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Supplementary figures: 

Fig. S1 Comparison of the simulated datasets under different scenarios with the STARmap 

dataset. One replicate was generated under the baseline setting of each simulation scenario (I-IV) 

and was compared to the STARmap dataset. The scatter plots on the top row show the mean-

variance relationship of each gene. The scatter plots on the bottom row show the relationship 

between the mean expression of a gene and the percentage of zeros. 
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 2 

 
Fig. S2 Additional tissue sections generated based on the same spatial locations of cells from 

tissue section BZ5 in STARmap data. In each section, the spatial domain boundaries are set to 

be vertical and horizontally moved by changing its distance to the original boundary, where the 

distance is generated based on a uniform distribution with step size set to be approximately 10% 

(500) of the tissue width. 
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Fig. S3 Comparison of different methods for spatial domain detection in simulation (scenario 

I) with a single tissue section. Boxplots of ARI show the accuracy of different methods for spatial 

domain detection. Compared methods for spatial domain detection include BASS, HMRF, 

BayesSpace, and SpaGCN. For HMRF, a list of the spatial parameter β ranging from 0 to 50 at 

increments of 2 are examined and the three β values that corresponded to the worst, median and 

best performance are displayed. Simulations were carried out under different number of genes: (A) 

𝑛𝐺𝑒𝑛𝑒𝑠 = 200, (B) 𝑛𝐺𝑒𝑛𝑒𝑠 = 500, (C) 𝑛𝐺𝑒𝑛𝑒𝑠 = 800, and (D) 𝑛𝐺𝑒𝑛𝑒𝑠 = 1000; different DE 

gene strength: (E) 𝑑𝑒. 𝑓𝑎𝑐𝑙𝑜𝑐 = 0.5 , (F) 𝑑𝑒. 𝑓𝑎𝑐𝑙𝑜𝑐 = 0.7 , (G) 𝑑𝑒. 𝑓𝑎𝑐𝑙𝑜𝑐 = 1.1 , and (H) 

𝑑𝑒. 𝑓𝑎𝑐𝑙𝑜𝑐 = 1.4; and different proportions of genes that were differentially expressed in each cell 

type versus the others: (I) 𝑑𝑒. 𝑝𝑟𝑜𝑏 = 0.1, (J) 𝑑𝑒. 𝑝𝑟𝑜𝑏 = 0.2, and (K) 𝑑𝑒. 𝑝𝑟𝑜𝑏 = 0.3 on top of 

the baseline parameter setting: 𝑛𝐺𝑒𝑛𝑒𝑠 = 200, 𝑑𝑒. 𝑝𝑟𝑜𝑏 = 0.2, and 𝑑𝑒. 𝑓𝑎𝑐𝑙𝑜𝑐 = 1.1. 
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Fig. S4 Comparison of different methods for spatial domain detection in simulation (scenario 

II) with a single tissue section. Boxplots of ARI show the accuracy of different methods for 

spatial domain detection. Compared methods for spatial domain detection include BASS, HMRF, 

BayesSpace, and SpaGCN. For HMRF, a list of the spatial parameter β ranging from 0 to 50 at 

increments of 2 are examined and the three β values that corresponded to the worst, median and 

best performance are displayed. Simulations were carried out under different number of genes: (A) 

𝑛𝐺𝑒𝑛𝑒𝑠 = 200, (B) 𝑛𝐺𝑒𝑛𝑒𝑠 = 500, (C) 𝑛𝐺𝑒𝑛𝑒𝑠 = 800, and (D) 𝑛𝐺𝑒𝑛𝑒𝑠 = 1000; different DE 

gene strength: (E) 𝑑𝑒. 𝑓𝑎𝑐𝑙𝑜𝑐 = 0.5 , (F) 𝑑𝑒. 𝑓𝑎𝑐𝑙𝑜𝑐 = 0.7 , (G) 𝑑𝑒. 𝑓𝑎𝑐𝑙𝑜𝑐 = 1.1 , and (H) 

𝑑𝑒. 𝑓𝑎𝑐𝑙𝑜𝑐 = 1.4; and different proportions of genes that were differentially expressed in each cell 

type versus the others: (I) 𝑑𝑒. 𝑝𝑟𝑜𝑏 = 0.1, (J) 𝑑𝑒. 𝑝𝑟𝑜𝑏 = 0.2, and (K) 𝑑𝑒. 𝑝𝑟𝑜𝑏 = 0.3 on top of 

the baseline parameter setting: 𝑛𝐺𝑒𝑛𝑒𝑠 = 200, 𝑑𝑒. 𝑝𝑟𝑜𝑏 = 0.2, and 𝑑𝑒. 𝑓𝑎𝑐𝑙𝑜𝑐 = 1.1. 
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Fig. S5 Comparison of different methods for spatial domain detection in simulation (scenario 

III) with a single tissue section. Boxplots of ARI show the accuracy of different methods for 

spatial domain detection. Compared methods for spatial domain detection include BASS, HMRF, 

BayesSpace, and SpaGCN. For HMRF, a list of the spatial parameter β ranging from 0 to 50 at 

increments of 2 are examined and the three β values that corresponded to the worst, median and 

best performance are displayed. Simulations were carried out under different number of genes: (A) 

𝑛𝐺𝑒𝑛𝑒𝑠 = 200, (B) 𝑛𝐺𝑒𝑛𝑒𝑠 = 500, (C) 𝑛𝐺𝑒𝑛𝑒𝑠 = 800, and (D) 𝑛𝐺𝑒𝑛𝑒𝑠 = 1000; different DE 

gene strength: (E) 𝑑𝑒. 𝑓𝑎𝑐𝑙𝑜𝑐 = 0.5 , (F) 𝑑𝑒. 𝑓𝑎𝑐𝑙𝑜𝑐 = 0.7 , (G) 𝑑𝑒. 𝑓𝑎𝑐𝑙𝑜𝑐 = 1.1 , and (H) 

𝑑𝑒. 𝑓𝑎𝑐𝑙𝑜𝑐 = 1.4; and different proportions of genes that were differentially expressed in each cell 

type versus the others: (I) 𝑑𝑒. 𝑝𝑟𝑜𝑏 = 0.1, (J) 𝑑𝑒. 𝑝𝑟𝑜𝑏 = 0.2, and (K) 𝑑𝑒. 𝑝𝑟𝑜𝑏 = 0.3 on top of 

the baseline parameter setting: 𝑛𝐺𝑒𝑛𝑒𝑠 = 200, 𝑑𝑒. 𝑝𝑟𝑜𝑏 = 0.2, and 𝑑𝑒. 𝑓𝑎𝑐𝑙𝑜𝑐 = 1.1. 
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Fig. S6 Comparison of different methods for spatial domain detection in simulation (scenario 

IV) with a single tissue section. Boxplots of ARI show the accuracy of different methods for 

spatial domain detection. Compared methods for spatial domain detection include BASS, HMRF, 

BayesSpace, and SpaGCN. For HMRF, a list of the spatial parameter β ranging from 0 to 50 at 

increments of 2 are examined and the three β values that corresponded to the worst, median and 

best performance are displayed. Simulations were carried out under different number of genes: (A) 

𝑛𝐺𝑒𝑛𝑒𝑠 = 200, (B) 𝑛𝐺𝑒𝑛𝑒𝑠 = 500, (C) 𝑛𝐺𝑒𝑛𝑒𝑠 = 800, and (D) 𝑛𝐺𝑒𝑛𝑒𝑠 = 1000; different DE 

gene strength: (E) 𝑑𝑒. 𝑓𝑎𝑐𝑙𝑜𝑐 = 0.5 , (F) 𝑑𝑒. 𝑓𝑎𝑐𝑙𝑜𝑐 = 0.7 , (G) 𝑑𝑒. 𝑓𝑎𝑐𝑙𝑜𝑐 = 1.1 , and (H) 

𝑑𝑒. 𝑓𝑎𝑐𝑙𝑜𝑐 = 1.4; and different proportions of genes that were differentially expressed in each cell 

type versus the others: (I) 𝑑𝑒. 𝑝𝑟𝑜𝑏 = 0.1, (J) 𝑑𝑒. 𝑝𝑟𝑜𝑏 = 0.2, and (K) 𝑑𝑒. 𝑝𝑟𝑜𝑏 = 0.3 on top of 

the baseline parameter setting: 𝑛𝐺𝑒𝑛𝑒𝑠 = 200, 𝑑𝑒. 𝑝𝑟𝑜𝑏 = 0.2, and 𝑑𝑒. 𝑓𝑎𝑐𝑙𝑜𝑐 = 1.1. 
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Fig. S7 Comparison of different methods for cell type clustering in simulation (scenario I) 

with a single tissue section. Boxplots of ARI show the accuracy of different methods for cell type 

clustering. Compared methods for cell type clustering include BASS, Seurat, SC3, and FICT. 

Simulations were carried out under different number of genes: (A) 𝑛𝐺𝑒𝑛𝑒𝑠 = 200, (B) 𝑛𝐺𝑒𝑛𝑒𝑠 =

500, (C) 𝑛𝐺𝑒𝑛𝑒𝑠 = 800, and (D) 𝑛𝐺𝑒𝑛𝑒𝑠 = 1000; different DE gene strength: (E) 𝑑𝑒. 𝑓𝑎𝑐𝑙𝑜𝑐 =

0.5 , (F) 𝑑𝑒. 𝑓𝑎𝑐𝑙𝑜𝑐 = 0.7 , (G) 𝑑𝑒. 𝑓𝑎𝑐𝑙𝑜𝑐 = 1.1 , and (H) 𝑑𝑒. 𝑓𝑎𝑐𝑙𝑜𝑐 = 1.4 ; and different 

proportions of genes that were differentially expressed in each cell type versus the others: (I) 

𝑑𝑒. 𝑝𝑟𝑜𝑏 = 0.1, (J) 𝑑𝑒. 𝑝𝑟𝑜𝑏 = 0.2, and (K) 𝑑𝑒. 𝑝𝑟𝑜𝑏 = 0.3 on top of the baseline parameter 

setting: 𝑛𝐺𝑒𝑛𝑒𝑠 = 200, 𝑑𝑒. 𝑝𝑟𝑜𝑏 = 0.2, and 𝑑𝑒. 𝑓𝑎𝑐𝑙𝑜𝑐 = 1.1. 
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Fig. S8 Comparison of different methods for cell type clustering in simulation (scenario II) 

with a single tissue section. Boxplots of ARI show the accuracy of different methods for cell type 

clustering. Compared methods for cell type clustering include BASS, Seurat, SC3, and FICT. 

Simulations were carried out under different number of genes: (A) 𝑛𝐺𝑒𝑛𝑒𝑠 = 200, (B) 𝑛𝐺𝑒𝑛𝑒𝑠 =

500, (C) 𝑛𝐺𝑒𝑛𝑒𝑠 = 800, and (D) 𝑛𝐺𝑒𝑛𝑒𝑠 = 1000; different DE gene strength: (E) 𝑑𝑒. 𝑓𝑎𝑐𝑙𝑜𝑐 =

0.5 , (F) 𝑑𝑒. 𝑓𝑎𝑐𝑙𝑜𝑐 = 0.7 , (G) 𝑑𝑒. 𝑓𝑎𝑐𝑙𝑜𝑐 = 1.1 , and (H) 𝑑𝑒. 𝑓𝑎𝑐𝑙𝑜𝑐 = 1.4 ; and different 

proportions of genes that were differentially expressed in each cell type versus the others: (I) 

𝑑𝑒. 𝑝𝑟𝑜𝑏 = 0.1, (J) 𝑑𝑒. 𝑝𝑟𝑜𝑏 = 0.2, and (K) 𝑑𝑒. 𝑝𝑟𝑜𝑏 = 0.3 on top of the baseline parameter 

setting: 𝑛𝐺𝑒𝑛𝑒𝑠 = 200, 𝑑𝑒. 𝑝𝑟𝑜𝑏 = 0.2, and 𝑑𝑒. 𝑓𝑎𝑐𝑙𝑜𝑐 = 1.1. 
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Fig. S9 Comparison of different methods for cell type clustering in simulation (scenario III) 

with a single tissue section. Boxplots of ARI show the accuracy of different methods for cell type 

clustering. Compared methods for cell type clustering include BASS, Seurat, SC3, and FICT. 

Simulations were carried out under different number of genes: (A) 𝑛𝐺𝑒𝑛𝑒𝑠 = 200, (B) 𝑛𝐺𝑒𝑛𝑒𝑠 =

500, (C) 𝑛𝐺𝑒𝑛𝑒𝑠 = 800, and (D) 𝑛𝐺𝑒𝑛𝑒𝑠 = 1000; different DE gene strength: (E) 𝑑𝑒. 𝑓𝑎𝑐𝑙𝑜𝑐 =

0.5 , (F) 𝑑𝑒. 𝑓𝑎𝑐𝑙𝑜𝑐 = 0.7 , (G) 𝑑𝑒. 𝑓𝑎𝑐𝑙𝑜𝑐 = 1.1 , and (H) 𝑑𝑒. 𝑓𝑎𝑐𝑙𝑜𝑐 = 1.4 ; and different 

proportions of genes that were differentially expressed in each cell type versus the others: (I) 

𝑑𝑒. 𝑝𝑟𝑜𝑏 = 0.1, (J) 𝑑𝑒. 𝑝𝑟𝑜𝑏 = 0.2, and (K) 𝑑𝑒. 𝑝𝑟𝑜𝑏 = 0.3 on top of the baseline parameter 

setting: 𝑛𝐺𝑒𝑛𝑒𝑠 = 200, 𝑑𝑒. 𝑝𝑟𝑜𝑏 = 0.2, and 𝑑𝑒. 𝑓𝑎𝑐𝑙𝑜𝑐 = 1.1. 
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Fig. S10 Comparison of different methods for cell type clustering in simulation (scenario IV) 

with a single tissue section. Boxplots of ARI show the accuracy of different methods for cell type 

clustering. Compared methods for cell type clustering include BASS, Seurat, SC3, and FICT. 

Simulations were carried out under different number of genes: (A) 𝑛𝐺𝑒𝑛𝑒𝑠 = 200, (B) 𝑛𝐺𝑒𝑛𝑒𝑠 =

500, (C) 𝑛𝐺𝑒𝑛𝑒𝑠 = 800, and (D) 𝑛𝐺𝑒𝑛𝑒𝑠 = 1000; different DE gene strength: (E) 𝑑𝑒. 𝑓𝑎𝑐𝑙𝑜𝑐 =

0.5 , (F) 𝑑𝑒. 𝑓𝑎𝑐𝑙𝑜𝑐 = 0.7 , (G) 𝑑𝑒. 𝑓𝑎𝑐𝑙𝑜𝑐 = 1.1 , and (H) 𝑑𝑒. 𝑓𝑎𝑐𝑙𝑜𝑐 = 1.4 ; and different 

proportions of genes that were differentially expressed in each cell type versus the others: (I) 

𝑑𝑒. 𝑝𝑟𝑜𝑏 = 0.1, (J) 𝑑𝑒. 𝑝𝑟𝑜𝑏 = 0.2, and (K) 𝑑𝑒. 𝑝𝑟𝑜𝑏 = 0.3 on top of the baseline parameter 

setting: 𝑛𝐺𝑒𝑛𝑒𝑠 = 200, 𝑑𝑒. 𝑝𝑟𝑜𝑏 = 0.2, and 𝑑𝑒. 𝑓𝑎𝑐𝑙𝑜𝑐 = 1.1. 
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Fig. S11 Performance of BASS for cell type proportion estimation in simulations with a single 

tissue section. Boxplots show the estimated cell type proportions in each spatial domain across 

simulation replicates, where 𝜋!" indicates the proportion of cell type 𝑐 in spatial domain 𝑟. The 

red dashed lines indicate the true proportions. Simulations were carried out under (A) scenario I, 

(B) scenario II, (C) scenario III, or (D) scenario IV, with varying number of genes (𝑛𝐺𝑒𝑛𝑒𝑠 =

200, 500, 800 or 1000). The other parameters were set to be 𝑑𝑒. 𝑓𝑎𝑐𝑙𝑜𝑐 = 1.1 and 𝑑𝑒. 𝑝𝑟𝑜𝑏 =

0.2. 
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Fig. S12 Performance of BASS for cell type proportion estimation in simulations with a single 

tissue section. Boxplots show the estimated cell type proportions in each spatial domain across 

simulation replicates, where 𝜋!" indicates the proportion of cell type 𝑐 in spatial domain 𝑟. The 

red dashed lines indicate the true proportions. Simulations were carried out under (A) scenario I, 

(B) scenario II, (C) scenario III, or (D) scenario IV, with varying DE gene strength (𝑑𝑒. 𝑓𝑎𝑐𝑙𝑜𝑐 =

0.7, 1.1, and 1.4). The other parameters were set to be 𝑛𝐺𝑒𝑛𝑒𝑠 = 200 and 𝑑𝑒. 𝑝𝑟𝑜𝑏 = 0.2.  
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Fig. S13 Performance of BASS for cell type proportion estimation in simulations with a single 

tissue section. Boxplots show the estimated cell type proportions in each spatial domain across 

simulation replicates, where 𝜋!" indicates the proportion of cell type 𝑐 in spatial domain 𝑟. The 

red dashed lines indicate the true proportions. Simulations were carried out under (A) scenario I, 

(B) scenario II, (C) scenario III, or (D) scenario IV, with varying proportions of genes that were 

differentially expressed in each cell type versus the others (𝑑𝑒. 𝑝𝑟𝑜𝑏 = 0.1, 0.2, and 0.3). The 

other parameters were set to be 𝑛𝐺𝑒𝑛𝑒𝑠 = 200 and 𝑑𝑒. 𝑓𝑎𝑐𝑙𝑜𝑐 = 1.1. 
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Fig. S14 Estimates of spatial interaction parameter 𝜷  in the simulation study. Boxplots 

display the estimates of 𝛽 from BASS across 50 simulation replicates under simulation scenarios 

I-IV, with varying number of genes (first row), DE gene strength (second row), and proportion of 

genes that were differentially expressed in each cell type versus the others (third row). The other 

two parameters were set to be the baseline (𝑛𝐺𝑒𝑛𝑒𝑠 = 200, 𝑑𝑒. 𝑓𝑎𝑐𝑙𝑜𝑐 = 1.1, and 𝑑𝑒. 𝑝𝑟𝑜𝑏 =

0.2) while varying each parameter. 
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Fig. S15 Comparison of different methods for spatial domain detection and cell type 

clustering in simulations with multiple tissue sections. (A) Boxplots of ARI show the accuracy 

of BASS for spatial domain detection (y-axis) in the presence of 1, 2, 5 or 10 tissue sections (x-

axis). (B) Line plots display the median ARI by different methods for cell type clustering across 

50 simulation replicates (y-axis) in the presence of 1, 2, 5 or 10 tissue sections (x-axis). Compared 

methods for cell type clustering include BASS, Seurat and SC3. (C) Barplots show the median 

RMSE between the estimated cell type compositions and the true compositions across 50 

simulation replicates (y-axis) in the presence of 1, 2, 5 or 10 tissue sections (x-axis). Simulations 

were conducted under scenarios I-IV, with the simulation parameters set to be	𝑛𝐺𝑒𝑛𝑒𝑠 = 200, 

𝑑𝑒. 𝑝𝑟𝑜𝑏 = 0.2, and 𝑑𝑒. 𝑓𝑎𝑐𝑙𝑜𝑐 = 0.7. 
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Fig. S16 Evaluation of the influence of a mis-specified number of cell types on the method 

performance. (A-C) Influence of the specified number of cell types on the performance of cell 

type clustering. Compared methods included BASS, SC3, Seurat, and FICT. Accuracy of cell type 

clustering was evaluated based on three criteria that include (A) the overall agreement between the 

estimated labels and true labels measured by ARI; (B) the number of estimated cell type clusters; 

and (C) the average proportion of cells in each cluster. There, the top 4 clusters corresponded to 

the 4 cell types while the remaining clusters were arranged from the largest to the smallest. (D-F) 

Influence of the specified number of cell types on the performance of spatial domain detection in 

BASS, evaluated based on the same criteria above. The number of cell types was set to be either 

2, 4, 6, 8 or 10 while the truth was 4. Simulations were conducted under the baseline setting of the 

scenario III (i.e., 𝑛𝐺𝑒𝑛𝑒𝑠 = 200, 𝑑𝑒. 𝑝𝑟𝑜𝑏 = 0.2, and 𝑑𝑒. 𝑓𝑎𝑐𝑙𝑜𝑐 = 1.1). 
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Fig. S17 Evaluation of the influence of a mis-specified number of spatial domains on the 

method performance. (A-C) Influence of the specified number of spatial domains on the 

performance of spatial domain detection. Compared methods included BASS, the oracle version 

of HMRF, BayesSpace, and SpaGCN. Accuracy of spatial domain detection was evaluated based 

on three criteria that include (A) the overall agreement between the estimated labels and true labels 

measured by ARI; (B) the number of estimated spatial domain clusters; and (C) the average 

proportion of cells in each cluster. There, the top 4 clusters corresponded to the 4 spatial domains 

while the remaining clusters were arranged from the largest to the smallest. (D-F) Influence of the 

specified number of spatial domains on the performance of cell type clustering in BASS, evaluated 

based on the same criteria above. The number of spatial domains was set to be either 2, 4, 6, 8 or 

10 while the truth was 4. Simulations were conducted under the baseline setting of the scenario III 

(i.e., 𝑛𝐺𝑒𝑛𝑒𝑠 = 200, 𝑑𝑒. 𝑝𝑟𝑜𝑏 = 0.2, and 𝑑𝑒. 𝑓𝑎𝑐𝑙𝑜𝑐 = 1.1).  
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Fig. S18 Evaluation of the influence of a mis-specified number of cell types or spatial domains 

on the method performance. Accuracy of cell type clustering or spatial domain detection was 

evaluated by the normalized mutual information (NMI). (A) Influence of the specified number of 

cell types on the performance of cell type clustering. Compared methods included BASS, SC3, 

Seurat, and FICT. (B) Influence of the specified number of cell types on the performance of spatial 

domain detection in BASS. (C) Influence of the specified number of spatial domains on the 

performance of spatial domain detection. Compared methods included BASS, the oracle version 

of HMRF, BayesSpace, and SpaGCN. (D) Influence of the specified number of spatial domains 

on the performance of cell type clustering in BASS. 
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Fig. S19 Evaluation of the performance of different cell type clustering methods in the 

presence of rare cell types. Boxplots display three metrics including the ARI, 𝐹#  score, and 

Matthews correlation coefficient (MCC) for evaluating the performance of different methods on 

cell type clustering in the presence of either 6 (first row) or 10 (second row) rare cell types and 4 

major cell types. The rare cell types in total comprised 30% of cells, with each rare cell type 

consisted of 5% or 3% of the total cell population. The rare cell types exhibit either a random 

distribution pattern (first column) or a domain-specific pattern (second column) while the 

composition of major cell types in different spatial domains was set to be the same as that in the 

scenario III, where each spatial domain contained three major cell types with a 2:1:1 ratio. 

Compared methods for cell type clustering include BASS, Seurat, SC3, and FICT. All the other 

parameters were set to be the baseline, where 𝑛𝐺𝑒𝑛𝑒𝑠 = 200, 𝑑𝑒. 𝑓𝑎𝑐𝑙𝑜𝑐 = 1.1, and 𝑑𝑒. 𝑝𝑟𝑜𝑏 =

0.2.  
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Fig. S20 Evaluation of the performance of different spatial domain detection methods in the 

presence of rare cell types. Boxplots display three metrics including the ARI, 𝐹#  score, and 

Matthews correlation coefficient (MCC) for evaluating the performance of different methods on 

spatial domain detection in the presence of either 6 (first row) or 10 (second row) rare cell types 

and 4 major cell types. The rare cell types in total comprised 30% of cells, with each rare cell type 

consisted of 5% or 3% of the total cell population. The rare cell types exhibit either a random 

distribution pattern (first column) or a domain-specific pattern (second column) while the 

composition of major cell types in different spatial domains was set to be the same as that in the 

scenario III, where each spatial domain contained three major cell types with a 2:1:1 ratio. 

Compared methods for spatial domain detection included BASS, HMRF, BayesSpace, and 

SpaGCN. For HMRF, a list of the spatial parameter β ranging from 0 to 50 at increments of 2 were 

examined and the three β values that corresponded to the worst, median and best performance are 

displayed. All the other parameters were set to be the baseline, where 𝑛𝐺𝑒𝑛𝑒𝑠 = 200 , 

𝑑𝑒. 𝑓𝑎𝑐𝑙𝑜𝑐 = 1.1, and 𝑑𝑒. 𝑝𝑟𝑜𝑏 = 0.2.  
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Fig. S21 Evaluation of the influence of randomly excluding genes from the gene expression 

matrix on the performance of different methods. Boxplots of ARI show the accuracy of 

different methods for (A) cell type clustering or (B) spatial domain detection after retaining only 

a subset of 100, 200, or 500 genes in the gene expression matrix while the original number of 

genes was set to be 1000. The other parameters were set to be the baseline, where 𝑑𝑒. 𝑓𝑎𝑐𝑙𝑜𝑐 =

1.1 and 𝑑𝑒. 𝑝𝑟𝑜𝑏 = 0.2. 
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Fig. S22 Trace plots of the spatial interaction parameter 𝜷 in all the real data applications. 

The BASS software implements a stopping rule to automatically determine the number of MCMC 

samples required for model fitting. BASS calculates the mean of the sampled 𝛽 in every 100 

iterations and stops sampling if the difference in the consecutive two means is below a certain 

threshold (set to be 0.001 by default). Such stopping rule can help improve the computation 

efficiency and works well in all the analyzed real datasets. 
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Fig. S23 Detecting spatial domains in the mouse medial prefrontal cortex data by STARmap. 

(First row) Cells from three tissue sections (BZ5, BZ9, and BZ14) were manually annotated to 

four distinct cortical structures that included L1, L2/3, L5, and L6 based on the spatial expression 

of marker genes and the histology diagram of the mouse brain from the Allen’s brain atlas. (Second 

to fifth row) The identified spatial domains on the three tissue sections are shown for the single-

sample analysis of BASS, multi-sample analysis of BASS, oracle version of HMRF, BayesSpace, 

and SpaGCN. ARIs in the grey boxes show the accuracy of different methods for spatial domain 

detection.  
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Fig. S24 Gene expression heatmaps of cell type clusters identified by different methods on 

tissue section BZ5 from the STARmap dataset. Each gene was centered and standardized across 

all the cells. For each cell type cluster, gene expression of the top five (or all if less than five) 

differentially expressed (DE) genes are displayed, where DE genes were identified using the 

Wilcoxon rank-sum test contrasting each cluster of cells against all the remaining cells. Cell type 

clusters were annotated with specific cell types by comparing the identified DE genes with 

previously known cell type marker genes. Compared methods include (A) BASS, (B) Seurat, (C) 

SC3, and (D) FICT. 
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Fig. S25 Multi-sample integrative analysis of cell types in the STARmap dataset. (A, E, G) 

Gene expression heatmaps of cell type clusters identified by (A) BASS, (E) Seurat, or (G) SC3 

jointly analyzing three tissue sections (BZ5, BZ9, and BZ14) from the STARmap dataset. (B-C) 

Relative expression of marker genes for cells that have cell types assigned by the multi-sample 

integrative analysis of BASS, followed by a colon, and followed by the cell types assigned by (B) 

the single-sample analysis of BASS or (C) multi-sample analysis of Seurat. The relative expression 

in (B) was calculated with cells from a single tissue section BZ5 while the relative expression in 

(C) was calculated with cells from all three tissue sections. The marker genes were selected for 

cell types: eL6a (Syt6), eL6b (Ctgf), SST (Sst), Lhx6 (Lhx6), Reln (Reln), and VIP (Vip). (D, F) 

UMAP visualization of cell type clustering results on three tissue sections by the multi-sample 

analysis of (D) Seurat or (F) SC3.  
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Fig. S26 Spatial distribution of cell types obtained with the multi-sample analysis of BASS 

on three tissue sections (BZ5, BZ9, and BZ14) from the STARmap dataset. (A) Spatial 

distribution of cell types on the three tissue sections. (B) Spatial distribution of each cell type on 

the tissue section BZ5.  
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Fig. S27 Detecting spatial domains in the mouse hypothalamus data by MERFISH. (First 

row) Cells from five tissue sections (Bregma-0.04, -0.09, -0.14, -0.19, and -0.24) were manually 

annotated to eight distinct structures that included V3, BST, fx, MPA, MPN, PV, PVH, and PVT 

based on the spatial expression of marker genes and the histology diagram of the mouse brain from 

the Allen’s brain atlas. (Second to fifth row) The identified spatial domains on the five tissue 

sections are shown for the single-sample analysis of BASS, multi-sample analysis of BASS, oracle 

version of HMRF, BayesSpace, and SpaGCN. ARIs in the grey boxes show the accuracy of 

different methods for spatial domain detection.  
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Fig. S28 Gene expression heatmaps of cell type clusters identified by different methods on 

tissue section Bregma-0.14 from the MERFISH dataset. Each gene was centered and 

standardized across all the cells. For each cell type cluster, gene expression of the top five (or all 

if less than five) differentially expressed (DE) genes are displayed, where DE genes were identified 

using the Wilcoxon rank-sum test contrasting each cluster of cells against all the remaining cells. 

Cell type clusters were annotated with specific cell types by comparing the identified DE genes 

with previously known cell type marker genes. Compared methods include (A) BASS, (B) Seurat, 

(C) SC3, and (D) FICT. 
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Fig. S29 Gene expression heatmap of Astro-1 and Astro-2 clusters identified by Seurat on 

tissue section Bregma-0.14 from the MERFISH dataset. Each gene was centered and 

standardized across all cells in these two clusters. For each cluster, gene expression of the top five 

up-regulated differentially expressed (DE) genes are displayed, where DE genes were identified 

using the Wilcoxon rank-sum test contrasting cells in one cluster against the other cluster. 
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Fig. S30 Multi-sample integrative analysis of cell types in the MERFISH dataset. (A, D, F) 

Gene expression heatmaps of cell type clusters identified by (A) BASS, (D) Seurat, or (F) SC3 

jointly analyzing five tissue sections (Bregma-0.04, -0.09, -0.14, -0.19, and -0.24) from the 

MERFISH dataset. (B) UMAP visualization of cell type clustering results on the tissue section 

Bregma-0.14 by the multi-sample version of BASS. (C, E) UMAP visualization of cell type 

clustering results on five tissue sections by the multi-sample version of (C) Seurat or (E) SC3. 
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Fig. S31 Spatial distribution of cell types obtained with the multi-sample analysis of BASS 

on five tissue sections (Bregma-0.04, -0.09, -0.14, -0.19, and -0.24) from the MERFISH 

dataset. (A) Spatial distribution of cell types on the five tissue sections. (B) Spatial distribution of 

each cell type on the tissue section Bregma-0.14.  
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Fig. S32 Selection of cluster informative genes with local shrinkage parameters. BASS was 

directly applied to the normalized and log-transformed gene expression matrix instead of the low-

dimentional embeddings (i.e., PCs). The analysis was carried out using the tissue section BZ5 from 

the STARmap dataset. (A) Boxplots of the local shrinkage parameter (𝜆$) across the posterior 

samples for each gene. (B) Relative expression of the top 10 genes with the highest local shrinkage 

parameter estimates. 
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Fig. S33 Dot plots of -log10p-values from the differential expression analyses. Differential 

expression (DE) analyses were carried out in the (A) STARmap or (B) MERFISH datasets. Genes 

were tested for differential expression between each cell type cluster/spatial domain and all the 

remaining clusters/domains. The cell type and spatial domain labels were obtained from the multi-

sample integrative analyses of BASS. 
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Fig. S34 Visualization of top marker genes for each spatial domain in the mouse 

hypothalamus. Differentially expression analyses were carried out in the MERFISH dataset for 

identifying marker genes of each of the eight spatial domains in the mouse hypothalamus based 

on the spatial domain estimates from BASS. Each panel shows the relative gene-expression levels, 

with the gene name and the associated domain name displayed on top. 
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Fig. S35 Detecting spatial domains in the DLPFC data by 10x Visium. (First row) Manually 

annotated labels of seven laminar clusters that included six cortical layers from L1 to L6 and the 

white matter (WM) by the original study. (Second to fifth row) The identified spatial domains on 

the three tissue sections are shown for the single-sample analysis of BASS, multi-sample analysis 

of BASS, oracle version of HMRF, BayesSpace, and SpaGCN. ARIs in the grey boxes show the 

accuracy of different methods for spatial domain detection. 
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Table S1: Computing time and memory usage of all methods. Computation was carried out on 

a single thread of an Intel(R) Xeon(R) Gold 6138 CPU @ 2.00GHz. The computing time and 

memory usage were examined for all the real data applications.  

  

Data Sample N CPU time (miniutes) Memory usage (GB) 
BASS HMRF BayesSpace SpaGCN FICT BASS HMRF BayesSpace SpaGCN FICT 

STARmap 

BZ5 1,049 2 1 9 0.2 4 0.3 0.06 2 0.002 0.1 

BZ9 1,053 2 1 15 0.3 4 0.3 0.06 2 0.002 0.1 
BZ14 1,088 1 1 15 0.3 3 0.3 0.06 3 0.002 0.1 
BZ5+BZ9+BZ14 3,190 6 - - - - 1.2 - - - - 

MERFISH 

Bregma-0.04 5,488 7 17 65 2 8 2 0.2 12 0.003 0.1 
Bregma-0.09 5,557 15 20 73 4 14 2 0.2 12 0.003 0.1 

Bregma-0.14 5,926 9 20 75 2 15 2 0.2 13 0.003 0.1 
Bregma-0.19 5,803 11 18 76 2 15 2 0.2 13 0.003 0.1 
Bregma-0.24 5,543 11 17 74 2 14 2 0.2 12 0.003 0.1 
Bregma-0.04+-
0.09+-0.14+-
0.19+-0.24 

28,317 49 - - - - 11 - - - - 

DLPFC 

151507 4,226 8 18 57 2 - 2 4 9 0.002 - 
151508 4,384 8 32 58 3 - 2 4 10 0.002 - 
151509 4,789 10 35 61 3 - 2 6 11 0.002 - 
151510 4,634 10 30 56 3 - 2 5 10 0.002 - 

151669 3,661 5 27 49 1 - 2 4 8 0.002 - 
151670 3,498 8 25 47 1 - 2 4 8 0.002 - 
151671 4,110 7 30 52 2 - 2 4 9 0.002 - 
151672 4,015 10 30 51 2 - 2 4 9 0.002 - 
151673 3,639 9 30 49 1 - 2 3 9 0.002 - 

151674 3,673 6 28 49 3 - 2 5 9 0.002 - 
151675 3,592 6 26 48 1 - 2 4 8 0.002 - 
151676 3,460 6 22 27 2 - 2 3 8 0.002 - 
151507-151510 18,033 25 - - - - 8 - - - - 
151669-151672  15,284 20 - - - - 6 - - - - 

151673-151676 14,364 17 - - - - 4 - - - - 

Note: cases not applicable are denoted by “-” 
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Supplementary notes: 

1 BASS algorithm 

1.1 Model specifications 

The detailed model setup is described in the Methods section. Briefly, we consider that the 

spatial transcriptomic study measures gene expression values for a common set of 𝑃 genes from 𝐿 

different tissue sections, each containing 𝑁%, 𝑙 ∈ {1, … , 𝐿}, cells along with their spatial location 

information. We assume that the cells across all tissue sections belong to 𝐶 different cell types and 

the tissue consists of 𝑅  different spatial domains, each characterized by a distinct cell type 

composition. We denote 𝑐&
(%) as the cell type label and 𝑧&

(%) as the spatial domain label for the 𝑖th 

cell on tissue section 𝑙 , with 𝑐&
(%) ∈ {1,… , 𝐶} and 𝑧&

(%) ∈ {1,… , 𝑅}. To simplify the algebra, we 

further denote 𝒄(%) = K𝑐#
(%), … , 𝑐)!

(%)L
*

 and 𝒛(%) = K𝑧#
(%), … , 𝑧)!

(%)L
*

. We denote 𝝅" = (𝜋#" , … , 𝜋+")* 

as the C-vector of the cell type composition in the rth spatial domain, where 𝜋!" represents the 

proportion of cell type 𝑐  in the spatial domain 𝑟, with ∑ 𝜋!"+
!,# = 1. For the gene expression 

measurements, we combine cells across all 𝐿 tissue sections, conduct library size normalization 

followed by a log2-transformation (after adding a pseudo-count of 1), and perform dimension 

reduction on the normalized expression matrix to extract 𝐽 low-dimensional expression features. 

We denote 𝑿(%) as the resulting 𝑁% × 𝐽 low-dimensional expression feature matrix for section 𝑙, 

where 𝒙&
(%) is the 𝐽-vector of expression features for the 𝑖th cell there, with 𝑖 ∈ {1, … , 𝑁%}. With the 

extracted low-dimensional expression features, we performed data alignment and batch effect 

adjustment to align expression data from different tissue sections using Harmony per 

recommendation of Tran et al. [68]. For the spatial location information, we construct a 

neighborhood graph 𝑉(%) among cells on each tissue section 𝑙 by identifying for each cell its 𝑘 

nearest neighbors. With both expression and location information, we consider the following 

equations to model the relationship among gene expression features, cell type labels, spatial 

domain labels, cell type compositions, and neighborhood graphs in a hierarchical fashion: 

 𝒙&
(%)|𝑐&

(%) = 𝑐 ∼ 𝑀𝑉𝑁(𝝁! , 𝚺), (1) 

 𝑐&
(%)|𝑧&

(%) = 𝑟 ∼ 𝐶𝑎𝑡(𝝅"), (2) 

 𝒛(%) ∼ 𝑃𝑜𝑡𝑡𝑠^𝑉(%), 𝛽_. (3) 
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Above, the first equation models the expression feature of the 𝑖th cell on section 𝑙,	𝒙&
(%), as 

depending on its cell type label 𝑐&
(%). In particular, conditional on the 𝑖th cell belonging to the cell 

type c, 𝒙&
(%) follows a multivariate normal distribution with a c-cell-type-specific mean parameter 

vector 𝝁! and a variance-covariance matrix 𝚺. The second equation models the probability of the 

𝑖th cell belonging to the cell type c as depending on the underlying spatial domain. In particular, 

conditional on the 𝑖th cell belonging to the spatial domain r, 𝑐&
(%) follows a categorical distribution 

characterized by the r-domain-specific cell type composition vector 𝝅". The third equation models 

the spatial domain label of the 𝑖th cell on section 𝑙, 𝑧&
(%), as a function of the neighborhood graph 

𝑉(%)  through a homogeneous Potts model characterized by an interaction parameter 𝛽 . The 

probability mass function of the corresponding Potts model is defined as 

 
Pr^𝒛(%)|𝑉(%), 𝛽_ =

1
𝐶(%)(𝛽)

exp e𝛽f𝐼K𝑧&
(%) = 𝑧&"

(%)L
&∼&"

h, (4) 

where 𝑖 ∼ 𝑖. denotes all neighboring pairs in the graph 𝑉(%); 𝐼(𝑧&
(%) = 𝑧&"

(%)) is an indicator function 

that equals 1 if both the 𝑖th and 𝑖.th cells belong to the same spatial domain and equals 0 otherwise; 

𝛽  is the interaction parameter that determines the extent of spatial domain similarity among 

neighboring locations; and 𝐶(%)(𝛽)  is the normalizing constant, also known as the partition 

function, that ensures the above probability mass function to have a summation of one across all 

possible configurations of 𝒛(%). 

 

1.2 Prior specifications 

We treat all the hyper-parameters in the above equations (𝝁! , 𝚺, 𝝅" ,	𝛽) as unknown and 

specify priors on them in order to infer them based on the data at hand. Specifically, we specify a 

normal-gamma prior on 𝝁!: 

 𝜇$!|𝜆$~𝑁𝑜𝑟𝑚𝑎𝑙^𝑑$ , 𝜆$𝑅$/_, (5) 

 𝑑$ ∝ 1 (6) 

 𝜆$ ∼ 𝐺𝑎𝑚𝑚𝑎(𝑣#, 𝑣/). (7) 

Above, we assume that in each feature dimension 𝑗, the mean parameter of cell type 𝑐, 𝜇$!, follows 

a normal distribution with a feature-specific mean parameter 𝑑$ and a variance parameter 𝜆$𝑅$/, 

where 𝜆$  is a feature-specific scaling factor following a priori a gamma distribution with 
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parameters 𝜈# and 𝜈/ and 𝑅$ is the range of the 𝑗th expression feature. To simplify the algebra, we 

further denote 𝒅 = ^𝑑#, … , 𝑑0_
* and 𝚲 = 𝑑𝑖𝑎𝑔(𝜆#𝑅#/, … , 𝜆0𝑅0/) . The normal-gamma prior is 

applied as a shrinkage prior on the mean parameter of expression features. Intuitively, it pulls 

together the mean parameters of different cell types (𝜇$#, … , 𝜇$+) by shrinking 𝜆$ to a relatively 

small value if the 𝑗th feature is uninformative for distinguishing different cell types, thus yielding 

more precise estimates of the mean parameters. Following Malsiner-Walli et al. [75], we specify 

hyper-parameters 𝑣# and 𝑣/ to be 0.5 to allow considerable shrinkage of the prior variance of the 

mean parameters.  

For the other parameters (𝚺, 𝝅",	𝛽), we specify the following priors: 

 𝚺 ∼ 𝑊𝑖𝑠ℎ𝑖𝑟𝑡1#(𝑛2, 𝚿2),	 (8) 

 𝝅" ∼ 𝐷𝑖𝑟(𝛼2𝟏+*),	 (9) 

 𝛽 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 𝛽345). (10) 

Above, we place an inverse Wishart prior on 𝚺 with 𝑛2  degrees of freedom and a symmetric 

positive definite scale matrix 𝚿2  of size 𝐽 × 𝐽 ; a Dirichlet prior on 𝝅"  with concentration 

parameter 𝛼2; and a uniform prior on 𝛽 with a lower bound of 0 and an upper bound of 𝛽345. We 

set 𝑛2 to be 1 and 𝚿2 to be 𝐈 to provide a weak prior on the covariance matrix; set 𝛼2 to be 1 to 

encode equal prior probabilities for all possible cell type compositions; and set 𝛽345 to be 4 to 

represent the extreme case where the spatial domain boundaries are extremely smooth. 

 

1.3 Posterior sampling algorithm 

With the above model setup and prior specifications, we develop a Gibbs sampling algorithm 

in combination with a Metropolis-Hastings algorithm to infer all the parameters including 𝑐&
(%), 𝑧&

(%), 

𝝅", 𝛽, 𝜇!, 𝚺, 𝑑$, and 𝜆$. 

1.3.1 Posterior sampling of cell type labels 𝒄𝒊
(𝒍): 

The full conditional distribution of the cell type labels takes the form of a categorical 

distribution, where the probability of being cell type 𝑐 for the 𝑖th cell on tissue section 𝑙 is given 

by: 

 𝑓K𝑐&
(%) = 𝑐| ⋅L ∝ 𝑓K𝒙&

(%)|𝑐&
(%) = 𝑐, 𝝁! , 𝚺L𝑓K𝑐&

(%) = 𝑐|𝑧&
(%) = 𝑟, 𝜋!,"L  

 	 ∝ exp |− #
/
K𝒙&

(%) − 𝝁!L
*
𝚺1#K𝒙&

(%) − 𝝁!L~ ⋅ 𝜋!," . (11) 
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1.3.2 Posterior sampling of 𝒛(𝒍) with the Swendsen-Wang algorithm: 

We introduce auxiliary variables, 𝑢&,&", between every pair of cells to facilitate the posterior 

sampling of the spatial domain labels (𝒛(%)) in each tissue section. Conditional on 𝒛(%), 𝑢&,&" takes a 

uniform distribution with the following form: 

 𝑓^𝑢&,&"|𝒛(%), 𝛽_ ∝ 𝑒
19:;<#

(!),<
#"
(!)=𝐼 �0 ≤ 𝑢&,&" ≤ 𝑒9:;<#

(!),<
#"
(!)=�. (12) 

Then, the full conditional distribution of 𝒛(%)  given the auxiliary variables and all the other 

parameters (𝒄(%), 𝝅, 𝛽) takes the following form: 

 𝑓^𝒛(%)|𝒖, 𝛽, 𝒄(%), 𝝅; 𝑉(%)_  

∝ 𝑓^𝒛(%)|𝛽; 𝑉(%)_𝑓^𝒖|𝒛(%), 𝛽_𝑓(𝒄(%)|𝒛(%), 𝝅) 

∝�𝑒9:(<#
(!),<

#"
(!))

&~&"
�𝑒19:;<#

(!),<
#"
(!)=𝐼 �0 ≤ 𝑢&,&" ≤ 𝑒9:;<#

(!),<
#"
(!)=�

&~&"
�𝜋!#

(!),<#
(!)

)!

&,#

	

 

 
								∝�𝜋!#

(!),<#
(!)

)!

&,#

�𝐼�0 ≤ 𝑢&,&" ≤ 𝑒9:;<#
(!),<

#"
(!)=�

&~&"
. (13) 

The Swendsen-Wang algorithm proceeds by first sampling the auxiliary variables 𝒖 given the 

spatial domain labels 𝒛(%) based on Eq. (12). As will be indicated below, it only matters whether 

𝑢&,&" is greater than 1 or not. Therefore, it suffices to sample 𝐼(𝑢&,&" > 1) and we claim two cells 

are bonded if 𝐼^𝑢&,&" > 1_ = 1. The auxiliary variable 𝑢&,&"  is thus often referred to as a bond 

variable. Consequently, we can sample 𝐼(𝑢&,&" > 1) with the following steps: if 𝑧&
(%) ≠ 𝑧&"

(%), then 

𝐼^𝑢&,&" > 1_ = 0; and if 𝑧&
(%) = 𝑧&"

(%), then we sample 𝐼^𝑢&,&" > 1_ from a Bernoulli distribution with 

probability 1 − 𝑒19. Next, we sample the spatial domain labels 𝒛(%) given the auxiliary variables 

based on Eq. (13). Specifically, if two cells are bonded (i.e., 𝐼^𝑢&,&" > 1_ = 1), then the spatial 

domain labels of the two cells must be the same (i.e., 𝑧&
(%) = 𝑧&"

(%)). On the other hand, if two cells 

are not bonded, then there is no constraint on the spatial domain labels of the two cells. 

Consequently, the bond variable partitions all cells into multiple clusters of cells that belong to the 

same spatial domain. For cell cluster 𝐾, the probability of belonging to spatial domain 𝑟 is: 

 PrK𝒛?
(%) = 𝒓| ⋅L ∝�𝜋!#

(!),<#
(!) ,

&∈?

 (14) 
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where 𝒛?
(%) = 𝒓 is a shorthand notation for 𝑧&

(%) = 𝑟 for all 𝑖 ∈ 𝐾.  

1.3.3 Posterior sampling of cell type compositions 𝝅𝒓: 

The full conditional distribution of the cell type composition vector, 𝝅", takes the following 

form: 

 𝑓(𝝅"|𝒄, 𝒛) ∝ 𝑓(𝒄|𝒛, 𝝅")𝑓(𝝅") ∝�𝜋!,"
∑ 	DE(!)(!,")D! FG&1#

!

, (15) 

where 𝑈(%)(𝑐, 𝑟) is the index set of cells with cell type label 𝑐 and spatial domain label 𝑟 in the 𝑙th 

tissue section and |⋅|  is the cardinality of the corresponding index set. Therefore, the full 

conditional distribution of 𝝅" takes the form of a Dirichlet distribution, that is 

 
𝝅"|𝒄, 𝒛~𝐷𝑖𝑟 �f	�𝑈(%)(1, 𝑟)�

%

+ 𝛼2, … ,f 	�𝑈(%)(𝐶, 𝑟)�
%

+ 𝛼2�. (16) 

1.3.4 Posterior sampling of 𝜷: 

The full conditional distribution of 𝛽 takes the following form: 

𝑓^𝛽�𝒛(#), … 𝒛(H); 𝑉(#), … 𝑉(H)_ 

=�𝑓^𝒛(%)�𝑉(%)_𝑓(𝛽)
%

 

																																																							=�
1

𝐶(%)(𝛽)
%

𝑒9∑ :;<#
(!),<

#"
(!)=#~#" 𝐼(0 ≤ 𝛽 ≤ 𝛽345). (17) 

The hyper-parameter 𝛽  in the Potts model is difficult to infer algorithmically because of the 

normalization constant 𝐶(%)(𝛽). In particular, the computation of 𝐶(%)(𝛽) requires evaluating the 

probability mass function of the Potts model over all possible configurations of 𝒛(%) and is thus 

known to be NP hard. Instead of computing the normalizing constant directly, we estimate the 

ratio of two normalizing constants by adapting the Swendsen-Wang algorithm, which allows us to 

sample 𝛽 from its conditional distribution through a Metropolis-Hastings algorithm. Specifically, 

we use a uniform distribution centered at the current value of 𝛽 as our proposal distribution, where 

the step size 𝜖 is set to be 0.1 by default. Then, the acceptance probability for the proposed value 

𝛽′ is given by: 

 
𝐴 = min �1,

𝑓^𝛽.|𝒛(#), … 𝒛(H); 𝑉(#), … 𝑉(H)_
𝑓(𝛽|𝒛(#), … 𝒛(H); 𝑉(#), … 𝑉(H))

� (18) 
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⇒ 𝐴 = min�1,

∏ 𝐶(%)(𝛽)𝑒9
" ∑ :;<#

(!),<
#"
(!)=#~#"%

∏ 𝐶(%)(𝛽.)𝑒9∑ :;<#
(!),<

#"
(!)=#~#"%

𝐼(0 ≤ 𝛽. ≤ 𝛽345)�. (19) 

There, the ratio of the normalizing constant, +
(!)(9)

+(!)(9")
, can be represented with the following 

derivations: 

f 𝑓^𝒛(%)�𝑉(%), 𝛽_ = 1
I𝒛(!)K

	

⇒ f
1

𝐶(%)(𝛽)
𝑒9 ∑ :;<#

(!),<
#"
(!)=#~#"

I𝒛(!)K

= 1	

⇒ 	𝐶(%)(𝛽) = f 𝑒9 ∑ :;<#
(!),<

#"
(!)=#~#"

I𝒛(!)K

	

⇒ 𝐶(%)(𝛽) = f 𝑒L919
"M ∑ :;<#

(!),<
#"
(!)=#~#"

I𝒛(!)K

𝐶(%)(𝛽.)𝑓^𝒛(%)|𝑉(%), 𝛽._	

⇒
𝐶(%)(𝛽)
𝐶(%)(𝛽.)

= f 𝑒L919
"M ∑ :;<#

(!),<
#"
(!)=#~#"

I𝒛(!)K

𝑓^𝒛(%)|𝑉(%), 𝛽._ 

 
																				⇒

𝐶(%)(𝛽)
𝐶(%)(𝛽.)

= 𝐸𝒛(!)|9" �𝑒
L919"M ∑ :;<#

(!),<
#"
(!)=#~#" �. (20) 

We approximate the ratio of the two normalizing constants by sampling from the Potts model 

𝑓	(𝒛(%)|𝛽.) and estimating the expectation with the sample mean. We apply the Swendsen-Wang 

algorithm by following similar procedures as described in section 1.3.2 to draw samples from the 

Potts model. By default, we collect 10 Potts samples after 10 burn-in steps for the approximation.  

The approximation of the normalizing constants creates a heavy computational burden on 

the algorithm. Therefore, when analyzing multiple tissue sections, we infer 𝛽 based on the first 

tissue section to reduce the computational burden. Then, the acceptance probability in Eq.(19) 

reduces to 

 
𝐴 = min�1,

𝐶(#)(𝛽)𝑒9
"∑ :;<#

((),<
#"
(()=#~#"

𝐶(#)(𝛽.)𝑒9 ∑ :;<#
((),<

#"
(()=#~#"

𝐼(0 ≤ 𝛽. ≤ 𝛽345)�, (21) 

where the ratio of the normalizing constant, +
(()(9)

+(()(9")
, can be approximated based on 
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 𝐶(#)(𝛽)
𝐶(#)(𝛽.)

= 𝐸𝒛(()|9" �𝑒
L919"M∑ :;<#

((),<
#"
(()=#~#" �. (22) 

In addition, the BASS software implements a stopping rule to automatically determine the 

number of MCMC samples required for inferring 𝛽. Specifically, we calculate the mean of the 

sampled 𝛽 in every 100 iterations and stop the sampling if the difference in the consecutive two 

means is below a certain threshold (0.001 by default). Such stopping rule can help improve 

computation efficiency and works well in all our real data applications (Fig. S22). 

1.3.5 Posterior sampling of 𝝁𝒄: 

The full conditional distribution of the mean parameter of gene expression features takes the 

following parametric form: 

𝑓^𝝁!|𝑿(#), … , 𝑿(H), 𝚺, 𝒅, 𝚲_	

∝� � 𝑓K𝒙&
(%)|𝝁! , 𝚺L

&∈*(!)(!)%

𝑓(𝝁!|𝒅, 𝚲)	

∝ exp �−
1
2f f K𝒙&

(%) − 𝝁!L
*
𝚺1#K𝒙&

(%) − 𝝁!L
&∈*(!)(!)%

�exp |−
1
2
(𝝁! − 𝒅)*𝚲1#(𝝁! − 𝒅)~ 

∝ exp �−
1
2𝝁!

* �f�𝑇(%)(𝑐)�
%

𝚺1# + 𝚲1#�𝝁! + 𝝁!* �f f 𝚺1#𝒙&
(%) + 𝚲1#𝒅

&∈*(!)(!)%

��, (23) 

where 𝑇(%)(𝑐) is the index set of cells with cell type label 𝑐  on tissue section 𝑙  and |⋅|  is the 

cardinality of the corresponding index set. Therefore, the full conditional distribution of 𝝁! takes 

the form of a normal distribution, that is 

 𝝁!| ⋅ ~𝑁𝑜𝑟𝑚𝑎𝑙(𝝁!∗ , 𝚺!∗), 𝑐 = 1,… , 𝐶, (24) 
where 

 
𝝁!∗ = 𝚺Q∗ �f f 𝚺1#𝒙&

(%) + 𝚲1#𝒅
&∈*(!)(!)%

� (25) 

 𝚺!∗
1# =f�𝑇(%)(𝑐)�

%

𝚺1# + 𝚲1# (26) 

1.3.6 Posterior sampling of 𝚺: 

The full conditional distribution of the variance-covariance parameter of gene expression 

features takes the following parametric form: 
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𝑓^𝚺|𝑿(#), … , 𝑿(H), 𝝁#, … , 𝝁+_	

∝��𝑓K𝒙&
(%)|𝝁!#

(!) , 𝚺L
&%

𝑓(𝚺)	

∝ |𝚺|1
∑ )!!
/ exp e−

1
2ffK𝒙&

(%) − 𝝁!#
(!)L

&

*

%

𝚺1# K𝒙&
(%) − 𝝁!#

(!)Lh |𝚺|1
R&F0F#

/ exp |−
1
2 𝑡𝑟

(𝚿2𝚺1#)~ 

∝ |𝚺|1
∑ )!FR&F0F#!

/ exp e−
1
2 𝑡𝑟 ��ffK𝒙&

(%) − 𝝁!#
(!)L K𝒙&

(%) − 𝝁!#
(!)L

&

*

%

+𝚿2�𝚺1# h, (27) 

which is the kernel of an inverse Wishart distribution. Therefore, we have 

 𝚺| ⋅∼ 𝑊𝑖𝑠ℎ𝑎𝑟𝑡1#(𝑛2∗ , 𝚿2
∗), (28) 

where 

 𝚿2
∗ =ffK𝒙&

(%) − 𝝁!#
(!)L K𝒙&

(%) − 𝝁!#
(!)L

&

*

%

+𝚿2 (29) 

 𝑛2∗ =f𝑁%
%

+ 𝑛2 (30) 

1.3.7 Posterior sampling of 𝒅𝒋: 

The full conditional distribution of 𝒅 takes the following parametric form: 

𝑓(𝒅|𝝁#, … , 𝝁+ , 𝚲)	

∝�𝑓(𝝁!|𝒅, 𝚲)𝑓(𝒅)
!

	

∝�exp |−
1
2
(𝝁! − 𝒅)*𝚲1#(𝝁! − 𝒅)~

!

	

∝�exp e−
∑ ^𝜇$! − 𝑑$_

/
!

2𝜆$𝑅$/
h

$

 

 

																																									∝�exp¡−
K𝑑$ −

1
𝐶 ∑ 𝜇$!! L

/

2𝜆$𝑅$//𝐶
£

$

. (31) 

which is the kernel of a normal distribution. Therefore, we have 

 
𝑑$| ⋅ ~𝑁 �

1
𝐶f𝜇$!

!

,
1
𝐶 𝜆$𝑅$

/�. (32) 
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1.3.8 Posterior sampling of 𝝀𝒋: 

The full conditional distribution of 𝜆$ takes the following parametric form: 

𝑓^𝜆$�𝜇$#, … , 𝜇$+ , 𝑑$_	

∝�𝑓^𝜇$!�𝑑$ , 𝜆$_
!

𝑓^𝜆$_	

∝ 𝜆$
1+/ exp e

∑ ^𝜇$! − 𝑑$_
/

!

2𝜆$𝑅$/
h 𝜆$

T(1# exp¥−𝑣/𝜆$¦ 

 
																∝ 𝜆$

U(1
+
/1# exp e−

1
2 �
∑ ^𝜇$! − 𝑑$_

/
!

𝑅$/
⋅
1
𝜆$
+ 2𝑣/𝜆$ h, (33) 

which is the kernel of a generalized inverse Gaussian distribution (GIG). Therefore, we have 

 𝜆$| ⋅ ~𝐺𝐼𝐺(𝑎∗, 𝑏∗, 𝑝∗), (34) 
where 

𝑎∗ = 2𝑣/ 

𝑏∗ =
∑ ^𝜇$! − 𝑑$_

/
!

𝑅$/
 

𝑝∗ = 𝑣# −
𝐶
2 

 

1.4 Parameter estimation 

As has been discussed in the Methods section, we post-process the sampling results to 

mitigate the label switching issue associated with the sampling of 𝒄 and 𝒛 in the mixture model. In 

particular, we deal with the label switching problem by post-processing the posterior samples 

based on the iterative version 1 of the equivalence class representation (ECR) algorithm 

implemented in the label.switching package (version 1.8). Finally, we estimate 𝒄 and 𝒛 as the 

mode of all their posterior samples and estimate 𝝅"  using the final estimates of 𝒄  and 𝒛 . In 

particular, we have 𝜋!" =
∑ ∑ :(!#

(!),!,<#
(!),")#!

∑ ∑ :(<#
(!),")#!

 and if ∑ ∑ 𝐼(𝑧&
(%) = 𝑟)&% = 0, we set 𝝅" = 𝟎. We did 

not estimate 𝝅" by summarizing its posterior samples because the label switching issue could not 

be fully resolved by the ECR-1 algorithm and the posterior mean or posterior median estimates of 

𝝅" could be sensitive to the label switching issue. On the other hand, the posterior estimates of 𝒄 

and 𝒛 were less sensitive to the label switching issue, allowing us to estimate 𝝅" more accurately. 


