1 Supporting Information

- 2 Short title
- 3 A. thaliana inositol pyrophosphate phosphohydrolases
- 4 Article title

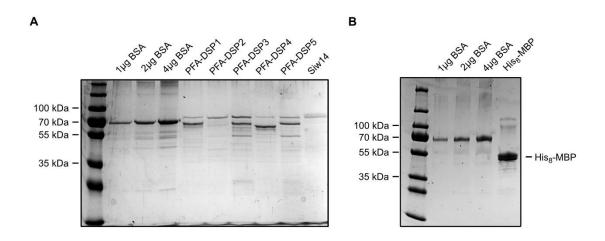
5 Arabidopsis PFA-DSP-type phosphohydrolases target specific inositol

6 pyrophosphate messengers

- 7 Philipp Gaugler^{1§}, Robin Schneider^{1§}, Guizhen Liu², Danye Qiu², Jonathan Weber¹, Jochen
- 8 Schmid^{3&}, Nikolaus Jork^{2,4}, Markus Häner², Kevin Ritter², Nicolás Fernández-Rebollo³, Ricardo

9 F.H. Giehl⁵, Minh Nguyen Trung⁶, Ranjana Yadav⁷, Dorothea Fiedler⁶, Verena Gaugler¹,

10 Henning J. Jessen², Gabriel Schaaf^{1*}, Debabrata Laha^{7*}


- 11 ¹Department of Plant Nutrition, Institute of Crop Science and Resource Conservation,
- 12 Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
- ²Department of Chemistry and Pharmacy and CIBSS-Centre for Integrative Biological
 Signalling Studies, Albert-Ludwigs University Freiburg, 79104 Freiburg, Germany
- ¹⁵ ³Center for Plant Molecular Biology, Department of Plant Physiology, Eberhard Karls
- 16 University Tübingen, 72076 Tübingen, Germany
- ⁴Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104
- 18 Freiburg, Germany
- ⁵Department of Physiology & Cell Biology, Leibniz-Institute of Plant Genetics and Crop Plant
- 20 Research, 06466 Gatersleben, Germany
- ⁶Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany;
- 22 Department of Chemistry, Humboldt Universität zu Berlin, 12489 Berlin, Germany.
- ²³ ⁷Department of Biochemistry, Indian Institute of Science (IISc), Bengaluru-560012, India
- [§]P.G. and R.S. contributed equally to this manuscript
- 25 *E-mail: gabriel.schaaf@uni-bonn.de, dlaha@iisc.ac.in

26

- 27 ORCID IDs: P.G.: 0000-0002-9187-404X, R.S. 0000-0002-9657-4548, G.L. 0000-0003-1748-
- 28 6687, DQ: 0000-0003-2197-3218, J.S.: 0000-0001-7527-7088, N.J.: 0000-0002-3717-443X,
- 29 M.H.: 0000-0003-3313-4868, K.R.: 0000-0001-7900-1855, N.F.R.: 0000-0003-3556-8766,
- 30 R.F.H.G: 0000-0003-1006-3163, M.N.T.: 0000-0003-3100-9609, R.Y.: 0000-0003-4956-5638,

31 D.F.: 0000-0002-0798-946X, V.G.: 0000-0002-3249-2922, H.J.J: 0000-0002-1025-9484, GS:

32 0000-0001-9022-4515, D.L.: 0000-0002-7823-5489

Figure S1: Purification of PFA-DSP proteins. (A, B) Recombinant His-MBP-PFA-DSPs or His-MBP-Siw14 were expressed in *E. coli* and purified with Ni-NTA resin as described in methods. Dialyzed proteins were denatured and separated by SDS-PAGE in parallel with BSA standards to determine protein concentrations by staining with Coomassie blue.

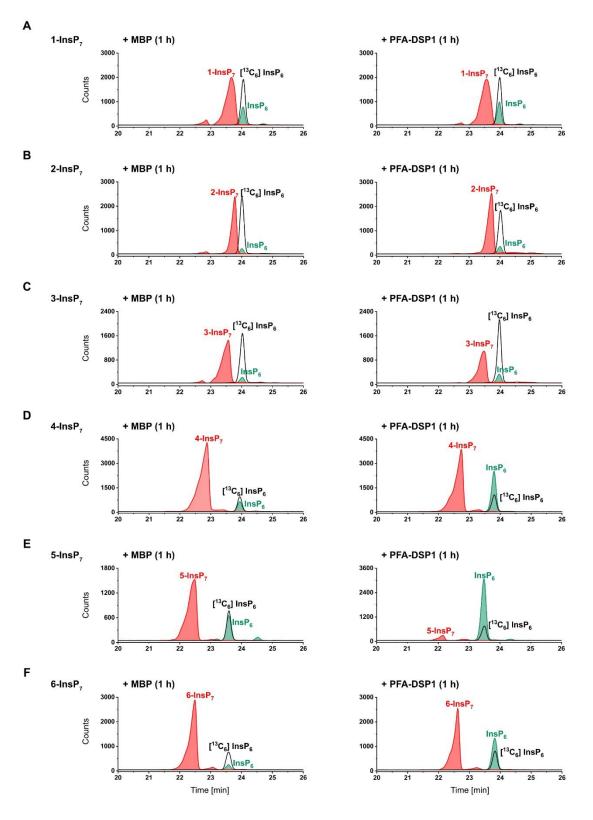


Figure S2: In vitro, Arabidopsis PFA-DSP1 displays robust PP-InsP phosphohydrolase activity against 5-InsP₇ and partial phosphohydrolase activity against 4-InsP₇ and 6-InsP₇, respectively. (A – F) 0.4 μ M PFA-DSP1 was incubated with 0.33 mM InsP₇ and 1 mM MgCl₂ for 1 h. The reaction product was spiked with an isotopic standards mixture ([¹³C₆]1,5-InsP₈, [¹³C₆]5-InsP₇, [¹³C₆]1-InsP₇, [¹³C₆] InsP₆, [¹³C₆]2-OH InsP₅) and subjected to CE-ESI-MS analyses. Representative extracted-ion electropherograms of samples shown in Figure 1.

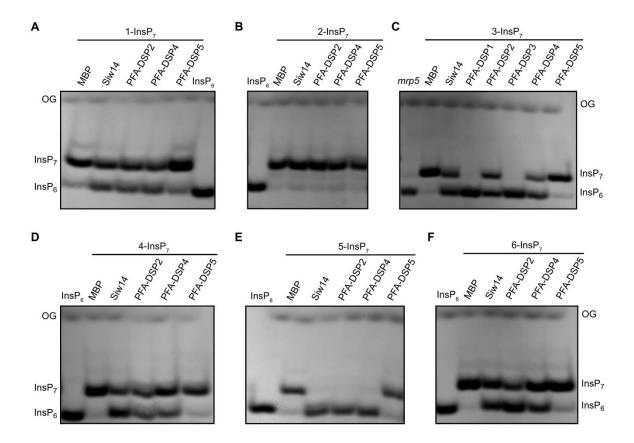


Figure S3: In the absence of divalent cations, all InsP₇ isomers with the exception of 2-InsP₇ become substrates for selected *Arabidopsis* PFA-DSPs *in vitro*. (A – F) Approximately 0.4 μ M His-MBP-PFA-DSPs and His-MBP were incubated with 1 mM EDTA and 0.33 mM InsP₇ for 1 h at 22°C. His-MBP served as a negative control. The reaction products were separated by 33 % PAGE and visualized with toluidine blue. The identity of bands was determined by migration compared to InsP₆ or (C) compared to TiO₂-purified *mrp5* seed extract.

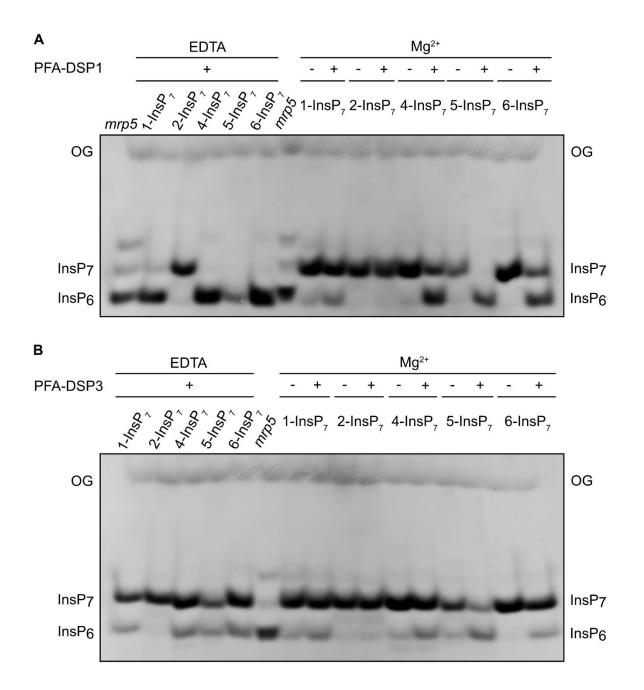


Figure S4: In the presence of Mg²⁺, PFA-DSP1 and PFA-DSP3 display robust *in vitro* InsP₇ phosphohydrolase activity with high specificity for the 5- β -phosphate. (A – B) Approximately 0.4 μ M His-MBP-PFA-DSP1 and His-MBP-PFA-DSP3 were incubated with 0.33 mM InsP₇ and 1 mM EDTA or 1 mM MgCl₂ for 1 h at 22°C. His-MBP served as a negative control. The reaction products were separated by 33 % PAGE and visualized with toluidine blue. The identity of bands was determined by migration compared to TiO₂-purified *mrp5* seed extract.

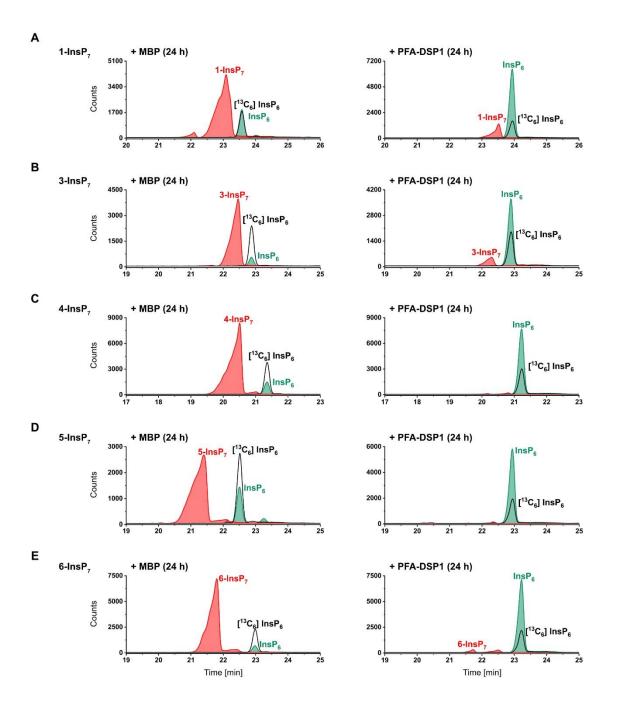


Figure S5: Under prolonged incubation time, *Arabidopsis* PFA-DSP1 efficiently hydrolyzes 5-InsP₇, 4-InsP₇ and 6-InsP₇ but only displays partial activities against 1-InsP₇ and 3-InsP₇. (A – E) 0.4 μ M PFA-DSP1 was incubated with 0.33 mM InsP₇ and 1 mM MgCl₂ for 24 h. The reaction product was spiked with an isotopic standards mixture ([¹³C₆]1,5-InsP₈, [¹³C₆]5-InsP₇, [¹³C₆]1-InsP₇, [¹³C₆] InsP₆, [¹³C₆]2-OH InsP₅) and subjected to CE-ESI-MS analyses. Representative extracted-ion electropherograms of samples shown in Figure 2.

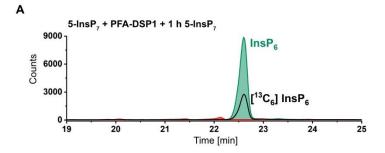
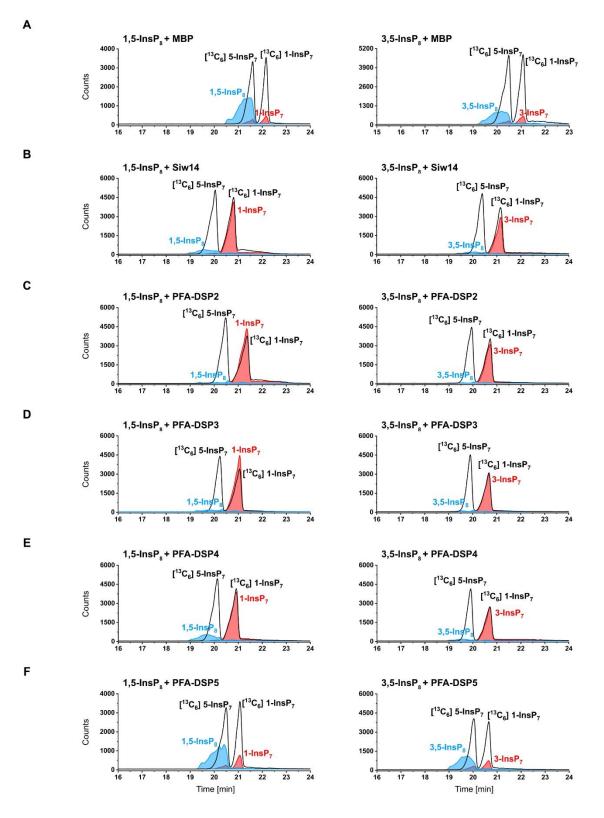
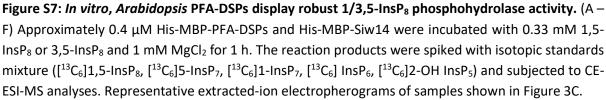
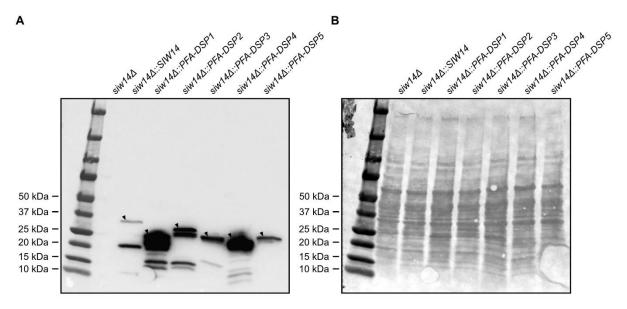





Figure S6: Arabidopsis PFA-DSP1 maintains 5-InsP₇ phosphohydrolase activity during prolonged incubation time *in vitro*. (A) 0.4 μ M PFA-DSP1 was incubated with 0.33 mM 5-InsP₇ and 1 mM MgCl₂ for 24 h. To ensure that PFA-DSP1 is active during the whole incubation time, 0.33 mM 5-InsP₇ was added after 23 h and incubated for another 1 h. The reaction product was spiked with an isotopic standards mixture ([¹³C₆]1,5-InsP₈, [¹³C₆]5-InsP₇, [¹³C₆]1-InsP₇, [¹³C₆] InsP₆, [¹³C₆]2-OH InsP₅) and subjected to CE-ESI-MS analyses.

Figure S8: All five PFA-DSP homologs are stably expressed in the *siw14*∆ **yeast strain.** Immunoblot analyses of protein extracts from *siw14*∆ yeast transformed with either empty pDRf1-GW plasmid or pDRf1-GW carrying *SIW14* or *PFA-DSP1–5* encoding translational fusions with a C-terminal V5-tag. (A) For detection of V5-tagged proteins, an anti-V5 tag primary antibody (Invitrogen; 1:2000 dilution) and an anti-mouse secondary antibody coupled with HRP (Bio-Rad; goat; 1:10000 dilution) were used. The chemiluminescence signal of the ECL substrate (Bio-Rad) was detected using the ChemiDoc MP imager (Bio-Rad). Black arrows indicate the specific protein bands based on the calculated molecular weight. (B) Ponceau staining of the same blot.

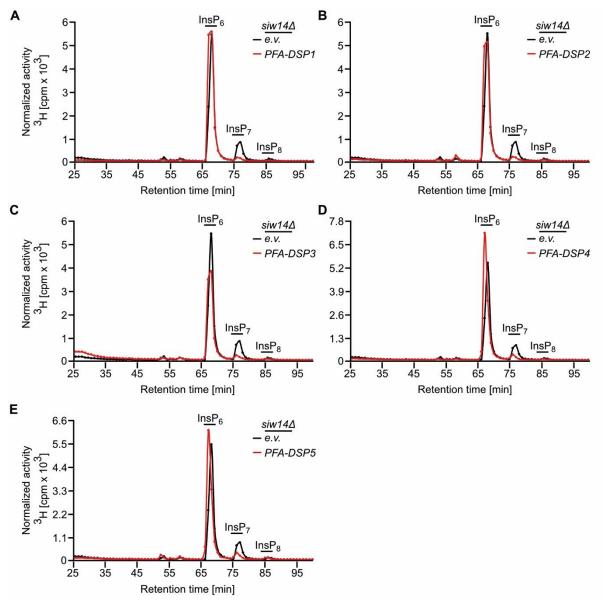
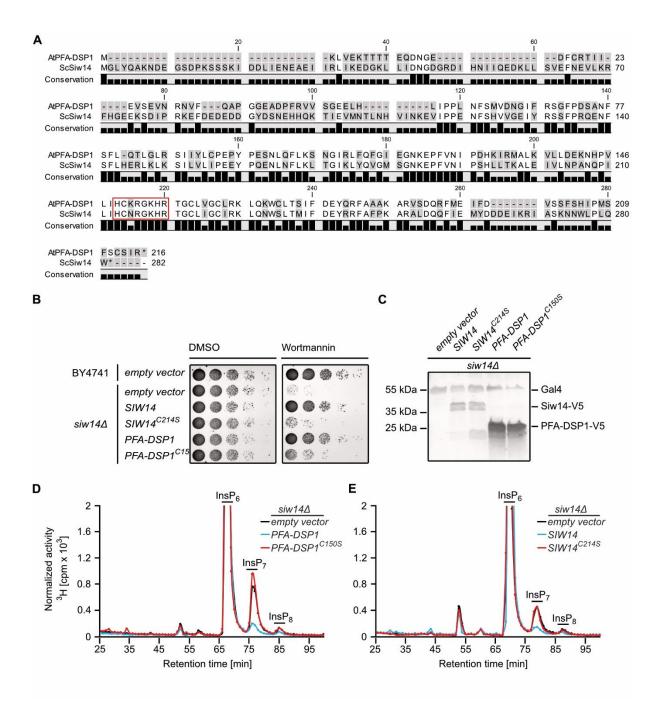
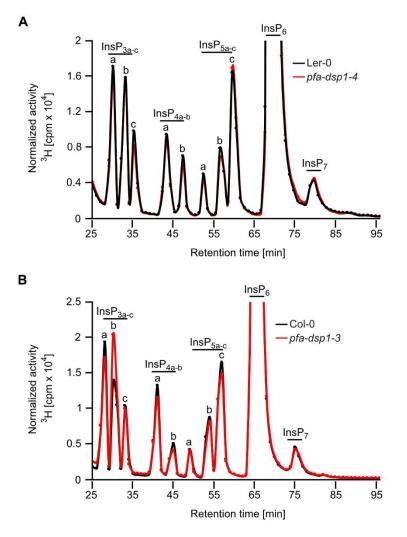
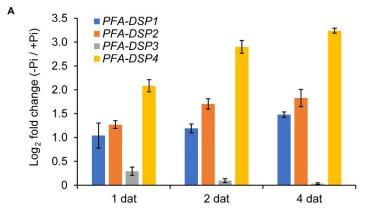
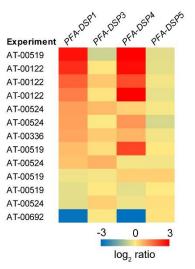



Figure S9: Heterologous expression of Arabidopsis PFA-DSPs complements siw14 Δ -associated defects in InsP₇/InsP₆ ratios in yeast. (A - E) SAX-HPLC profiles of radiolabeled siw14 Δ yeast transformed with either empty pDRf1-GW plasmid (e.v.) or pDRf1-GW carrying PFA-DSP1 - 5. Depicted is a representative analysis of each PFA-DSP transformant, with the same analysis of a representative empty vector transformant shown in the same profile in each graph. The experiment was repeated twice (n = 3) with similar results (combined data shown in Figure 4B).

Figure S10: Complementation of *siw14Δ*-associated growth defects depends on catalytic activity. (A) Protein alignment of Siw14 from yeast and its homolog PFA-DSP1 from *Arabidopsis thaliana*. Identical amino acids are shown in black, different residues are highlighted with grey boxes. The conserved PTP (Protein Tyrosine Phosphatase) signature motif HC(X)5R is highlighted with the red box. The alignment was generated via the Multiple Alignments function of CLC Main Workbench 8 (QIAGEN). (B) Growth complementation assay with *siw14Δ*. Wild-type yeast (BY4741) and the *siw14Δ* yeast mutant were transformed with pDRf1-GW plasmids carrying either *SlW14* or its catalytic mutant C214S or carrying *PFA-DSP1* or its catalytic mutant C150S. Yeast strains transformed with empty pDRf1-GW vector as indicated served as controls. Transformants were then spotted in 8-fold serial dilutions (starting from OD 1.0) onto selective media containing wortmannin solved in DMSO or DMSO alone as control. Plates were incubated at 26 °C for 2 days before photographing. (C) Immunoblotting of Siw14, Siw14^{C2145}, PFA-DSP1 and PFA-DSP1^{C1505}. For detection of V5-tagged proteins an anti-V5 tag primary antibody

(Invitrogen; 1:2000 dilution) and an anti-mouse secondary antibody coupled with Alexa Fluor plus 800 (Invitrogen; goat; 1:20000 dilution) were used. As loading control, Gal4 protein levels were detected simultaneously using a polyclonal anti-Gal4 antibody (Santa Cruz; 1:1000 dilution) and an anti-rabbit StarBright Blue 700 antibody (Bio-Rad, goat; 1:2500 dilution). The signal was detected using the multiplex function of the ChemiDoc MP imager (Bio-Rad). (D) SAX-HPLC profiles of extracts of radiolabeled *siw14* Δ yeast transformed with either empty pDRf1-GW plasmid (empty vector) or pDRf1-GW carrying either *SIW14* or *SIW14*^{C2145}. (E) SAX-HPLC profiles of radiolabeled *siw14* Δ yeast transformed with either empty pDRf1-GW carrying either *PFA-DSP1* or *PFA-DSP1*^{C1505}. (B – E) The experiments were repeated independently with similar results.


Figure S11: Single mutant Arabidopsis pfa-dsp1 loss-of-function lines do not display InsP/PP-InsP defects. Representative SAX-HPLC profiles of 20-days-old wild-type Ler-0 and pfa-dsp1-4 Arabidopsis seedlings (A) and of Col-0 and pfa-dsp1-3 Arabidopsis seedlings (B) radiolabeled with $[^{3}H]$ -myo-inositol. All visible peaks are highlighted and assigned to the corresponding InsP species. Based on published chromatographic mobilities ^{1, 2}, InsP_{4a} likely represents Ins(1,4,5,6)P₄ or Ins(3,4,5,6)P₄, InsP_{5a} likely represents InsP₅ [2-OH], InsP_{5b} likely represents InsP₅ [4-OH] or its enantiomeric form InsP₅ [6-OH], and InsP_{5c} likely represents InsP₅ [1-OH] or its enantiomeric form InsP₅ [3-OH]. The isomeric natures of InsP_{3a-c}, InsP_{4b}, InsP₇, and InsP₈ are unknown.

Perturbations

P deficiency study 4 (root) / mock treated Col-0 root samples
P deficiency study 2 (leaf) / Pi supplemented leaf samples
P deficiency (late) / high Pi treated whole plant samples (late)
P deficiency study 2 (root) / Pi supplemented root samples
P deficiency study 5 (6h) / mock treated root samples (6h)
P deficiency study 5 (24h) / mock treated root samples (24h)
P deficiency study 3 (Col-0) / untreated root samples (Col-0)
P deficiency study 4 (shoot) / mock treated Col-0 shoot samples
P deficiency study 5 (1h) / mock treated root samples (1h)
P deficiency / P repletion (root) / mock treated Col-0 root samples
P deficiency / P repletion (shoot) / mock treated Col-0 shoot samples
P deficiency study 5 (0h) / mock treated root samples (0h)
shift 5µM Pi to 1mM Pi / P deficiency study 6 (5µM Pi)

Figure S12: *Arabidopsis PFA-DSP1, 2* and *4* are strongly induced by P_i deficiency. (A) Expression of the indicated *PFA-DSPs* in roots of *Aradidopsis thaliana* (accession Col-0) plants according to a transcriptome experiment with Agilent microarrays ³; data deposited on e!DAL repository under the accession code https://doi.org/10.5447/IPK/2018/4. No probe for *PFA-DSP5* was present in the microarray chips. Seven-day-old plants pre-cultured on sufficient P_i supply were transferred to fresh solid media containing 625 μ M P_i (+Pi) or 100 μ M P_i (-Pi). Whole roots were collected at the indicated time points after transfer. Data represent means ± SD (n = 3). (B) Heatmap analysis of *PFA-DSPs* genes in response to the indicated P_i treatmens. No data are presented for *PFA-DSP2* as no probe for this gene is present in Affimetrix chips. Transcriptional data were retrieved and analyzed with Genevestigator (http://www.genevestigator.ethz.ch).

Table S1: Overview of Arabidopsis PFA-DSP substrate specificities in presence of Mg²⁺ showing a robust PP-InsP phosphohydrolase activity against 5-InsP₇, 1,5-InsP₈ and 3,5-InsP₈, *in vitro*. The table summarizes the *in vitro* results of Figure 1, 3, S2 and S7. (-) indicates no substrate, (+) poor substrate, (++) good substrate and n.d. no data.

Mg ²⁺	1-InsP ₇	2-InsP ₇	3-InsP ₇	4-InsP ₇	5-InsP ₇	6-InsP ₇	1,5-InsP ₈	3,5-InsP ₈
Siw14	(-)	(-)	(-)	(+)	(++)	(+)	(++)	(++)
PFA-DSP1	(+)	(-)	(+)	(+)	(++)	(+)	(++)	(++)
PFA-DSP2	(-)	(-)	(-)	(+)	(++)	(+)	(++)	(++)
PFA-DSP3	(+)	(-)	(+)	(+)	(++)	(+)	(++)	(++)
PFA-DSP4	(+)	(-)	(+)	(+)	(++)	(+)	(++)	(++)
PFA-DSP5	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)
PFA-DSP5 *	(-)	(-)	(-)	(+)	(++)	(+)	n.d.	n.d.

* tested with a higher PFA-DSP5 concentration and increased incubation time

Table S2: Oligonucleotide sequences.

Primer name	Sequence					
attB1 adapter	GGGGACAAGTTTGTACAAAAAAGCAGGCTTC					
attB2 adapter	GGGGACCACTTTGTACAAGAAAGCTGGGTC					
attB2+V5 adapter	GGGGACCACTTTGTACAAGAAAGCTGGGTCTTA <u>CGTAGAATCGAGACCGAGGAGAGAGG</u>					
	TTAGGGATAGGCTTACCTCCTCCAGATCC					
attB1_ScSIW14	AAAAAGCAGGCTTCATGGGTTTATATCAAGCAAAG					
attB2_ScSIW14s	AAAAAGCAGGCTTCATGGGTTTATATCAAGCAAAG					
attB2_ScSIW14V5	CTTACCTCCTCCAGATCCCCATTGTAGAGGCAACCAG					
attB1_AtPFA-DSP1	AAAAAGCAGGCTTCATGAAGCTTGTGGAGAAGAC					
attB2_AtPFA-DSP1ns	AGAAAGCTGGGTCCCTGATGGAACAAGAGAATG					
attB2_AtPFA-DSP1s	AGAAAGCTGGGTCTTACCTGATGGAACAAGAG					
attB2_AtPFA-DSP1V5	ACCTCCTCCAGATCCCCTGATGGAACAAGAGAATG					
attB1_AtPFA-DSP2	AAAAAGCAGGCTTCATGAAACTGATTGAGAAGACG					
attB2_AtPFA-DSP2s	AGAAAGCTGGGTCTTACCTATTGGAGCAAGAAAAAG					
attB2_AtPFA-DSP2V5	ACCTCCTCCAGATCCCCTATTGGAGCAAGAAAAAGAC					
attB1_AtPFA-DSP3	AAAAAGCAGGCTTCATGTGTTTGATTATGGAAACGG					
attB2_AtPFA-DSP3s	AGAAAGCTGGGTCTTAAACTCTAGCAGCCTGCG					
attB2_AtPFA-DSP3V5	ACCTCCTCCAGATCCAACTCTAGCAGCCTGCGG					
attB1_AtPFA-DSP4	AAAAAGCAGGCTTCATGACGTTAGAGAGTTACGCCG					
attB2_AtPFA-DSP4s	AGAAAGCTGGGTCTCAGTAATCAATAGTATTAGTATACCTCTTGG					
attB2_AtPFA-DSP4V5	ACCTCCTCCAGATCCGTAATCAATAGTATTAGTATACCTCTTGG					
attB1_AtPFA-DSP5	AAAAAGCAGGCTTCATGGGCTTAATTGTGGATGATG					
attB2_AtPFA-DSP5s	AGAAAGCTGGGTCTTATCCTTTGGTGGCTTGAGG					
attB2_AtPFA-DSP5V5	ACCTCCTCCAGATCCTCCTTTGGTGGCTTGAGG					
ScSIW14_C214S_F	TCAACCGATACTGATACATT <u>C</u> TAATAGAGGCAAACATAGAAC					
ScSIW14_C214S_R	GTTCTATGTTTGCCTCTATTA <u>G</u> AATGTATCAGTATCGGTTGA					
AtPFA-DSP1_C150S_F	GTTCTGATTCAT <u>A</u> GTAAGCGAGGC					
AtPFA-DSP1_C150S_R	GCCTCGCTTAC <u>T</u> ATGAATCAGAACA					
ScSIW14pgt_PstI_F	AGCCTGCAGGATGGAGCTGCTCCTGGCTG					
ScSIW14pgt_EcoRI_R	GAATTCAATATAAAGCGGGAATTTTTTTTTTC					
AtPFA-DSP1_267_F	ATACTTGTGCCCGGAGCCCT					
AtPFA-DSP1_373_R	TCACAAATGGCTCCTTGTTGCCT					
AtTIP41-like_F	TGGTTGGAAGCAGGAAGGGCT					
AtTIP41-like_R	TGCTGAGACGGCTTGCTCCTGA					
AtPP2AA3_F_qPCR	TGGTGCTCAGATGAGGGAGA					
AtPP2AA3_R_qPCR	TAGCACATCTGGGGCACTTG					
ScSIW14_pUG_F	CTCTTCTGGATCAATTTTTCTTTTCATCTAAAGTTTAAAAGGAGCAGCTGAAGCTTCGTA					
	CGC					
ScSIW14_pUG_R	CATCATTTTCGAAGAGACTAGTTACGTAAAGGTAATCACTGTCTACATAGCATAGGCCAC					
	TAGTGGATCTG					
WiscDsLox_473B10_LP	TTGTTTTGCAAAACTGCAAAG					
WiscDsLox_473B10_RP	ox_473B10_RP TTGCCTTCAATACCAAACTGG					
P745_WiscDsLox_F	AACGTCCGCAATGTGTTATTAAGTTGTC					
GT1415_F	CGACTCTCCTCACCTAAAGATTCA					
GT1415_R	GTTGCCTTCAATACCAAACTGG					
DS3-1	ACCCGACCGGATCGTATCGGT					
SAIL_116_C12_LP	TTGTTTTGCAAAACTGCAAAG					
SAIL_116_C12_RP	TTGCCTTCAATACCAAACTGG					
LB1_SAIL_F	GCCTTTTCAGAAATGGATAAATAGCCTTGCTTCC					

[&]Present address: Department of Biomedicine, University of Basel, 4058 Basel, Switzerland

References

- Kuo, H. F., Hsu, Y. Y., Lin, W. C., Chen, K. Y., Munnik, T., Brearley, C. A., and Chiou, T. J. (2018) Arabidopsis inositol phosphate kinases IPK1 and ITPK1 constitute a metabolic pathway in maintaining phosphate homeostasis, Plant J.
- 2. Stevenson-Paulik, J., Bastidas, R. J., Chiou, S. T., Frye, R. A., and York, J. D. (2005) Generation of phytate-free seeds in Arabidopsis through disruption of inositol polyphosphate kinases, Proc Natl Acad Sci U S A 102, 12612-12617.
- Bhosale, R., Giri, J., Pandey, B. K., Giehl, R. F. H., Hartmann, A., Traini, R., Truskina, J., Leftley, N., Hanlon, M., Swarup, K., Rashed, A., Voss, U., Alonso, J., Stepanova, A., Yun, J., Ljung, K., Brown, K. M., Lynch, J. P., Dolan, L., Vernoux, T., Bishopp, A., Wells, D., von Wiren, N., Bennett, M. J., and Swarup, R. (2018) A mechanistic framework for auxin dependent Arabidopsis root hair elongation to low external phosphate, Nat Commun 9, 1409.