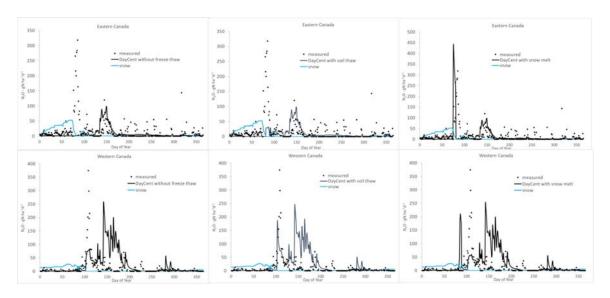


Supplementary Information for


A Gap in Nitrous Oxide Emissions Reporting Complicates Long Term Climate.

Stephen J. Del Grosso, Stephen M. Ogle, Cynthia Nevison, Ram Gurung, William J. Parton, Claudia Wagner-Riddle, Ward Smith, Wilfried Winiwarter, Brian Grant, Mario Tenuta, Ernie Marx, Shannon Spencer, Stephen Williams

Stephen J. Del Grosso steve.delgrosso@ars.usda.gov

This PDF file includes:

Figures S1 to S2 (not allowed for Brief Reports) Tables S1 to S2 (not allowed for Brief Reports) SI References

Fig. S1. Simulated and observed N2O emissions from cropped soils in Eastern and Western Canada comparing DayCent without freeze-thaw and enhancements based on thawing of soil and melting of snow, and simulated snowpack..

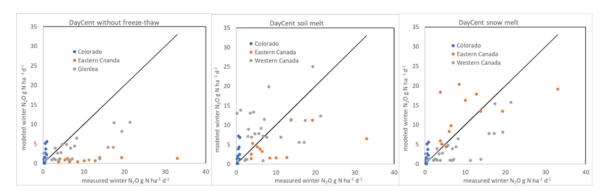


Fig. S2. N_2O emissions from cropped soils used for model parameterization in Colorado, Eastern and Western Canada comparing DayCent without freeze-thaw and enhancements based on thawing of soil and melting of snow.

 $\begin{tabular}{ll} \textbf{Table S1}. Research sites used for freeze-thaw related N_2O emission calibration of the DayCent model. Fluxes were measured at the Colorado site using ground level chamber-based measurements and the Canadian sites used micro metrological flux data. \\ \end{tabular}$

Site	crop	tillage	N fertilizer kg N ha ⁻¹	years
ARDEC, Colorado (1)	maize	conventional	0	2002-2004
ARDEC Colorado	maize	no till	0	2002-2004
ARDEC Colorado	maize	conventional	130	2002-2004
ARDEC Colorado	maize	no till	130	2002-2004
ARDEC Colorado	maize	conventional	170	2002-2004
ARDEC Colorado	maize	no till	170	2002-2004
ARDEC Colorado	maize	conventional	70	2003-2004
ARDEC Colorado	maize	no till	70	2003-2004
Elora, Ontario (2)	maize, soybean, wheat, clover	no till	160, 0, 90	2000-2005
Elora Ontario	maize, soybean, wheat	conventional	60 ¹ , 0, 60	2000-2005
Glenlea, Manitoba (3) maize, faba bean, alfalfa	conventional on maize	90, 0, 0	2006-2012
Glenlea Manitoba	maize, faba bean, spring wheat, rapeseed, barley	conventional	130, 0, 110, 150, 110	2006-2012
Glenlea Manitoba	maize, faba bean, spring wheat, rapeseed, barley	conventional	130, 0, 110, 150, 110	2006-2012
Glenlea Manitoba	Maize, faba bean, alfalfa	conventional	90, 0, 0	2006-2012

¹Organic N

Table S2. Comparisons of the the DayCent model without freeze-thaw) and different optimized freeze-thaw models with N_2O flux data from research sites in Sup. Table 1 for January-April mean fluxes. CFDmin is the minimum cumulative freezing degree days required to trigger a pulse of minimum magnitude and pulse magnitude increases linearly up to CFDmax.

$$CFD = \sum_{i=1}^{n} (-T_s)$$
 For Ts < 0°C, where Ts is soil temperature at 5 cm depth and n = number of days over the non-growing season

				Site level Comparisons			Inversion Comparison
Event Conditions	Event Activation	CFDmin	CFDmax	RMSE	Bias	r	r
No freeze thaw				7.57	-3.99	0.45	0.74
Snow Accumulation	Snow Melt			6.21	-0.27	0.49	
CFD without reset after F-T events	Thawing in 0-2 cm	90	180	7.34	0.10	0.52	
CFD with reset after F-T events	Thawing in 0-2 cm	5	25	6.49	-0.33	0.57	
CFD without reset after F-T events	Thawing in 2-5 cm	100	180	6.74	-0.22	0.56	0.81
CFD with reset after F-T events	Thawing in 2-5 cm	5	10	6.28	-0.33	0.56	
Snow Accumulation, CFD without reset after F-T events Snow Accumulation, CFD with reset	Snow Melt	190	280	5.31	-0.93	0.56	0.68
after F-T events	Snow Melt	110	160	4.52	-0.36	0.56	0.71

SI References

- 1. A.R. Mosier, A.D. Halvorson, C.A. Reule, X.J Liu, Net global warming potential and greenhouse gas intensity in irrigated cropping systems in northeastern Colorado. *Journal of environmental quality*, 35(4),1584-1598 (2006).
- 2. C. Wagner-Riddle, et al., Intensive measurement of nitrous oxide emissions from a cornsoybean—wheat rotation under two contrasting management systems over 5 years. *Global Change Biology* 13: 1722–1736 (2007).
- 3. S.E. Maas, A.J. Glenn, M. Tenuta, D.B. Amiro, Net CO₂ and N₂O exchange during perennial forage establishment in an annual crop rotation in the Red River Valley, Manitoba. *Can. J. Soil Sci.* 93: 639-652 (2013).