376126
С	2.492462	-2.154144	-1.012223
Η	2.651259	-2.483543	-2.053847
С	3.502712	-2.950823	-0.137480
С	3.469468	-2.495557	1.332278
Η	2.492441	-2.676412	1.807698
Η	3.697738	-1.422014	1.414733
Η	4.221815	-3.046938	1.918895
С	4.916379	-2.709808	-0.698500
Н	5.176287	-1.640814	-0.658093

Η	4.994391	-3.042535	-1.747212
Н	5.669342	-3.264631	-0.115784
С	3.166853	-4.451128	-0.234338
Н	3.909735	-5.050283	0.316182
Н	3.171221	-4.797926	-1.281303
Н	2.178393	-4.684103	0.193634
Au	-1.938022	-1.146749	-0.132803
S	-1.079618	-0.375125	2.385115
Cl	-4.145249	-1.716350	-0.656387
С	-2.093285	-1.545502	3.348023
С	-2.060271	1.147219	2.589266
Н	-2.139863	-1.228768	4.400462
Н	-3.101948	-1.622164	2.917750
Н	-1.601195	-2.525816	3.285090
Н	-2.100738	1.427100	3.652291
Н	-1.549884	1.938460	2.023564
Н	-3.073876	1.005750	2.188027

B4

E= -2080.06848479 A.U.					
С	-0.184391	2.354609	-0.156533		
С	-1.506382	2.564469	-0.626964		
С	-2.377097	3.333770	0.158347		
Η	-3.400756	3.500714	-0.182747		
С	-1.963237	3.884658	1.369363		
Η	-2.661591	4.472683	1.970704		
С	-0.653280	3.697122	1.805115		
Η	-0.331091	4.153245	2.744411		
С	0.264754	2.950166	1.051361		
С	-1.978620	2.033051	-1.977243		

Η	-1.261268	1.257563	-2.285271	C		1.661255	-1.900829	-0.979318
С	-1.950044	3.152591	-3.038116	Н		1.490235	-2.665428	-1.748478
Н	-2.216387	2.754100	-4.030863	Н		1.610553	-2.376565	0.012916
Η	-2.672889	3.948264	-2.791913	С		2.993105	-1.123465	-1.186930
Н	-0.958436	3.625584	-3.116261	Н		3.321327	-1.268492	-2.230247
С	-3.369049	1.380347	-1.926681	C		4.178992	-1.569420	-0.283774
Η	-3.420769	0.583988	-1.169795	С		3.896393	-1.303972	1.205646
Н	-4.162520	2.114310	-1.710455	Н		3.022152	-1.860642	1.577447
Н	-3.606447	0.926539	-2.902226	Н		3.720458	-0.233219	1.389020
С	1.710637	2.857424	1.541652	Н		4.760338	-1.610959	1.816487
Н	2.275939	2.228071	0.840458	С		5.426171	-0.770104	-0.704139
С	1.823275	2.204680	2.931109	Н		5.262130	0.309993	-0.568640
Н	1.331844	2.814899	3.706308	Н		5.681367	-0.949294	-1.762115
Н	2.881560	2.097602	3.220663	Н		6.298919	-1.059552	-0.097186
Н	1.362937	1.205005	2.956980	С		4.436394	-3.070767	-0.515140
С	2.388377	4.241883	1.532433	Н		5.318977	-3.402659	0.054431
Н	2.339845	4.710718	0.536755	Н		4.628624	-3.287531	-1.579490
Н	3.450140	4.153957	1.815812	Н		3.587349	-3.693941	-0.191045
Н	1.910165	4.932092	2.246148	Au	u	-1.338428	-1.581956	-0.557589
Ν	0.715725	1.564029	-0.952583	S		-0.438602	-1.180626	2.954678
С	1.593408	2.206812	-1.938665	Cl		-3.428255	-2.364783	0.004430
Н	2.075776	3.099268	-1.499578	С		-1.060098	-2.868542	3.247046
Н	1.045104	2.529459	-2.836910	С		-2.001018	-0.250711	3.077087
С	2.609442	1.108829	-2.254852	Н		-1.476344	-2.962213	4.262047
Н	2.285034	0.519533	-3.134034	Н		-1.822724	-3.130064	2.498120
Н	3.613745	1.506955	-2.463382	Н		-0.205118	-3.553044	3.149461
Ν	2.608151	0.287123	-1.032808	Н		-2.409955	-0.309516	4.097710
С	1.285895	0.377698	-0.500166	Н		-1.774580	0.798513	2.839968
Н	1.188497	0.201632	0.580776	Н		-2.731343	-0.635761	2.349992
0	0.633313	-0.909975	-1.094086					

B4-C3

E= -2080.03954687 A.U	J.
-----------------------	----

С	-3.625083	-0.402137	0.108811
С	-3.993892	-1.277845	-0.938538
С	-4.706221	-2.437384	-0.601436
Н	-4.994205	-3.139519	-1.386981
С	-5.043278	-2.717034	0.721844
Н	-5.595394	-3.628948	0.963007
С	-4.670793	-1.839805	1.738524
Н	-4.933037	-2.076026	2.772393
С	-3.958078	-0.665106	1.457377
С	-3.598149	-1.023849	-2.390448
Н	-3.203684	0.001458	-2.454999
С	-4.795074	-1.110810	-3.352549
Н	-4.485701	-0.835933	-4.373771
Н	-5.209328	-2.130551	-3.402303
Н	-5.610724	-0.434731	-3.049632
С	-2.460267	-1.968110	-2.823044
Н	-1.578288	-1.862407	-2.172980
Н	-2.780939	-3.021755	-2.782541
Н	-2.147747	-1.751018	-3.857448
С	-3.536797	0.256060	2.599155
Н	-3.095064	1.161141	2.156582
С	-2.441562	-0.399194	3.460958
Н	-2.812178	-1.315464	3.948573
Н	-2.106044	0.289803	4.253259
Н	-1.566018	-0.675140	2.853503
С	-4.731309	0.707429	3.457383
Н	-5.513081	1.185528	2.845589
Н	-4.404289	1.432887	4.219736

Η	-5.196179	-0.138100	3.989214
N	-2.905727	0.800533	-0.214804
С	-3.593480	2.065283	-0.546719
Η	-4.142665	2.441399	0.333344
Η	-4.320276	1.914924	-1.358747
С	-2.419281	2.979613	-0.940150
Η	-2.356207	3.145184	-2.030204
Η	-2.486468	3.958714	-0.451134
Ν	-1.242415	2.208315	-0.476379
С	-1.581957	0.946076	-0.169979
Η	-0.382382	0.177913	-0.274043
0	0.726667	0.190623	-0.584555
С	1.095807	1.489244	-0.144797
Η	2.131807	1.674880	-0.449094
Н	1.061358	1.548829	0.959683
С	0.172323	2.573419	-0.747981
Η	0.309788	2.543263	-1.846855
С	0.566886	4.023000	-0.272716
С	0.070198	4.301441	1.158855
Н	0.478240	3.577202	1.880419
Н	-1.027010	4.264446	1.237134
Η	0.390939	5.304723	1.482059
С	0.010399	5.090591	-1.243202
Η	-1.085272	5.150814	-1.257726
Н	0.351268	4.901585	-2.274151
Н	0.379519	6.086912	-0.952684
С	2.104893	4.177450	-0.304806
Η	2.371855	5.227750	-0.110121
Н	2.519813	3.910018	-1.290216
Н	2.614853	3.565008	0.451376

Au	1.989531	-1.437374	-0.117440
S	5.155533	1.027213	0.284946
Cl	3.389881	-3.194288	0.378890
С	5.824044	-0.143011	-0.942560
С	5.361607	0.031763	1.798122
Η	6.898751	-0.316380	-0.775405
Η	5.278005	-1.097447	-0.904329
Η	5.687897	0.313409	-1.933613
Η	6.428174	-0.140528	2.012027
Η	4.923101	0.606926	2.626503
Η	4.835381	-0.930153	1.704126