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Fig. S1. Selection of priors for the GMRM. Prediction accuracy in a UK Biobank hold-out set, as a percentage improvement over a BayesR model for different prior choices.
The prior: "13 annotation groups" represents splitting SNP markers into 13 annotation groups, with effect sizes modelled using a mixture of four normal distributions and a dirac
delta spike at zero for each group. "78 random groups" represents a prior of markers grouped randomly into 78 groups, with effect sizes of each group modelled using a
mixture of four normal distributions and a dirac delta spike at zero. "78 annotation groups" represents a prior of markers split into 13 annotation groups, with each annotation
group further divided into 6 random groups, to give 78 groups in total, where the marker effects of each group are modelled using a mixture of four normal distributions and a
dirac delta spike at zero. "78 MAF-LD groups" represents a prior of markers split into 39 groups based on their MAF, with each group further sub-divided into two groups
based on the LD Score of the markers, where the marker effects of each group are modelled using a mixture of four normal distributions and a dirac delta spike at zero.
"78 MAF-LD-annotation groups" represents the prior presented in the main text of markers divided into 13 annotation groups, with each group further sub-divided into six
based on MAF and LD Score, where the marker effects of each group are modelled using a mixture of four normal distributions and a dirac delta spike at zero. Finally, "130
MAF-LD-annotation groups" represents a prior of markers divided into 13 annotation groups, with each group further sub-divided into ten based on MAF and LD Score, where
the marker effects of each group are modelled using a mixture of four normal distributions and a dirac delta spike at zero. Error bars give the 95% confidence intervals of the
estimate.
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Fig. S2. SNP-heritability enrichment estimated by GMRM. SNP heritability enrichment estimates calculated as the proportion of SNP-heritability attributable to each
annotation group divided by the proportion of markers in the model given the total number of markers. If the average effect sizes of markers within a given annotation are larger
than expected given the number of markers entering the model for that annotation then the value obtained should be greater than 1 (the red line shown). Conversely, smaller
than expected marker effects will yield values less than 1.Error bars in give 95% credible intervals. Full trait codes are given in Supplementary Table 1. exons = SNPs located in
exonic regions, introns = SNPs located in intronic regions, prom = SNPs located in promotors, tfbs = SNPs located in transcription factor binding sites, enh = enhancers, oth =
markers not mapping to a functional group but to a location from a nearest gene, others = markers not within 1Mb of a gene and that have no known regulatory function.
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Fig. S3. Prediction accuracy of a GMRM as compared to other approaches at different sets of genetic markers. Prediction accuracy in a UK Biobank hold-out set of
different approaches and SNP marker sets as compared to a GMRM at 2.17M SNPs. "GMRM 1.4M SNPs": a GMRM model with 56 MAF-LD-annotation groups at 1,410,525
common SNPs of MAF ≥ 0.01. "LDAK BayesR 1.4M SNPs": an individual-level LDAK implemented BayesR model with BLD-LDAK annotations at 1,410,525 common SNPs of
MAF ≥ 0.01. "LDAK Bolt 1.4M SNPs": an individual-level LDAK software implemented Bolt model with BLD-LDAK annotations at 1,410,525 common SNPs of MAF ≥ 0.01.
"LDPred-funct UKB" an LDPred-funct model with UK Biobank LD Score annotations for 6,991,095 SNPs. Error bars give the 95% confidence interval of the estimate.
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Fig. S4. Simulation study for GMRM. (a) The y-axis gives the average χ2 values for the approximate mixed linear model test statistics at the simulated causal variants as
compared to models run using fastGWA and bolt-LMM. The plot is faceted into two columns representing phenotypes that were simulated using either a mixture of 10,000
randomly sampled UK Biobank sibling pairs and 80,000 randomly sampled unrelated UK Biobank individuals (related), or 100,000 randomly sampled UK Biobank individuals
with SNP marker relatedness estimates <0.2 (unrelated). The plot is also faceted into two rows representing 10,000 causal variants from chromosomes 1, 3, 5, 7 and 9 that
were either randomly sampled with effect sizes drawn from a normal distribution with zero mean variance 0.5/10000 (random) or were sampled differently across genomic
annotations creating effects size differences across genomic groups (see Methods). Boxplots show the distribution of values obtained for ten simulation replicates. (b) shows
the same simulation settings but the average χ2 values for the approximate mixed linear model test statistics are given for the null chromosomes 2, 4, 6, 8, and 10 where no
causal variants were simulated. (c) gives the true positive rate, calculated as the ratio of detected true positives and the total number of causal variants. (d) shows the false
discovery rate calculated as the proportion of discoveries that lie on the null chromosomes 2, 4, 6, 8, and 10 where no causal variants were simulated.
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Fig. S5. GWAS discovery for GMRM in comparison to other approaches at different SNP marker sets. (a) Number of LD independent genomic regions identified at
5x10−8 by GMRM, as compared to BoltLMM (Bolt), Findor (Findor), and Regenie (Regenie) across 21 traits at 6,991,095 SNPs of minor allele frequency ≥ 0.01. For Findor,
we use an LD Score UK Biobank annotation model based on BoltLMM summary statistics. (b) Number of LD independent genomic regions identified at 5x10−8 by GMRM, as
compared to BoltLMM (Bolt) and Regenie (Regenie) across 21 traits at 2,174,071 LD clumped tagging SNP set. Full trait code descriptions are given in Supplementary Table 1.

6 of 12 Orliac EJ, Trejo Banos D, Ojavee SE, Läll K, Mägi R, Visscher PM, Robinson MR.



1 2−5 6−20 21−100 >100
biom

arker
disease

m
easures

0 20 40 60 0 50 10
0 0 25 50 75 0

50
0

10
00 0

50
0

10
00

15
00

20
00

BASO
CHOL
CRET
EOSI
GLU

HbA1c
HDL
LDL

LYMPH
MCH
MCV
RBC

BP
CAD
T2D

BMD
BMI

DBP
FVC

HT
SBP

number of fine−mapped regions

tr
ai

t

a

1 2−5 6−20 21−100 >100

biom
arker

disease
m

easures

0 5 10 15 0 10 20 30 0 5 10 15 20 0 10 20 30 40 50 0 20 40 60 80

BASO
CHOL
CRET
EOSI
GLU

HbA1c
HDL
LDL

LYMPH
MCH
MCV
RBC

BP
CAD
T2D

BMD
BMI

DBP
FVC

HT
SBP

percentage fine−mapped regions

tr
ai

t

b

1 2−5 6−20 21−100 >100

biom
arker

disease
m

easures

0 3 6 9 12 0 5 10 15 0 5 10 15 20 0 20 40 0 10 20 30

BASO
CHOL
CRET
EOSI
GLU

HbA1c
HDL
LDL

LYMPH
MCH
MCV
RBC

BP
CAD
T2D

BMD
BMI
DBP
FVC

HT
SBP

percentage mlma associated SNPs

tr
ai

t

c

Fig. S6. GMRM Bayesian fine-mapping approach to localise the inclusion of markers in the model into SNP sets based on their LD. (a) The trait acronyms are given
on the y-axis and the plot is faceted into five columns representing set of SNPs that are correlated at LDR2 ≥ 0.1, from some genomic regions having only a single SNP in LD
with no others, to ≥ 100 markers in LD. Barplots give a count of the number of SNP sets for which the posterior probability of explaining greater than 0.001% of the phenotypic
variance was greater than 95%. (b) For each trait, the percentage of SNP sets for which the posterior probability of explaining greater than 0.001% of the phenotypic variance
was greater than 95% for different sizes of SNP set. (c) GMRM-MLMA significantly associated SNPs grouped into the same SNP sets based on LD. Across traits, a lower
percentage of associations fine-map to either single SNPs, or to groups of five or less SNPs in LD as compared to the percentage of the discoveries from the GMRM-MLMA
approach.
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Fig. S7. Scaling of GMRM software with sample size and marker number. (a) The total run time for 3,000 iterations is given for an analysis of human height, with the
sample size given by the first row of the plot header, and the marker number given in the second row. For all runs the total RAM use was approx. 1.02 times the size of the Plink
binary data on disk, being 15.29 Gb, 28.38 Gb, 66.16 Gb, 147.48 Gb, and 227.32 Gb for the five plots respectively. In the last plot for 440,000 individuals and 2.17M markers,
the RAM use would fill the available memory of a typical modern HPC node, and thus we only considered scenarios of 24 or 48 CPU usage. For each setting we used 2 CPU
per MPI process. (b) Comparisons of average total run time for BoltLMM, GMRM, LDAK, LDPred-funct (LDPred), and Regenie across the 21 traits at 1,410,525 markers, using
a single compute node and 48 CPU (threads). For GMRM, this represents the average time to produce both the posterior mean SNP effects and estimate the MLMA SNP
estimates for traits analysed individually. For LDPred-funct, this is the average time taken to produce genomic predictors from existing summary statistics. For Regenie, we ran
each trait independently, but traits can be combined and the presented time can be divided by the number of traits analysed.
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Fig. S8. Scaling of GMRM software for an analysis of 2.2M markers with multiple traits across many MPI processes. (a) For two resource settings of (1) 12 MPI
processes each using 4 CPU cores on a single computer and 24 MPI processes each using 4 CPU cores across two computers, labelled as 1 and 2 on the x-axis, the
factor speed-up per trait analysed is given on the y-axis. Speed-up factors are presented relative to the time taken to estimate 5,000 draws from the posterior distribution of
a single trait in resource setting 1 (baseline time). We calculated the speed-up times for data from 10,000 individuals (10k) and 100,000 individuals (100k) separately. For
example, for the analysis of 5 traits at the same time for 10k setting in resource setting 2 the value presented was calculated as: t1,1/(t5,2/nt), where t1,1 is the time at
baseline for 1 trait in resource environment 1, t5,1 is the time for analysing 5 traits simultaneously in resource environment 2, and nt is the number of traits analysed. Thus we
obtain the proportional increase in time obtained relative to the baseline. (b) The number of hours required to obtain 5,000 posterior samples at two different sample sizes,
decreases steeply but then begins to tail-off with a large number of simultaneously analysed traits when using 48 MPI processes, with each MPI process using 4 CPU. (c) In the
configurations presented here when using 48 MPI processes, with each MPI process using 4 CPU, our algorithm displays sub-linear scaling of CPU core hours per trait per
sample, with improved CPU use efficiency as sample size and number of traits analysed increases, essentially becoming more efficient as sample size and the number of traits
grows. These examples were specifically designed to remain within memory and last level memory cache restrictions of the high-performance compute hardware used here in
order to demonstrate the performance of our algorithm. Mostly, with the multi-trait version some MPI communication is shared among the traits, explaining the sub-linear
scaling observed here. (d) In our hardware, at 400,000 individuals, 2.2M markers, and 72 MPI processes last-level cache size overflowed at greater than two traits analysed
simultaneously, resulting in increased CPU hours per trait per sample (CPU hours), reduced speed-up, and an increase in the analysis time per trait. Thus, performance gains
from our algorithm will become hardware limited. If the epsilon vectors stay in the cache we get continually improved performance as shown in (a) through (c). However, with
more individuals, more traits, and more tasks per socket the hardware limits the sub-linear scaling to the point where degraded performance is observed as compared to single
trait processing. The main considerations are the last-level cache size, the number of individuals and the number of traits to be analysed, and we advise users to set 1 MPI task
per socket and estimate how many epsilon vectors can be held in the last level cache of the CPU.
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Fig. S9. Convergence of GMRM software. (a) Convergence of prediction accuracy in a hold out sample of 30,000 UK Biobank individuals for human height across three
independent bulk synchronous Gibbs chains with synchronisation occurring after the update of 20 markers across 60 MPI process for 2.17 million SNP markers and 428,747
individuals. (b) The root mean square error of the marker effect size estimates of randomly assigned LD independent causal variants in simulation study of 100,000 unrelated
individuals from the UK Biobank for three replicates.
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Algorithm 1 GMRM MLMA algorithm
Matrix X of genotypes in plink binary format (.bed/.bim/.fam), matrix of posterior Bayesian marker estimates in binary
format (.bet file), a file linking column number to rs SNP identifiers (.link), and file of phenotypic information (.phen file).
Assign markers present in SNP rs-identifier file to blocks across k MPI tasks
Assign the posterior Bayesian marker estimates to the markers of each task k based on the rs SNP identifiers
task k Calculate means x̄j and SD(xj) of markers
Initialise gk,l and ḡk
iteration l in iter
marker j
if βj == 0 thennext

if βj ! == 0 thencalculate ĝj as xj −x̄j

SD(xj)βj ;
add ĝj to gk,l Add gk,l to gk Communicate gk to task 0 where task 0 calculates g =

∑l

l=1

∑k

k=1 gk,l
Receive g from node 0
Subtract g − gk then divide by iter to give ḡk
Calculate ỹblockk as ỹblockk = y − ḡk
Calculate σ2

ỹblockk
as 1

N
ỹTblockk

ỹblockk where N is the number of individuals
marker j
calculate xtx as dot product xTj xj
calculate xty as xTj ỹblockk

calculate βj,k as [xtx]−1xty
calculate tj as xty

[σ2
ỹblockk

xtx]0.5

calculate p-value j from χ2
1 using t2j

output βj,k,tj and corresponding χ2
1 p-values.
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Type Phenotype Code Biobank codes Adjusted covariate codes MLMA
sample
size

Biomarker Basophill count BASO 30160-0.0 Sex, Age, East-West coordinates, UK Biobank Centre,
Genotype Batch, PCs 1-20

401,452

Biomarker Cholesterol CHOL 30690-0.0 Sex, Age, East-West coordinates, UK Biobank Centre,
Genotype Batch, PCs 1-20, Medication (6177-0.0)

395,025

Biomarker Creatinine CRET 30700-0.0 Sex, Age, East-West coordinates, UK Biobank Centre,
Genotype Batch, PCs 1-20

394,813

Biomarker Eosinophill count EOSI 30150-0.0 Sex, Age, East-West coordinates, UK Biobank Centre,
Genotype Batch, PCs 1-20

401452

Biomarker Glucose GLU 30740-0.0 Sex, Age, East-West coordinates, UK Biobank Centre,
Genotype Batch, PCs 1-20, Medication (6177-0.0)

360,010

Biomarker Glycated haemoglobin HbA1c 30750-0.0 Sex, Age, East-West coordinates, UK Biobank Centre,
Genotype Batch, PCs 1-20

394,912

Biomarker HDL cholesterol HDL 30760-0.0 Sex, Age, East-West coordinates, UK Biobank Centre,
Genotype Batch, PCs 1-20, Medication (6177-0.0)

360,286

Biomarker LDL direct LDL 30780-0.0 Sex, Age, East-West coordinates, UK Biobank Centre,
Genotype Batch, PCs 1-20, Medication (6177-0.0)

394,264

Biomarker Lymphocyte count LYMPH 30120-0.0 Sex, Age, East-West coordinates, UK Biobank Centre,
Genotype Batch, PCs 1-20

401,452

Biomarker Mean corpuscular
haemoglobin

MCH 30050-0.0 Sex, Age, East-West coordinates, UK Biobank Centre,
Genotype Batch, PCs 1-20

402,201

Biomarker Mean corpuscular vol-
ume

MCV 30040-0.0 Sex, Age, East-West coordinates, UK Biobank Centre,
Genotype Batch, PCs 1-20

402,202

Biomarker Red blood cell count RBC 30010-0.0 Sex, Age, East-West coordinates, UK Biobank Centre,
Genotype Batch, PCs 1-20

402,204

Disease Cardiovascular disease CAD 3894-0.0, 3627-0.0, 42000-0.0,
6150-0.0, 40001-0.0, 41202-
0.0, 41204-0.0, 41270-0.0

Sex, Age, East-West coordinates, UK Biobank Centre,
Genotype Batch, PCs 1-20

401,000
(78,283)

Disease High blood pressure BP 6150-0.0, 2966-0.0, 6153-0.0,
6177-0.0, 40001-0.0, 41201-
0.0, 41202-0.0, 41204-0.0,
41270-0.0, 41262-0.0

Sex, Age, East-West coordinates, UK Biobank Centre,
Genotype Batch, PCs 1-20

401,106
(126,352)

Disease Type-2 diabetes T2D 2443-0.0, 2976-0.0, 6153-0.0,
6177-0.0, 40001-0.0, 41201-
0.0, 41202-0.0, 41204-0.0,
41270-0.0, 41262-0.0

Sex, Age, East-West coordinates, UK Biobank Centre,
Genotype Batch, PCs 1-20

398,322
(36,865)

Measures Heel bone mineral den-
sity T-score

BMD 3148-0.0 Sex, Age, East-West coordinates, UK Biobank Centre,
Genotype Batch, PCs 1-20

231,693

Measures Body mass index BMI 21001-0.0 Sex, Age, East-West coordinates, UK Biobank Centre,
Genotype Batch, PCs 1-20

413,595

Measures Diastolic blood pres-
sure

DBP 4079-0.0 Sex, Age, East-West coordinates, UK Biobank Centre,
Genotype Batch, PCs 1-20, Medication (6177-0.0)

377,358

Measures Forced vital capacity FVC 3062-0.0 Sex, Age, East-West coordinates, UK Biobank Centre,
Genotype Batch, PCs 1-20

376,724

Measures Standing height HT 50-0.0 Sex, Age, East-West coordinates, UK Biobank Centre,
Genotype Batch, PCs 1-20

414,055

Measures Systolic blood pressure SBP 4080-0.1 Sex, Age, East-West coordinates, UK Biobank Centre,
Genotype Batch, PCs 1-20, Medication (6177-0.0)

377,347

Table S1. UK Biobank phenotypes used within the study. Columns of the table give the type of trait, the name, the trait code used for the
figures, the UK Biobank codes used to construct the trait values, the covariates adjusted for within the analysis, and the sample size of the
MLMA GWAS association analysis (case numbers given in brackets).
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