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eMethods.  

Samples and participants 

To address our hypotheses, we analyzed the data of a total of 1,870 patients and healthy controls 

provided by the German Frontotemporal Lobar Degeneration consortium (FTLDc, www.ftld.de), 

the Open Access Series of Neuroimaging Studies (OASIS-3) study (https://www.oasis-

brains.org/), the Munich schizophrenia and depression cohorts,1 and the Personalised Prognostic 

Tools for Early Psychosis Management (PRONIA; www.pronia.eu) study. Samples are described 

in detail below. 

bvFTD and AD samples: Patients with bvFTD (n=108; mean [SD] age: 62.4 [9.5] years, 35.2% 

females; Table 1, main manuscript) were drawn from FTLDc, a quality-controlled, monitored 

multicenter initiative to register and trace patients with FTLD spectrum disorders.2 Following in-

ternational diagnostic guidelines, n=42 patients fulfilled criteria for possible bvFTD, n=52 for 

probable bvFTD, and n=14 for bvFTD with definitive FTLD-pathology at study inclusion.3,4 

Among latter patients, n=13 had known genetic mutations (C9orf72, n=11; progranulin, n=1; 

MAPT: n=2). As part of the FTLDc protocol, all patients were comprehensively assessed in an-

nual intervals according to standard operating procedures (SOPs) which included neurological 

and psychiatric examinations, routine laboratory, and structural magnetic resonance imaging 

(sMRI). Detailed neuropsychological examinations were performed, including the German ver-

sion of the Consortium to Establish a Registry of Alzheimer’s Disease-Neuropsychological As-

sessment Battery (CERAD-NAB),5 which contains the Mini-Mental State Examination 

(MMSE).6 Dementia severity was measured using the Clinical Dementia Rating (CDR) scale. 

Furthermore, to assess the specificity of bvFTD-related analysis results, we extracted a sample of 
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patients with established Alzheimer’s disease (n=44; mean [SD] age: 66.5 [8.7] years, 50% fe-

males), which had been recruited by FTLDc as an age-matched clinical control sample, as well 

as 40 healthy controls (HC; mean [SD] age: 66.4 [10.8], 47.5%). In 31 cases, the diagnosis was 

supported by a CSF biomarker positive status (Aβ-42 or Tau protein). In 13 cases, biomarker 

data was not available. HC individuals were recruited at the same FTLDc sites as the clinical 

samples.  

We additionally analyzed 96 patients with MCI/early-stage AD (mean [SD] age: 73.3 

[7.6] years, 36.5% females) and 138 HC (mean [SD] age: 71.3 [8.2] years, 39.1% females) 

drawn from the OASIS-3 project. This cohort is a retrospective compilation of data collected 

across several ongoing projects through the Washington University of Saint Louis Knight Alz-

heimer’s Disease Research Center (ADRC) over the course of 30 years.7 Of these patients, 65 

(67.7%) met clinical criteria for Mild Cognitive Impairment (CDR=0.5), 30 (30.9%) for mild 

(CDR=1.0), and 1 (1.0%) for moderate dementia (CDR=2.0).  

The rationale for this additional dementia control sample was three-fold: First, it ex-

tended the representation of AD to at-risk and early disease stages, thus allowing us to compre-

hensively model the heterogeneity of AD in order to differentiate disease stage/severity con-

founds from diagnosis-specific findings at the interface between bvFTD and schizophrenia. Sec-

ond, we had the opportunity to gain additional certainty about the ability of our machine learning 

methodology to learn a disease construct across independent and heterogeneous disease repre-

sentations. Third, we were able to probe the specificity of longitudinal findings obtained in the 

clinical high-risk group for psychosis to an analogous group at risk for AD development. 

Schizophrenia and MD samples: The sample of patients with schizophrenia (n=157; mean 

[SD] age = 30.8 [10.0] years, 26.1% females) or MD (n=102; mean [SD] age = 42.2 [12.0] years, 



© 2022 Koutsouleris N et al. JAMA Psychiatry. 

49.0% females) has been previously described in detail.1 In summary, patients were recruited at 

the Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University Munich 

(LMU) if they met diagnostic criteria for the respective disorders based on a consensus diagnosis 

of two independent psychiatrists using the Structured Clinical Interview for DSM-IV – Axis I & 

II Disorders. Patient ascertainment included the review of records and psychotropic medications, 

a semi-standardized assessment of the psychiatric and somatic history and symptom assessment 

using standard psychometric scales, such as the Positive and Negative Symptom Scale and the 

Scale for the Assessment of Negative Symptoms8 for patients with schizophrenia and the Hamil-

ton Depression Rating Scale9 for patients with MD (Table 1, main manuscript). Exclusion crite-

ria were (1) a history of (a) schizoaffective and/or bipolar disorder, (b) traumatic brain injury 

with loss of consciousness, mental retardation, anorexia nervosa, delirium, dementia, amnestic 

disorders, personality disorders, substance dependence, as defined by DSM-IV, (c) previous 

electroconvulsive treatments, and (d) somatic conditions affecting the central nervous system, as 

well as (2) insufficient knowledge of German, IQ < 70, and age < 18 or > 65. Samples covered 

both recent-onset stages (schizophrenia, n=67; depression, n=40) and relapsing stages (schizo-

phrenia, n=90, depression, n=62) of both disorders. The MD patients’ sMRI data were used to 

assess the specificity of findings related to the application of neurodegeneration classifiers to the 

schizophrenia sample. Furthermore, 335 HC (mean [SD] age = 42.3 [11.9] years, 49.0% females) 

were recruited as previously described, and used for sMRI image calibration (see below).1 Writ-

ten informed consent was obtained from each participant before study inclusion.  

PRONIA samples: In addition to patients with neurodegenerative, schizophrenic or depressive 

disorders, we analyzed a sample of 321 young patients with CHR for psychosis (n=160; mean 

[SD] age = 23.8 [5.4] years, 51.0% females) or ROD (n=161; mean [SD] age = 25.8 [6.1] years, 
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52.8% females) recruited as part of the European PRONIA project (www.pronia.eu).10 Further-

more, we used the structural MRI data of 529 HC from the PRONIA database to mitigate 

site/scanner effects in the patients’ sMRI images.  

PRONIA patients were followed for at least nine and up to 36 months, with three-

monthly visits up to the 18-month point and 9-month visits thereafter based on the project’s 

SOPs.11 Here, we measured patients’ functional outcomes using the GAF Symptoms and Disabil-

ity scales (GAF split version),12 as well as the Functional Remission of General Schizophrenia 

(FROGS) Scale,13 which captures functioning in daily life, activities, relationships, quality of ad-

aptation, and health and treatments. GAF and FROGS measures were available for 321 patients 

at the 9-month timepoint, and for 244 patients at the 18-month or later timepoints. A measure of 

global functional outcome was generated by standardizing the patients’ baseline and follow-up 

GAF/FROGS scores using the baseline data and calculating a mean functioning score across the 

seven standardized measures for each patient at each available timepoint. Furthermore, we ana-

lyzed the data of 216 patients, who, in addition to the baseline data, had received a second sMRI 

scan at the 9-month timepoint, and had been examined using functional measures at the 9-month 

and 18-month (or later) timepoints.  

Based on these data, we first assessed whether higher expression of neurodegenerative 

and schizophrenia patterns at baseline was associated with poorer functioning over time. Con-

versely, we then examined whether a machine learning model operating on the baseline sMRI 

data could correctly identify PRONIA patients with functional non-recovery, as defined by an 

average functional score across the 9-month and 18-month (or later) examinations ranging below 

the 25%-percentile of the baseline sample (eFigure 24a). We assessed whether the prognostic 
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estimates produced by this model for the bvFTD, established AD, MCI/early-stage AD, schizo-

phrenia, or MD samples distinguished cases correctly from HC (Figure 3B, main manuscript). 

Finally, we used the serial MRI data to evaluate whether patients with functional non-recovery 

showed an increase of neurodegenerative and schizophrenia pattern expression between baseline 

and follow-up MRI scans (Figure 4, main manuscript). 

Processing of structural MRI and genetic data 

MRI data acquisition, preprocessing, and calibration across study groups 

MRI data acquisition parameters are provided in eTable 2. All structural magnetic resonance im-

ages were processed using the Computational Anatomy Toolbox (CAT12, version 1207; 

http://dbm.neuro.uni-jena.de/cat12/), an extension of SPM12 (Statistical Parametric Mapping). 

CAT12 segmented images into grey matter (GM), white matter, and cerebrospinal fluid maps, 

and then high-dimensionally registered them to the stereotactic space of the Montreal Neurologi-

cal Institute (MNI-152 space). The manual of the CAT12 toolbox (http://www.neuro.uni-

jena.de/cat12/CAT12-Manual.pdf) details all processing steps applied to the structural images. In 

summary, processing steps consisted of (1) the 1st denoising step based on Spatially Adaptive 

Non-Local Means (SANLM) filtering; (2) an Adaptive Maximum A Posteriori (AMAP) segmen-

tation technique, which models local variations of intensity distributions as slowly varying spa-

tial functions and thus achieves a homogeneous segmentation across cortical and subcortical 

structures; (3) the 2nd denoising step using a Markov Random Field approach which incorporates 

spatial prior information of adjacent voxels into the segmentation estimation generated by 

AMAP; and (4) a Local Adaptive Segmentation (LAS) step, which adjusts the images for white 

matter (WM) inhomogeneities and varying gray matter (GM) intensities caused by differing iron 

content in e.g. cortical and subcortical structures. The LAS step is carried out before the final 
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AMAP segmentation; (5) a partial volume segmentation algorithm that is capable of modeling 

tissues with intensities between GM and WM, as well as GM and cerebrospinal fluid (CSF) and 

is applied to the AMAP-generated tissue segments; (6) high-dimensional DARTEL registration 

of the image to a MNI-template generated from the MRI data of 555 healthy controls in the IXI 

database (http://www.braindevelopment.org). The registered GM images were multiplied with 

the Jacobian determinants obtained during registration to produce GM volume (GMV) maps. 

GMV maps were resliced to 3 mm isotropic voxels before entering downstream analyses. 

Two GMV maps in the FTLDc and Munich samples, and eight images from the PRONIA 

sample did not meet quality criteria and were excluded from subsequent analysis. The remaining 

images were resliced to a 3 mm isotropic voxel resolution. Finally, images were adjusted for co-

hort and age effects as described below.  

Cohort adjustment procedure for the structural MRI data 

eFigure 1 gives an overview of study’s analytical framework. To enable transdiagnostic compar-

isons across the age ranges and projects covered by the patient samples under study, we followed 

a stepwise calibration strategy: First, 63 healthy control (HC) individuals matched for age and 

sex were selected across the FTLDc, Munich, and OASIS-3 samples (age: F=0.33, P=0.724; sex: 

χ2=0; P=1). Partial correlation analysis was employed to compute cohort-level effects. The re-

sulting beta coefficients were then applied to the entire FTLDc, Munich, and OASIS cohorts 

(n=1,020) to regress-out project-related differences. Second, a dynamic standardization proce-

dure was implemented to correct each participant’s GMV map for normal age-related variation: 

Based on an age window of ±3 years around the given participant’s age, we drew a normative 

sample of mean (SD) N=58.6 (32.7) individuals from the cohort-corrected HC data pool 

(n=513). For HC individuals, we drew normative samples that did not contain the given person. 



© 2022 Koutsouleris N et al. JAMA Psychiatry. 

Voxel-level medians and standard deviations were computed for the given normative sample and 

were used to standardize the respective participant’s GMV data.  

As no HC individual in the PRONIA cohort was found to be in the age range of the FTLDc 

or OASIS-3 HC samples, the dynamic standardization of the PRONIA cohort was conducted 

separately: first, we computed site effects between HC samples by calculating the voxel-wise dif-

ferences between the site-specific HC data and the global mean of the PRONIA HC individuals. 

This mean-centering model was applied to the entire PRONIA cohort to subtract the site-related 

differences from the GMV maps. The resulting site-adjusted HC pool was used for the dynamic 

standardization of all the mean-centered GMV maps of the PRONIA cohort, as described above. 

Finally, based on the results of our previous work,14 we included a masking procedure in 

all our classification analyses to further mitigate scanner-related differences between the cohorts 

under study. This procedure identified and removed voxels from the participants’ GMV maps, 

which ranked below the median of the PRONIA inter-site reliability map. The reliability map 

was previously computed by applying generalization theory to the GMV maps of travelling 

healthy controls examined at all sites and scanners of the PRONIA consortium.15  

To validate the effect of the dynamic standardization procedure, we computed global GMV 

measures for each study participant in the FTLDc, OASIS-3 and Munich cohorts by summing up 

the TIV-adjusted voxels, as well as the TIV-adjusted and dynamically standardized voxels in the 

respective GMV maps. Former were plotted in eFigure 2a and latter in eFigure 2b as a function 

of chronological age. Cubic functions were fitted to the two datasets to quantify the coefficient of 

determination (R2) between global GMV measures and age before and after dynamic data cali-

bration. We observed a reduction of R2 from 0.66 to 0.024 through dynamic data standardization. 
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Genotyping 

DNA could be extracted from the whole blood samples of 296 of 321 PRONIA patients (148 

CHR, 148 ROD) who had provided blood for and consented to genetic testing. DNA was geno-

typed using Illumina’s Infinium Global Screening (GSA) Array-24 BeadChip version 2 + Psych 

content (GSA). The GSA includes > 650,000 markers and offers an unparalleled genomic cover-

age and imputation performance. The Psych content comprises 50,000 variants associated with 

common psychiatric disorders such as schizophrenia, bipolar disorder, and autism spectrum dis-

orders. After standard, stringent quality control using PLINK (e.g., sample call rate > 0.98; vari-

ant call rate > 0.98; Minor Allele Frequency > 0.01; removal of variants deviating from Hardy-

Weinberg equilibrium, p < 10E-6; sex check and heterozygosity outlier analysis), a total of 

505,687 variants remained in the dataset.  

The post-QC genotype data were then phased with eagle v2.4.1 

(https://alkesgroup.broadinstitute.org/Eagle/) and imputed with minimac 4 v1.0.2 (https://ge-

nome.sph.umich.edu/wiki/Minimac4) using 1000 genome phase 3 data as reference haplotypes 

panel (https://www.internationalgenome.org/home). To include reliable variants for polygenic risk 

score analysis we excluded imputed variants with lower imputation accuracy (i.e., R2<0.8, 

n=10,962,225). Finally, we computed Polygenic Risk Scores for schizophrenia, frontotemporal 

dementia, and Alzheimer’s Disease by means of the “clumping plus threshold” method. The PRS 

computation was run using PRSise v2 tool (https://www.prsice.info/) with the default parameters 

for clumping (i.e., R2<0.1 considering 250kb flanking regions for each variant included in the PRS) 

while 10 P-value thresholds for variants selection were tested (i.e., 5.00e-08, 1.00e-06, 1.00e-04, 

0.001, 0.01, 0.05, 0.1, 0.2, 0.5, 1.0). 
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For the computations, we employed the summary statistics for (a) schizophrenia from the 

most recent genome-wide association studies (GWAS) meta-analysis provided by the Psychiatric 

Genomic Consortium (PGC2, https://www.med.unc.edu/pgc/download-results/; n>36,989 pa-

tients and n>113,075 controls), (b) frontotemporal dementia using the GWAS meta-analysis con-

ducted by the International Frontotemporal Dementia Genetics Consortium (https://ifgc-

site.wordpress.com/data-access/; n=3526 patients and n=9402 controls), and (c) Alzheimer’s 

Disease from the most recent GWAS meta-analysis (http://ftp.ebi.ac.uk/pub/data-

bases/gwas/summary_statistics/GCST007001-GCST008000/GCST007511/; n=21,982 cases and 

n= 41,944 controls) provided by the International Genomics of Alzheimer’s Project.16 PRS were 

computed as the sum of the risk alleles weighed by the association estimates for the three disor-

ders (beta of respective disorders) including all common variants (i.e., with Minor Allele Fre-

quency > 1%) in the clumped dataset at a given P value threshold. PRS were standardized to 

have a direct comparison across sample PRS values considering variable P value thresholds. 

Moreover, since PRS values can be also influenced by population structure we extracted the first 

10 Principal Components (PC) from the post QC genotype data. Pruning of genotyping data was 

applied prior to computing the PC to limit the effect of Linkage Disequilibrium (LD) across 

markers and thus to better represent the population structure in the eigenvectors. Genome-wide 

pruning was performed with PLINK considering window sizes of 50 variants and steps of 5 vari-

ants while a threshold of 0.5 in the R2 correlation across paired variants was considered. The 30 

PRS modelling the genetic liability for schizophrenia, frontotemporal dementia, and Alzheimer’s 

Disease in the PRONIA patient groups were corrected for population structure effects using the 

partial correlation analysis conducted in the PRONIA HC sample. Specifically, beta coefficients 
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measuring the shared variance between population-structure PCs and PRS features were com-

puted in the HC individuals and the obtained coefficients were applied to the respective patient 

data. Then, the adjusted patient PRS scores were standardized using the population-structure ad-

justed HC data and included in the machine learning analysis as described below. 

Training, cross-validation, visualization, and application of machine learning models 

Training and cross-validation of sMRI-based diagnostic models  

First, we entered the resliced and adjusted GMV maps into our open-source machine learning 

software NeuroMiner (v1.05; www.proniapredictors.eu/neurominer/index.html) to train and 

cross-validate four diagnostic classifiers separating patients with bvFTD, established AD, 

MCI/early-stage AD and schizophrenia from the respective HC samples. As implemented in our 

previous work10,17, the derivation and validation of diagnostic (or prognostic) classifiers was 

wrapped into a repeated, nested cross-validation structure18 to exclude any possibility of infor-

mation leakage between training, testing and validation data. Specifically, we used single 10-fold 

cross-validation at the inner cross-validation layer (CV1) to conjointly optimize preprocessing 

and model training steps, and then applied the trained models to the outer validation data parti-

tion (CV2) to generate decision scores for each participant in that partition. This derivation-vali-

dation process was repeated for the remaining 9 CV2 training partitions until decision scores 

were generated for all validation participants in the CV2 cycle. Then, participants were reshuffled 

within their group and the whole process was repeated 9 times, thus producing in total 

10x10=100 decision scores for each study participant by only those models which had not seen 

the participant during the model derivation process. These 100 out-of-training (OOT) scores 

were concatenated into a model ensemble and the median decision score was computed for each 

study participant across these models.  
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Specifically, we used linear-kernel support-vector-machines (SVM) to be able to interpret 

the models’ decision scores as distance measures between the participants’ data and the opti-

mally separating hyperplane (OSH).19 The SVM optimizes the OSH weights so that the geomet-

ric margin between most similar study participants of opposite classes (=the support vectors) is 

maximized, thus making the method insensitive to outliers during the training process, and facili-

tating generalizability to new data during model application.20  Importantly, this maximum-mar-

gin approach also allows to study patient cohorts with more intense or extended volumetric ab-

normalities compared to the training population because these abnormalities translate into higher 

absolute decision score values if they align with the OSH. To facilitate cross-diagnostic compari-

sons, we transformed median decision scores into Z scores by (1) computing the mean and stand-

ard deviation of the healthy controls’ median decision scores in the respective disease cohort, 

and (2) using them to standardize the scores of all study participants in the respective cohort. 

Thus, standardized decision scores can be regarded as a global and inter-individually comparable 

measure of volumetric brain abnormalities aligning with the spatial distribution and severity of 

brain abnormalities encapsulated in the OSH. 

Model optimization started by (1) smoothing the data with a 3, 6, or 9 mm Gaussian ker-

nel, followed by (2) the selection of reliable voxels above an inter-site reliability cutoff of 50% 

as previously described,10,11 (3) reduction of the processed GMV maps to NPC ∈ [15, 20, 25] 

eigenimages using Principal Component Analysis21 (NPC was informed by our previous neuroim-

aging work11,14), and (4) standardization of the resulting eigenscores using each component’s 

median and standard deviation. Standardized eigenscores were then forwarded to linear-kernel, 

class-weighted SVM22, which were trained at different regularization parameters C ∈ 2ሾି∈ℤሱሮାସሿ to 

optimally separate cases from controls. Combining all free pre-processing and machine learning 



© 2022 Koutsouleris N et al. JAMA Psychiatry. 

parameters, model optimization was performed across 3 (smoothing) × 3 (PCA) × 11 (SVM) = 

99 hyperparameter combinations. Within this hyperparameter space, the maximum average bal-

anced accuracy [BAC=(Sensitivity+Specificity)/2] across the CV1 test partitions identified the 

optimal combination, and hence the models to choose. Then, each of the 10 chosen SVM models 

entered a greedy forward-search wrapper to identify a parsimonious combination of eigenvari-

ates that maximized the BAC in the given CV1 training and CV1 test data partitions.10 The wrap-

per stopped when 50% of the features had been selected from the variable pool. Predictive fea-

tures chosen by more than 50% of the CV1 models in the given CV2 partition were used to retrain 

models. Finally, the optimized models were applied to the CV2 data, and their decision scores 

were combined into an ensemble-based prediction for each CV2 validation participant.  

Thus, each sMRI-based diagnostic classifier consisted of 10 CV2 partitions * 10 CV2 rep-

etitions * 10 CV1 models per CV2 partition = 1000 SVM models. The performance of a given 

classifier was reported in eTable 4 in terms of sensitivity, specificity, BAC, Positive and Nega-

tive Predictive Values (PPV/NPV), Area-Under-the-Curve (AUC), as well as Number Needed to 

Diagnose (NND)23. Furthermore, we computed the average SVM complexity across each diag-

nostic classifier’s models, defined as 𝐶𝑥 ൌ  ೄೇ


, where 𝑛ௌ is the number of support vectors in 

the given model and 𝑛 the total number of training participants. Model complexity provides a 

useful metric to compare the data heterogeneity underlying a diagnostic signature, with higher 

values indicating higher usage of training data to derive a generalizable pattern from the training 

data. 

Visualizing and quantitatively comparing sMRI-based disease signatures 

Each classification system’s diagnostic signature was visualized in terms of a cross-validation 

ratio (CVR) map. The CVR map describes the stability of the diagnostic signature at each feature 
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of the input data. CVR as a measure for pattern stability was inspired by the bootstrap ratio 

method used in the Partial Least Squares literature24 and has been employed in our previous 

work for pattern visualization.11,14 CVR maps are generated by computing the mean and standard 

error of all normalized SVM weight vectors (=SVM models)25 across the entire repeated, nested 

cross-validation structure. Like the bootstrap ratio, the CVR of pattern element 𝑗 is defined as: 

CVR ൌ  
ሺ∑ 𝐰ෝ

ୀೇభ∗ೇభ∗ೇమ∗ೇమ
ୀଵ ሻ 𝑛ൗ

𝜎𝐰ෝೕ √𝑛
⁄

 

Where 𝑛 is the size of the SVM ensemble, 𝑝భis the number of CV1 repetitions, 𝑘భ the number 

of CV1 folds, 𝑟మthe number of CV2 repetitions, 𝑘మ the number of CV2 folds, 𝐰ෝ
 the 𝑗th ele-

ment of the 𝑖th normalized weight vector 𝐰ෝ ൌ 𝐰/ฮ𝐰ฮ in the SVM ensemble25, 𝜎𝐰ෝೕ  the stand-

ard deviation of 𝐰ෝ
. Akin to Z scores, a CVR cutoff of ±2 can be applied to the CVR map to vis-

ualize stable pattern elements in the respective diagnostic classifier (Figure 1, main manuscript). 

 To better delineate and compare the spatial compositions of the four diagnostic classifi-

ers, we projected their CVR maps onto the neuroanatomical atlas provided by Automated Ana-

tomical Labeling 3 (AAL3; available at https://www.oxcns.org/aal3.html).26 Specifically, for 

each classifier, we computed the percentage of voxels (KROI[%]) in each of the 170 regions-of-

interest (ROI) of the atlas that scored at or below a CVR value of -2. Regions-of-interest were 

discarded, if we could not find any voxels meeting this stability criterion across the four diagnos-

tic classifiers. Furthermore, we computed the most negative CVR value (CVRROI[min]) in each 

selected ROI, corresponding to the maximum local GMV reduction effect in the diagnostic sig-

nature separating patients from healthy controls. The KROI[%] and CVRROI[min] parcellations 

were visualized using spider plots (eFigures 3a and 4a).  
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To compare the multivariate CVR metric to univariate statistics, we performed two-sam-

ple t tests in those voxels of the four diagnostic signatures that met the stability criterion of 

CVR≤-2. Then, the maximum T scores (TROI[max]) in each non-discarded ROI were identified 

by mapping each T score signature to the AAL3 atlas. The so obtained TROI[max] parcellations 

of the four classifiers were displayed using spider plots (eFigure 5a). We also used scatter plots 

and coefficients of determination (R2) to measure the associations between CVRROI[min] and 

TROI[max] parcellations (eFigure 6). This analysis indicated that univariate T scores partially ex-

plained the CVR metric (R2 range: 0.54-0.66). Finally, to quantify the similarity between the four 

diagnostic signatures, we computed the pairwise R2 values between the KROI [%], CVRROI[min] 

and TROI[max] parcellations and plotted these values as gray-shaded matrices in eFigures 3b, 4b 

and 5b. This analysis showed that the KROI [%] and CVRROI[min] parcellations of our diagnostic 

signatures differed more strongly between each other than the respective univariate TROI[max] 

counterparts, except for the two AD signatures. We interpreted these differences between multi-

variate and univariate disease metrics in the light of the maximum-margin principle of the SVM: 

The algorithm focuses on those distributed and fine-grained aspects of the disease pattern that 

conjointly contribute to a generalizable separation of the given patient group from healthy con-

trols. In consequence, this feature of the SVM leads to a higher degree of “spatial saliency” of 

the resulting diagnostic signature. We probed this assumption of spatial and predictive specificity 

in a set of supplementary classifier validation steps, as described below. 

Computing neuroanatomical expression profiles for each study participant 

To measure the presence of a given diagnostic signature across the different cohorts of our study, 

we applied all 1000 models of each classifier to the independent participants’ standardized GMV 

maps. Specifically, for each participant, we computed the median decision score across these 
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1000 predictions to obtain an individualized, out-of-cross-validation (OOCV) metric for the neu-

roanatomical expression of the respective diagnostic signature. The OOCV-based decision scores 

were standardized using the healthy controls’ mean and standard deviation to enable transdiag-

nostic comparisons as described above. Thus, at the end of this analysis, each study participant of 

the FTLDc, OASIS-3 and Munich cohorts was characterized by one OOT- and three OOCV-

based Z scores. We termed these OOT- and OOCV-based Z scores ‘diagnostic expression scores’ 

and combined them into an individual diagnostic expression profile characterizing each study 

participant. These profiles were then statistically compared across diagnostic groups as described 

below. We also performed majority voting across the 1000 model predictions of each classifier 

to generate an ensemble-based label prediction for each participant.27 Violin plots of the diagnos-

tic expression score distributions were depicted in Figure 1E-H, main manuscript.  

Exploring potential confounders of diagnostic classifiers 

We performed several supplementary analyses to evaluate potential confounders of our diagnos-

tic classifiers, including residual effects of cohort provenance (eFigure 7) and age (eFigure 8a), 

as well as potential effects of image quality ratings (IQR; eFigure 8b), sex (eFigure 8c) and to-

tal GMV (eFigure 8d). IQR and total GMV were estimated using the CAT12 toolbox.   

First, we assessed the impact of our cohort adjustment strategy on classifiers’ predictions. 

To this end, the four diagnostic classifiers (bvFTD vs. HC, Established AD vs. HC, MCI/early-

stage AD vs. HC, Schizophrenia vs. HC) were retrained using GMV maps that had not been pro-

cessed using dynamic standardization or inter-site reliability masking. The identical machine 

learning settings described above were employed for model training. This new set of classifiers 

was applied to each HC cohort in the study (FTLDc, Munich, OASIS-3, PRONIA) to produce 

OOT and OOCV-based decision scores. The four scores of each HC participant were averaged, 
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and the mean scores were entered into a one-way analysis of variance (ANOVA) to determine 

cohort-level differences caused by training classifiers without dynamic data standardization or 

inter-site reliability masking (eFigure 7). The same analysis was repeated with mean decision 

scores produced by the original classifiers (trained on the calibrated GMV data). The comparison 

of ANOVAs showed that the calibration procedure reduced the cohort-related differences from 

F3;1039=173.3; P= 4.29*10-91 present in the non-calibrated data to F3;1039=1.66; P=.173 in the 

fully calibrated images, indicating that dynamic standardization followed by inter-site reliability 

masking was effective in attenuating scanner- and age-related differences between study cohorts.  

This finding was confirmed by the low, non-significant R2 values computed as a measure 

of association between the HC individuals’ age and their mean decision scores (eFigure 8a). 

However, we observed correlations between mean decision scores and IQR or total GMV (eFig-

ure 8b and 8d). We also found significant differences between male and female HC individuals, 

with male participants showing more patient-like mean decision scores than female participants 

(eFigure 8c). Therefore, we retrained the four diagnostic classifiers by including a covariate cor-

rection step in the preprocessing setup. Specifically, we applied partial correlation analysis to the 

HC data of the CV1 training partitions to estimate the effects of sex, IQR and total GMV on the 

calibrated GMV maps. The resulting beta coefficients were then applied to the entire CV1 train-

ing and test folds as well as the CV2 validation partitions to regress-out covariate effects. eTable 

5 evaluates the predictive performance of the new OOT class predictions. The qualitative com-

parison of performance metrics did not demonstrate major differences in terms of sensitivity, 

specificity, and BAC between the two sets of diagnostic classifiers. Furthermore, we performed 

McNemar’s tests28 to assess the paired original-adjusted classifiers’ class label predictions for 
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inequality and found no significant differences (eTable 5). Therefore, we decided to use the orig-

inal classifiers in the downstream analysis process (see eFigure 1). 

Next, we proceeded with specific classifier validation steps. We assessed the possibility 

that the early diagnostic stage of possible bvFTD (n=42) influenced the predictions of the bvFTD 

classifier. To this end, a post-hoc evaluation of interactions was performed between the bvFTD 

classifier’s decision scores and diagnostic stages of bvFTD, with patients grouped into “possi-

ble”, “probable”, and “definitive frontotemporal lobar degeneration” (FTLD). Specifically, we 

conducted an ANOVA between these disease stages and HC, followed by post-hoc pairwise 

comparisons (eFigure 9). P values were corrected for multiple testing using Sidak’s method29 

and significant effects were established at α=0.05. The same methodology was employed to as-

sess whether Established AD patients of the FTLDc cohort differed in their neuroanatomical ex-

pression of AD (eFigure 10) if they had (1) a CSF biomarker-confirmed AD diagnosis (n=31) 

defined by a Aβ1-42 positive status (<550 pg/mL) or elevated Tau protein (>300pg/mL), or (2) 

no CSF biomarker data available (n=13).  

Probing the diagnostic agreement between classifiers 

We observed significant spatial overlaps between the diagnostic signatures of our classifiers as 

visualized in the pairwise R2 matrices of eFigures 3b (KROI[%]) and 4b (CVRROI[min]). This ob-

servation raised the possibility that the classifiers did not significantly differ in their case vs. con-

trol predictions. To assess this possibility, we conducted pairwise McNemar tests to probe the 

classifiers’ diagnostic assignments for non-equality (eTable 6). Resulting P values were cor-

rected per patient group using the False Discovery Rate (FDR) and significant classifier differ-

ences were established at α=0.05. These analyses revealed a gradient of classifier non-agreement 
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ranging from patients with Established AD (no significant differences between classifiers’ pre-

dictions) to patients with schizophrenia (all pairwise non-equality comparisons PFDR<.01).  

Probing the spatial specificity of diagnostic classifiers  

Different levels of brain atrophy present across the neurodegenerative and psychiatric disease 

groups of our study raised the possibility that spatially unspecific disease effects biased the train-

ing of diagnostic classifiers. Such global effects could gloss over the disease signatures during 

model application, thus mimicking specific disease patterns in patient groups with more pro-

nounced global GMV reductions. For example, the schizophrenia signature was spatially more 

extended compared with the other disease patterns (Figure 1a, eFigure 3). This effect made the 

respective classifier prone to false positives if applied to bvFTD and established AD patients, 

who showed greater global brain atrophy compared to patients with schizophrenia (eFigure 

11a). To test the null hypothesis of spatial non-specificity in the case of the schizophrenia and 

bvFTD classifiers, we performed a simulation analysis based on HC individuals pooled across 

the FTLDc, OASIS-3 and Munich cohorts (n=513). We rendered these participants patient-like, 

either (1) by adding global atrophy to their GMV maps so that the level of global atrophy (mean 

standardized GMV score) present in the target patient group (bvFTD, established AD, 

MCI/early-stage AD, schizophrenia, MD) would be matched (=null hypothesis), or (2) by match-

ing HC and target patient groups through the computation of the mean voxel-level differences 

between groups and subtraction of this standardized GMV difference map from the HC group 

(=alternative hypothesis). All models of the bvFTD and schizophrenia classifiers were then ap-

plied to these two sets of modified GMV maps, and the obtained median decision scores were 

statistically compared with the scores previously calculated for the respective real patient group 
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using two-sample t tests. The null hypothesis of spatially unspecific prediction results was re-

jected at α=0.05. Findings are shown in eFigure 11b1 and b2 and presented in the eResults.  

Neuroanatomical BrainAGE modeling  

Because of the established evidence for increased BrainAGE (Brain Age Gap Estimation30,31) 

across neurodegenerative and psychiatric disorders,32,33 it was critical to study the specificity of 

our findings with respect to this transdiagnostic marker of accelerated brain aging.34 Specifically, 

we used ν-Support Vector Regression (ν-SVR)35 to predict age from the original GMV maps of 

all HC participants included in the study, which had not undergone dynamic standardization, and 

hence contained the relevant age effects for predictive modelling (see eFigure 2a). As described 

above, we employed nested cross-validation to exclude any information leakage between train-

ing, test, and validation data during the model optimization process. Due to the large derivation 

sample size, we performed nested 5-fold cross-validation without any repetitions of the CV1 or 

CV2 cycles. The preprocessing pipeline started with scaling the target labels to the range [0, 1] 

and proceeded with smoothing the CV1 training, CV1 test and CV2 validation cases’ original 

GMV maps with a 3-, 6-, and 9-mm Gaussian kernel (FWHM), as described above. To adjust the 

data for cohort effects in this analytical scenario, we first masked the GMV maps with the inter-

site reliability map as described above.  

Then, within the nested cross-validation framework, we decided to use the ComBat algo-

rithm36,37 to attenuate cohort-related variation in the smoothed GMV data because of its ability to 

disambiguate covariate effects from the effects of interest (age). Of note, it was not possible to 

use ComBat in the training of the diagnostic classifiers because the algorithm would have mod-

elled the effects of interest (here: patients vs. healthy controls) as a common neuroanatomical 
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pattern across cohorts. This would have potentially biased our ability to detect differences be-

tween diagnostic signatures at the initial model discovery or later cross-diagnostic model appli-

cation steps. Furthermore, a known limitation of ComBat is that it cannot be readily applied to 

external, unseen data and therefore it would have impaired our ability to carry out the cross-diag-

nostic analyses within an external validation framework (eFigure 1). 

Based on the large training sample size and informed by prior work,31,33 the dimensional-

ity of the adjusted training data was reduced to NPC ∈ [100, 250, 500] eigenimages by means of 

PCA and the eigenscores were standardized using each component’s median and standard devia-

tion. These scores were then forwarded to the linear-kernel ν-SVR algorithm to find an optimal 

age-predictive function among the 3 (FWHM) × 3 (PCA) = 9 preprocessing parameter combina-

tions. We used fixed ν-SVR parameters (C=1, ν=0.1) to train predictive models, as determined 

by prior knowledge.33 The adjustment, PCA transformation, and standardization parameters 

computed in the CV1 training data were then invariantly applied to the CV1 test and CV2 valida-

tion data. The so processed test and validation data were projected into the linear kernel space, 

where the trained ν-SVR algorithm produced an age estimate for each case. Then, the age esti-

mates were scaled back to the original age range of the pooled HC cohort. The rescaled age esti-

mates were finally adjusted for the known age correlation effects using linear regression of 

BrainAGE (=Predicted Age – Chronological Age) against chronological age,38 following a leave-

one-out approach. The BrainAGE model’s neuroanatomical signature was visualized in eFigure 

12a using CVR mapping, as described above. BrainAGE findings are further detailed in the eRe-

sults. To obtain BrainAGE scores for the clinical participants the finalized BrainAGE and age 

bias correction models were applied without any retraining to the patients’ original GMV maps. 

BrainAGE distributions were compared between study groups using box plots (eFigure 12c). 
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The BrainAGE signature was compared in relation to the diagnostic signatures by mapping the 

CVR map to the AAL3 atlas as described above (eFigure 13). 

Probing the spatial specificity of diagnostic signatures at the voxel-level 

As we confirmed spatial specificity of the bvFTD and schizophrenia classifiers in patient groups 

(see eFigures 11b and c), we now probed specificity further at the voxel-level by fitting the 

standardized and resliced GMV data of the bvFTD and schizophrenia cohorts with their diagnos-

tic expression profiles. To this end, we used mass-univariate regression as provided by Statistical 

Parametric Mapping (SPM12, https://www.fil.ion.ucl.ac.uk/spm/software/) and entered the par-

ticipants’ four diagnostic expression scores as regressors of interest, as well as sex, IQR, total 

GMV (as computed by the CAT12 toolbox), and BrainAGE estimates (see previous section) as 

covariates in the design matrix. The Threshold-Free Cluster Enhancement toolbox for SPM12 

(TFCE, http://www.neuro.uni-jena.de/tfce/) was employed to perform non-parametric permuta-

tion tests (5000 permutations). Contrasts were constructed to identify negative voxel-level asso-

ciations between the given diagnostic expression score and standardized GMV (higher patient 

likeness-less GMV), while controlling for the effects of all other regressors in the design matrix. 

The resulting T maps were corrected for multiple comparisons using the FDR and depicted in 

eFigure 14 (FTLDc cohort: bvFTD patients, HC) and eFigure 15 (Munich cohort: patients with 

schizophrenia, major depression, HC). Voxel-level significance was determined at q=0.05. 

Comparison of neuroanatomical expression profiles between study groups 

Using SPSS (version 25, IBM Inc.), we conducted repeated-measures analyses of variances to 

assess differences in the expression of bvFTD, established AD, schizophrenia patterns across the 

bvFTD, established AD, MCI/early-stage AD, schizophrenia, and MD groups (eFigure 16). Sig-
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nificant main effects were further investigated using estimated marginal means analyses of over-

all classifier effects (eFigure 16a), classifier effects within each patient group (eFigure 16b) and 

overall patient group effects (eFigure 16c). Significance was determined at α=0.05, corrected for 

multiple comparisons using Sidak’s method.29 Based on our previous findings on the associa-

tions between neuroanatomical separability of psychiatric patient cohorts and accelerated brain 

aging,1,33 we repeated this analysis with BrainAGE included as covariate (eFigure 17).39  

Differential diagnostic classification and neuroanatomical similarity analysis of psychiatric co-

horts and patients with MCI/early-stage AD. 

Then, we assessed the neuroanatomical separability between bvFTD and established AD and 

evaluated how the patients with schizophrenia, major depression and MCI/early-stage AD align 

with this different diagnostic brain space. To this end, we trained a machine learning classifier 

using the identical algorithmic setup as described above for the case-control analyses (eFigure 

18a and b). The trained differential diagnostic classifier was then applied without any changes to 

the three cohorts (schizophrenia, major depression, MCI/early-stage AD). We analyzed the deci-

sion scores of these three groups alongside the OOT-based decision scores of the bvFTD and es-

tablished AD patients using ANOVA. As this omnibus test was significant, pairwise post hoc 

comparisons were conducted. The P values obtained from these comparisons were corrected for 

multiple comparisons using Sidak’s method and established significance at α=0.05 (eFigure 

18c). Finally, we evaluated possible associations between BrainAGE and differential diagnostic 

scores in each of the five patient groups using univariate regression analyses (eFigure 18d). 
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Predicting diagnostic signature expression using non-imaging data 

Using ν-SVR,35 we analyzed whether bvFTD, established AD, MCI/early-stage AD or schizo-

phrenia expression scores, as well as BrainAGE could be predicted in a subset of 127 patients 

with schizophrenia using baseline sociodemographic, disease course, treatment and psychometric 

variables, as well as BMI (eTable 3). A similar analysis was carried out in 81 bvFTD patients 

based on sociodemographic, disease course and behavioral variables, inflammatory and neuro-

degenerative CSF markers, as well as C9orf72 mutation carrier status.40,41 Predictive variables 

were selected based on the overlap of measured clinical constructs between cohorts, wherever 

possible, and formal criteria such as the degree of missing data per variable (maximum 25% of 

missing values per variable). 

For both analyses, the same repeated nested cross-validation setup was employed as in 

the classification analyses (see methodological descriptions above). Specifically, we performed a 

feature-wise standardization and imputation of missing values using an Euclidean-distance based 

nearest-neighbor approach.10,17 The training of the ν-SVR models involved finding the hyperpa-

rameter combination that maximized the R2 between observed and predicted diagnostic expres-

sion scores within the parameter range C ∈ 2[-6→0] and ν ∈ [0.05, 0.25, 0.45, 0.65, 0.85]. We pre-

determined this C parameter range based on prior experience as the ν-SVR algorithm’s predic-

tive performance usually does not improve at C ≥ 1. Furthermore, the optimization of the algo-

rithm becomes computationally inefficient at C ≥ 1. 

As described above, the optimal-parameter model entered a greedy forward-search wrap-

per10, which stopped when 50% of the features had been selected from the variable pool. Then, 

predictive features chosen by more than 50% of the CV1 models in the given CV2 partition were 

used to retrain models before being applied to the CV2 cases. As in the discriminative machine 
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learning analyses, we used CVR mapping to compute the stability of the features’ predictive 

value (Figure 2, main manuscript; eFigures 19-20). Furthermore, we repeated these analyses 

with BrainAGE as target label to probe the predictability and underlying feature spaces of diag-

nostic vs. accelerated brain aging patterns in the bvFTD and schizophrenia samples (eFigures 

19-20). Finally, Quade test42 was employed to compare all regression models in the bvFTD and 

schizophrenia samples at the omnibus level, followed by post hoc pairwise tests.43 P values were 

corrected for multiple comparisons using the False-Discovery Rate (FDR)44 and visualized in 

eFigure 21. 

Prognostic and polygenic validation of the bvFTD, AD and schizophrenia signatures in the 

PRONIA cohort 

Moderating group-level effects of the four neuroanatomical classifiers on functional outcomes 

were assessed by applying the models to the site- and age-adjusted GMV data of the PRONIA 

patients, thus generating diagnostic expression scores for further analyses (eFigure 1). To facili-

tate classifier comparisons, we defined patients above/below the 75%-percentile of the given ex-

pression score as belonging to the high-/low-expression sample of the respective signature. Then, 

for each classifier, we performed a mixed-effects linear model analysis to investigate main ef-

fects of ‘neuroanatomical pattern expression’ (‘high’ vs. ‘low’) and ‘baseline study group assign-

ment’ (CHR vs. ROD) on the patients’ global functional outcome trajectories (eFigure 22). The 

patients’ recruitment sites were modeled as random effect in the analysis design. Specifically, if 

both main effects were significant at α=0.05, we repeated the mixed linear modeling for each of 

the seven functional scores (two GAF, five FROGS subscales) to explore whether specific func-

tional domains drove effects at the global level (eTable 7). A correction of the α-level for multi-
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ple testing was carried out using the FDR 44. If both main effects in given analysis reached sig-

nificance, estimated marginal means analyses were conducted to investigate whether effects were 

driven by CHR vs. ROD patients with high vs. low pattern expression for the given functional 

trajectory and classifier score. We additionally explored the effect of BrainAGE on the longitudi-

nal analysis results by including it as covariate in the statistical design and repeating the four 

global functioning analyses (eTable 8). 

Then, we explored whether the polygenic risk scores for FTD, AD and schizophrenia 

were associated with high vs. low pattern expression subgroups in the CHR or ROD samples 

(eFigure 23). To this end, we entered the ancestry-adjusted and standardized 30 PRS scores (3 x 

10 genome-wide significance thresholds) into CHR- and ROD-specific machine learning anal-

yses with the aim to identify multivariable genetic signatures that predicted expression groups at 

the single-patient level. A 10-times-repeated, nested 10-fold cross-validation was used to train 

and validate genetic models, following a similar algorithmic setup as described for the neuroana-

tomical pattern analysis. An important difference was that we decided to omit the wrapper-based 

feature selection previously used in the imaging domain when training now the PRS-based clas-

sifiers. This choice was informed by the high-collinearity structure of the PRS input data that 

consisted of PRS predictors computed at incrementally growing genome-wide significance 

thresholds. In contrast, the structure of the imaging based PCA space does not show any colline-

arity by design, thus being more suitable for a greedy forward search wrapper that filters out use-

ful from redundant information in a binary fashion. 

Optimally discriminative multi-PRS classifiers for bvFTD, schizophrenia, established AD 

MCI/early-stage AD, or BrainAGE-defined pattern expression groups were tested for signifi-

cance using 1000 labels permutations 45, and P values were corrected for multiple comparisons 
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using the False-Discovery Rate. Classification results, ROC analyses and feature reliability pro-

files of significant models were shown in eFigure 23. 

Testing a neuroanatomical continuum between neurodegenerative, schizophrenic and early-

stage psychotic and affective disorders 

Following these analyses, we conducted a separate two-step prognostic machine learning analy-

sis to further evaluate a possible neuroanatomical continuum between PRONIA patients with 

functional non-recovery (eFigure 24a, main manuscript) and patients with bvFTD, established 

or MCI/early-stage AD, schizophrenia, and MD. To this end, we first analyzed the PRONIA pa-

tients’ baseline GMV maps using the identical machine learning analysis setup as described 

above, except for the inner cross-validation cycle where four repetitions were added to increase 

the robustness of the training process due to a highly unbalanced outcome group distribution 

(n=23 non-recovery individuals in a sample of 244 patients). The obtained prognostic signature 

(eFigure 24d) was analyzed using CVR-based mapping to the AAL3 atlas as described above 

(eFigure 25) and then applied to the bvFTD, established AD, MCI/early-stage AD, schizophre-

nia, and MD patients, as well as the respective HC individuals to generate non-recovery decision 

scores for these study participants. The amount of shared variance between these scores and the 

respective classifiers’ diagnostic decision scores was evaluated using linear regression (Figure 

3A, main manuscript). This analysis was repeated after controlling for BrainAGE-related varia-

tion (eTable 9). Then we evaluated whether the prognostic classifier did not only predict func-

tional outcomes in PRONIA, but also separated these patients from HC (Figure 3B, main manu-

script), thus implementing a strategy of ‘reverse validation’ of diagnostic patterns through an in-

dependently trained prognostic model. An important step in this analysis was to probe the non-
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recovery classifier for potential bias induced by different levels of global atrophy present in neu-

rodegenerative and psychiatric conditions (eFigure 26 and Supplementary Results). The simu-

lation-based test has been detailed above for the topographical validation of classifiers. 

In the second step, we used the PRONIA patients’ age and sex, BrainAGE, and the diag-

nostic scores produced by the four case-control classifiers to train an alternative prognostic clas-

sifier predicting non-recovery in the PRONIA cohort. The seven features’ predictive relevance 

was investigated using the CVR metric and depicted in eFigure 27. An additional sensitivity 

analysis of these two prognostic models was performed after defining non-recovery at a more le-

nient threshold (eTable 10). 

Furthermore, we used the serial MRI data available for 216 PRONIA patients to test 

whether patients with functional non-recovery differed from preserved-recovery patients in terms 

of a progressive course of dementia or schizophrenia pattern expression. To this end, the four di-

agnostic classifiers were applied to the patients’ follow-up scans after correcting their GMV tis-

sue maps with the same individualized normative samples used for the respective baseline data. 

Additionally, we computed the patients’ BrainAGE scores at the follow-up MRI examination. 

Generalized estimating equations with a binary logistic model were used to investigate the ef-

fects of the within-subject factors ‘classifier’ (schizophrenia, bvFTD, MCI/early-stage AD or es-

tablished AD) and ‘timepoint’ (baseline vs. follow-up) as well as the between-subject factor ‘re-

covery type’ (non-recovery vs. recovery) on the predicted diagnostic class (case vs. control). The 

patients’ BrainAGE scores measured at baseline and follow-up were added as main effect to the 

statistical design. Following the analysis of main and interaction effects (eTable 11), we con-

ducted estimated marginal means analysis to evaluate effects per recovery type, timepoint and 

classifier type (Figure 4, main manuscript). Significance was determined at α=0.05.  
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Finally, we performed a trajectory analysis in patients with MCI/early-stage AD or 

healthy controls from the OASIS-3 dataset, that covered a nine-years follow-up period of Clini-

cal Dementia Rating scores (eFigure 28). The goal of this supplementary analysis was to gain 

insight into the value of the diagnostic and non-recovery classifiers predicting long-term out-

come, in analogy to the analysis conducted in the CHR and ROD patients of the PRONIA cohort. 

Accordingly, we assigned patients to two either high or low-scoring groups as defined by the up-

per quartile cutoff applied to the respective classifier’s decision score distribution. The design 

matrix included (1) the between-subject factor ‘high vs. low classifier expression’ (high/low: di-

agnostic/prognostic score ≥75%/<75%-percentile of the respective classifiers’ decision score dis-

tribution), (2) the within-subject factors ‘follow-up interval’ (index timepoint, 1-2 years, 2-4 

years, 4-6 years, 6-9 years), ‘classifier type’ (MCI/early-stage AD vs. HC, bvFTD vs. HC, estab-

lished AD vs. HC, schizophrenia vs. HC, PRONIA non-recovery vs. recovery classifier), and 

‘study group’ (MCI/early-stage AD vs. HC). BrainAGE was entered as covariate in the statistical 

design to control for transdiagnostic accelerated aging effects. Main effects of these factors on 

the dependent variable Clinical Dementia Rating (CDR) score are shown in eTable 12. Follow-

ing significant main effects of ‘study group’, ‘high vs. low classifier expression’, ‘follow-up in-

terval’, and BrainAGE, we added two-way and three-way interaction contrasts to evaluate high 

vs. low classifier expression scores vs. BrainAGE effects with respect to the factors ‘study 

group’ and ‘follow-up interval’ (eTable 12). Statistically significant effects were determined at 

α=0.05.  



© 2022 Koutsouleris N et al. JAMA Psychiatry. 

eResults.  

Classifier validation analyses 

Classifiers were not affected by residual cohort or age-related confounds (eFigures 7). Poten-

tially confounding effects of sex, IQR and total GMV were also not relevant to models’ predic-

tions (eFigure 8, eTable 5). Furthermore, no differences were found between possible and prob-

able bvFTD, or between AD samples with positive or unknown CSF biomarker status in terms of 

the respective classifiers’ decision scores (eFigures 9-10).  

The simulation of different levels of global GMV atrophy observed between bvFTD, es-

tablished AD and schizophrenia samples did not significantly explain the predictions of the 

bvFTD and schizophrenia classifiers in the respective patient groups (eFigure 11). However, the 

schizophrenia classifier was more biased by global atrophy due to its larger spatial extent (Fig-

ure 1, main manuscript; eFigure 3), which may have resulted in topographically non-specific 

predictions for the MD and MCI/early-stage AD groups (eFigure 11b1).  

The prognostic non-recovery classifier was identically tested for bias induced by varying 

global atrophy levels present across case-controls samples (eFigure 26). Like for the diagnostic 

classifiers, topographically specific atrophy simulation produced decision scores for the different 

target patient groups which did not significantly differ from the respective observed scores. In 

contrast, we found that the decision scores produced by global atrophy simulation were signifi-

cantly lower than observed decision scores across patient groups, except for MD (eFigure 26). 

BrainAGE predictor and univariate topographic specificity results 

The BrainAGE model predicted age with a mean average error of 5.8 years (R2=0.86) in the CV2 

HC participants (see Supplementary Methods). We found high accelerated aging effects in pa-

tients with bvFTD (mean [SD]: +27.4 [16.7] years) and Established AD (+20.1 [12.8]), followed 
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by patients with schizophrenia (+9.0 [7.6]), major depression (+.3.3 [8.1]) and MCI/early-stage 

AD (+1.4 [8.7]; eFigure 12). The BrainAGE signature overlapped significantly with the bvFTD 

and schizophrenia patterns, in particular covering similar portions of the anterior cingulate cor-

tex, the medial and lateral prefrontal, as well as orbitofrontal, inferior parietal, and lateral tem-

poral cortices as well as the cerebellar regions (eFigure 13a). Differences were observed in 

terms of a reduced spatial extent of the BrainAGE pattern compared with the bvFTD and schizo-

phrenia signatures in the insular and medial temporal lobe structures (hippocampus, amygdala, 

parahippocampus), the posterior cingulate and occipital cortices, and the anterior thalamic nuclei. 

The overlaps between the BrainAGE, bvFTD and schizophrenia signatures were greater than 

those with the two AD patterns (eFigure 13b). 

 A voxel-level univariate specificity analysis was conducted because of the similarities 

found between diagnostic signatures, as well as between these patterns and the BrainAGE signa-

ture (eFigures 14 and 15). In summary, this analysis provided a fine-grained statistical mapping 

of the differences between diagnostic signatures described in eFigure 3 (comparison of KROI[%]) 

and eFigure 4 (comparison of CVRROI[min]). Despite significant neuroanatomical overlaps 

(eFigures 3, 4, 13), the diagnostic signatures were also characterized by specific pattern compo-

nents: (1) the schizophrenia signature specifically encompassed the cerebellum, the medial and 

lateral occipital cortices, the precuneus and posterior cingulate, as well as the medial and lateral 

temporal, posterior insular and parietal cortices, and the thalamus; (2) the bvFTD signature par-

ticularly involved the anterior cingulate, medial and lateral prefrontal cortices, the caudate nu-

cleus and putamen, as well as the anterior insular cortex; finally (3) the two AD signatures occu-

pied predominantly the medial temporal lobe structures and temporopolar cortices with exten-

sions to the anterior cingulate, lateral prefrontal and inferior temporal cortices (eFigures 14 and 
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15). A second result of these analyses was that specific pattern components could be detected 

across cohorts, i.e., the specific spatial aspects of the bvFTD, schizophrenia and AD patterns 

were present in patients with bvFTD, schizophrenia or major depression. We also found that di-

agnostic signature specificity was attenuated in bvFTD (eFigure 14) compared to schizophrenia 

and major depression (eFigure 15), while the BrainAGE pattern became more prominent in lat-

ter cohort. 

Longitudinal effects of diagnostic patterns in MCI/early-stage AD patients. 

A high expression of any neuroanatomical pattern (F=141.0; P<.001; classifier type: F=0.0; 

P=1.0) was associated with worse nine-year CDR courses (eFigure 28, eTable 12) in the OA-

SIS-3 sample. This stratification effect increased significantly over time (F=24.1; P<.001) and 

was differentially expressed in patients (F=125.8; P<.001) vs. HC (F=24.0; P<.001). BrainAGE 

was independently associated with CDR course (F=85.5; P<.001), interacted with the follow-up 

period (F=5.7; P<.001) and differentiated patients from HC (F=19.9; P<.001). 
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eTable 1. Description of Sociodemographic and Clinical Features of Patient 
Cohorts and Healthy Control (HC) Samples 

Samples and variables Patients, No. (%) HC df F/T/Z/χ
2 

PFDR 

bvFTD Established 
AD 

FTLDc 

No. 108 44 40    
Age, mean (SD), y 62.4 (9.5) 66.5 (8.7) 66.4 

(10.8) 

191 4.2 .039 

Female sex 38 (35.2) 22 (50) 19 
(47.5) 

2 3.7 .212 

Educational years, mean 
(SD) 

13.6 (3.1) 13.9 (3.2) 13.8 
(2.9) 

185 0.2 .875 

Relationship status, in part-
nership 

90 (83.5) 40 (90.9) 29 
(72.5) 

2 5.2 .117 

Age at symptom onset, 
mean (SD), y 

58.6 (11.3) 62.3 (9.1) - 146 3.5 .110 

Illness duration, mean 
(SD), y 

3.9 (4.4) 4.0 (3.8) - 146 −0.2 .827 

Mini-Mental State Evalua-
tion, mean (SD) 

24.6 (5.0) 21.7 (6.1) 29.0 
(0.8) 

180 23.5 <.001 

Clinical Dementia Rate 
Scale, mean (SD) 

5.62 (3.49) 5.45 (3.04) 0.03 
(0.12) 

170 46.0 <.001 

Delusions present, yes 10 (9.3) 0 (0.0) - 1 4.4 .072 

Hallucinations present, yes 5 (4.7) 1 (2.3) - 1 0.5 .563 

Affective flattening present, 
yes 

52 (48.6) 9 (20.5) - 1 10.3 .003 

Depression present, yes 32 (29.9) 18 (40.9) - 1 1.7 .236 

Euphoria present, yes 6 (5.6) 0 (0.0) - 1 2.6 .159 

Anxiety present, yes 12 (11.2) 5 (11.4) - 1 0.001 .979 

Impulsivity present, yes 46 (43.0) 2 (4.5) - 1 21.3 <.001 

Treated with AP, yes 31 (28.7) 5 (11.4) 0 (0.0) 2 17.8 <.001 

Treated with antidepres-
sants, yes 

51 (47.2) 15 (34.1) 1 (2.5) 2 25.7 <.001 

 MCI/early-stage AD     
OASIS-3 

No. 96 138    
Mild cognitive impairment 65 (67.7) - - - - 

Age, mean (SD), y 73.3 (7.6) 71.3 
(8.2) 

232 1.8 .078 

Female sex 35 (36.5) 54 
(39.1) 

2 0.2 .679 

Educational years, mean 
(SD) 

15.2 (3.0) 16.0 
(2.8) 

207 −2.0 .065 

Relationship status, in part-
nership 

70 (80.5) 89 
(73) 

1 1.6 .228 

Age at symptom onset, 
mean (SD), y 

69.6 (8.3) - - - - 
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Illness duration, mean 
(SD), y 

3.9 (2.4) - - - - 

Mini-Mental State Evalua-
tion, mean (SD) 

24.7 (4.1) 29.0 
(1.3) 

107.6a −9.9 <.001 

Clinical Dementia Rate 
Scale, mean (SD) 

0.67 (2.7) 0.00 
(0.0) 

95.5a 24.4 <.001 

NPI-Q      
  Mild-severe delusions, yes 7 (8) 0 (0) 1 10.1 .003 

  Mild-severe apathy, yes 30 (34.5) 5 (4.1) 1 33.6 <.001 

  Mild-severe depression, 
yes 

30 (34.5) 8 (6.6) 1 26.3 <.001 

  Mild-severe euphoria, yes 6 (6.9) 0 (0.0) 1 8.6 .004 

  Mild-severe anxiety, yes 30 (34.5) 2 (1.7) 1 41.9 <.001 

  Mild-severe irritability, 
yes 

39 (44.8) 11 
(9.0) 

1 35.8 <.001 

GDS score, mean (SD), y 2.39 (2.1) 0.95 
(1.4) 

137 5.5 <.001 

 Schizo-
phrenia 

MD     

Munich 

No. 157 102 335    
Age, mean (SD), y 30.8 (10.0) 42.2 (12.0) 33.0 

(11.1) 

596 36.8 <.001 

Female sex 41 (26.1) 50 (49.0) 171 
(51.0) 

2 28.2 <.001 

Schooling years, mean 
(SD), y 

10.6 (2.1) 10.8 (1.7) 12.0 
(1.5) 

569 39.5 <.001 

Age at symptom onset, 
mean (SD), y 

25.5 (8.0) 36.5 (12.0) - 254 78.0 <.001 

Illness duration, mean 
(SD), y 

4.5 (7.0) 5.8 (7.8) - 250 −1.3 .185 

PANSS, mean (SD), y       
  Total score 81.8 (29.9) - - - - - 

  Positive score 18.7 (8.1) - - - - - 

  Negative score 21.9 (9.9) - - - - - 

  General score 41.2 (16.4) - - - - - 

HDRS score, mean (SD), y - 21.5 (9.3) - - - - 

Treated with AP at MRI, 
yes 

133 (88.1) 18 (17.6) - 1 125.5 <.001 

Treated with typical AP at 
MRI, yes 

48 (31.8) 10 (9.8) - 1 16.7 <.001 

Treated with atypical AP at 
MRI, yes 

100 (66.2) 9 (8.8) - 1 81.8 <.001 

Treated with antidepres-
sants at MRI, yes 

11 (7.3) 74 (72.5) - 1 116.2 <.001 

 CHR ROD     
PRONIA 

No. 160 161 529    
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Age, mean (SD), y 23.8 (5.4) 25.8 (6.1) 25.6 
(6.1) 

849 6.3 .005 

Female 80 (51.0) 85 (52.8) 307 
(58.9) 

2 4.1 .166 

Educational years, mean 
(SD) 

13.6 (2.8) 14.9 (2.9) 15.8 
(3.2) 

836 30.2 <.001 

Relationship status, in part-
nership 

38 (24.2) 42 (26.1) 255 
(48.9) 

2 46.7 <.001 

PANSS, mean (SD), y       
  Total score 46.1 (15.4) 41.9 (10.8) - 282.7a 2.8 .010 

  Positive score 9.6 (3.8) 7.5 (1.2) - 189.3a 6.5 <.001 

  Negative score 11.6 (5.6) 10.7 (4.4) - 298.8a 1.5 .166 

  General score 25.0 (8.6) 23.7 (6.9) - 302.8a 1.5 .166 

BDI-2 score, mean (SD), y 23.8 (11.0) 24.5 (12.3) - 295 −0.5 .604 

Treated with AP at MRI, 
yes 

34 (21.5) 28 (17.5) - 1 0.8 .399 

Treated with antidepres-
sants at MRI, yes 

80 (50.6) 104 (65.0) - 1 6.7 .015 

Hospitalization before or at 
MRI, yes 

61 (38.6) 92 (57.5) - 1 11.4 .003 

Abbreviations: AD, Alzheimer disease; AP, antipsychotics; BDI-2, Beck-Depression Inventory, 
version 2; bvFTD, behavioral-variant frontotemporal dementia; CHR, clinical high-risk states for 
psychosis; FDR, false-discovery rate; FTLDc, data from the German Frontotemporal Lobar De-
generation Consortium; GDS, Geriatric Depression Scale; HDRS, Hamilton Depression Rating 
Scale; MCI, mild cognitive impairment; MD, major depression; MRI, magnetic resonance imag-
ing; NA, not applicable; NPI-Q, Neuropsychiatric Inventory–Questionnaire; PANSS, Positive 
and Negative Symptoms Scale; PRONIA, Personalised Prognostic Tools for Early Psychosis 
Management; ROD, recent-onset depression. 
aCorrected if the Levene test for equality of variances was significant. 
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eTable 2. MR Scanner Systems and Structural MRI Sequence Parameters Used to 
Examine Study Participants in the Different Cohorts of the Study 
 
Site Model Field 

Strength 
Coil 
Chan-
nels 

Flip 
Angle 

TR 
[ms] 

TE 
[ms] 

Voxel Size 
[mm] 

FOV Slice 
Number 

FTLDc          
Ulm SIEMENS Allegra 3T 1/12/32 8/9 2.2/2.3 2.0/2.1/

4.4 
 256*256  

Erlangen SIEMENS TrioTim 3T  9/10 1.3/2.3 3.5/3.0  240*256/
256*256 

 

Göttingen SIEMENS TrioTim 3T 12/32 9 2.3 3.0  224*256/
232*256/
237*237/
240*256 

 

Munich-LMU / 
TUM 

GE 
Signa/SIEMENS 
Biograph/Verio 

3T 8 9/15 2.3 3.0  240*256  

Leipzig SIEMENS Bio-
graph/Tri-
oTim/Verio 

3T 12/32 9/10/18 1.3/1.9/
1.9/2.3 

3.0/3.5/
4.3 

1.0*1.0*1.0 240*256/
256*256 

 

Rostock SIEMENS Verio 3T  7/9 1.9/2.5 2.5/4.8  250*250/
256*256/ 
240*256 

 

Bonn SIEMENS Skyra 3T  7/9 2.3/2.5 3.1/4.8  240*256/
256*256 

 

Hamburg SIEMENS Skyra 3T  9 2.5 3.6  256*256  
Homburg SIEMENS Skyra 3T  9 2.0/2.3 3.0  240*256/

256*256 
 

Tuebingen SIEMENS Skyra 3T  10 2.3 2.9  240*256  

OASIS-3 
         

 SIEMENS TrioTim 3T 20 8 2.4 3.2 1.0*1.0*1.0 256*256  
 BioGraph PET-MR 3T 20 9 2.3 2.9 1.0*1.0*1.2 256*256  
Munich data-
base 

SIEMENS Magne-
tom 

1.5T 8 12 11.6 4.9 0.45*0.45*
1.5 

230*230 126 

PRONIA          
Munich Philips Ingenia  3T 32 8 9.5 5.5 0.97*0.97*

1.0 
250*250 190 

Milan Niguarda Philips Achieva In-
tera  

1.5T 8 12 Shortest 
(8.1) 

Shortest 
(3.7) 

0.93*0.93*
1.0 

240*240 170 

Basel SIEMENS Verio 3T 12 8 2000 3.4 1.0*1.0*1.0  256*256 176 
Cologne Philips Achieva 3T 8 8 9.5 5.5 0.97*0.97*

1.0 
250*250 190 

Birmingham Philips Achieva 3T 32 8 8.4 3.8 1.0*1.0*1.0 288*288 175 
Turku Philips Ingenuity 3T 32 7 8.1 3.7 1.0*1.0*1.0 256*256 176 
Udine Philips Achieva 3T 8 12 Shortest 

(8.1) 
Shortest 
(3.7) 

0.93*0.93*
1.0 

240*240 170 
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eTable 3. Variables Available in the Munich and FTLDc Studies for the Prediction of 
Neuroanatomical Expression Scores in the ν-SVR Analysis  
 
See Figure 2 in the main manuscript and eFigures 19-21. 

Variables used for neuroanatomical expression score pre-
diction in the schizophrenia sample 

Variables used for neuroanatomical expression score pre-
diction in the bvFTD patient sample 

Sociodemographic predictors 
Age Age 
Sex [male/female] Sex [male/female] 
Schooling years Educational years 
— Relationship status [in partnership (yes/no)] 

Physical / Genetic predictors 
Body-mass index [kg/m2] Cell count in CSF 
— Albumin in CSF [mg/dl] 
— Oligoclonal banding [yes/no] 
— Total Tau protein in CSF [pg/ml] 
— Phospho-Tau in CSF [pg/ml] 
— Aβ1-42 [pg/ml] 
— C9orf72 mutation carrier status [yes/no] 

Disease-course predictors 
Age of disease onset Age of initial symptoms 
Illness duration [log(value)] — 

Treatment predictors 
Treated with antipsychotics at MRI scanning Treated with antipsychotics at MRI scanning 
Treated with antidepressants at MRI scanning Treated with antidepressants at MRI scanning 

Cognitive status predictors 
— Mini-Mental-State Examination [MMSE] 
— Clinical Dementia Rating [CDR] 
— Clinical Dementia Rating, FTLD version [FTLD-CDR] 

Psychopathological predictors 
PANSS-P1: Delusions Delusions present [yes/no] 
PANSS-P2: Conceptual disorganization — 
PANSS-P3: Hallucinations Hallucinations present [yes/no] 
PANSS-P4: Excitement Euphoria present [yes/no] 
PANSS-P5: Grandiosity — 
PANSS-P6: Suspiciousness/persecution Irritability present [yes/no] 
PANSS-P7: Hostility — 
PANSS-N1: Blunted affect — 
PANSS-N2: Emotional withdrawal — 
PANSS-N3: Poor rapport — 
PANSS-N4: Passive/apathetic social withdrawal — 
PANSS-N5: Difficulty in abstract thinking — 
PANSS-N6: Lack of spontaneity and flow of conversation — 
PANSS-N7: Stereotyped thinking — 
PANSS-G1: Somatic concern — 
PANSS-G2: Anxiety Anxiety present [yes/no] 
PANSS-G3: Guilt feelings — 
PANSS-G4: Tension — 
PANSS-G5: Mannerisms and posturing — 
PANSS-G6: Depression Depression present [yes/no] 
PANSS-G7: Motor retardation — 
PANSS-G8: Uncooperativeness — 
PANSS-G9: Unusual thought content — 
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PANSS-G10: Disorientation — 
PANSS-G11: Poor attention — 
PANSS-G12: Lack of judgment and insight — 
PANSS-G13: Disturbance of volition — 
SANS: Unchanging Facial Expression — 
SANS: Decreased Spontaneous Movements — 
SANS: Paucity of Expressive Gestures — 
SANS: Poor Eye Contact — 
SANS: Affective Nonresponsivity — 
SANS: Lack of Vocal Inflections — 
SANS: Global Rating of Affective Flattening Affective flattening present [yes/no] 
SANS: Poverty of Speech — 
SANS: Poverty of Content of Speech — 
SANS: Blocking — 
SANS: Increased Latency of Response — 
SANS: Global Rating of Alogia — 
SANS: Grooming and Hygiene — 
SANS: Impersistence at Work or School — 
SANS: Physical Anergia — 
SANS: Global Rating of Avolition – Apathy — 
SANS: Recreational Interests and Activities — 
SANS: Sexual Interest and Activity — 
SANS: Ability to Feel Intimacy and Closeness — 
SANS: Relationships with Friends and Peers — 
SANS: Global Rating of Anhedonia-Asociality — 
SANS: Social Inattentiveness — 
SANS: Inattentiveness During Mental Status Testing — 
SANS: Global Rating of Attention — 
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eTable 4. Classification Performance of Disease Classifiers as Measured Using 
Repeated Nested Cross-validation 
 
In addition, mean model complexity (Cx) computed across the CV1 cross-validation partitions measured the challenge 
for the SVM algorithm to detect an optimally separating hyperplane between the respective patient and health control 
samples. Higher Cx values indicate higher morphological heterogeneity requiring a higher percentage of individuals 
from the training sample to serve as support vectors in the definition of the optimally separating hyperplane. All 
trained models were tested for statistical significance (P) using 1000 label permutations as described in the Supple-
mentary Methods. 
 

Classifiers 
Mean (SD) 

Cx [%] TP TN FP FN 
Sens 
[%] 

Spec 
[%] 

BAC 
[%] AUC 

FPR 
[%] LR+ LR- NND P  

bvFTD vs. HC  41.8 (13.1) 87 36 4 21 80.6 90.0 85.3 0.93 10.0 8.1 0.2 1.4 <.001 

Established AD vs. HC  46.6 (20.4) 35 37 3 9 79.5 92.5 86.0 0.94 7.5 10.6 0.2 1.4 <.001 

MCI/early-stage AD vs. HC  59.0 (9.9) 67 109 29 29 69.8 79.0 74.4 0.83 21.0 3.3 0.4 2.1 <.001 

Schizophrenia vs. HC  66.1 (5.4) 105 250 85 52 66.9 74.6 70.8 0.77 25.4 2.6 0.4 2.4 <.001 

Abbreviations. Samples: AD Alzheimer’s Disease, bvFTD Frontotemporal dementia, behavioral variant, HC healthy 
controls, MCI Mild Cognitive Impairment; Performance metrics: Cx model complexity measured as mean percent-
age of cases defined as support vectors at the parameter combination with the highest mean BAC in the CV1 test data, 
TP number of true positives, TN number of true negatives, FP number of false positives, FN number of false negatives, 
Sens Sensitivity, Spec Specificity, BAC Balanced Accuracy, AUC Area-under-the Curve, LR+ Positive Likelihood 
Ratio, LR- Negative Likelihood Ratio, NND Number Needed to Diagnose, P Permutation-based model significance. 
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eTable 5. Effects of Covariate Correction on Classifier Performance in Healthy Controls 
 
Based on the covariate correlations identified between the healthy participants’ mean decision scores and sex, IQR 
and total GMV (eFigure 8) the effects of these variables were further assessed in the OOT predictions of our original 
classifiers. Then, partial correlations were used to adjust the GMV data for these covariates as described in the Sup-
plementary Methods. The OOT performance of the models retrained using the adjusted data was evaluated using 
sensitivity, specificity, and balanced accuracy. Inequality between the original and covariate-adjusted models’ predic-
tions was determined using McNemar’s tests. Also, the associations between the adjusted classifiers’ decision scores 
and the three covariates were recomputed to evaluate the effect of covariate correction.  
 
 Original classifiers Classifiers adjusted for sex, IQR and GMV 

Diagnostic tasks Sens 
[%] 

Spec 
[%] 

BAC 
[%] 

T (P) 
[sex] 

r (P) 
[IQR] 

r (P) 
[GMV] 

Sens 
[%] 

Spec 
[%] 

BAC 
[%] 

χ2 
(P) 

T (P) 
[sex] 

r (P) 
[IQR] 

r (P) 
[GMV] 

bvFTD vs. HC  80.6 90.0 85.3 2.99 
(.005) 

0.04 
(.823) 

-0.06 
(.718) 

76.9 90.0 83.4 1.50 
(.221) 

1.49 
(.145) 

0.16 
(.325) 

-0.17 
(.307) 

Established AD vs. HC  79.5 92.5 86.0 1.56 
(.126) 

-0.14 
(.404) 

-0.03 
(.864) 

81.8 95.0 88.4 0.10 
(.752) 

0.66 
(.511) 

-0.23 
(.149) 

-0.02 
(.911) 

MCI/early-stage AD vs. 
HC  

69.8 79.0 74.4 0.00 
(.974) 

0.07 
(.488) 

-0.22 
(.009) 

72.9 81.2 77.0 0.00 
(1.00) 

0.40 
(.694) 

0.02 
(.838) 

-0.16 
(.069) 

Schizophrenia vs. HC  66.9 74.6 70.8 6.34 
(<.001) 

0.29 
(<.001) 

-0.04 
(.456) 

64.3 74.6 69.5 0.32 
(.583) 

0.60 
(.548) 

0.04 
(.448) 

-0.01 
(.841) 

Abbreviations. Samples: AD Alzheimer’s Disease, bvFTD Frontotemporal dementia, behavioral variant, HC healthy 
controls, MCI Mild Cognitive Impairment; Performance metrics: BAC Balanced Accuracy, D Decision scores of 
original and covariate-adjusted classifiers, Sens Sensitivity, Spec Specificity; Covariates: GMV Global Gray Matter 
Volume, IQR Image quality rating, Association metrics: P P value, r Pearson correlation coefficient, R2 coefficient 
of determination, T T value. 
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eTable 6. Pairwise McNemar Tests Probing Classifiers for Nonequality of Patients’ 
Diagnostic Assignments 
 

The class label predictions produced by the four classifiers in each of the five patient cohorts were compared for non-
equality using McNemar tests for paired nominal data. P values were corrected sample-wise for multiple comparisons 
using FDR and determined significant at q<0.05. Significance indicates greater divergence of classifiers’ diagnostic 
label prediction in the respective patient cohort.  

 

  Classifier comparisons [ χ2 (PFDR) ] 

Patient samples 

bvFTD vs. Es-
tablished AD 

bvFTD vs. 
MCI/Early-
stage AD 

bvFTD vs. 
Schizophrenia 

Established AD 
vs. MCI/Early-
stage AD 

Established 
AD vs. Schiz-
ophrenia 

MCI/Early-
stage AD vs. 
Schizophrenia 

Established AD 0.36 (.820) 3.20 (.221) 0.00 (1.00) 0.17 (.820) 0.90 (.686) 4.17 (.221) 
bvFTD 4.00 (.091) 3.27 (.106) 2.29 (.157) 0.17 (.683) 7.56 (.018) 7.56 (.018) 
MCI/Early-stage AD - (1.00) 6.26 (.025) 4.27 (.047) 6.26 (.025) 4.27 (.047) 0.38 (.540) 
Major Depression 17.05 (<.000) 4.50 (.034) 31.03 (<.000) 5.82 (.019) 50.02 (<.000) 41.02 (<.000) 
Schizophrenia 33.23 (<.000) 9.03 (.003) 36.21 (<.000) 11.17 (.001) 71.31 (<.000) 50.77 (<.000) 

Abbreviations. Samples: AD Alzheimer’s Disease, bvFTD Frontotemporal dementia, behavioral variant, HC healthy 
controls, MCI Mild Cognitive Impairment; Association metrics: χ2 score of McNemar’s test, PFDR FDR-corrected P 
value.
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eTable 7. Results of Mixed-Linear Models Investigating Group-Level Associations Between Neuroanatomical Pattern Expression and 
Functioning Trajectories in Patients With Clinical High-Risk (CHR) States for Psychosis or Recent-Onset Depression (ROD) 
 

First, for each classifier score, the main effects of pattern expression (high [≥75% percentile] vs. low [≥75% percentile] expression groups) and study group (CHR vs. ROD 
patients) on global functioning trajectories were evaluated. See also eFigure 22 for a graphical representation of the global functioning analysis results and eTable 8 for 
BrainAGE-adjusted analysis results. If both main effects were significant, the analysis proceeded to functional subdomains as measured by the GAF split version and FROGS 
instruments. In addition, post hoc interaction effect analyses were carried out, investigating differential effects of pattern expression on functional trajectories per PRONIA study 
group. 

  
  

Fixed main effects Estimated marginal means analysis: pattern expression × study group  

Pattern expression Study group CHR ROD 
Low 

[<75%] 
High 

[≥75%] df2 F PFDR CHR ROD df2 F PFDR Low [<75%] 
High 

[≥75%] df2 F P Low [<75%] 
High 

[≥75%] df2 F P 
bvFTD classifier 

Global functioning 0.54 (0.09) 0.29 (0.10) 772.9 15.5 <.001 0.33 (0.10) 0.51 (0.10) 778.1 8.9 .003 0.49 (0.10) 0.16 (0.12) 751.4 12.6 <.001 0.59 (0.10) 0.43 (0.11) 797.1 3.8 .053 

GAF Symptoms 0.77 (0.11) 0.54 (0.13) 778.7 7.5 .006 0.54 (0.12) 0.77 (0.12) 778.0 7.3 .007 0.69 (0.12) 0.40 (0.15) 760.5 5.7 .017 0.85 (0.12) 0.69 (0.14) 799.8 2.0 .155 

GAF Disability 0.68 (0.13) 0.45 (0.14) 784.0 8.1 .005 0.50 (0.14) 0.63 (0.14) 788.4 2.4 .122           

FROGS: Daily Life 0.38 (0.08) 0.06 (0.09) 806.3 18.8 <.001 0.16 (0.09) 0.27 (0.08) 809.2 2.3 .134           

FROGS: Activities 0.57 (0.10) 0.32 (0.12) 741.2 11.1 .001 0.34 (0.11) 0.56 (0.11) 745.6 7.9 .005 0.52 (0.11) 0.16 (0.14) 731.6 10.3 .001 0.63 (0.11) 0.48 (0.13) 752.3 2.0 .157 

FROGS: Relationships 0.42 (0.09) 0.14 (0.11) 758.4 12.8 <.001 0.18 (0.10) 0.38 (0.10) 762.9 5.9 .015 0.33 (0.10) 0.04 (0.13) 750.3 6.0 .014 0.51 (0.10) 0.24 (0.13) 768.0 6.8 .009 

FROGS: Qual. of adaption 0.54 (0.10) 0.33 (0.12) 734.5 6.8 .009 0.28 (0.11) 0.59 (0.11) 739.9 14.8 <.001 0.43 (0.11) 0.12 (0.14) 723.4 6.8 .009 0.64 (0.11) 0.53 (0.14) 747.4 1.0 .314 

FROGS: Health and treat. 0.31 (0.10) 0.11 (0.12) 785.8 7.3 .007 0.14 (0.11) 0.28 (0.11) 789.0 3.5 .062           

Schizophrenia classifier 

Global functioning 0.54 (0.10) 0.31 (0.10) 774.6 13.6 <.001 0.32 (0.05) 0.52 (0.04) 779.1 9.7 .002 0.48 (0.10) 0.16 (0.12) 754.1 11.5 .001 0.59 (0.10) 0.45 (0.11) 804.9 2.9 .087 

GAF Symptoms 0.77 (0.11) 0.55 (0.13) 780.3 7.0 .008 0.56 (0.12) 0.77 (0.12) 784.9 6.6 .010 0.68 (0.12) 0.68 (0.14) 763.1 4.1 .044 0.87 (0.12) 0.68 (0.14) 806.9 2.9 .091 

GAF Disability 0.69 (0.13) 0.45 (0.14) 786.1 8.3 .004 0.51 (0.14) 0.63 (0.13) 789.9 2.5 .113           

FROGS: Daily Life 0.37 (0.08) 0.09 (0.09) 807.0 14.9 <.001 0.17 (0.09) 0.29 (0.08) 810.1 2.7 .099           

FROGS: Activities 0.57 (0.10) 0.34 (0.12) 744.6 9.6 .002 0.34 (0.11) 0.57 (0.11) 749.3 8.3 .004 0.51 (0.11) 0.17 (0.14) 733.0 8.9 .003 0.63 (0.11) 0.50 (0.13) 765.3 1.7 .196 

FROGS: Relationships 0.43 (0.09) 0.13 (0.11) 759.8 14.6 <.001 0.15 (0.10) 0.40 (0.10) 764.4 9.9 .002 0.35 (0.10) -0.04 (0.13) 749.9 10.9 .001 0.50 (0.10) 0.30 (0.12) 778.2 4.0 .045 

FROGS: Qual. of adaption 0.54 (0.10) 0.33 (0.12) 738.7 7.1 .008 0.26 (0.11) 0.60 (0.11) 744.0 17.5 <.001 0.44 (0.11) 0.09 (0.14) 725.7 8.6 .004 0.64 (0.11) 0.56 (0.13) 761.6 0.5 .483 

FROGS: Health and treat. 0.31 (0.10) 0.09 (0.11) 789.1 8.7 .003 0.10 (0.11) 0.30 (0.11) 792.8 7.4 .007 0.31 (0.11) -0.12 (0.14) 782.7 13.8 <.001 0.32 (0.11) 0.29 (0.13) 801.4 0.1 .802 

Established AD classifier 

Global functioning 0.48 (0.09) 0.50 (0.10) 784.5 0.1 .777 0.44 (0.10) 0.54 (0.10) 779.9 2.6 .107           
MCI/early-stage AD classi-
fier        

 
            

Global functioning 0.51 (0.09) 0.42 (0.10) 788.0 2.1 .148 0.38 (0.10) 0.54 (0.10) 789.1 6.4 .011           

Abbreviations: FROGS Functional Remission Of General Schizophrenia, GAF Global Assessment of Functioning scale, Qual. Quality, Treat. Treatment  
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eTable 8. Results of BrainAGE-Adjusted Mixed-Linear Models Investigating Group-
Level Associations Between High vs Low Neuroanatomical Pattern Expression and 
Global Functioning Trajectories in Patients With CHR States or ROD 
 
eTable 8.1. The association between low. vs. high bvFTD and schizophrenia expression scores and functioning tra-
jectories was reduced by the inclusion of BrainAGE as covariate in the statistical design, but main effects remained 
significant. As in the main analysis, the stratification effects of both neuroanatomical patterns were primarily present 
in the CHR group. The main effect of BrainAGE on global functioning was significant across all four classifiers but 
particularly present in the established AD and MCI/early-stage AD classifiers.  

  
  

Main effects Estimated marginal means analysis: pattern expression × study group 
 CHR ROD 

Group 1 Group 2 df2 F P 
Low 

[<75%] 
High 

[≥75%] df2 F P 
Low 

[<75%] 
High 

[≥75%] df2 F P 
bvFTD classifier 

High vs. low 
expression score 

0.52 
(0.09) 

0.36 
(0.10) 813.5 5.0 .025 0.47 

(0.09) 
0.23 

(0.12) 776.1 6.3 .013 0.56 
(0.10) 

0.49 
(0.11) 818.9 0.6 .424 

Study group 0.35 
(0.10) 

0.53 
(0.10) 779.9 7.6 .006           

BrainAGE   849.9 7.1 .008           

Schizophrenia classifier 

High vs. low 
expression score 

0.51 
(0.09) 

0.37 
(0.10) 

809.1 4.3 .038 
0.47 

(0.09) 
0.24 

(0.12) 
778.5 6.3 .024 

0.56 
(0.10) 

0.50 
(0.11) 

818.6 0.5 .472 

Study group 
0.36 

(0.10) 
0.53 

(0.09) 
782.8 7.5 .006           

BrainAGE   851.3 8.4 .004           

Established AD classifier 
High vs. low 

expression score 
0.46 

(0.09) 
0.56 

(0.10) 796.7 2.5 .120           

Study group 0.47 
(0.09) 

0.55 
(0.09) 780.8 1.5 .229           

BrainAGE   850.1 21.2 <.001           

MCI/early-stage AD classifier 
High vs. low 

expression score 
0.48 

(0.09) 
0.47 

(0.10) 802.4 0.04 .849           

Study group 0.40 
(0.09) 

0.55 
(0.09) 789.7 5.3 .021           

BrainAGE   848.8 16.2 <.001           

 
eTable 8.2. We also tested BrainAGE interactions in our analyses but did not find any significant effects, suggesting 
a global and transdiagnostic influence of BrainAGE on functioning. 

 df2 F P 
bvFTD classifier    

BrainAGE × Study group 505.5 0.92 .399 
BrainAGE × Visit 785.0 0.06 .801 

BrainAGE × Study group × Visit 505.2 0.02 .977 
Schizophrenia classifier    

BrainAGE × Study group 506.7 0.12 .887 
BrainAGE × Visit 789.9 0.05 .821 

BrainAGE × Study group × Visit 506.5 0.80 .450 
Established AD classifier    

BrainAGE × Study group 499.9 0.85 .429 
BrainAGE × Visit 777.3 1.62 .203 

BrainAGE × Study group × Visit 499.8 0.53 .592 
MCI/early-stage AD classifier    

BrainAGE × Study group 499.0 0.45 .638 
BrainAGE × Visit 773.9 0.26 .608 

BrainAGE × Study group × Visit 498.9 0.43 .653 
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eTable 9. Evaluation of Moderating BrainAGE Effects on The Association Between 
Diagnostic Expression Scores and Nonrecovery Expression Scores 
 
Evaluation of moderating BrainAGE effects on the correlations observed between non-recovery scores and diagnostic 
scores in patients with bvFTD, established AD, MCI/early-stage AD and schizophrenia. This table supplements Fig-
ure 3 of the main manuscript. The OOT-based diagnostic scores produced by the four classifiers for the patients in 
the respective derivation cohorts were correlated with the scores generated by the prognostic model (a). Further cor-
relation analyses assessed the variance of prognostic and diagnostic scores explained by BrainAGE (b and c). Finally, 
analysis (a) was repeated after residualizing prognostic and diagnostic scores for BrainAGE using partial correlation 
analysis. While all correlations remained significant after controlling for BrainAGE, the mediating effects of the ac-
celerated aging marker were more pronounced in the two AD samples, reducing explained variance by 20.8% in these 
samples. In contrast, the explained variance dropped on average by 6.9% in bvFTD and schizophrenia patients after 
controlling for BrainAGE effects. 

 a) Correlation anal-
ysis: [non-recovery 
vs. diagnostic 
scores] 

b) Correlation analy-
sis: [non-recovery 
score vs. BrainAGE] 

c) Correlation analysis: 
[diagnostic score vs. 
BrainAGE] 

d) Partial correlation 
analysis of non-recovery 
vs. diagnostic scores, 
BrainAGE as control var-
iable 

Sample R2 P R2 P R2 P R2 P 
bvFTD  0.142 <.001 0.067 .007 0.787 <.001 0.108 .001 

Established AD 0.478 <.001 0.541 <.001 0.418 <.001 0.175 .005 
MCI/early-stage AD 0.603 <.001 0.394 <.001 0.220 <.001 0.490 <.001 

Schizophrenia 0.851 <.001 0.425 <.001 0.426 <.001 0.748 <.001 
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eTable 10. Sensitivity Analysis Comparing a More Lenient Definition of Nonrecovery in the 
PRONIA Sample With the Original Label Definition 
 

In this supplementary analysis, non-recovery was defined as having an average global functioning during follow-up 
of equal or below the median of the baseline distribution of global functioning, while in the original analyses the cutoff 
was the lower quartile of the distribution. Two evaluate the effect of this more lenient definition of non-recovery on 
the neuroanatomical continuum between the signatures of the diagnostic classifiers and non-recovery signature pro-
duced by analyzing the PRONIA patients’ GMV maps. Two analysis steps were performed: 

eTable 10.1. First, we repeated training and cross-validation of the PRONIA non-recovery classifier using the patients’ 
GMV maps and the identical parameter setup as described in the main analysis. The trained classifier was then applied 
to the dementia, schizophrenia, and major depression samples to evaluate its performance in discriminating between 
cases and controls. Bold-text rows list the cross-validated performance results, while the remaining rows contain the 
results obtained by applying the respective prognostic classifier to the external dementia, schizophrenia, and major 
depression samples. 

Classifiers 

Mean 
(SD) 

Cx [%] TP TN FP FN 
Sens 
[%] 

Spec 
[%] 

BAC 
[%] AUC 

FPR 
[%] LR+ LR- NND 

Model trained with original 
non-recovery labels defined 
at lower quartile cutoff of 
baseline global functioning. 

78.2 17 120 101 6 73.9 54.3 64.1 0.67 45.7 1.6 0.5 3.5 

Model used to classify:              

bvFTD vs. HC  97 27 13 11 89.8 67.5 78.7 0.91 32.5 2.8 0.2 1.8 
Established AD vs. HC  34 27 13 10 77.3 67.5 72.4 0.84 32.5 2.4 0.3 2.2 

MCI/early-stage AD vs. HC  81 75 63 15 84.4 54.3 69.4 0.75 45.7 1.8 0.3 2.6 
Schizophrenia vs. HC  130 177 158 27 82.8 52.8 67.8 0.77 47.2 1.8 0.3 2.8 

Major depression vs. HC  68 177 158 34 66.7 52.8 59.8 0.64 47.2 1.4 0.6 5.1 

Model trained with new 
non-recovery labels defined 
at median cutoff of baseline 
global functioning. 

86.1 28 88 105 23 54.9 45.6 50.2 0.53 54.4 1.0 1.0 200.9 

Model used to classify:              

bvFTD vs. HC  85 16 24 23 78.7 40.0 59.4 0.65 60.0 1.3 0.5 5.4 
Established AD vs. HC  39 16 24 5 88.6 40.0 64.3 0.74 60.0 1.5 0.3 3.5 

MCI/early-stage AD vs. HC  80 55 83 15 83.3 39.9 61.6 0.62 60.1 1.4 0.4 4.3 
Schizophrenia vs. HC  130 109 226 27 83.8 32.5 57.7 0.64 57.7 1.2 0.5 6.5 

Major depression vs. HC  74 109 226 28 72.6 32.5 52.5 0.58 67.5 1.1 0.8 19.7 

eTable 10.2. Second, to assess the neuroanatomical continuity between the diagnostic cohorts and the non-recovery 
patients in PRONIA, we used the PRONIA patients’ diagnostic scores as produced by the bvFTD, established AD, 
MCI/early-stage AD, and schizophrenia classifiers, as well as BrainAGE scores, age, and sex to train and cross-vali-
date an alternative non-recovery prediction model (see also eFigure 27). We also compared original and more lenient 
non-recovery labels as we did for the model trained directly on the patients’ GMV maps: 

Classifiers 

Mean 
(SD) 

Cx [%] TP TN FP FN 
Sens 
[%] 

Spec 
[%] 

BAC 
[%] AUC 

FPR 
[%] LR+ LR- NND 

Original non-recovery labels 89.1 18 131 90 5 78.3 59.3 68.8 0.65 40.7 1.9 0.4 2.7 

New non-recovery labels 95.1 22 122 71 29 43.1 63.2 53.2 0.58 36.8 1.2 0.9 15.7 

Performance metrics: Cx model complexity measured as mean percentage of cases defined as support vectors at the 
parameter combination with the highest mean BAC in the CV1 test data, TP number of true positives, TN number of 
true negatives, FP number of false positives, FN number of false negatives, Sens Sensitivity, Spec Specificity, BAC 
Balanced Accuracy, AUC Area-under-the Curve, LR+ Positive Likelihood Ratio, LR- Negative Likelihood Ratio, 
NND Number Needed to Diagnose.  
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eTable 11. Longitudinal Analysis of Neuroanatomical Predictions in PRONIA Patients With 
Nonrecovery vs Recovery Trajectories Performed Using Generalized Estimating Equations 
 

The statistical design included the within-subject factors ‘timepoint’ (baseline vs. one-year follow-up) and ‘classifier 
type’ (schizophrenia, bvFTD, MCI/early-stage AD, established AD vs. HC, respectively), as well as the between-
subject factors ‘recovery type’ (non-recovery vs. preserved recovery) and ‘PRONIA recruitment site’. BrainAGE was 
entered as covariate in the design matrix to control for potential effects of this transdiagnostic marker of accelerated 
aging. Main and interaction effects of these factors on the dependent binary variable ‘diagnostic prediction’ (case vs. 
control) were computed using a binomial distribution model with a probit link function. Following significant main 
effects of ‘timepoint’, ‘recovery type’, and ‘classifier’, we conducted estimated marginal means (EMM) analyses to 
compare classifiers (EMM 1), evaluate ‘classifier type’-specific effects in patients with non-recovery vs. recovery 
trajectories (EMM 2) and interactions between ‘classifier type’, ‘recovery type’ and ‘timepoint’ (EMM 3). P values 
were corrected for multiple comparisons using Sidak’s method. In summary, we observed a significant increase of 
diagnostic case predictions between baseline and follow-up MRI scans in the non-recovery vs. the recovery sample. 
This effect was produced by the bvFTD and schizophrenia classifiers which labeled more PRONIA non-recovery 
participants as bvFTD or schizophrenia patients based on their follow-up MRI compared to their baseline scan. This 
effect was not observed in the MCI/early-stage AD or established AD models. Furthermore, we did not observe inde-
pendent ‘recovery type’, or ‘recovery type’ × ‘timepoint’ interactions of BrainAGE, suggesting a global effect of this 
covariate on PRONIA patients’ neuroanatomical caseness likelihood. See Figure 4 for a visual representation of the 
analysis. 
 

Main and interaction effects  df Wald χ2 P 

Timepoint   1 8.8 .003 
Recovery type  1 9.0 .003 
Classifier type  3 41.1 <.001 

BrainAGE  1 28.1 <.001 
PRONIA recruitment site  6 5.5 .482 

Recovery type × BrainAGE  1 2.1 .147 
Recovery type × Timepoint x BrainAGE  2 3.3 .190 

EMM 1: Classifier type 
Mean (SEM) difference: pair-

wise classifiers 
3 32.7 <.001 

Schizophrenia vs. bvFTD classifier 0.18 (0.04) 1  <.001 
Schizophrenia vs. MCI/early-stage AD classifier 0.20 (0.06) 1  .002 

Schizophrenia vs. Established AD classifier 0.29 (0.06) 1  <.001 
bvFTD vs. MCI/early-stage AD classifier 0.02 (0.04) 1  .998 

bvFTD vs. Established AD classifier 0.11 (0.04) 1  .020 
MCI/early-stage AD vs. Established AD classifier 0.09 (0.04) 1  .068 

EMM 2: Classifier type → Recovery type 
Mean (SEM) difference: poor 

vs. good recovery types 
   

Schizophrenia classifier 0.30 (0.11) 1 7.1 .008 
bvFTD classifier 0.24 (0.10) 1 5.6 .018 

MCI/early-stage AD classifier 0.17 (0.13) 1 1.8 .178 
Established AD classifier 0.11 (0.08) 1 2.2 .140 

EMM 3: Classifier type × Recovery type → Timepoint 
Mean (SEM) difference: 

timepoint 2 vs. 1 
   

Schizophrenia classifier     
Non-recovery 0.20 (0.09) 1 4.6 .032 

Preserved recovery 0.02 (0.03) 1 0.4 .542 
bvFTD classifier     

Non-recovery 0.23 (0.09) 1 5.6 .018 
Preserved recovery 0.02 (0.02) 1 0.3 .396 

MCI/early-stage AD classifier     
Non-recovery 0.15 (0.08) 1 2.6 .108 

Preserved recovery 0.02 (0.02) 1 0.5 .493 
Established AD classifier     

Non-recovery 0.11 (0.07) 1 1.2 .277 
Preserved recovery 0.00 (0.10) 1 0.02 .889 

Abbreviations: SEM Standard error of the mean 
  



© 2022 Koutsouleris N et al. JAMA Psychiatry. 

eTable 12. Mixed-Effects Linear Model Analysis of Clinical Dementia Score Trajectories 
in Patients With MCI/Early-Stage AD and Healthy Controls (HC) Covering a 9-Years 
Follow-up Period 
 
A significant stratification effect of high. vs. low scores on the CDR trajectories of both MCI/early-stage AD patients 
and healthy controls was found which was independent of specific neuroanatomical classifiers. Furthermore, we found 
independent effects of BrainAGE on CDR trajectories and significant interaction effects involving follow-up, and 
study group factors. See eFigure 28 for a visual representation of classifier-stratified CDR trajectories in patients and 
controls. 

Main and interaction effects df1 df2 F P 

Follow-up interval  4 943.4 75.4 <.001 
Classifier type 4 872.6 0.0 1.0 

High vs. low classifier expression  1 1532.0 141.0 <.001 
Study group 1 1663.2 2196.9 <.001 

BrainAGE 1 1583.9 85.5 <.001 
High vs. low classifier expression × Follow-up interval 4 914.0 24.1 <.001 

High vs. low classifier expression × Follow-up interval × Study group 9 1007.4 12.2 <.001 
BrainAGE × Follow-up interval 4 1001.2 5.7 <.001 

BrainAGE × Follow-up interval × Study group 5 627.4 19.9 <.001 
EMM 1: Study group × Classifier type → High vs. low expression score df1 df2 F P 

MCI/early-stage AD     
All classifiers 1 1220.8 125.8 <.001 

Healthy controls     
All classifier 1 1890.6 24.0 <.001 



 

© 2022 Koutsouleris N et al. JAMA Psychiatry. 

eFigure 1.  
Schematic repre-
sentation of the 
analysis flow im-
plemented in the 
study.
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eFigure 2. Effects of the dynamic voxel 
standardization on the relationship be-
tween age and total gray matter volume 
estimates. (a) The study participants’ to-
tal GMV values were computed by sum-
ming up the voxel values in the respective 
TIV-corrected GMV tissue maps. 
Healthy participants’ (blue filled circles) 
and patients’ total GMV values were plot-
ted against their chronological age. The 
age-GMV relationship was visualized by 
fitting the healthy participants’ data with 
a cubic function and measuring the coef-
ficient of determination (R2) between 
both variables. (b) This procedure was re-
peated after dynamically standardizing 
the TIV-adjusted GMV tissue maps as de-
scribed in the Supplementary Methods.  
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eFigure 3. Mapping of diagnostic signatures to the AAL3 atlas based on spatial extent. Each diagnostic classi-
fier’s cross-validation-ratio (CVR) signature was mapped to the 170 regions-of-interest (ROI) defined in the AAL3 
atlas.26 For each ROI, the percentage of voxels with an absolute CVR value ≥ 2 [KROI%] in the given intersecting 
signature volume was computed. If no voxels survived the CVR cutoff in any of the four signatures volumes, the given 
ROI was excluded from the mapping procedure. (a) The four KROI% vectors with 139 ROI entries are represented in 
a spider plot for the qualitative analysis of neuroanatomical overlaps and differences between the diagnostic signa-
tures. (b) Pairwise coefficients of determination (R2) between the KROI% mappings of the CVR signatures are dis-
played as an R2 matrix. Abbreviations: Ant Anterior, Cbl Cerebellum, Cing Cingulate, Dorsolat Dorsolateral, Front 
Frontal, Gyr Gyrus, Hemi Hemisphere, Inf Inferior, Lat Lateral, Med Medial, Nucl Nucleus, Orb Orbital, Post Poste-
rior, Sup Superior, Supramarg Supramarginal, Suppl Supplementary, Surr Surrounding, Temp Temporal.  
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eFigure 4. Mapping of diagnostic signatures to the AAL3 atlas based on peak CVR values. In regions-of-interest 
(ROI) with at least one absolute CVR value ≥ 2 in any classifier signature (see eFigure 3), the peak CVR value 
(CVRROI[min]) of each classifier (bvFTD, schizophrenia, MCI/Early-stage AD, Established AD) was determined. The 
CVRROI[min] parcellations of all four classifiers are displayed in spider plots. (b) Pairwise associations between the 
four CVRROI[min] parcellations are expressed as coefficients of determination and displayed in an R2 matrix. Abbre-
viations: Ant Anterior, Cbl Cerebellum, Cing Cingulate, Dorsolat Dorsolateral, Front Frontal, Gyr Gyrus, Hemi Hem-
isphere, Inf Inferior, Lat Lateral, Med Medial, Nucl Nucleus, Orb Orbital, Post Posterior, Sup Superior, Supramarg 
Supramarginal, Suppl Supplementary, Surr Surrounding, Temp Temporal. 
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eFigure 5. Univariate group-level differences between patients and healthy controls in the AAL3 atlas. To com-
pare the peak CVR measures of neuroanatomical deviation (eFigure 4) to univariate T values metrics, all voxels in 
the selected ROIs were assessed for reductions of standardized GMV in respective patients vs. healthy controls using 
independent two-sample T tests. (a) For each univariate group-level comparison (bvFTD vs. HC, schizophrenia vs. 
HC, MCI/Early-stage AD vs. HC, Established AD vs. HC), the peak T values in each ROI (TROI[max]) are displayed 
in a spider plot. (b) Pairwise associations of these four TROI[max] vectors are analyzed using the coefficient of deter-
mination and displayed as an R2 matrix. Abbreviations: Ant Anterior, Cbl Cerebellum, Cing Cingulate, Dorsolat 
Dorsolateral, Front Frontal, Gyr Gyrus, Hemi Hemisphere, Inf Inferior, Lat Lateral, Med Medial, Nucl Nucleus, Orb 
Orbital, Post Posterior, Sup Superior, Supramarg Supramarginal, Suppl Supplementary, Surr Surrounding, Temp 
Temporal. 
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eFigure 6. Associations between multivariate and univariate measures of neuroanatomical differences between 
patients and healthy controls. Scatter plots with fitted slope lines and coefficients of determination (R2) depict the 
correlations between ROI-based CVRROI[min] and TROI[max] vectors in each of the four diagnostic comparisons (a: 
bvFTD vs HC, b: Schizophrenia vs. HC, c: MCI/Early-stage AD vs. HC, d: Established AD vs. HC). 
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eFigure 7. Validation of the cohort adjustment strategy. A box plot analysis was conducted to compare of training 
classifiers with vs. without our cohort adjustment procedure. White box plots quantified the distributions of HCs’ 
mean decision scores that were calculated by averaging the output of the four classifiers trained on unadjusted GMV 
data. In contrast, grey box plots show HC individuals’ mean decision score distributions resulting from training clas-
sifiers on adjusted GMV, followed by inter-site reliability masking of adjusted GMV maps. Two ANOVAs were 
performed to assess cohort differences in unadjusted and adjusted mean decision scores.  
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eFigure 8. Covariate effects on classifiers’ decision scores in the different healthy control samples of the study. 
Scatter plots (a, b, d) were used to investigate associations between potential confounding effects of age (a), image 
quality ratings (b; IQR, higher = lower quality), and total GMV (d) on the HC participants mean decision scores, 
computed across the four diagnostic classifiers. Effects of sex were analyzed by means of box plots indicating 95% 
confidence intervals, upper and lower quartiles, and medians of respective mean decision score distributions. To iden-
tify significant associations between potential confounders and mean decision scores at the cohort-level, R2 values 
were computed for continuous measures, and student t tests were conducted for sex-related differences. Potentially 
relevant effects were detected for sex, IQR and total GMV and further analyzed in eTable 5. 
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eFigure 9. Post-hoc evaluation of interactions between bvFTD decision scores and diagnostic criteria of bvFTD 
subgrouping patients into possible, probable, and definitive frontotemporal lobar degeneration (FTLD). (a) Box plot 
analysis of decision score distribution according to diagnostic subgroups. The omnibus ANOVA analysis was signif-
icant (F=33.2; P<.001). Pairwise post-hoc comparisons revealed significant differences between the decision scores 
of HC and the two bvFTD subgroups, respectively, as well as between patients with definitive FTLD pathology and 
all other diagnostic groups. No differences were found between patients with probable vs. possible FTD.  
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eFigure 10. Post-hoc evaluation of established AD decision scores in relation to the known or unknown CSF 
biomarker status in patients with established AD. CSF positive findings were defined by Aβ1-42 <550 pg/ml or 
Tau protein >300 pg/ml. (a) Box plot analysis of decision score distributions according to study group (HC, n=40; 
positive CSF biomarker findings [CSF+], n=31, or unknown CSF biomarker status [CSF?], n=13). The omnibus 
ANOVA analysis was significant (F=45.7; P<.001). Pairwise comparisons revealed significant decision score differ-
ence between HC and both AD subgroups, but no differences between the CSF+ and CSF? AD patients.  
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eFigure 11. Probing the bvFTD and schizophrenia classifiers’ spatial specificity via atrophy simulation. In (a) 
global levels of brain atrophy were compared patients with bvFTD, established AD, MCI/early-stage AD, schizophre-
nia, and major depression samples by computing the mean across standardized voxels in study participants’ GVM 
maps and conducting an ANOVA on this measure. To test the schizophrenia (b1) and bvFTD (b2) classifiers for 
spatial specificity against these global GMV differences, they were applied to the HC individuals, who were pooled 
across the FTLDc, Munich and OASIS-3 cohorts, and whose GMV maps were systematically manipulated to make 
them patient-like. The null hypothesis of spatial non-specificity (grey lines) was created by calculating the mean dif-
ference between the HC group and the respective target patient group across all voxels in the inter-site reliability mask 
and subtracting this value from all voxels. For the alternative hypothesis (blue lines), the voxel-wise Z score difference 
image was computed between HC and target patient groups and subtracted from the HC sample. The HC sample’s 
mean Z map for both simulation scenarios is shown for each targeted patient group. All maps were scaled in the Z 
score range from -1.5 to +1.5. Two-sample t tests were conducted to compare simulated with observed group-level 
decision scores of the respective target group and corrected classifier-wise for multiple comparisons using FDR 
(q=0.05). 
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eFigure 12. Visualization and quantitative analysis of the BrainAGE model developed in the pooled HC cohort and 
applied to the clinical samples of the study. (a) Reliability of neuroanatomical pattern elements as measured by cross-
validation ratio mapping. (b) Prediction performance of the model in unseen HC data described visually by plotting 
predicted vs. chronological age as well as numerically in terms of the model’s mean average error (MAE) and coeffi-
cient of determination (R2). (c) Box plot analysis comparing the distributions of the patients’ (ochre boxes) and HC 
individuals’ (white boxes) BrainAGE scores. 
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eFigure 13. Mapping of the BrainAGE signature to the AAL3 atlas based on spatial extent. See legend of eFigure 
3 and Supplementary Methods for a description of the mapping procedure. The KROI% parcellations of the four diag-
nostic classifiers were added to the spider plot in transparent colors for comparison with the non-recovery predictor. 
Abbreviations: Ant Anterior, Cbl Cerebellum, Cing Cingulate, Dorsolat Dorsolateral, Front Frontal, Gyr Gyrus, 
Hemi Hemisphere, Inf Inferior, Lat Lateral, Med Medial, Nucl Nucleus, Orb Orbital, Post Posterior, Sup Superior, 
Supramarg Supramarginal, Suppl Supplementary, Surr Surrounding, Temp Temporal.  
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eFigure 14. Univariate voxel-based spatial specificity results showing covariate-corrected negative associations be-
tween diagnostic expression scores and dynamically standardized GMV maps of patients with bvFTD (n=108) and 
healthy controls (n=40). The analyses were conducted using statistical non-parametric mapping (5000 permutations) 
as implemented in the Threshold-Free Cluster Enhancement (TFCE) toolbox for SPM12 (http://www.neuro.uni-
jena.de/tfce/). All P value maps were corrected for multiple comparisons using FDR (significance threshold: q=0.05). 
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eFigure 15. Univariate voxel-based spatial specificity results showing covariate-corrected negative associations be-
tween diagnostic expression scores and dynamically standardized GMV maps of a pooled sample of patients with 
schizophrenia (n=157), major depression (n=102) and healthy controls (n=335). The analyses were conducted using 
statistical non-parametric mapping (5000 permutations) as implemented in the Threshold-Free Cluster Enhancement 
(TFCE) toolbox for SPM12 (http://www.neuro.uni-jena.de/tfce/). All P value maps were corrected for multiple com-
parisons using FDR (significance threshold: q=0.05). 
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eFigure 16. Results of the repeated-measures analysis of variance comparing diagnostic expression Scores be-
tween patient groups. The ANOVA compared main effects of (a) standardized neuroanatomical expression scores 
for bvFTD, established AD, MCI/early-stage AD, schizophrenia), (b) diagnosis (bvFTD, established AD, MCI/early-
stage AD, schizophrenia, major depression), and (c) diagnosis-by-classifier interaction effects. Bar plots show esti-
mated marginal means and 95% confidence intervals of standardized neuroanatomical expression scores (see Meth-
ods) with higher z scores indicating more pronounced group-level expression of given diagnostic pattern by the re-
spective patient group. See also eFigure 17 for a BrainAGE-adjusted version of the analysis. 
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eFigure 17. Repeated-measures analysis of variance comparing patient groups' diagnostic expression scores with 
BrainAGE included as a covariate Estimated marginal means comparisons comprised classifier effects (a), diagnostic 
effects (b), and classifier-by-diagnosis interactions (c). P values were corrected for multiple comparisons using 
Sidak’s method.29 Estimated marginal means of standardized diagnostic scores were reduced in the bvFTD and estab-
lished AD group, while increased scores were found in the MCI/early-stage AD, schizophrenia and MD samples 
compared with the uncorrected analysis. BrainAGE residualization reduced between-group differences, particularly 
in bvFTD and established AD compared with the other samples, and in schizophrenia with respect to MD, suggesting 
a significant contribution of BrainAGE to the diagnostic separability of these study groups. However, the difference 
between bvFTD and established AD expression scores in patients with schizophrenia or MD remained significant, 
indicating a specific loading of these patients on the bvFTD signature beyond the variance explained by BrainAGE.  
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eFigure 18. Differential diagnostic classifier trained to separate between bvFTD and established AD and applied to 
patients with schizophrenia, major depression and MCI/early-stage AD. (a) The neuroanatomical pattern of the clas-
sifier involved relative, left-lateralized insular, medial prefrontal and cingulate cortex volume reductions in bvFTD 
compared to established AD, as well as relative, right-lateralized volume reductions in the temporal and medial as 
well as lateral areas of the parieto-occipital cortex in patients with established AD vs. bvFTD. (b) The cross-validated 
performance of the classifier was higher in bvFTD (83.3% correctly classified) compared to AD (68.2%) patients. (c) 
Violin plots show the decision score distributions of the derivation cohorts (bvFTD, left; established AD, right) and 
of the application samples (major depression, schizophrenia, MCI/early-stage AD). ANOVA results and post-hoc 
pairwise tests (Sidak correction for multiple comparisons) confirmed that psychiatric patient cohorts align neuroana-
tomically with bvFTD, while patients with MCI/early-stage AD are similar to established AD. (d) Interaction analysis 
between BrainAGE, and differential diagnostic scores demonstrated that higher BrainAGE was associated with wid-
ening neuroanatomical differences between the classifier’s derivation samples. This effect was also present between 
the two psychiatric samples on the one hand, and MCI/early-stage AD patients on the other hand.  
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eFigure 19. Analysis of SVR models predicting bvFTD patients’ BrainAGE and diagnostic expression scores. 
Panels show predictive features and scatter plots of BrainAGE (a), Established AD (b), and MCI/early-stage AD (c) 
score predictors. This eFigure complements Figure 2 in the main manuscript. Bar plots show the ranked reliability 
(cross-validation ratio, CVR) of features informing the SVR models’ predictions. Positive/negative CVR values in-
dicate positive/negative predictive associations between features and observed scores. Scatter plots with linear fits, 
95% confidence intervals and explained variances (R2) describe the accuracy of the predictive model.   
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eFigure 20. Analysis of SVR models predicting schizophrenia patients’ BrainAGE and diagnostic expression 
scores.  Panels show predictive features and scatter plots of BrainAGE (a), Established AD (b), and MCI/early-stage 
AD (c) score predictors. Bar plots show the ranked reliability (cross-validation ratio, CVR) of features informing the 
SVR models’ predictions. Positive/negative CVR values indicate positive/negative predictive associations between 
features and observed scores. Scatter plots with linear fits, 95% confidence intervals and explained variances (R2) 
describe the accuracy of the predictive model. Features of non-significant models were omitted. 
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eFigure 21. Quade tests comparing the performance of the ν-SVR models in predicting diagnostic expression scores 
and BrainAGE in bvFTD patients (a) or schizophrenia patients (b). No significant differences were found in the schiz-
ophrenia (SCZ) expression scores and BrainAGE of bvFTD patients (a), as well as in the bvFTD expression scores 
and BrainAGE of schizophrenia patients (b). AD-related expression scores did not differ between each other in either 
group. 
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eFigure 22. Global functioning trajectories of the PRONIA cohort demonstrating interaction effects between 
bvFTD and schizophrenia pattern expression. Panels a-d depict global functioning trajectories of PRONIA study 
groups (CHR vs. ROD patients) stratified into high vs. low pattern expression groups by the bvFTD (a), Established 
AD (b), schizophrenia (c), and MCI/early-stage AD (d) classifiers . Red vs. blue line plots show estimated marginal 
means and 95% confidence intervals of standardized global functioning trajectories computed for high vs. low pattern 
expression groups. Groups were defined by a standardized pattern expression above vs. below the 75% percentile of 
the respective diagnostic score. See also eTable 7 for the respective mixed models’ analysis results and eTable 8 for 
BrainAGE-adjusted analysis results. 

 

 

  



© 2022 Koutsouleris N et al. JAMA Psychiatry. 

 

eFigure 23. Machine-learning based analysis of multivariate polygenic risk signatures informing a possible genetic 
discrimination of high vs. low bvFTD, schizophrenia (SCZ), established AD, MCI/early-stage AD and BrainAGE 
pattern groups in CHR or ROD patients. The Table (a) lists the discriminative performance of CHR- or ROD-specific 
models for the 5 different binary expression labels (Sens Sensitivity, Spec Specificity, BAC Balanced Accuracy, AUC 
Area-under-the-curve). Each of the 10 models was tested for significance using 1000 random label permutations (PFDR 
Permutation-based P values corrected for multiple comparisons using FDR). After FDR correction, only the CHR-
specific model separating high vs. low bvFTD and schizophrenia pattern expression subgroups remained significant 
and was further analyzed. The ROC plots (b) depict subject-level genetic classification results while the multivariate 
feature reliability (cross-validation ratio) and univariate association effects (Spearman ρ) are shown in c.  

  



© 2022 Koutsouleris N et al. JAMA Psychiatry. 

 

eFigure 24. The prognostic non-recovery classifier trained on PRONIA CHR and ROD patients. The figure 
shows (a) the mean (95% confidence interval) trajectories of PRONIA CHR and ROD patients with poor vs. good 
global functioning trajectories spanning on average (SD) 821.5 (270.6) days, (b) the receiver-operator curve (ROC) 
and are-under-the-curve (AUC) of the prognostic classifier differentiating between these two functioning courses, (c) 
the permutation-based significance analysis of the classifier, and (d) its neuroanatomical distribution as measured by 
cross-validation ratio mapping. 
 



© 2022 Koutsouleris N et al. JAMA Psychiatry. 

 

eFigure 25. Mapping of the prognostic non-recovery classifier’s signature to the AAL3 atlas based on spatial 
extent. See legend of eFigure 3 and Supplementary Methods for a description of the mapping procedure. The KROI% 
parcellations of the four diagnostic classifiers were added to the spider plot in transparent colors for comparison with 
the non-recovery predictor. Abbreviations: Ant Anterior, Cbl Cerebellum, Cing Cingulate, Dorsolat Dorsolateral, 
Front Frontal, Gyr Gyrus, Hemi Hemisphere, Inf Inferior, Lat Lateral, Med Medial, Nucl Nucleus, Orb Orbital, Post 
Posterior, Sup Superior, Supramarg Supramarginal, Suppl Supplementary, Surr Surrounding, Temp Temporal.  
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eFigure 26. Probing the spatial specificity of the prognostic non-recovery classifier by means of atrophy 
simulation. To test the prognostic non-recovery classifier for spatial specificity, the HC sample pooled across the 
FTLDc, Munich and OASIS-3 cohorts was used as described in the Supplementary Methods and eFigure 11. The 
null hypothesis of spatial non-specificity (grey lines) was created by calculating the mean difference between the HC 
group and the respective target patient group across all voxels in the inter-site reliability mask and subtracting this 
value from all voxels. For the alternative hypothesis (blue lines), the voxel-wise Z score difference image was 
computed between HC and target patient groups and subtracted from the HC sample. Two-sample t tests were 
conducted to compare simulated with observed group-level decision scores of the respective target patient group and 
corrected for multiple comparisons using FDR (q=0.05). 
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eFigure 27. Prognostic classification of CHR and ROD patients with functional non-recovery vs. preserved recovery 
using the diagnostic scores and BrainAGE estimates previously generated by the independent application of respective 
models to the PRONIA baseline data. (a) Feature reliability profile indicating that increased bvFTD pattern expression 
was the most relevant prognostic feature in identifying future non-recovery. (b) Classification plot showing correct 
(circles) and wrongly classified (stars) patients with functional non-recovery (blue) vs. recovery (red) as determined 
by nested 10-fold cross-validation. 
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eFigure 28. Trajectory analysis covering a nine-years follow-up period of Clinical Dementia Rating scores in patients 
with MCI/early-stage AD (left) or healthy controls (right). Patients scored either high or low on the diagnostic case-
control patterns or the prognostic non-recovery signature as defined by an upper quartile cutoff applied to the respec-
tive classifier’s decision score distribution. See also eTable 12 for a quantitative analysis using mixed-effects linear 
models. 
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