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Supplementary Notes  

 

Note S1: Anomalous diffusion models. Below we describe in general the diffusion 

models considered in this work, namely the annealed transit time model (ATTM) (1) and 

fractional Brownian motion (FBM) (2). Detailed descriptions of both models can be 

found in (3, 4). 

ATTM considers the motion of a particle with stochastic changes in the diffusion 

coefficient, as shown schematically in Fig. S6A. In particular, in this work we consider 

the case in which a particle diffuses for a time 𝜏! with diffusion coefficient 𝐷!. After such 

time, a new tuple (𝐷", 𝜏") is sampled. Ref. (1) shows that, if the diffusion coefficient 

follows a power law distribution 𝑃(𝐷) ∼ 𝐷#$!, the associated times are calculated via 

𝑡 = 𝐷$%, and under the condition that 𝜎 < 𝛾 < 𝜎 + 1, the resulting trajectories will 

diffuse with an associated mean squared displacement 〈𝑥"(𝑡)〉 ∼ 𝑡& , with the anomalous 

exponent 𝛼 = 𝜎/𝛾. Examples of ATTM trajectories with different 𝛼 are shown in Fig. 

S6A). The resulting motion shows interesting properties, such as weak ergodicity 

breaking, and has been used to model the heterogeneous diffusion of particles in various 

physical systems, including the cell membrane of living cells (5).  

Fractional Brownian motion (FBM) describes the motion of a particle with correlated 

displacements (see Fig. S6B). A common representation of such walk is given by means 

of the Langevin equation 

𝑑𝑥(𝑡)
𝑑𝑡 = 𝜁'()(𝑡), 

where 𝜁'()(𝑡) is a fractional Gaussian noise. Oppositely to Brownian motion, for which 

the noise in the equation above is uncorrelated, in this case it follows a power law 

correlation, 

〈𝜁'()(𝑡!)𝜁'()(𝑡")〉 = 𝛼(𝛼 − 1)𝐾&∗|𝑡! − 𝑡"|&$", 

where 𝐾&∗ is defined as the effective diffusion coefficient. Importantly, the walk arising 

from the two equations above also shows a mean square displacement 〈𝑥"(𝑡)〉 ∼ 𝑡&. 

However, and as opposed to ATTM, which is a strictly subdiffusive walk, FBM can have 

any 𝛼 ∈ [0,2]. A special property of FBM is that its displacements can be either positively 

(for  𝛼 > 1) or negatively correlated (for 𝛼 < 1). Examples of FBM trajectories with 

different 𝛼 are presented in Fig. S6B. In the case of subdiffusive motion, such negative 



correlations have been often used to describe the motion of a particle in viscoelastic media 

(3).  

In summary, both ATTM and FBM models can display anomalous diffusion exponents 

𝛼 < 1. However, the physical mechanisms leading to such anomalous behavior are of 

different origin.  In our case, we found that the diffusion of PR molecules inside the 

nucleus but outside condensates is better described by the ATTM model, whereas PR 

diffusion inside condensates follow FBM. 

 
Note S2. Volumetric versus surface effects in condensate growth. In our theoretical 

model, we consider that any particle in the condensate can escape with equal probability. 

It is important to note that, in some scenarios, only particles in the surface may be able to 

escape from a condensate. This causes that, given a condensate of size N, only ~√𝑁 

particles are able to escape (this is only valid in cases in which √𝑁 < 𝑁). As less particles 

escape from a condensate, systems tend to show less growth arrest. Indeed, previous 

works have shown that a volumetric term is needed to suppress the growth of a system 

showcasing Ostwald ripening (6). This may be true in our case, but only when 

approaching the thermodynamic limit. Also, as the unbinding probability increases, the 

maximum size attained by condensates may fall below the threshold in which √𝑁 < 𝑁, 

hence escaping from the surface is similar as being able to escape from any point within 

the condensate. As we decrease Pu in our model, this effect enters into play, even 

restricting the appearance of the characteristic plateau in the condensate mean size 

showcased by our model. Such behavior for large values of Pu is illustrated in Fig. S12. 
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Video S1.	Time lapse of inducible PR nuclear condensates. MCF7 cell-line expressing 

GFP-PRB before and after hormone stimulation. Before treatment with hormone the 

fluorescent signal of the GFP-PRB is homogeneous across the nucleoplasm. After 

hormone addition (R5020, 10-8 M, black frames) the fluorescent signal distributes into 

condensates within 5 minutes of hormone exposure. Each frame has a total integration 

time of 15 s (see Methods for details regarding imaging conditions). 

 

  



 
 
Supplementary Figures: 

 
 
Figure S1. PONDR score of PRB. Prediction of Natural Disordered Regions (PONDR 
score) of PR-B generated at www.pondr.com. Note the different regions of PR-B denoted 
as N-terminal domain (NTD), DNA-binding domain (DBD), the Hinge (H) and the ligand 
binding domain (LBD). The NTD is highly disordered (PONDR score > 0.5). 

  



 
Figure S2.  5% 1,6-Hexanediol dissolves PR nanoclusters in breast cancer cells 
exposed to hormone. (A) A breast cancer cell was exposed to 10 nM R5020 leading to 
the formation of PR condensates that can be identified as a punctuated pattern in the entire 
nucleus. PR condensates are highlighted as red circles in the zoom-in region. (B) Adding 
5% 1,6-Hexanediol completely dissolves the PR condensates leading to a homogenous 
fluorescence signal pattern. Scale bar: 5 µm. 
 

 
Figure S3. Experimental SPT trajectories. (A) Histogram of the trajectory lengths from 
the trajectories analyzed for the different ligand concentrations. (B-G) tMSD curves of 
30 representative trajectories for each ligand concentration. 
 

 

 

 



 
 

Figure S4. Scheme of the machine learning procedure. The machine learning (ML) 
architecture is trained with a dataset consisting of simulated trajectories. Once the 
training is complete, the machine can assign to every experimental trajectory an 
anomalous exponent and a diffusion model.



 
 
Figure S5. Error in the ML analysis. (A) Confusion matrix for the LSTM Fully 
convolutional network used for model classification. (B) Prediction error, defined 
here as 𝜀 = 𝛼+,-. − 𝛼/,0-, for the GRU network used in the anomalous exponent 
prediction. In grey we present the error distribution when considering trajectories 
of both models (MAE = 0.228), orange and blue present the error for trajectories 
of FBM (MAE = 0.135) and ATTM (MAE = 0.321), respectively. For both cases, 
results were obtained using 18000 trajectories with trajectory length T = 20, never 
seen by the machine, in order to avoid any overfitting. 
 

 
 

Figure S6: Schematic representation of diffusion models. (A-B) Leftmost panel: 
Idealized representation of a trajectory exhibiting ATTM (A) or FBM (B) diffusion. 
Under an ATTM scenario, the particle undergoes random changes in diffusion coefficient 



as its explores different environments (highlighted as squared purpled regions of different 
grading). In FBM, the diffusion of the particle is usually related to the viscoelastic 
interaction with its environment. Right panels: examples of trajectories with different 
anomalous exponents. Notice that both models can render similar anomalous exponents, 
nevertheless their physical origin are different.  
 

Figure S7. 2D density maps confirms SPT data. (A) Distribution of the D2-4 values of 
PR trajectories inside condensates. (B) Corresponding angle distribution between 
successive steps, and (C) ML trajectory assignment to the diffusion behavior.  
 

 



Figure S8. PR trajectories inside condensates exhibit two different populations. (A) 
Cumulative probability distribution (CPD) function of squared displacements (r2) is best 
fitted with a two-population function. (B) Percentage of trajectories belonging to the slow 
diffusion population. (C) D2-4 values of the slow (black) and fast (red) diffusing 
populations. (D) Cumulative MSD plot of PR trajectories inside condensates show 
confined motion (see Methods for details regarding the analysis and fittings). 
 

 
 

 
 
Figure S9: Example of a coalescence event following the standard BMC model. Two 
condensates with M1 and M2 particles, respectively, coalesce to form a larger one 
containing M1+M2 particles, considering area conservation in 2D or volume in 3D. Right 
panels: evolution of a system undergoing standard BMC, in which condensates diffuse 
following Stokes drag, and coalesce until reaching an equilibrium state with a single 
condensate containing all the particles. Colors showcase the size of condensates (dark for 
small and light for big). 

 
 
 
Figure S10. Escaping events in PR trajectories detected by the clustering algorithm. 
Representative trajectories with escaping events from condensates detected by the 
clustering algorithm. Condensates are labeled with different colors and the beginning of 
each trajectory is marked with an arrow. 
 



 
Figure S11:  Condensate radius mean (black line) and variance (shaded area) for 
the same system properties and values of Pu as considered in Fig. 4B. 
 

 
 

Figure S12. Difference in condensate growth between uniform and surface effects 
for large values of Pu. (A) Mean radius size for a system with uniform escaping 
probability (empty squares) and one in which only particles at the boundary can escape 
(circles), for various unbinding probabilities. (B)  Mean radius size at t = 105 as a function 
of Pu . Error bars indicate the corresponding deviation. The inset showcases the mean 
radius size at  t = 105  over the same set of Pu  presented in panel (A), for both uniform 
and surface escaping mechanisms. 



 


