
 
 

 

May 6, 2022 

Senior Editor, PLOS Biology 

 

Dear Dr. Roberts, 

 

Thank you for the opportunity to revise our manuscript entitled “Estimating the rate of plasmid transfer 

with an adapted Luria–Delbrück fluctuation analysis,” for submission as a Methods and Resources article 

to PLOS Biology. The comments provided by the reviewers were very thoughtful and have led to an 

improved manuscript.  

 

Below we offer detailed point-by-point responses to each of the reviewers’ suggestions. We include each 
original suggestion in black text, and our response in blue text. Any changes we made within our manuscript 

to address reviewer comments are highlighted in yellow. In some cases, a given change (including addition 

of new sections) was made in response to the suggestions of multiple reviewers. In those cases, the same 

text, figure, or section is presented under each relevant comment in different reviewers’ sections below. We 

realize this causes our response to be long, but we hope this makes things easiest for each reviewer as they 

work through our responses. 

Thank you to you and the reviewers for your help in making this a stronger manuscript. If you have any 

other questions or concerns, please do not hesitate to contact us. 

Sincerely, 

 

Olivia Kosterlitz 

Adamaris Muñiz Tirado 

Claire Wate 

Clint Elg 

Ivana Bozic 

Eva M. Top 

Benjamin Kerr 

 

 

Reviewer 1: 

 

The authors have developed a new method to estimate plasmid conjugation rates that explicitly accounts 

for the stochasticity inherent in conjugation. This is a fundamentally new method, and a refreshing take on 

estimating conjugation rates. I think this will be a useful tool for microbiologists and a good starting point 

for further work taking into account the stochasticity of conjugation.  

 

I would also like to congratulate the authors on their development of the paper since the very first preprint 

version.  

 

We sincerely thank the reviewer for this positive assessment. 

 

However, I see several points that could further improve this paper and heighten its impact.  
 

-- General comments: -- 

 



 

 

1. The LDM method is unique in its focus on the stochastic, early dynamics of conjugation. I am missing 

some more discussion of the biases unique to these early measurements. The authors already discuss the 

transconjugant extinction probability (in the presence of antibiotics), but it is a bit hidden in the 

supplementary materials. I did not see any discussion of dilution or plating errors (which may be greater at 

smaller population sizes), nor population level heterogeneity in resumption of growth when starting the 

conjugation assay. How do these stochastic dynamics affect the LDM in a way that is similar/different to 

other methods?  

 

We thank the reviewer for raising these issues. We thought these points were important enough to explore 

through further simulations, and we have added a new SI section that is explicitly focused on the added 

random effects of dilution, plating, and probabilistic failure of cells to form colonies or establish lineages 

in liquid culture. The bottom line from this section is that these random effects do increase variance of 

estimates and appear to impact the SIM estimate to a greater extent than the LDM estimate. We include this 

new SI section below for the reviewer’s convenience: 

 

SI Section 9: Random effects on estimate accuracy and precision 

 

In this section we explore, through simulation, some of the consequences of other random effects on the 

LDM and SIM estimates. Some of these effects are a consequence of experimental protocols. For instance, 

both approaches require dilution and plating in the laboratory to estimate donor and recipient density (and 

the SIM approach also uses dilution and plating to estimate transconjugant density). Because dilution and 

plating are subject to random sampling effects, there will be density-estimation errors introduced by these 

procedures. Other random effects are features of the cells under study. As we describe in SI sections 6d and 

7, there can be a non-zero probability that any cell will fail to establish a lineage. For instance, a donor cell 

may fail to form a colony on a plate after incubation on selective medium, or a lone transconjugant cell in 

a well may fail to yield a turbid culture after incubation in selective medium. Again, there will be 

stochasticity in the number of cell lineages that go extinct, which will lead to error in calculating key 

quantities needed for the estimates (even with corrections). Here we explore the consequences of some of 

these random effects. 

 

Random effects in dilution, plating, and failure to form colonies: We ran our stochastic simulations as before 

(SI Section 4), but instead of using the simulated numbers of cells directly for our estimates, we wrote a 

dilution-plating subroutine to simulate how cell density would be gauged in the lab. Suppose that a cell 

population has an actual density of 𝑁0 cells/mL. A 10-fold dilution series is generated recursively by 

diluting 100L into 900L. Thus, the density of cells in the first dilution is: 

 

𝑁−1 = 𝑟𝑣[Poisson(0.1𝑁0)] 
 

where 𝑟𝑣[𝑑] is a random value for a variable with a distribution given by 𝑑. The density of cells in the 

second dilution is: 

 

𝑁−2 = 𝑟𝑣[Poisson(0.1𝑁−1)]. 
 

More generally, the 𝑖th dilution has density: 

 

𝑁−𝑖 = 𝑟𝑣[Poisson(0.1𝑁−(𝑖−1))] 

 

Now 100L of each dilution in the entire series is plated, where the number of bacterial cells from the 𝑖th 

dilution landing on the plate is: 

 



 

 

𝐵−𝑖 = 𝑟𝑣[Poisson(0.1𝑁−𝑖)] 
 

Finally, the number of colonies forming (given an extinction probability of 𝜋) on the 𝑖th dilution plate is: 

 

𝐶−𝑖 = 𝑟𝑣[Binomial(𝐵−𝑖 , 1 − 𝜋)] 
 

We pick the dilution plate with the maximum number of colonies in the range between 30 and 300. If every 

dilution plate is below 30 colonies, we simply use the plate with the maximum number of colonies. For 

generality, let’s suppose we select the 𝑖th dilution plate. We compute the cell density of the undiluted culture 

as: 

 

𝑁est =
𝐶−𝑖

1 − 𝜋
× 10𝑖+1  

cells

mL
 

 

Given the random effects of dilution, plating, and cell lineage extinction, it is likely that 𝑁est will deviate 

from the actual cell density 𝑁0. 

 

For the SIM estimate, we use this procedure to generate the density of donors, recipients and 

transconjugants that are used in the estimate. For the LDM estimate, we use this procedure to generate the 

density of donors and recipients that are used in the estimate. Also, if the extinction probability of 

transconjugants in the wells is non-zero, we must also track a monoculture of transconjugants in order to 

estimate the transconjugant growth rate needed for the LDM correction (equation [7.1]), and we use the 

above procedure to estimate the transconjugant densities in these cases. 

 

Random effects in wells with transconjugants: However, we also need to calculate the fraction of wells with 

transconjugant-selecting medium that are not turbid for the LDM estimate. Here the actual simulated 

number of transconjugants in a given population at the end of the assay is 𝑇𝑡̃. The number of lineages that 

do not go extinct is 

 

𝐿−𝑖 = 𝑟𝑣[Binomial(𝑇𝑡̃ , 1 − 𝜋)] 
 

If 𝐿−𝑖 > 0, then the well is turbid, whereas if 𝐿−𝑖 = 0, then the well is non-turbid. The proportion of non-

turbid wells out of a total of W wells (𝑃nt) can then be calculated. If we have this quantity and all the 

relevant cell densities, we can then use equation [7.2] to calculate the corrected LDM estimate. 

 

Results: We show the results of adding these random effects in SI Figure 12. Each rectangle represents 100 

estimates for a combination of the time of the assay (𝑡̃) and an extinction probability (𝜋), which, for 

simplicity, we assume is the same for all cell types both on plates and in wells. For reference, estimates 

without the random effects of dilution, plating, and extinction are given in the bottom row of each plot. 

Estimates with the random effects of only dilution and plating can be found in the row with zero extinction 

probability in each plot. We note that as the extinction probability increases, the end point of the assay must 

also increase (to obtain sufficient colonies and turbid wells), thus, the range of times shift with this quantity.  

 

As random effects are added, both the LDM and SIM estimates of the donor conjugation rate tend to deviate 

more from the actual value, but there is not systematic deviation (SI Fig. 12a). Not surpisingly, as random 

effects are added, the variance in estimates rises, but this effect is more pronounced for the SIM estimate 

(SI Fig. 12b). For both approaches, a zero estimate is possible (when there are no transconjugant colonies 

or no turbid transconjugant wells) and for the LDM estimate an infinite estimate is possible (when all the 

transconjugant wells are turbid). However, we see these extreme values occur primarily at the boundaries 

of the time interval for the end of the assay (SI Figs. 12c and 12d). 



 

 

 
SI Figure 12: The random effects of dilution, plating, and failure to establish on the accuracy and 

variance of the LDM and SIM estimates. Different extinction probabilities are used, as indicated. The 

parameter values and initial densities are the same as SI Figure 5a which were 𝜓𝐷 =  𝜓𝑅 =  𝜓𝑇 =  1 and 

𝛾𝐷 =  𝛾𝑇 = 1 × 10−14. The dynamic variables were initialized with 𝐷0 = 𝑅0 =  105 and 𝑇0 = 0. The 



 

 

scenario with no dilution plating and a zero-extinction probability (the bottom row in each panel) is the data 

from SI Figure 5a. The mean deviation (a) and variation (b) of each set of estimates is given at 15-minute 

time intervals where at least 75 out of the 100 calculate estimates produced a finite non-zero value. (c) The 

number of infinite estimates out of the 100 calculated in the relevant intervals. (d) The number of estimates 

with a zero value out of the 100 calculated in the relevant intervals. We note that the Gillespie algorithm is 

computationally expensive when the densities get very large. Therefore, due to the longer incubation times 

needed for the SIM, only 100 populations of the 10,000 were simulated through the later time intervals until 

on average a population density of 1 x 109 is reached (i.e., 𝑡̃ = 8.5 h). The remaining 9,900 populations, 

used to compute 𝑝̂0(𝑡̃) for the LDM, were run until an average of 100 transconjugants was reached (i.e., 𝑡̃ 

= 6.9 h). This explains the truncation of the SIM estimates at 8.5 hours and the LDM estimates 6.75 hours, 

which is most notable in the scenario where the extinction probability is 0.99.  

 

The reviewer also asks about the effects of population-level heterogeneity. While we don’t include these 

preliminary results in our new SI section, we thought we would share them here (we hope to return to these 

effects in future work). In a new set of runs, for every population simulated, we picked the logarithm of 

growth and transfer parameters from a normal distribution centered on the logarithm of specific “baseline” 

parameter values. Thus, every simulated population could differ in these parameters. We simulated two 

levels of heterogeneity, and the results are in the figure below. Population-level heterogeneity does lead to 

slight bias and increased variance in the estimates. We note that these effects are more pronounced for the 

SIM estimate than the LDM estimate. 

 

 
Figure: The effects of heterogeneous parameters on the accuracy and variance of the LDM and SIM 

estimates. The baseline parameters used here are the same as in SI Figure 1 which were 𝜓𝐷 =  𝜓𝑅 =  𝜓𝑇 =
1, and 𝛾𝐷 = 𝛾𝑇 = 10−6. The dynamic variables were initialized with 𝐷0 = 𝑅0 =  102 and 𝑇0 = 0. The 

scenario with no variation added (the bottom row in each panel) is the data from SI Figure 1. For each 
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variable growth rate 𝜓𝑋′ (where the prime indicates a specific co-culture population) we pick the value such 

that ln 𝜓𝑋′ ~𝑁𝑜𝑟𝑚𝑎𝑙(ln 𝜓𝑋 , 𝜎2) where the unprimed parameter is the baseline value and 𝑋 ∈ {𝐷, 𝑅, 𝑇}. 

For each variable conjugation rate 𝛾𝑌′ we pick the value such that log10 𝛾𝑌′ ~𝑁𝑜𝑟𝑚𝑎𝑙(log10 𝛾𝑌 , 𝜎2) and 

𝑌 ∈ {𝐷, 𝑇}. The parameter 𝜎 is the standard deviation of the normal distributions used, which gauges the 

degree of population-level heterogeneity. The mean deviation (a) and the variation (b) of each set of 

estimates is given at 15-minute intervals where at least 90 out of the 100 calculated estimates produced a 

finite non-zero value (the default filtering criteria for time sweeps described in the Materials and Methods).  

 

2. In the stochastic simulations different numbers of simulations are compared for the different methods, 

since the LDM requires a panel of 84 simulations to be run for a single p0 estimate (line 652-658). This 

should be made equal to truly compare the variability of the different methods. From the description it was 

also not directly clear whether p0 was computed independently multiple times or reused across simulations 

to estimate the LDM. I would suggest comparing 1000 simulated conjugation assays of TDR / SIM / ASM 

against 1000 x 84 simulations to estimate the LDM.  

 

We agree with the reviewer that we should clarify the comparisons. For simplicity, we changed all the 

relevant figures (Figure 4, SI Figure 1-4) to show 100 estimates of each approach. Given the computational 

burden of the Gillespie algorithm and the number of treatments in the manuscript, we didn’t compare 1000 

estimates of each as the reviewer suggested, as this would have required generating an extra 90,000 

populations on top of the 10,000 already generated for each treatment. This is because we need 100 

independent simulations to calculate 𝑝̂0(𝑡̃)  since each calculation of 𝑝̂0(𝑡̃) is independent. In other words, 

the simulated populations are only used once (i.e., 100 LDM estimates requires 10,000 simulations to 

generate 100 independent 𝑝̂0(𝑡̃) values).  

 

To reflect this change and clarify our methodology, we have made the following alterations (highlighted 

words) to the relevant section (lines 699 – 705): 

 

“The LDM estimate needs multiple populations to calculate 𝑝̂0(𝑡̃); therefore, for each LDM estimate we 

reserved 100 independent populations to compute 𝑝̂0(𝑡̃) then one random population in the set of 100 was 

used to calculate the initial and final cell densities. In other words, the 10,000 populations yielded 100 LDM 

estimates. In contrast, one simulated population yields one SIM estimate. Therefore, we used the random 

population chosen to calculate the densities for each of the 100 LDM estimates to calculate 100 SIM 

estimates.”   

 

We also made the following changes (highlighted words) to the relevant legends. 

 

Lines 801 – 803 from Figure 4 legend:  

“The Gillespie algorithm was used to simulate population dynamics. 100 estimates of the donor conjugation 

rate are shown for each parameter combination (summarized using boxplots with the same graphical 

convention as in Figure 3).” 

 

SI lines 357 – 359 from SI Figure 1:  

“The Gillespie algorithm was used to simulate population dynamics. 100 estimates of the donor conjugation 

rate are shown for each parameter combination (summarized using boxplots with the same graphical 

convention as in Figure 3).” 

 

3. The substantial difference between the SIM and LDM on the experimental data (Fig. 6) is surprising, and 

I am missing the base case that shows they perform the same on a scenario where they should both do well 

(i.e. same growth/conjugation rates). The corresponding interpretation of the results (Line 367-382) also 

feels highly speculative. In the Figure 6 I further find it confusing that the cross-spp. SIM truncated is not 

listed next to the other cross-spp. results; and that there is no within-sp. SIM result.  



 

 

I think this is an important point because the current Fig gives the feeling that "different methods simply 

give different results", which would hinder the broader adoption of the LDM and the comparison of results 

across the literature.  

 

We agree with the reviewer that adding in an experiment where the SIM and LDM approaches would be 

predicted to both perform well should help with understanding (and hopefully adoption of the LDM 

approach). Thus, we added an experiment where we performed the truncated SIM protocol on the within-

species mating. In alignment with our expectations under near parametric homogeneity (e.g., 𝛾𝐷 ≈  𝛾𝑇), the 

SIM and LDM are congruent (i.e., we do not find statistically significant differences). In other words, when 

assumptions of both methods are met, the two approaches produce independent but similar experimental 

estimates of the donor conjugation rate. We added this experiment as the last boxplot in Figure 6. We note 

that we decided to retain the overall ordering of the boxplots in Figure 6 so that the order in which the 

comparisons are presented in the text is in alignment with the figure. To reflect this experimental addition, 

we have made the following highlighted word changes to the last paragraph in the relevant section (lines 

430 – 434), the figure, corresponding figure legend (lines 839 – 849): 

 

“Next, we performed the within-species mating between E. coli strains. The LDM estimate for within-

species conjugation rate (within E. coli) was higher than the cross-species LDM estimate by almost six 

orders of magnitude (comparison B in Figure 6; t-test, p<0.001), a difference that could explain the inflated 

SIM estimate. To further explore this explanation, we performed an additional cross-species SIM 

experiment with a shorter incubation time. In Figure 3c, as the incubation time was shortened, the SIM 

estimate approached the LDM estimate of the donor conjugation rate. Running the SIM protocol with a 

truncated incubation period (5 hours) resulted in a significantly lower cross-species conjugation rate 

estimate relative to the standard SIM estimate (comparison C in Figure 6; t-test, p<0.05), a result consistent 

with the pattern predicted under heterogeneous conjugation rates. Under a scenario with reduced parametric 

heterogeneity (e.g., 𝛾𝐷 ≈  𝛾𝑇), we predicted that the SIM and LDM estimate would be similar. Consistent 

with our prediction, the SIM estimate for the within-species conjugation rate using the truncated SIM 

protocol was not significantly different than the LDM estimate (comparison D in Figure 6; t-test, p=0.23).” 

 



 

 

“Figure 6 : Experimental estimates for cross-species and within-species conjugation rates. Each box 

summarizes six replicate estimates by the LDM, SIM or truncated SIM approach, where each data point 

corresponds to a replicate. We note each of these estimates involved a correction (see Materials and 

Methods), but the same patterns hold for uncorrected values. [A] compares the LDM and standard SIM 

approach for a cross-species mating (between K. pneumoniae and E. coli). [B] compares the cross- and 

within-species mating using the LDM approach. [C] compares the standard and truncated SIM approach 

for a cross-species mating. [D] compares the LDM and truncated SIM approach for a within-species mating. 

The asterisks indicate statistical significance by a t-test (one, three and four asterisks convey p-values in 

the following ranges: 0.01 < p < 0.05, 0.0001 < p < 0.001 and p < 0.0001, respectively).” 

 

We also made the following changes (highlighted words) to the relevant methods (lines 668 – 671): 

 

“This protocol was repeated six times alongside the LDM replicates. For the within-species mating, the 

SIM method was executed as outlined above for the cross-species mating, but only the truncated SIM 

method was conducted using a 3-hour incubation period.” 

 

-- Specific comments: -- 

 

a. The abstract and significance statement do not do the rest of the paper justice. Specifically, the 

significance of this manuscript to me seems more in the stochastic treatment of conjugation than in showing 

that commonly used methods are biased. Further, the results apply to all plasmids, not just those that carry 

antibiotic resistance.  

 

We are grateful to the reviewer for sharing their perspective here. We have reworked the abstract to 

emphasize how our stochastic-based method deviates from previous deterministic approaches, and we have 

rewritten the significance statement to echo the same emphasis (and simultaneously underline that plasmids 

with antibiotic resistance genes are just one category of plasmids of interest—albeit one that is particularly 

relevant from a public health perspective). The abstract and significance statement are copied below with 

the relevant portions highlighted (lines 33 – 36): 

 

“Abstract 

 To increase our basic understanding of the ecology and evolution of conjugative plasmids, we need 

a reliable estimate of their rate of transfer between bacterial cells. Current assays to measure transfer rate 

are based on deterministic modeling frameworks. However, some cell numbers in these assays can be very 

small, making estimates that rely on these numbers prone to noise. Here we take a different approach to 

estimate plasmid transfer rate, which explicitly embraces this noise. Inspired by the classic fluctuation 

analysis of Luria and Delbrück, our method is grounded in a stochastic modeling framework. In addition to 

capturing the random nature of plasmid conjugation, our new methodology, the Luria-Delbrück method 

(‘LDM’), can be used on a diverse set of bacterial systems, including cases for which current approaches 

are inaccurate. A notable example involves plasmid transfer between different strains or species where the 

rate that one type of cell donates the plasmid is not equal to the rate at which the other cell type donates. 

Asymmetry in these rates has the potential to bias or constrain current transfer estimates, thereby limiting 

our capabilities for estimating transfer in microbial communities. In contrast, the LDM overcomes obstacles 

of traditional methods by avoiding restrictive assumptions about growth and transfer rates for each 

population within the assay. Using stochastic simulations and experiments, we show that the LDM has high 

accuracy and precision for estimation of transfer rates compared to the most widely used methods, which 

can produce estimates that differ from the LDM estimate by orders of magnitude.  

 



 

 

Significance Statement  

 Conjugative plasmids play significant roles in the dynamics of microbial communities. 

Conjugation, the horizontal transfer of plasmids from one cell to another, is a common means of spread for 

genes of ecological significance, including those encoding antibiotic resistance. For both public health 

modeling and a basic understanding of microbial population biology, accurate estimates of the rate of 

plasmid transfer are of great consequence. Widely used methods assume the process of conjugation is 

deterministic and, under certain conditions, lead to biased estimates that deviate from true values by several 

orders of magnitude. Therefore, we developed a new approach, inspired by the classic fluctuation analysis 

of Luria and Delbrück, which treats plasmid transfer as a random process. Our Luria-Delbrück method is 

straightforward to implement in the laboratory and can accurately estimate the rate of plasmid conjugation 

for different bacterial systems under a wide variety of conditions.” 

 

b. Fig 3: 

- Panel A: the placement of the label "events occuring after t*" seems to suggest these are the only events 

occuring after t*. Perhaps the authors could move the label to above all lines/types of events, or reword to 

"additional events occuring after t*" 

- Panel C vs E: related to the general comment above, this seems an "unfair" comparison of both methods 

since these are not 10'000 independent estimates of the LDM. Line 744: I would perhaps rephrase that 

these are calculated "After" instead of "for" different incubation periods.  

 

We thank the reviewer for pointing this out. We changed the label in Figure 3 to ‘additional events after t*’ 

as the reviewer suggested. To clarify panel c and e, we proceeded with two changes. First, we made the 

label in panel c and e generic (changed to ‘calculate SIM’ and ‘calculate LDM’, respectively). Second, we 

made the following highlighted word changes to the relevant sentence in the figure legend to clarify the 

details (lines 767 – 799): 

 



“Figure 3 : Overview of stochastic simulation framework and the effects of incubation time on 

estimating the conjugation rate. (a) The mating assay starts (𝑡 = 0) with donors and recipients and their 

populations increase over time. At a critical time (𝑡∗, marked by a purple asterisk), the first transconjugant

cell is generated through a conjugation event between a donor and recipient. After 𝑡∗, all possible growth

and conjugation events can occur (including transconjugant division and conjugation). (b) A stochastic 

simulation of the equations [1]-[3] shows the donor, recipient, and transconjugant densities (red, blue, and 

purple thin trajectories, respectively) increasing over time. The deterministic numerical solution of the same 

equations and parameter settings from Figure 1b is shown for reference (thick lines). We note that for large 

densities, the stochastic and deterministic trajectories are closely aligned (i.e., the thick red and blue lines 

are overlaying their thin counterparts). After a specified incubation time (𝑡̃SIM, dotted orange line), we

measure the densities of the three populations (orange 𝐷𝑡̃, 𝑅𝑡̃, and 𝑇𝑡̃), which can be used to calculate the 
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(c) SIM estimate. (d) Multiple mating assays are needed for the LDM estimate. Here, five stochastic

simulations are shown, which display variation in 𝑡∗. At a specified incubation time (𝑡̃LDM, dotted brown

line), we determine the number of assay cultures with transconjugants (purple circles, where for a relevant 

culture 𝑖,  𝑡𝑖
∗ < 𝑡̃LDM) and without (gray circles, where for a relevant culture 𝑗,  𝑡𝑗

∗ > 𝑡̃LDM). These numbers

are used to calculate 𝑝̂0(𝑡̃), which, along with the donor and recipient densities (brown 𝐷0, 𝑅0, 𝐷𝑡̃ and 𝑅𝑡̃)

are used for the (e) LDM estimate. The SIM (part c) and LDM (part e) estimates are calculated after different 

incubation times, where the 𝑡̃SIM (part b) and 𝑡̃LDM (part d) are indicated with orange and brown dotted

arrows, respectively. The simulated trajectories in parts b and d would correspond to a single SIM or LDM 

estimate (the diamond points where the arrows terminate). The light orange and brown backgrounds 

indicate the range of incubation times giving a finite non-zero estimate of donor conjugation rate for the 

stochastic runs illustrated in parts b and d. In parts c and e, each box represents the distribution from 100 

estimates of the donor conjugation rate for a given 𝑡̃, spanning from the 25th to 75th percentile. Given the 

log y-axis, the zero estimates are placed at the bottom of the y-axis range. The whiskers (i.e., vertical lines 

connected to the box) contain 1.5 times the interquartile range with the caveat that the whiskers were always 

constrained to the range of the data. The colored line in the box indicates the median. The solid black line 

indicates the mean. Parameter values are identical to Figure 1b and used throughout.” 

c. Line 241-242: it may help readers to reiterate that this intuition only holds early on during the mutational

dynamics, when the R population is not too affected by transformation into transconjugants yet.

We thank the reviewer for the suggestion. We thought we could make the connection clearer by 

emphasizing a similarity in the structural set-up of our model and the Luria-Delbrück model, in line with 

the reviewer’s focus. We have added the following to this section (lines 251 – 260) where the most relevant 

portion is highlighted: 

“Comparing equation [12] to equation [11], conjugation can be thought of as a mutation process with initial 

wild-type population size 𝐷0𝑅0 that grows at rate 𝜓𝐷 + 𝜓𝑅. The structural similarity of the estimates is

grounded in a structural similarity of the underlying models; indeed, some of the same assumptions that 

apply to the mutation process modeled by Luria and Delbrück also apply to the conjugation process modeled 

here. For instance, the loss of recipients due to plasmid transfer is ignored in the recipient dynamics of the 

conjugation model (equation [6]) in the same way that the loss of wildtype cells due to mutation is ignored 

in the wildtype cell dynamics of the mutation model (equation [3.1] in SI Section 3), which tends to be a 

safe assumption when growth greatly outpaces transformation.” 

d. Line 258-259: this statement is quite simplified and ignores the fact that the SIM also requires the

population sizes to be large enough to be detectable.

We agree that this could be made clearer. Thus, we have made the following highlighted word changes to 

the relevant sentence (lines 285 – 289): 

“In the laboratory, the standard time point (𝑡̃) used for the SIM estimate is 24 hours, however, a truncated 

assay (𝑡̃ < 24) also produces a non-zero estimate of the conjugation rate as long as the incubation time is 

greater than 𝑡∗ (the orange region of Figure3b and c) and the density of transconjugants is large enough to

be detected.” 

e. Line 260-269: At this point in the text it was not clear how many wells/simulations are needed for the

maximum likelihood estimate of p0. Some info on this can be gleaned from SI Fig. 10, but it would be

helpful to know how many wells are necessary for the LDM estimates to be accurate (like the convergence).

Similarly, it would be good to know whether this depends on how close p0(t) is to 0 or 1 (how sensitive is

the LDM to the statement in line 316-318).



We thank the reviewer for raising this point. We thought this question warranted further simulation, which 

we have added to the end of SI Section 8. We do find that slight bias can enter for small numbers of 

populations (which we can explain via Jensen’s inequality). However, for the number of wells we are using 

(in the range between 50 and 100) the estimate appears to be accurate with low variance. In the new figure, 

we explicitly look at how variance changes with both the number of populations/wells and the assay time 

(which will affect the value of 𝑝0(𝑡̃)). We include the new text and figure here for the convenience of the

reviewer: 

As illustrated in SI Figure 10, the variance in the LDM estimate changes with the number of populations 

(W). How does this number affect the variance in the LDM estimate? Here we use simulations to further 

explore this question. In SI Figure 11a, we present the variance of LDM estimates as a function of assay 

time (𝑡̃) and the number of populations (W). Generally, as the number of populations decreases or as the 

boundaries of the time interval are approached (where nearly none or all of the populations have 

transconjugants) the variance in the LDM estimate rises. The exception seems to be for times that are very 

long, but the low variance is likely a result of having many infinite estimates that are not included in the 

estimate variance (SI Figure 11b). Both infinite estimates (SI Fig. 11b) and zero estimates (SI Fig. 11c) are 

more likely as the number of populations decreases; in other words, the interval of assay times producing 

non-zero finite estimates increases with the number of populations. Generally, the greater the number of 

populations and the more intermediate the assay time (e.g., where approximately half of the populations 

have transconjugants), the lower the variance. 

Suppose an experimenter is considering some number of wells (populations) and wants to decide how many 

estimates to produce. For instance, with 500 wells, the experimenter could decide to run a single LDM 

assay and obtain a single estimate (with W = 500) or perhaps instead could run 5 assays (with W = 100), 

10 assays (with W = 50), 50 assays (with W = 10) or 100 assays (with W = 5) for 5, 10, 50, and 100 

estimates, respectively. Does it make a difference to the precision or accuracy to split or lump wells? Here 

we explore this question through simulation. How do we compare different partitions of wells? Let us 

consider some total number of wells, call this W∗, and consider some factor of W∗, which we will call W′;
i.e., W∗/W′ = 𝑛, where 𝑛 is an integer. Here we will compare a single estimate with W∗ wells with the

mean of 𝑛 estimates that each use W′ wells. Thus, for SI Figure 11d, each point for W = 500 is a single

estimate, where each point for W = 5, W = 10, W = 50, and W = 100 is the mean of 100, 50, 10, and 5

estimates, respectively. With these comparisons in mind, we see two slight effects of different partitioning

patterns. First, the variance is a bit higher for the single estimate coming from the largest number of wells.

We attribute this shift to the fact that other quantities involved in the estimate (e.g., density of donors and

recipients) are only being computed once for each point for W = 500 in Fig. SI 11d, whereas these

quantities are being computed multiple times for smaller W values, such that anomalous values would tend

to get muted as the estimates were averaged. The second effect is a more notable one. We see that as the

number of wells per estimate goes down, slight inaccuracies in the estimate start to occur. Why does this

happen?

To answer this question, let us consider the LDM estimate: 

𝛾𝐷 = − ln 𝑝0(𝑡̃) (
𝜓𝐷 + 𝜓𝑅

𝐷0𝑅0(𝑒(𝜓𝐷+𝜓𝑅)𝑡̃ − 1)
) 

The main thing that will be affected by the number of populations is 𝑝0(𝑡̃). Specifically, as W decreases,

the variance in the fraction of populations without transconjugants increases. Suppose that we have 𝑛 LDM 

estimates under consideration, and for each one a value 𝑝̂0(𝑡̃) is needed. Here we define:



 

 

𝑝̂0(𝑡̃)̅̅ ̅̅ ̅̅ ̅ =
∑ 𝑝̂0,𝑖(𝑡̃)𝑛

𝑖=1

𝑛
, 

 

where 𝑝̂0,𝑖(𝑡̃) is the fraction of populations without transconjugants for the 𝑖th estimate. Now, by Jensen’s 

inequality, we have: 

 

− ln {
∑ 𝑝̂0,𝑖(𝑡̃)𝑛

𝑖=1

𝑛
} (

𝜓𝐷 + 𝜓𝑅

𝐷0𝑅0(𝑒(𝜓𝐷+𝜓𝑅)𝑡̃ − 1)
) <

1

𝑛
∑ − ln 𝑝̂0,𝑖(𝑡̃) (

𝜓𝐷 + 𝜓𝑅

𝐷0𝑅0(𝑒(𝜓𝐷+𝜓𝑅)𝑡̃ − 1)
)

𝑛

𝑖=1

 

 

− ln 𝑝̂0(𝑡̃)̅̅ ̅̅ ̅̅ ̅ (
𝜓𝐷 + 𝜓𝑅

𝐷0𝑅0(𝑒(𝜓𝐷+𝜓𝑅)𝑡̃ − 1)
) <

1

𝑛
∑ − ln 𝑝̂0,𝑖(𝑡̃) (

𝜓𝐷 + 𝜓𝑅

𝐷0𝑅0(𝑒(𝜓𝐷+𝜓𝑅)𝑡̃ − 1)
)

𝑛

𝑖=1

 

 

As W gets large, the value 𝑝̂0(𝑡̃) is close to 𝑝̂0(𝑡̃)̅̅ ̅̅ ̅̅ ̅ for smaller W values. Thus, using the terminology from 

above: 

 

𝛾𝐷[W∗] <
1

𝑛
∑ 𝛾𝐷[W′𝑖],

𝑛

𝑖=1

 

 

where 𝛾𝐷[W∗] is the conjugation rate for the largest number of wells (W∗), and 𝛾𝐷[W′𝑖] is the conjugation 

rate for the 𝑖th assay using a smaller number of wells (W′). Thus, we see that as we partition wells into 

smaller numbers per estimate, the mean estimate will rise, which is what we see in SI Figure 11d. As a 

consequence, we recommend a reasonably large number of wells in the LDM assay. A number between 50 

and 100 appears sufficient to avoid inaccuracy and is also convenient when using a microtiter plate format 

for populations. 

 



SI Figure 11: The variance of LDM estimates using stochastic simulation. Different number of 

populations (W) are used for the LDM estimates, as indicated. The parameters used here are the same 

baseline parameters in SI Figure 1 which were 𝜓𝐷 =  𝜓𝑅 =  𝜓𝑇 = 1, and 𝛾𝐷 = 𝛾𝑇 = 10−6. The dynamic

variables were initialized with 𝐷0 = 𝑅0 =  102 and 𝑇0 = 0. (a) The variation of each estimate is given at

15-minute intervals where more than 1 out of the 100 calculated estimates produced a finite non-zero value.

We ignore infinite estimates in the calculation of the variance. (b) The number of estimates with an infinite
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value out of the 100 calculated. (c) The number of estimates with a zero value out of the 100 calculated. (d) 

A total of 500 populations is partitioned in different ways—split into 100 groups of 5 populations (W=5), 

50 groups of 10 populations (W=10), 10 groups of 50 populations (W=50), 5 groups of 100 populations 

(W=100), or a single group of 500 populations (W=500). Each plotted point is the mean conjugation rate 

of the rates calculated for each group (where the number of populations within each group vary as indicated 

by the W value). Each partitioning was run 10 times. 

f. Line 292-294: This description is unclear and would benefit from stating more explicitly that the Gillespie

algorithm gets slow when population sizes are large (i.e. that the difference between both parameter sets is

in D0, R0 and gammaD).

We agree that more detail would help clarify things. Thus, we have made the following highlighted word 

changes to the relevant sentence (lines 322 – 325): 

“Given the large number of simulations for these sweeps, we chose parameter values (i.e., 𝐷0, 𝑅0, and 𝛾𝐷)

outside of typical values reported in the literature to reduce the computational burden of the Gillespie 

algorithm, which occurs when populations sizes become very large.” 

g. Cross-species case study (line 366): when and how was the growth rate of the individual strains

determined?

We thank the reviewer for pointing out that this was not clearly linked to our supplemental information. 

Thus, we have made the following highlighted words to a relevant sentence in the third paragraph in the 

‘Cross-species case study’ section (lines 409 – 412): 

“Second, our growth rate assays (conducted separately from the transfer estimate protocols; see SI section 

6b) revealed our cell types have different growth rates (SI Figure 8), thus violating the SIM assumptions.” 

Line 358-365: The authors did not test that the resource dependence is the same for conjugation and growth. 

As such, this paragraph seems to suggest a generality that doesn't hold, and the SIM estimate may be 

unnecessarily bad by running the assay over 24 instead of shorter (e.g. 6 hours).  

Our apologies for the lack of clarity. We did not mean to suggest that growth and conjugation is proportional 

in our experimental system. We meant to explain to the reader that this is an assumption embedded in the 

SIM approach and is an assumption of particular relevance for the 24-hour (standard) SIM protocol (as 

clearly growth rates decline as a batch culture enters stationary phase). Except for the original Simonsen et 

al. study, many researchers using the SIM estimate do not check this (or other) assumptions before 

calculating the metric using the standard assay. Our aim was to show that a failure to confirm underlying 

assumptions can lead to problems (although we focus more heavily on the assumption of transfer rate 

identicality). To clarify our intentions, we added the following highlighted sentences to the appropriate 

section (lines 396 – 402): 

“If conjugation rates decrease with resources in a similar fashion and the parametric identicality 

assumptions hold, the SIM estimate can be used over a full-day incubation. Despite the restrictive 

underlying assumptions, it is not uncommon for researchers to estimate plasmid transfer rates using the 24-

hour SIM protocol without experimental validation of assumptions. We proceeded with the standard SIM 

protocol in order to allow a comparison between this popular estimate and our new estimate (resulting from 

the LDM protocol, which does not rest on the same assumptions).” 

h. Line 494: Which violations of model assumptions is meant for the Dewar et al study here?



 

 

We apologize for the confusion. In this case, the Dewar et al. investigation published in 2021 in Nature 

Ecology & Evolution used conjugation rates as a key parameter in their modeling study. This reference was 

meant to emphasize the current urgency for estimating conjugation rates that the authors of this study point 

out at several places in their manuscript. For example, the Dewar et al. study states “A caveat here is that 

our estimates of transfer rates across different types of plasmid is relative and it would be very useful to 

obtain quantitative estimates of transfer rates.” To clarify, we made the following highlighted adjustments 

to the relevant sentence (lines 536 – 538): 

 

“Given recent interest in quantitative estimates of conjugation rate (29) and the impacts of model 

assumption violations (1, 2), there has been a matching interest in altering conjugation protocols such that 

bias is minimized when violations apply.” 

 

i. Line 530-536: I do not understand this section about the functional response and the conditionality of 

different methods. Could the authors explain their argument in different words?  

 

We thank the reviewer for communicating potential for confusion here. We decided to remove these two 

sentences-- as they are not necessary for the main point of the paragraph, and elaboration might end up 

breaking the flow of the paragraph. However, we will offer an explanation in this response letter.  

 

The model underlying the SIM approach does not assume that the conjugation rate is constant. Similar to 

growth rate, the model assumes that conjugation rate changes as a Monod function of resource 

concentration (𝐶): 

𝛾(𝐶) =
𝛾𝑚𝑎𝑥𝐶 

𝑄 + 𝐶
, 

where 𝑄 is the half saturation constant and 𝛾𝑚𝑎𝑥 is the asymptotic conjugation rate as 𝐶 → ∞. Thus, the 

model incorporates exactly how conjugation rate changes with environmental conditions (resources). Thus, 

there is a core conditionality built into the model—the conjugation rate is (an increasing and saturating) 

function of resource level. The SIM provides an estimate for a parameter, 𝛾𝑚𝑎𝑥, of this functional response. 

However, there is then the additional issue of whether this functional response is itself appropriate (e.g., 

some plasmids continue to transfer under stationary phase conditions, where resource levels are low). 

 

In case the reviewer is interested, we offer a slight generalization for the SIM estimate in our GitHub 

Appendix II. Specifically, the SIM estimate can be used if parametric homogeneity of growth and transfer 

rates applies across strains, and if growth rate has a functional response 𝜓(𝐶) = 𝜓∎𝑔(𝐶) and conjugation 

rate has a functional response 𝛾(𝐶) = 𝛾∎𝑔(𝐶). The quantities 𝜓∎ and 𝛾∎ are constant parameters and 𝑔(𝐶) 

is some shared function of resource concentration. In this case, the SIM estimate captures the constant 

parameter 𝛾∎ (although a researcher would have to also estimate 𝜓∎). The point is that other functional 

responses are possible (i.e., the SIM estimate does not require Monod functions), but the constraint that 

growth and transfer respond (functionally) similarly to resource level remains. 

 

j. Line 591: The number of 84 wells does not seem to match the number of black bordered wells in Fig. 5 

(87 wells).  

 

We thank the reviewer for pointing this out. To clarify where the 84 wells is coming from, we have made 

the following highlighted word changes to the relevant sentence (lines 626 – 632): 

 

“The exponentially growing cultures were diluted by a factor specific to the donor-recipient pair (SI section 

6e), mixed at equal volumes, and dispensed into 84 wells of a deep-well microtiter plate at 100 μl per well 

(Figure 5a black-bordered wells in rows 2 - 8, these wells were the co-cultures used to estimate 𝑝0(𝑡̃)). In 

an additional 3 wells (Figure 5a black-bordered wells in top row), 130 μl (per well) of the mixture was 



dispensed and immediately 30 μl was removed to determine the initial densities (𝐷0 and 𝑅0) via selective

plating.” 

k. Line 638-646: I would like to see this discussion on establishment probability (+ perhaps stochasticity in

pipetting etc.) more prominently discussed in the main text. In particular I would assume the effect of this

stochastic extinction is different for the SIM estimate vs. the LDM, but it would be good to test this with

simulations.

In response to the reviewer point #1 (our new SI Section 9) we have simulated the effects of different 

establishment probabilities (and dilution/plating random effects) on both the LDM and SIM estimates. As 

shown in SI Fig. 12b, there do seem to be greater impacts on the SIM estimate than the LDM estimate. 

We have also added an additional reference to the establishment probability SI sections at the end of our 

first results section in the main text (with the relevant bit highlighted from lines 263 – 272): 

“Lastly, as in the original Luria-Delbrück model, we focus on a pure ‘birth’ process (e.g., once mutants or 

transconjugants are generated, their numbers do not decrease). In our supplemental sections we explore the 

impacts of violations to some of these assumptions (e.g., the negligible impact of segregational loss in SI 

Section 4d, and how to correct for an effective loss in transconjugant cell numbers due to a failure of small 

numbers of transconjugants to establish under experimental conditions in SI Sections 6d and 7). Given the 

connections between modeling frameworks and estimate structures, we label the expression in equation 

[11] as the LDM estimate for donor conjugation rate, where LDM stands for ‘Luria-Delbrück Method.’ ”

l. Line 656: It would be helpful to mention this information on the number of populations used to estimate

the LDM (vs. other methods) also in the main text (e.g., around line 275) and/or in the figure captions.

We agree with the reviewer that this detail could appear earlier in the text. Thus, we have made the following 

highlighted word changes to the suggested sentence (lines 290 – 294): 

“While the SIM estimate uses the density of transconjugants (𝑇𝑡̃), the LDM equation instead involves 𝑝0(𝑡̃),

the probability that a population has no transconjugants at the end of the assay. A maximum likelihood 

estimate for this probability (hereafter 𝑝̂0(𝑡̃)) is obtained by calculating the fraction of populations that have

no transconjugants (e.g., 100 parallel simulations were used) at the specific incubation time 𝑡̃ (top of Figure 

3d).”  

m. Fig. 4: why did the runs result in SIM estimates of zero? Was the recipient population 0 in these

simulations?

This is a very good question. The SIM estimates are zero due to a zero transconjugant density at the chosen 

incubation time. To make a fair comparison across the different parametric combinations shown in Figure 

4, we calculated the SIM where on average there is 50 transconjugants. When the transconjugant 

conjugation rate is so much higher than the donor conjugation rate, the time where there is on average 50 

transconjugants shifts to an earlier point in time in comparison to a scenario where the donor conjugation 

rate and transconjugant conjugation rate are closer together. At these earlier time points, some runs have 

zero transconjugants (leading to SIM estimates of zero). To provide more information about the different 

incubation times used in each scenario and the source of the zero values, we have made the following 

highlighted word changes and provided a supplementary table:  

Lines 711 – 714: 

“To compare across various parameter settings (Figure 4), a single incubation time was chosen per 

parameter set and type of estimate (See SI Table 5 for the incubation times used).” 



Figure 4 legend (lines 812 – 816): 

“For the 10-2 transconjugant conjugation rate, many of the runs resulted in SIM estimates of zero due to 

zero transconjugants at the specific incubation time; therefore, the median (colored line) and the box are 

placed at the bottom of the plot (given that the y-axis is on a log scale).” 

SI Table 5: Specific incubation times (𝒕̃) used in stochastic simulations to compare across parameter 

settings. Each row lists the relevant figure and the corresponding x-axis value. Time is given in hours. For 

each parameter setting, the incubation time 𝑡̃ for the LDM estimate is set to the average 𝑡∗, and for the SIM

estimate is given by the time point for which an average of 50 transconjugants is reached.

Figure x-axis value 𝒕̃𝐋𝐃𝐌 𝒕̃𝐒𝐈𝐌 

Figure 4, SI Figure 1a 0.0625 4.34 7.89 

Figure 4, SI Figure 1a 0.125 4.11 7.49 

Figure 4, SI Figure 1a 0.25 3.7 6.78 

Figure 4, SI Figure 1a 0.5 3.1 5.67 

Figure 4, SI Figure 1a 1 2.35 4.27 

Figure 4, SI Figure 1a 2 1.61 2.86 

Figure 4, SI Figure 1a 4 1.01 1.74 

Figure 4, SI Figure 1a 8 0.6 1 

Figure 4, SI Figure 3 1 x 109 2.35 4.27 

Figure 4, SI Figure 3 1 x 108 2.35 4.27 

Figure 4, SI Figure 3 1 x 107 2.35 4.27 

Figure 4, SI Figure 3 1 x 106 2.35 4.27 

Figure 4, SI Figure 3 1 x 105 2.35 4.25 

Figure 4, SI Figure 3 1 x 104 2.33 4.11 

Figure 4, SI Figure 3 1 x 103 2.16 3.4 

Figure 4, SI Figure 3 1 x 102 1.44 2.02 

SI Figure 1b 0.0625 4.35 8.18 

SI Figure 1b 0.125 4.11 7.66 

SI Figure 1b 0.25 3.71 6.85 

SI Figure 1b 0.5 3.1 5.69 

SI Figure 1b 1 2.35 4.27 

SI Figure 1b 2 1.61 2.86 

SI Figure 1b 4 1.01 1.74 

SI Figure 1b 8 0.6 0.99 

SI Figure 2a 0.0625 3.3 6.4 

SI Figure 2a 0.125 3.22 6.23 

SI Figure 2a 0.25 3.07 5.89 

SI Figure 2a 0.5 2.8 5.26 

SI Figure 2a 1 2.35 4.27 



SI Figure 2a 2 1.78 3.07 

SI Figure 2a 4 1.2 1.99 

SI Figure 2a 8 0.74 1.15 

SI Figure 2b 0.0625 3.31 6.45 

SI Figure 2b 0.125 3.23 6.27 

SI Figure 2b 0.25 3.07 5.92 

SI Figure 2b 0.5 2.8 5.27 

SI Figure 2b 1 2.35 4.27 

SI Figure 2b 2 1.78 3.07 

SI Figure 2b 4 1.2 1.97 

SI Figure 2b 8 0.74 1.15 

SI Figure 2c 0.0625 2.64 4.59 

SI Figure 2c 0.125 2.62 4.57 

SI Figure 2c 0.25 2.59 4.54 

SI Figure 2c 0.5 2.52 4.46 

SI Figure 2c 1 2.35 4.27 

SI Figure 2c 2 1.97 3.62 

SI Figure 2c 4 1.34 2.31 

SI Figure 2c 8 0.8 1.29 

SI Figure 4 0.00001 2.35 4.27 

SI Figure 4 0.0001 2.35 4.27 

SI Figure 4 0.001 2.35 4.27 

SI Figure 4 0.01 2.36 4.29 

SI Figure 4 0.1 2.47 4.49 

n. SI table 3: The text reads "The SIM model can incorporate resource-dependent growth and conjugation

*because* (1) growth and transfer rates are homogeneous", but I would rather think this holds *if/when*

these two conditions are given.

We thank the reviewer for catching this mistake. We have changed the footnote in SI Table 3 (SI line 121) 

to read: 

“The SIM model can incorporate resource-dependent growth and conjugation if (1) growth and transfer 

rates are homogeneous and (2) the functional form for resource dependence is the same for growth and 

transfer.” 

o. Github folder:

- I could not find the code that was used to produce the simulations that are shown in SI Fig. 1 (or Fig. 1

for that matter), only the code to plot those simulation results.

- Some readme pages contain comments that look like they were meant to be internal/private (e.g.

https://github.com/livkosterlitz/LDM/tree/main/Figures ), and others don't display well

(https://github.com/livkosterlitz/LDM/tree/main/Simulations and

https://github.com/livkosterlitz/LDM/tree/main/Supporting_data).



We apologize for the mistakes on the GitHub documentation. We have remedied the ReadMe pages in the 

repository. In addition, the code for generating all the simulation data and the supporting documentation 

can be found at https://github.com/livkosterlitz/LDM/tree/main/Simulations.  

p. SI Fig 1-5:

- The TDR estimate is consistently a factor 10 smaller than the other estimates. Can the authors explain

why?

This is an interesting question, but the answer is a bit involved. 

In the GitHub appendices, we derive analytical expressions for the number of donors, recipients, and 

transconjugants under the ASM model assumptions (i.e., in which the recipient population is dominated by 

growth and the transconjugant population is dominated by growth and conjugation from donors). 

Specifically, 

𝐷𝑡̃ = 𝐷0𝑒𝜓𝐷𝑡̃ ,

𝑅𝑡̃ = 𝑅0𝑒𝜓𝑅𝑡̃ ,

𝑇𝑡̃ =
𝛾𝐷

𝜓𝐷 + 𝜓𝑅 − 𝜓𝑇
{𝐷0𝑅0𝑒(𝜓𝐷+𝜓𝑅)𝑡̃ − 𝐷0𝑅0𝑒𝜓𝑇𝑡̃}.

Thus, the TDR estimate can also be written analytically 

𝑇𝑡̃

𝐷𝑡̃𝑅𝑡̃ 𝑡̃
= 𝛾𝐷

1 − 𝑒−(𝜓𝐷+𝜓𝑅−𝜓𝑇)𝑡̃

(𝜓𝐷 + 𝜓𝑅 − 𝜓𝑇)𝑡̃

The TDR estimate is accurate only when there is no population growth. As either each of 𝜓𝐷, 𝜓𝑅, and 𝜓𝑇

approaches zero or as 𝑡̃ goes to zero, the TDR estimate becomes increasingly accurate. Letting 𝛼 =
(𝜓𝐷 + 𝜓𝑅 − 𝜓𝑇)𝑡̃, we can show this mathematically, because all these conditions are encompassed by 𝛼 →
0, and 

lim
𝛼→0

𝑇𝑡̃

𝐷𝑡̃𝑅𝑡̃ 𝑡̃
= lim

𝛼→0
𝛾𝐷

1 − 𝑒−𝛼

𝛼
. 

Using L'Hôpital's rule, 

lim
𝛼→0

𝑇𝑡̃

𝐷𝑡̃𝑅𝑡̃ 𝑡̃
= lim

𝛼→0
𝛾𝐷

𝑒−𝛼

1
= 𝛾𝐷

However, 𝛼 = (𝜓𝐷 + 𝜓𝑅 − 𝜓𝑇)𝑡̃ may be non-zero, and the TDR estimate will deviate from the donor

conjugation rate (𝛾𝐷).

In the simulations in the Supplementary Information, the baseline parameters are 𝜓𝐷 = 𝜓𝑅 = 𝜓𝑇 = 1.

With 𝑡̃ ≈ 4.25,  

𝑇𝑡̃

𝐷𝑡̃𝑅𝑡̃ 𝑡̃
≈ 0.23𝛾𝐷 ,

https://github.com/livkosterlitz/LDM/tree/main/Simulations


such that the TDR estimate is a little shy of one order of magnitude below the actual donor conjugation 

rate. Many of the parameter values produce a factor (1 − 𝑒−𝛼)/𝛼 that is close to the baseline value, which

is why the TDR estimate is about one order of magnitude in many of the plotted cases. 

However, we can use our formula to explain the more unusual deviations too. For instance, consider  𝜓𝐷 =
𝜓𝑅 = 1 and 𝜓𝑇 = 8. With 𝑡̃ ≈ 1.3,

𝑇𝑡̃

𝐷𝑡̃𝑅𝑡̃ 𝑡̃
≈ 529𝛾𝐷 ,

such that we see the TDR estimate is over two orders of magnitude greater than the actual donor conjugation 

rate (see the mean value for the rightmost transconjugant growth rate on the TDR plot in SI Figure 2c). 

As long as the basic assumptions of the ASM hold, the expression: 

𝑇𝑡̃

𝐷𝑡̃𝑅𝑡̃ 𝑡̃
= 𝛾𝐷

1 − 𝑒−(𝜓𝐷+𝜓𝑅−𝜓𝑇)𝑡̃

(𝜓𝐷 + 𝜓𝑅 − 𝜓𝑇)𝑡̃

Gives a good accounting of how the TDR deviates from the donor conjugation rate (𝛾𝐷), namely by the

factor: 

1 − 𝑒−(𝜓𝐷+𝜓𝑅−𝜓𝑇)𝑡̃

(𝜓𝐷 + 𝜓𝑅 − 𝜓𝑇)𝑡̃
. 

- Some legends read "Zero estimates were set to 10^-9": why were these 0? One could argue that in this

scenario and experimenter would clearly see something is wrong, and would redo the experiment for a

different incubation period / initial pop sizes.

As discussed under comment ‘m’, additional text and an SI table were added to address potential confusion 

surrounding incubation times and the source of zero estimates.  

- Do I understand the Material and Methods correctly that the incubation period was changed for each

method depending on when a certain # tranconjugants were reached, i.e. dependent on the transconjugant

growth rate + the conjugation rate (e.g. separately for each x-position in Fig S1)?

Yes, the reviewer is correct. We thank the reviewer for comments regarding potential confusion regarding 

chosen incubation times for analyzing the stochastic simulations. As discussed under comment ‘m’, 

additional text and SI table 5 were added to provide more information about incubation times. 

- The critical time threshold of the ASM is mentioned only for SI Fig. 3 (Line 386-390) but it looks like

this may have been a factor already in SI Fig. 2.

We agree with the reviewer that the ASM disclaimer appeared in the wrong place in the supplement. Thus, 

we have moved the relevant highlighted text to SI section 4a, the first portion of the ‘Extended Simulation 

Results’ in the supplemental material where we also include the TDR disclaimer (SI lines 323 – 334):  

“The incubation time selection criteria used for the SIM estimate was also used for the TDR and ASM 
estimates (see Materials and Methods and SI Table 5). However, given that all our simulated populations 

increase in size over the incubation time, a fundamental assumption of the TDR approach is broken for all 



the runs (i.e., no change in the density due to growth). The TDR estimate was included to be comprehensive 

(and illustrate that violation of the no growth assumption leads to systemic bias). Also, we note that we 

calculated the ASM metric in all scenarios and that in some cases the incubation time 𝑡̃ passed the critical 

time threshold (𝑡𝑐𝑟𝑖𝑡) where the ASM assumptions break down (see SI section 1a). The ASM estimate was

included in all scenarios to be comprehensive and illustrate that implementing the assay after 𝑡𝑐𝑟𝑖𝑡  can lead

to bias. Given that the chosen incubation time 𝑡̃ to evaluate these simulations is early, it highlights that for 

some parametric combinations proper implementation of the ASM metric is not possible.” 

q. Line 376: It was insufficiently clear that this reference to SI section 4 refers to sections 4fgh, and within

those sections not so clear what the assumptions and outcomes are (+ how they relate to the cross-species

conjugation experiment).

We agree with the reviewer that we could have been clearer. We updated the main text reference to be the 

relevant SI figure. In addition, we added the highlighted text to the relevant section in the supplement to 

provide additional information. 

Lines 412 – 413 in the main text: 

“While simulations show there is an effect of these inequalities, the effect size is insufficient to explain the 

observed difference in comparison A (SI Figure 6).”   

SI lines 478 – 501 in the supplement: 

’Here we used equations [4.5]-[4.12] that incorporate batch culture dynamics to simulate the cross-

species case study with the experimentally measured parameters to investigate the incongruency observed 

between the SIM and LDM estimates in Figure 6. Most of the parameters were from the average of six 

experiments (𝐷0 = 1.17 x 105, 𝑅0 = 3.33 x 104, 𝜓𝐷 = 1.91, 𝜓𝑅 = 1.47, 𝜓𝑇 = 1.48, 𝛾𝐷𝑅 = 1.96 x 10-13, and

𝛾𝑇𝑅 = 1.96 x 10-7) with the remaining parameters informed by the 24 hour densities as to mimic the batch

culture conditions of the experiment (𝐶0 = 4.41 x 109, 𝑄 = 1 x 107, and 𝑒 = 1). We used the numerical

solution to calculate the SIM estimate over time.  

We compared the numerical solution to the actual experimental measurements from the cross-

species experiments. The simulated density and conjugation estimate (SI Figure 6a solid lines) were similar 

to the average experimental densities and the experimental SIM estimate (SI Figure 6a circle data points). 

Thus, the experimental LDM estimates for the cross-species conjugation rates (𝛾𝐷𝑅 = 1.96 x 10-13) and the

within-species (𝛾𝑇𝑅 = 1.96 x 10-7) along with the measured growth rates are sufficient to recapture a

relatively inflated experimental SIM estimate. In contrast, a simulation with homogenous conjugation rates 

using either the cross- or within-species conjugation rate does not closely align with the experimental data 

(SI Figure 6b and c, respectively). These simulations also demonstrate that the heterogeneity in the 

measured growth rates is insufficient to produce the mismatch observed in the experimental data (SI Figure 

6b and c). This was worth checking given that heterogeneity in growth rates violates a modeling assumption 

of the SIM approach. This adds further support that the parametric heterogeneity in the conjugation rates is 

the potential cause for the incongruency between the LDM and SIM estimates reported in Figure 6.” 

- How good is the assumption (SI Line 476/477) that conjugation and plasmid loss are Monod functions of

the resource concentration?

The reviewer asks a good question. To our knowledge the functional dependence of conjugation rate and 

plasmid loss rate on resource concentration has not received a great deal of attention. Simonsen et al. (1990) 

did justify the Monod function assumption for the IncF plasmid used in their study (as plasmid transfer, 

similar to growth, halted in stationary phase). A case could be made that plasmid loss—given its dependence 

on cell division—might possess a rate that mirrors the functional form of the growth rate. However, we 

think it is likely that the assumption that conjugation rate is generally a Monod function will be violated. 

For instance, there are plasmids that continue to transfer even when cells are not growing (3); thus, if 



resource depletion corresponds to zero growth, it does not always correspond to zero conjugation such that 

conjugation is not a standard Monod function. 

We note that the derivation of the Simonsen et al. estimate does not require Monod functions, per se, but 

does require similarity between growth and conjugation as a function of resource such that the ratio of these 

rates remain constant across resource values. However, we think this assumption is also likely to be violated 

in specific systems. 

We emphasize that the LDM estimate focuses on populations exhibiting constant growth over relatively 

short periods of time (in which resource levels are taken to be relatively constant) and it is assumed that 

conjugation rate is also constant over the assay. Other estimates (e.g., SIM and ASM) can be calculated 

over short periods where growth and conjugation rate are close to constant. In such cases, there is no 

assumption that conjugation rate has any particular functional dependence on resources. Indeed, we argue 

that executing the LDM multiple times across a resource gradient would be a way to explore the relationship 

between resource level and conjugation rate. 

- Caption of Fig S6: have these significant deviations (Panel b/c) been tested statistically? Are the parameter

estimates from the LDM?

We thank the reviewer for catching this. Our language was sloppy here. We were referring to the striking 

mismatch between the model and the data, but we did not perform statistical tests here. We have rephrased 

this legend replacing the word “significantly.” The end of the legend for Fig S6 as the following highlighted 

word changes (lines 511 – 514) and now reads: 

“(b) A scenario with homogenous low conjugation rates (𝛾𝐷𝑅 = 𝛾𝑇𝑅 = 1.96 x 10-13) deviates markedly from

the experimental measurements. (c) A scenario with homogenous high conjugation rates (𝛾𝐷𝑅 = 𝛾𝑇𝑅 = 1.96

x 10-7) deviates substantially from the experimental measurements.”  

- Is Fig S7 repeated with the same parameters as Fig S6? The descriptive text is written as if this is general

behavior of the SIM, but the depletion of the recipient pool seems parameter-specific?

We appreciate the reviewer pointing this out. The reviewer is correct that the same parameters used in Fig 

S6 are used in Fig S7. Also, we apologize for not properly emphasizing that the behavior in Fig S7 is 

parameter specific. We added the highlighted text to the relevant section in the supplement to clarify (lines 

518 – 532): 

“In this section, we explored a violation of a modeling assumption in the SIM approach by using a model 

variation where the functional form of growth rate and conjugation rate are not proportional. This is relevant 

given that there are plasmid systems that will readily violate this proportional assumption (e.g., IncP 

plasmids). Here, we assume that while growth rates follow the Monod equation, conjugation rates are not 
dependent on resource and remain constant after resources are depleted. We found that using this model 

and the same experimentally measured parameter values used in SI Figure 6 resulted in a higher SIM 

estimate at 24 hours (SI Figure 7a) compared to the scenario where conjugation rate is proportional to 

growth rate (SI Figure 7b). It is worth noting that by using this new model and these particular parameter 

values, the recipient pool is completely depleted which coincides with the SIM estimate no longer being a 

finite, positive value. This differs from SI Figure 7b where the SIM estimate hits an asymptote remaining 

at a finite, positive value. In this case, the recipient pool is not depleted because in this version of the model 

(SI section 4f) the conjugation rates approach zero as the resources are depleted.” 



Reviewer 2: 

In this manuscript, Kosterlitz and colleagues propose an elegant and effective method for estimating 

plasmid conjugation rates. The key innovation, inspire by Luria and Delbrück's classic of (microbial) 

evolutionary genetics, is to use presence/absence of transconjugants across multiple cultures, rather than 

absolute counts from a single culture. Simulations and data convincingly show that the proposed method is 

more robust than existing approaches, and the authors provide extensive (re-)derivations enabling 

comparison with the state-of-the-art. Overall I thought this was an excellent piece of work and makes a 

valuable contribution to the field. The analyses are comprehensive, but clearly written and easy to follow 

even for a non-mathematician. Supplementary Information and Figures are excellent.  

We sincerely thank the reviewer for these positive comments. 

I do, however, have some suggestions/comments for consideration, which may improve things further. 

1. In the proposed LDM approach, p[hat]_0(t[tilde]) is the probability of zero mutants at time t[tilde] and

is estimated by establishing multiple cultures and counting the proportion of negatives. p[hat]_0(t[tilde]) is

therefore an estimate, the accuracy of which will presumably improve with the number of cultures

established. There is not much discussion/analysis of how the accuracy of the overall measurement will

vary with the number of cultures. This has consequences for experimental design. While the recommended

96-well plate design is sensible, I wonder if there is a minimum number of cultures that is required for

accurate calculation? Or is it worth investing more resources to run more cultures to improve accuracy? Is

the proposed one-plate-per-measurement approach the most efficient?

We thank the reviewer for raising this question, which we felt warranted additional simulations. We have 

added the results to the end of SI Section 8, as we follow up on the issues of estimate variance discussed in 

that section. For small numbers of cultures (e.g., 5 or 10 wells) slight bias can enter into the LDM estimate, 

which we can explain via Jensen’s inequality—see below). However, for the number of wells we are using 

(between 50 and 100) the estimate is accurate and precise. We also explore the effects of “partitioning” 

wells to achieve different numbers of estimates. Again, we find that partitioning so that the total number of 

populations per estimate is in the range of 50-100 wells appears to optimize accuracy and precision. We 

include the new text and figure here for the convenience of the reviewer: 

As illustrated in SI Figure 10, the variance in the LDM estimate changes with the number of populations 

(W). How does this number affect the variance in the LDM estimate? Here we use simulations to further 

explore this question. In SI Figure 11a, we present the variance of LDM estimates as a function of assay 

time (𝑡̃) and the number of populations (W). Generally, as the number of populations decreases or as the 

boundaries of the time interval are approached (where nearly none or all of the populations have 

transconjugants) the variance in the LDM estimate rises. The exception seems to be for times that are very 

long, but the low variance is likely a result of having many infinite estimates that are not included in the 

estimate variance (SI Figure 11b). Both infinite estimates (SI Fig. 11b) and zero estimates (SI Fig. 11c) are 

more likely as the number of populations decreases; in other words, the interval of assay times producing 

non-zero finite estimates increases with the number of populations. Generally, the greater the number of 

populations and the more intermediate the assay time (e.g., where approximately half of the populations 

have transconjugants), the lower the variance. 

Suppose an experimenter is considering some number of wells (populations) and wants to decide how many 

estimates to produce. For instance, with 500 wells, the experimenter could decide to run a single LDM 

assay and obtain a single estimate (with W = 500) or perhaps instead could run 5 assays (with W = 100), 

10 assays (with W = 50), 50 assays (with W = 10) or 100 assays (with W = 5) for 5, 10, 50, and 100 

estimates, respectively. Does it make a difference to the precision or accuracy to split or lump wells? Here 



we explore this question through simulation. How do we compare different partitions of wells? Let us 

consider some total number of wells, call this W∗, and consider some factor of W∗, which we will call W′;
i.e., W∗/W′ = 𝑛, where 𝑛 is an integer. Here we will compare a single estimate with W∗ wells with the

mean of 𝑛 estimates that each use W′ wells. Thus, for SI Figure 11d, each point for W = 500 is a single

estimate, where each point for W = 5, W = 10, W = 50, and W = 100 is the mean of 100, 50, 10, and 5

estimates, respectively. With these comparisons in mind, we see two slight effects of different partitioning

patterns. First, the variance is a bit higher for the single estimate coming from the largest number of wells.

We attribute this shift to the fact that other quantities involved in the estimate (e.g., density of donors and

recipients) are only being computed once for each point for W = 500 in Fig. SI 11d, whereas these

quantities are being computed multiple times for smaller W values, such that anomalous values would tend

to get muted as the estimates were averaged. The second effect is a more notable one. We see that as the

number of wells per estimate goes down, slight inaccuracies in the estimate start to occur. Why does this

happen?

To answer this question, let us consider the LDM estimate: 

𝛾𝐷 = − ln 𝑝0(𝑡̃) (
𝜓𝐷 + 𝜓𝑅

𝐷0𝑅0(𝑒(𝜓𝐷+𝜓𝑅)𝑡̃ − 1)
) 

The main thing that will be affected by the number of populations is 𝑝0(𝑡̃). Specifically, as W decreases,

the variance in the fraction of populations without transconjugants increases. Suppose that we have 𝑛 LDM 

estimates under consideration, and for each one a value 𝑝̂0(𝑡̃) is needed. Here we define:

𝑝̂0(𝑡̃)̅̅ ̅̅ ̅̅ ̅ =
∑ 𝑝̂0,𝑖(𝑡̃)𝑛

𝑖=1

𝑛
, 

where 𝑝̂0,𝑖(𝑡̃) is the fraction of populations without transconjugants for the 𝑖th estimate. Now, by Jensen’s

inequality, we have: 

− ln {
∑ 𝑝̂0,𝑖(𝑡̃)𝑛

𝑖=1

𝑛
} (

𝜓𝐷 + 𝜓𝑅

𝐷0𝑅0(𝑒(𝜓𝐷+𝜓𝑅)𝑡̃ − 1)
) <

1

𝑛
∑ − ln 𝑝̂0,𝑖(𝑡̃) (

𝜓𝐷 + 𝜓𝑅

𝐷0𝑅0(𝑒(𝜓𝐷+𝜓𝑅)𝑡̃ − 1)
)

𝑛

𝑖=1

 

− ln 𝑝̂0(𝑡̃)̅̅ ̅̅ ̅̅ ̅ (
𝜓𝐷 + 𝜓𝑅

𝐷0𝑅0(𝑒(𝜓𝐷+𝜓𝑅)𝑡̃ − 1)
) <

1

𝑛
∑ − ln 𝑝̂0,𝑖(𝑡̃) (

𝜓𝐷 + 𝜓𝑅

𝐷0𝑅0(𝑒(𝜓𝐷+𝜓𝑅)𝑡̃ − 1)
)

𝑛

𝑖=1

 

As W gets large, the value 𝑝̂0(𝑡̃) is close to 𝑝̂0(𝑡̃)̅̅ ̅̅ ̅̅ ̅ for smaller W values. Thus, using the terminology from

above: 

𝛾𝐷[W∗] <
1

𝑛
∑ 𝛾𝐷[W′𝑖],

𝑛

𝑖=1

where 𝛾𝐷[W∗] is the conjugation rate for the largest number of wells (W∗), and 𝛾𝐷[W′𝑖] is the conjugation

rate for the 𝑖th assay using a smaller number of wells (W′). Thus, we see that as we partition wells into

smaller numbers per estimate, the mean estimate will rise, which is what we see in SI Figure 11d. As a 

consequence, we recommend a reasonably large number of wells in the LDM assay. A number between 50 

and 100 appears sufficient to avoid inaccuracy and is also convenient when using a microtiter plate format 

for populations. 



SI Figure 11: The variance of LDM estimates using stochastic simulation. Different number of 

populations (W) are used for the LDM estimates, as indicated. The parameters used here are the same 

baseline parameters in SI Figure 1 which were 𝜓𝐷 =  𝜓𝑅 =  𝜓𝑇 = 1, and 𝛾𝐷 = 𝛾𝑇 = 10−6. The dynamic

variables were initialized with 𝐷0 = 𝑅0 =  102 and 𝑇0 = 0. (a) The variation of each estimate is given at

15-minute intervals where more than 1 out of the 100 calculated estimates produced a finite non-zero value.
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We ignore infinite estimates in the calculation of the variance. (b) The number of estimates with an infinite 

value out of the 100 calculated. (c) The number of estimates with a zero value out of the 100 calculated. (d) 

A total of 500 populations is partitioned in different ways—split into 100 groups of 5 populations (W=5), 

50 groups of 10 populations (W=10), 10 groups of 50 populations (W=50), 5 groups of 100 populations 

(W=100), or a single group of 500 populations (W=500). Each plotted point is the mean conjugation rate 

of the rates calculated for each group (where the number of populations within each group vary as indicated 

by the W value). Each partitioning was run 10 times. 

2. Following: in a traditional conjugation assay (e.g. SIM), one would normally establish multiple replicate

conjugation reactions for each treatment, enumerate the various (sub-)populations within each replicate,

and calculate conjugation rate from each replicate. The mean and variance of these calculated values would

then be statistically analysed and compared between conditions e.g. by a linear model. A similar approach

appears to have been used for the LDM in Figure 6 to compare between these approaches — 6 replicates

were run (lines 616-617). But perhaps, if one was to exclusively use the LDM method to compare

treatments, it would be possible to test statistical significance on a basis analogous to a binomial test? That

is, rather than running 84 wells six times (n = 6), a measure of variance could be calculated from the

proportion of positives across all 504 wells. I'm not sure exactly how this would work in the context of the

full formula, nor whether it would increase statistical power... I accept that addressing this may well be

beyond the scope of the current manuscript but I am curious to know the authors' thoughts.

We thank the reviewer for the interesting question. First, there is an important caveat. The LDM estimate 

requires more quantities than 𝑝̂0(𝑡̃), i.e., namely donor and recipient densities over time as well as the

incubation time of the assay. If these other quantities change from one treatment to another, than it won’t 

be sufficient to compare only the number of positive wells (because 𝑝̂0(𝑡̃) will not be the only factor leading

to a change in 𝛾𝐷). If conjugation rate and/or environmental conditions are changing with treatment, then

these quantities (e.g., final donor and recipient densities as well as time of the assay) may be expected to 

vary (perhaps substantially). However, let’s assume that all of these other quantities have the same expected 

values across treatments. In such a case, the conjugation rates in the different treatments would be fairly 

close to one another. In such a case, it does seem reasonable to us that a statistical test grounded in the 

number of positive wells (e.g., binomial test or Fisher’s exact test) should give a result consistent with the 

approach that we use, and, in such a case, it would be easier to simply pool wells. Would this improve 

statistical power? While we are not sure of the answer, we did think that it was worthwhile to ask what the 

effect of pooling wells on the precision of the estimate would be. This question motivated the simulations 

behind SI Figure 11d (in the response to the reviewer’s point #1). For instance, we can compare a single 

estimate with 500 wells to the mean of 5 estimates with 100 wells each. Interestingly, we see that there is 

actually less variance to the mean of 5 estimates with 100 wells each. We believe this occurs because taking 

a mean also mutes the effects of variation in the other quantities (i.e., donor and recipient densities), which 

tends to improve the precision. This does mean that if a simple comparison of positive wells is not possible 

(e.g., because other quantities in the estimate are changing across treatments), that there may be reasons not 

to pool wells for a minimal number of estimates. However, one should also not split the wells so much that 
each estimate has very few wells (as bias can start to enter the mean estimate). From our preliminary 

simulations, it seems that running a set of replicates with about 50-100 wells each may be the best strategy. 

3. The authors comprehensively and clearly address the potential issues in their approach arising from

transconjugant-selecting media and extinction probability in the SI (SI section 6d). However, this was not

well signposted in the main text. Perhaps a couple of words could be inserted line 615: "When designing

transconjugant-selecting media, appropriate preliminary and control experiments must be conducted to

ensure that the media enables exclusive growth of transconjugants (see SI section 6d)".

We thank the reviewer for bringing up this point. We have added a few relevant additions to the main text. 

First, we have added a reference to the extinction probability section as we discuss some of the connections 



between the Luria-Delbrück mutation model and our conjugation model (namely that both models are 

stochastic birth process models, but a failure of transconjugant establishment is an important kind of 

effective “cell death” which we deal with in the SI). The end of the first Results section now reads (where 

the relevant parts are highlighted (lines 251 – 272): 

“Comparing equation [12] to equation [11], conjugation can be thought of as a mutation process with initial 

wild-type population size 𝐷0𝑅0 that grows at rate 𝜓𝐷 + 𝜓𝑅. The structural similarity of the estimates is

grounded in a structural similarity of the underlying models; indeed, some of the same assumptions that 

apply to the mutation process modeled by Luria and Delbrück also apply to the conjugation process modeled 

here. For instance, the loss of recipients due to plasmid transfer is ignored in the recipient dynamics of the 

conjugation model (equation [6]) in the same way that the loss of wildtype cells due to mutation is ignored 

in the wildtype cell dynamics of the mutation model (equation [3.1] in SI Section 3), which tends to be a 

safe assumption when growth greatly outpaces transformation. Furthermore, in the same way that 

reversions (mutations restoring a wildtype genotype from a mutant) are disregarded in the mutational 

model, we ignore the possibility of transconjugants (and donors) becoming plasmid-free through 

segregational loss in the conjugation model. Lastly, as in the original Luria-Delbrück model, we focus on 

a pure “birth” process (e.g., once mutants or transconjugants are generated, their numbers do not decrease). 

In our supplemental sections we explore the impacts of violations to some of these assumptions (e.g., the 

negligible impact of segregational loss in SI Section 4d, and how to correct for an effective loss in 

transconjugant cell numbers due to a failure of small numbers of transconjugants to establish under 

experimental conditions in SI Sections 6d and 7). Given the connections between modeling frameworks 

and estimate structures, we label the expression in equation [11] as the LDM estimate for donor conjugation 

rate, where LDM stands for “Luria-Delbrück Method.” 

Additionally, as the reviewer suggests, we also add the following to the Methods (lines 652 – 656): 

“This medium disrupted new conjugation events—immediately by diluting cells then by inhibiting donors 

and recipients—while simultaneously allowing growth for transconjugants. When designing 

transconjugant-selecting media, appropriate preliminary and control experiments must be conducted to 

ensure that the media enables exclusive growth of transconjugants (see SI section 6c).” 

Here we refer to SI section 6c (focused on preventing donor and recipient growth and allowing 

transconjugant growth) as opposed to SI section 6d (focused on the extinction probability assay and estimate 

correction). However, we now do refer to the extinction probability SI sections (6d and 7) at a few points 

in the main text. 

Reviewer 3: 

By providing an improved method of estimating conjugation rates (as well as carefully comparing it to 

previous methods), this study fills an important gap in the field. It is also explained clearly and with enough 

detail, such that others could apply the method themselves. Kudos to the authors for a very interesting, 

thorough and rigorous study. They’ve done a great job of keeping the main text concise and focused on the 

key messages, but the Supplementary contains a wealth of useful additional information – I appreciate the 

amount of work that goes into this material, and I think it really contributes to good science. The manuscript 

is already very clearly written and the figures are well designed to get across some rather complex ideas – 

clearly a lot of thought has gone into presentation.  

Scientifically, I don’t see any faults with this study – the math all looks correct, and the experimental 

protocol is thoroughly described and includes carefully chosen controls.  



We sincerely thank the reviewer for their positive comments. 

On close reading of both main + SI, I’ve still ended up with a long list of minor suggestions to further 

improve the presentation or clarify occasional details, but I emphasise that this is pretty high-level polishing 

and I am happy to leave most of these suggestions to the authors’ discretion (other than fixing an apparent 

broken link in the GitHub repository).  

1. Abstract – I personally thought the importance of using a stochastic approach could have been

better emphasised – the current framing suggests the main advance is to address asymmetries in

rates, with stochasticity an afterthought rather than a crucial factor in achieving accuracy. I had a

similar impression in the Introduction – it wasn’t clearly stated why a stochastic description is

important in general, not only for unequal rates. For example, what if gT = gD but both are low?

(However, if the authors consider the emphasis on heterogeneous rates to be more relevant to the

field, then I accept their judgement on this point.)

We thank the reviewer for their candor about a missed opportunity for emphasis. We have rewritten the 

abstract, significance statement and one paragraph in the introduction to highlight how the stochastic 

approach differs from prior deterministic ones. The abstract and significance statement now read as follows 

(with the relevant portions in highlighted (lines 32 – 66): 

“Abstract 

To increase our basic understanding of the ecology and evolution of conjugative plasmids, we need 

a reliable estimate of their rate of transfer between bacterial cells. Current assays to measure transfer rate 

are based on deterministic modeling frameworks. However, some cell numbers in these assays can be very 

small, making estimates that rely on these numbers prone to noise. Here we take a different approach to 

estimate plasmid transfer rate, which explicitly embraces this noise. Inspired by the classic fluctuation 

analysis of Luria and Delbrück, our method is grounded in a stochastic modeling framework. In addition to 

capturing the random nature of plasmid conjugation, our new methodology, the Luria-Delbrück method 

(‘LDM’), can be used on a diverse set of bacterial systems, including cases for which current approaches 

are inaccurate. A notable example involves plasmid transfer between different strains or species where the 

rate that one type of cell donates the plasmid is not equal to the rate at which the other cell type donates. 

Asymmetry in these rates has the potential to bias or constrain current transfer estimates, thereby limiting 

our capabilities for estimating transfer in microbial communities. In contrast, the LDM overcomes obstacles 

of traditional methods by avoiding restrictive assumptions about growth and transfer rates for each 

population within the assay. Using stochastic simulations and experiments, we show that the LDM has high 

accuracy and precision for estimation of transfer rates compared to the most widely used methods, which 

can produce estimates that differ from the LDM estimate by orders of magnitude.  

Significance Statement 

Conjugative plasmids play significant roles in the dynamics of microbial communities. 

Conjugation, the horizontal transfer of plasmids from one cell to another, is a common means of spread for 

genes of ecological significance, including genes encoding antibiotic resistance. For both public health 

modeling and a basic understanding of microbial population biology, accurate estimates of the rate of 

plasmid transfer are of great consequence. Widely used methods assume the process of conjugation is 

deterministic and, under certain conditions, lead to biased estimates that deviate from true values by several 

orders of magnitude. Therefore, we developed a new approach, inspired by the classic fluctuation analysis 

of Luria and Delbrück, which treats plasmid transfer as a random process. Our Luria-Delbrück method is 

straightforward to implement in the laboratory and can accurately estimate the rate of plasmid conjugation 

for different bacterial systems under a wide variety of conditions.” 



We have also incorporated some of this emphasis into the end of the introduction. Here we provide the first 

part of this restructured last paragraph (lines 144 – 152): 

“Here we derive a novel estimate for conjugation rate by explicitly tracking transconjugant dynamics as a 

stochastic process (i.e., a continuous time branching process). This represents a notable deviation from 

previous approaches that are built upon deterministic frameworks. The random nature of conjugation can 

lead to substantial variation in the number of transconjugants at the end of a mating assay (𝑇𝑡̃) as this 

population will often be small. Prior deterministic frameworks rely on this number (e.g., equation [4]), such 

that transconjugant variation adds problematic noise to the estimate. In contrast, our stochastic approach 

leverages this noise to produce an estimate (akin to the way Luria and Delbrück estimated mutation rate 

(4)).…”  

2. L45-6: the wording “not being affected by different growth and transfer rates” could be confusing;

I think you mean the method is equally applicable, not that the results are unaffected.

Thank you for pointing this out-- we agree that this should be made clearer. Thus, we have made the 

following highlighted word changes to the relevant sentence (lines 47 – 49): 

“In contrast, the LDM overcomes obstacles of traditional methods by avoiding restrictive assumptions 

about growth and transfer rates for each population within the assay.”  

3. Eq. [4]: should the LHS just be g, not gD?

The reviewer is correct that the original version uses 𝛾 and not 𝛾𝐷. When 𝛾𝐷 = 𝛾𝑇 = 𝛾, which is an

assumption being made in the model underlying the SIM approach, either quantity could be used in 

principle. But what quantity is the actual target of the SIM estimate? This estimate is meant to describe the 

rate of conjugation from donors to recipients, which is why we write this as 𝛾𝐷.

When 𝛾𝐷 ≪ 𝛾𝑇, then there are two ways to describe the set-up of this equation for the SIM estimate:

1. The SIM approach is still trying to estimate the value of 𝛾𝐷, but it is inaccurate (as one of the

assumptions of its underlying model is violated). Here one might prefer to use 𝛾𝐷 for the equation

to underline that this is the target quantity.

2. The SIM approach actually is capturing some hybrid quantity that blend effects of the different

conjugation rates from donors (𝛾𝐷) and transconjugants (𝛾𝑇). This hybrid quantity is termed 𝛾, and

its deviation from the true value of 𝛾𝐷 is the indication that the violation of the model assumption

has caused a deviation from the intended target.

We think a case can be made for each description, but we lean towards the first so that all estimates underline 

their common target quantity explicitly. 

4. L226, wording could be slightly clearer: “where there are initially no transconjugants”; “the only

process that can initially change the number of transconjugants” (or, “produce the first

transconjugant”)

We thank the reviewer for these changes, which definitely improves the clarity of this passage. We have 

added the suggested highlighted edits to the relevant sentences (lines 236 – 238): 

“Given the standard set-up of a mating assay, we focus on a situation where there are initially no 

transconjugants. Therefore, the only process that can produce the first transconjugant is conjugation of the 

plasmid from a donor to a recipient.” 



5. A critical assumption in the derivation of the p0 estimation method (similarly to its use for mutation

rate estimation) is that the mutant or transconjugant population, once becoming non- zero, never

drops to zero again. In the present case, there are (at least) two key assumptions for this to be true:

(1) no cell death; (2) no segregative loss of the plasmid. #1 should be reasonable in benign growth

conditions but could be given a passing mention. #2 seems important, and was actually addressed

in the Supplementary – I think this is well worth mentioning in the main text.

We thank the reviewer for raising this important point. We now bring up these issues (in the context of the 

connection of our modeling assumptions to the modeling assumptions of Luria and Delbrück). We now 

explicitly note that our model (like the Luria-Delbrück model) is a pure stochastic birth process, which 

means that loss of transconjugants (e.g., through cell death or segregational loss) is ignored. We added 

some text to the end of the first section in the Results, which reads as follows (where we have highlighted 

the most relevant parts) (lines 251 – 272): 

“Comparing equation [12] to equation [11], conjugation can be thought of as a mutation process with initial 

wild-type population size 𝐷0𝑅0 that grows at rate 𝜓𝐷 + 𝜓𝑅. The structural similarity of the estimates is

grounded in a structural similarity of the underlying models; indeed, some of the same assumptions that 

apply to the mutation process modeled by Luria and Delbrück also apply to the conjugation process modeled 

here. For instance, the loss of recipients due to plasmid transfer is ignored in the recipient dynamics of the 

conjugation model (equation [6]) in the same way that the loss of wildtype cells due to mutation is ignored 

in the wildtype cell dynamics of the mutation model (equation [3.1] in SI Section 3), which tends to be a 

safe assumption when growth greatly outpaces transformation. Furthermore, in the same way that 

reversions (mutations restoring a wildtype genotype from a mutant) are disregarded in the mutational 

model, we ignore the possibility of transconjugants (and donors) becoming plasmid-free through 

segregational loss in the conjugation model. Lastly, as in the original Luria-Delbrück model, we focus on 

a pure “birth” process (e.g., once mutants or transconjugants are generated, their numbers do not decrease). 

In our supplemental sections we explore the impacts of violations to some of these assumptions (e.g., the 

negligible impact of segregational loss in SI Section 4d, and how to correct for an effective loss in 

transconjugant cell numbers due to a failure of small numbers of transconjugants to establish under 

experimental conditions in SI Sections 6d and 7). Given the connections between modeling frameworks 

and estimate structures, we label the expression in equation [11] as the LDM estimate for donor conjugation 

rate, where LDM stands for “Luria-Delbrück Method.” 

6. L248-9: Using the Gillespie algorithm, presumably you have treated all populations (D, R, T)

stochastically? This would be helpful to state explicitly, as it contrasts with the analytical treatment

above, where only T is stochastic.

We thank the reviewer for this clarifying suggestion. We have added the suggested highlighted edits to the 

relevant sentences (lines 275 – 278): 

“To explore the accuracy and precision of the LDM estimate and compare it to the SIM estimate (as well 

as other estimates, see SI section 4), we used the Gillespie algorithm to stochastically simulate the dynamics 

of donors, recipients, and transconjugants in a standard mating assay using equations [1]-[3].”  

7. L266-7: The LDM estimate really requires a mix of presence/absence across replicates.

We appreciate the reviewer pointing out this correction. We have edited the highlighted area in the relevant 

sentence (lines 296 – 299): 



“Because the LDM estimate requires the absence of transconjugants in a fraction of populations, while the 

SIM estimate requires their presence, the range of incubation times for the LDM approach will be earlier 

than the SIM approach.”   

8. L289 word choice: “surpassed” might be confusing (suggesting the estimate was higher); rather,

“outperformed”?

We thank the reviewer for the correction. We have edited the highlighted area in the relevant sentence (lines 

319 – 320): 

“Once again, the LDM estimate generally outperformed the SIM estimate across this range (Figure 4b).” 

9. L304: “at a time close to the average t*”

We appreciate the reviewer pointing out this mistake. We have added highlighted words to the relevant 

sentence (lines 334 – 337):  

“The basic approach is to inoculate many donor-recipient co-cultures and then, at a time close to the average 

𝑡∗, add transconjugant-selecting medium (counterselection for donors and recipients) to determine the

presence or absence of transconjugant cells in each co-culture.” 

10. Around L339: Is there any risk that wells were already grown enough to be (somewhat) turbid

before addition of the selective media? If so, will turbidity decline as cells die, or could dead cells

or debris continue to contribute enough OD to interfere with scoring turbidity at the end of the

assay?

We appreciate the reviewer asking this question given that a turbid vs. non-turbid signal after growth in 

transconjugant-selecting medium is necessary for calculating 𝑝̂0(𝑡̃). For the range of conjugation rate

estimates we measured in the laboratory (i.e., ~1 x 10-14 – 1 x 10-7) and reported in this study, the 1:10 

dilution in the deep-well plates was sufficient to dilute cultures such that this kind of spurious turbidity 

(which could have interfered in scoring the assay) did not occur. For instance, with our approach, we never 

observed turbidity (comparable to the wells with transconjugant growth) in the control wells (e.g., wells of 

donor alone or recipient alone) after the transconjugant-selecting medium was added, nor at the end of the 

protocol. More generally, we provide guidance on how to check and troubleshoot the transconjugant-

selecting medium in the step-by-step protocol provided on protocols.io. In response to this question, we 

have also added more details in the relevant protocol steps (steps 16 – 17) about how to change the dilution 

factor and microtiter plate format if ‘background turbidity’ is an issue for a future user.  

“Here we are recommending that the user dilute the mating cultures ten-fold with transconjugant-selecting 

medium. After overnight incubation, if the turbidity of the transconjugant control well is too similar to the 
mating control wells making it difficult to distinguish turbidity coming from transconjugant growth and 

turbidity coming from inhibited/dead donor and recipient cells, then this may be indicative that the final 

densities of the donors and recipients are too high relative to the dilution factor. One option for mitigating 

this issue is to dilute the mating cultures more than ten-fold. This would require a larger deep-well format 

or a smaller mating culture volume.” 

11. As I was reading the main text, a couple of questions about the lab protocol came to mind: (1) Are

both estimation methods (SIM and LDM) applied to the exact same cultures, or separate ones?

We agree that this could be made clearer. Thus, we have made the following highlighted word changes to 

a relevant sentence in the first paragraph in the ‘Cross-species case study’ section (lines 285 – 287): 



 

 

 

“We implemented the LDM and SIM protocols on the same bacterial cultures to compare the laboratory 

estimates of cross-species conjugation rate.”   

 

(2) Were the growth rates (y’s) estimated separately? These points became clear later in the more 

detailed methods, but might be worth a brief mention when they first come up.  

 

We concur that an earlier mention would be better. Thus, we have referred the reader to the appropriate SI 

section earlier by adding the following highlighted words to the third paragraph in the ‘Cross-species case 

study’ section (lines 409 – 411): 

 

“Second, our growth rate assays (conducted separately from the transfer estimate protocols; see SI section 

6b) revealed our cell types have different growth rates (SI Figure 8), thus violating the SIM assumptions.” 

 

Also, while I appreciate that \tilde{t} is chosen differently for each parameter set, I would find it 

helpful to have some idea of the range in the main text (at least in Materials & Methods, around 

L604) and perhaps in relevant figure captions.  

 

This is a very good suggestion, and a similar request was made by reviewer 1. To provide comprehensive 

information about the different incubation times used in each scenario, we have made the following 

highlighted word changes in the main text and provided a supplementary table:  

 

Lines 711 – 713: 

“To compare across various parameter settings (Figure 4), a single incubation time was chosen per 

parameter set and type of estimate (See SI Table 5 for the incubation times used).” 

 

SI Table 5: Specific incubation times (𝒕̃) used in stochastic simulations to compare across parameter 

settings. Each row lists the relevant figure and the corresponding x-axis value. Time is given in hours. For 

each parameter setting, the incubation time 𝑡̃ for the LDM estimate is set to the average 𝑡∗, and for the SIM 

estimate is given by the time point for which an average of 50 transconjugants is reached. 
 

Figure x-axis value 𝒕̃𝐋𝐃𝐌  𝒕̃𝐒𝐈𝐌 

Figure 4, SI Figure 1a 0.0625 4.34 7.89 

Figure 4, SI Figure 1a 0.125 4.11 7.49 

Figure 4, SI Figure 1a 0.25 3.7 6.78 

Figure 4, SI Figure 1a 0.5 3.1 5.67 

Figure 4, SI Figure 1a 1 2.35 4.27 

Figure 4, SI Figure 1a 2 1.61 2.86 

Figure 4, SI Figure 1a 4 1.01 1.74 

Figure 4, SI Figure 1a 8 0.6 1 

Figure 4, SI Figure 3 1 x 109 2.35 4.27 

Figure 4, SI Figure 3 1 x 108 2.35 4.27 

Figure 4, SI Figure 3 1 x 107 2.35 4.27 

Figure 4, SI Figure 3 1 x 106 2.35 4.27 

Figure 4, SI Figure 3 1 x 105 2.35 4.25 

Figure 4, SI Figure 3 1 x 104 2.33 4.11 



Figure 4, SI Figure 3 1 x 103 2.16 3.4 

Figure 4, SI Figure 3 1 x 102 1.44 2.02 

SI Figure 1b 0.0625 4.35 8.18 

SI Figure 1b 0.125 4.11 7.66 

SI Figure 1b 0.25 3.71 6.85 

SI Figure 1b 0.5 3.1 5.69 

SI Figure 1b 1 2.35 4.27 

SI Figure 1b 2 1.61 2.86 

SI Figure 1b 4 1.01 1.74 

SI Figure 1b 8 0.6 0.99 

SI Figure 2a 0.0625 3.3 6.4 

SI Figure 2a 0.125 3.22 6.23 

SI Figure 2a 0.25 3.07 5.89 

SI Figure 2a 0.5 2.8 5.26 

SI Figure 2a 1 2.35 4.27 

SI Figure 2a 2 1.78 3.07 

SI Figure 2a 4 1.2 1.99 

SI Figure 2a 8 0.74 1.15 

SI Figure 2b 0.0625 3.31 6.45 

SI Figure 2b 0.125 3.23 6.27 

SI Figure 2b 0.25 3.07 5.92 

SI Figure 2b 0.5 2.8 5.27 

SI Figure 2b 1 2.35 4.27 

SI Figure 2b 2 1.78 3.07 

SI Figure 2b 4 1.2 1.97 

SI Figure 2b 8 0.74 1.15 

SI Figure 2c 0.0625 2.64 4.59 

SI Figure 2c 0.125 2.62 4.57 

SI Figure 2c 0.25 2.59 4.54 

SI Figure 2c 0.5 2.52 4.46 

SI Figure 2c 1 2.35 4.27 

SI Figure 2c 2 1.97 3.62 

SI Figure 2c 4 1.34 2.31 

SI Figure 2c 8 0.8 1.29 

SI Figure 4 0.00001 2.35 4.27 

SI Figure 4 0.0001 2.35 4.27 

SI Figure 4 0.001 2.35 4.27 

SI Figure 4 0.01 2.36 4.29 

SI Figure 4 0.1 2.47 4.49 



 

 

 

12. L417: “the Levin et al. model” needs a reference number. This is also the first time this model is 

mentioned, and its key feature(s) or relation to the SIM could be briefly explained.  

 

We thank the reviewer for the suggestion. We have added a reference number and have added a sentence 

to underline that the model behind the SIM approach makes an identical assumption of parametric 

homogeneity. This passage now reads as follows (lines 450 – 460): 

 

“The most widely used approaches to estimate conjugation rate are derived from the Levin et al. model (5) 

(discussed in SI section 1) which assumes that all strains grow and conjugate at the same rate (𝜓𝐷 = 𝜓𝑅 =
𝜓𝑇 and 𝛾𝐷 = 𝛾𝑇). For instance, the model underlying the SIM approach assumes precisely this kind of 

homogeneity.” 

 

13. Around L460: SI section 8 analytically considers variance in the LDM to the ASM, whereas Fig. 4 

compares LDM to SIM. Do the analytical insights transfer? Is SIM a special case of ASM if there 

is no resource depletion?  

 

We thank the reviewer for this interesting question. One can derive the variance for the SIM estimate in a 

way analogous to the ASM estimate, with the caveat that an approximation is needed (namely one that is 

similar to the approximation used for the variance of the LDM estimate). We will assume that the SIM 

estimate is obtained during exponential growth of all populations (which are assumed to grow at the same 

rate), which will allow us to connect the variance for the SIM to the variance for the ASM. We provide 

some of the details here. 

 

If we focus solely on the contribution of transconjugant variation to estimate variance, we can represent the 

SIM estimate as a random variable ΓSIM: 

 

ΓSIM = Α ln(1 + Β𝑇𝑡̃) 

 

where the coefficients are treated as the following constants: 

 

Α =
𝜓

𝑁0(𝑒𝜓𝑡̃ − 1)
 , 

 

Β =
𝑁0

𝐷0𝑅0𝑒𝜓𝑡̃
 . 

 

The variance of the estimate is then 

 

var(ΓSIM) = Α2var[ln(1 + Β𝑇𝑡̃)] 
 

Using the first-order Taylor expansion centered at 𝐸[𝑇𝑡̃]: 
 

ln(1 + Β𝑇𝑡̃) ≈ ln(1 + Β𝐸[𝑇𝑡̃]) +
𝐵

1 + Β𝐸[𝑇𝑡̃]
(𝑇𝑡̃ − 𝐸[𝑇𝑡̃]). 

 

And we have 
 

var[ln(1 + Β𝑇𝑡̃)] ≈ (
Β

1 + Β𝐸[𝑇𝑡̃]
)

2

var(𝑇𝑡̃). 



Thus, we have 

var(ΓSIM) ≈ (
ΑΒ

1 + Β𝐸[𝑇𝑡̃]
)

2

var(𝑇𝑡̃) 

The quantity 𝐸[𝑇𝑡̃] is given in SI Section 7 (here we assume 𝜓𝐷 = 𝜓𝑅 = 𝜓𝑇 = 𝜓). Plugging in the

expressions for Α, Β, and 𝐸[𝑇𝑡̃] and simplifying yields, 

var(ΓSIM) ≈
1 

(1 +
𝛾𝐷(𝑁𝑡̃ − 𝑁0)

𝜓 )
2 (

𝜓

𝐷0𝑅0(𝑒2𝜓𝑡̃ − 𝑒𝜓𝑡̃)
)

2

var(𝑇𝑡̃) 

The expression for variance of the ASM estimate (derived in SI Section 8) is: 

var(ΓASM) = (
𝜓𝐷 + 𝜓𝑅 − 𝜓𝑇

𝐷0𝑅0(𝑒(𝜓𝐷+𝜓𝑅)𝑡̃ − 𝑒𝜓𝑇𝑡̃)
)

2

var(𝑇𝑡̃) 

If 𝜓𝐷 = 𝜓𝑅 = 𝜓𝑇 = 𝜓 (as is assumed for the SIM estimate) we have

var(ΓASM) = (
𝜓

𝐷0𝑅0(𝑒2𝜓𝑡̃ − 𝑒𝜓𝑡̃)
)

2

var(𝑇𝑡̃) 

Therefore, 

var(ΓSIM) ≈
1 

(1 +
𝛾𝐷(𝑁𝑡̃ − 𝑁0)

𝜓 )
2  var(ΓASM)

At the time of the end of the assay (𝑡 = 𝑡̃), the product of donors and recipients (𝐷𝑡̃𝑅𝑡̃) is in the vicinity of 

the reciprocal of the conjugation rate (1/𝛾𝐷), but the sum of donors and recipients is much smaller than the

reciprocal of the conjugation rate (𝐷𝑡̃ + 𝑅𝑡̃ ≪1/𝛾𝐷). We note 𝑁𝑡 ≈ 𝐷𝑡 + 𝑅𝑡. Therefore, for reasonable times

in which the assay is ended and a reasonable growth rate:  

𝑁𝑡̃ − 𝑁0 ≪
𝜓

𝛾𝐷

In such a case, 1 +
𝛾𝐷(𝑁𝑡̃−𝑁0)

𝜓
≈ 1, and 

var(ΓSIM) ≈  var(ΓASM)

Indeed, for an example close to that explored in SI Figure 10 (with 𝜓𝐷 = 𝜓𝑅 = 𝜓𝑇 = 1, 𝐷0 = 𝑅0 = 104 ,

and 𝛾𝐷 = 10−12), the variances for the SIM and ASM estimates are virtually indistinguishable (in the figure

below the variance for the ASM estimate is the thick green curve and the variance for the SIM estimate is 

the thin yellow curve—the two curves coincide perfectly). 



14. L614 minor semantic point: The medium inhibits donors & recipients (absolute growth rate < 0)

while allowing growth of transconjugants (absolute growth rate > 0). Selection arises as a result of

this combination – but selection (due to a relative fitness advantage) is not synonymous with growth

(in absolute numbers); it’s also possible to have a selective advantage while declining in absolute 

terms. (Similar issue in SI, L684: selection for resistance should not be equated with concentrations 

below the resistant strain’s MIC.)  

We agree that the ‘i.e.,’ statement we used before was sloppy and made an incorrect implication. We have 

highlighted the relevant portions of the changed sentences.  

Lines 652 – 654 in the main text: 

“This medium disrupted new conjugation events—immediately by diluting cells then by inhibiting donors 

and recipients—while simultaneously allowing growth of transconjugants.” 

SI lines 691 – 694 in the supplement: 

“Given the low numbers of transconjugants in the co-cultures, the results from a recent study of Alexander 

and MacLean (6) have high relevance. First, the authors show that levels of antibiotic below the MIC of the 

resistant strain are sufficient to decrease the chance of outgrowth with very low cell numbers (e.g., a single 

cell).” 

15. L623: Are colony counts from each of these three wells pooled or averaged to get a single estimate

of population density?

We thank the reviewer for pointing out that this piece of information was missing. We made the following 

highlighted word changes:  

Lines 642 – 645: 

“First, 30 μl was removed from each of the wells used to determine initial densities, to uncover the final 

densities (𝐷𝑡̃ and 𝑅𝑡̃) via selective plating (Figure 5b). We note that densities were calculated from each 



well then averaged for calculating the LDM estimate. Second, donor and recipient monocultures were 

mixed at equal volumes into the two empty wells (Figure 5b, gray arrows).” 

Lines 664 – 669: 

‘To derive the SIM estimate for each incubation group, 30 μl was removed from each of the three wells in 

the group at the time point (𝑡̃ = 5 and 𝑡̃ = 24) to determine the final donor (𝐷𝑡̃), recipient (𝑅𝑡̃), and 

transconjugant (𝑇𝑡̃) densities via selective plating. Densities were calculated from each well then averaged 

for calculating the SIM estimate. This protocol was repeated six times alongside the LDM replicates.”   

16. L658: Clarify (also in the Fig. 4 caption) that the SIM method only shows 100 estimates, not

10’000.

We thank the reviewer for pointing this out. For simplicity, we changed all the relevant figures (Figure 4, 

SI Figure 1-4) to show 100 estimates of each approach. We made the following highlighted word changes 

to the relevant sentences in each figure legend.  

Lines 793 – 794 in figure 3 legend:   

“In parts c and e, each box represents the distribution from 100 estimates of the donor conjugation rate for 

a given 𝑡̃, spanning from the 25th to 75th percentile.” 

Lines 801 – 803 in figure 4 legend: 

“The Gillespie algorithm was used to simulate population dynamics. 100 estimates of the donor conjugation 

rate are shown for each parameter combination (summarized using boxplots with the same graphical 

convention as in Figure 3).” 

17. L671: “a single incubation time” in what sense? It sounds like it differs for each parameter setting,

and between LDM and SIM methods.

Yes, the reviewer is correct that each incubation time is specific to the parameter setting in the parameter 

sweep plots. As discussed under comment ‘11’, additional text and an SI table were added to provide more 

information about incubation times. 

18. GitHub repository: This is a great addition, but some of the links seem to be broken. If I click on

Supporting Data or Simulations, I get only a garbled Readme.md file (see screenshot below). Please

check/fix this before publication. (I’m on a Safari browser, if that makes any difference.)

We apologize for these issues with the GitHub documentation. We have remedied the ReadMe pages in the 

repository. In addition, the code for generating all the simulation data and the supporting documentation 

can be found at https://github.com/livkosterlitz/LDM/tree/main/Simulations. In addition, the supporting 

data folder was supposed to be deleted given that all the data used in the paper are given within the folders 
for each figure (see https://github.com/livkosterlitz/LDM/tree/main/Figures).   

19. Fig. 3 caption, around L750 (and similarly for Fig. 4 caption): State how many estimates are derived

from these 10’000 simulations.

We thank the reviewer for pointing this out. We made the following highlighted word changes to the 

relevant sentences in the figure legends. 

Lines 793 – 794 for Figure 3: 

“In parts c and e, each box represents the distribution from 100 estimates of the donor conjugation rate for 

a given 𝑡̃, spanning from the 25th to 75th percentile.” 

https://github.com/livkosterlitz/LDM/tree/main/Simulations
https://github.com/livkosterlitz/LDM/tree/main/Figures


 

 

 

Lines 801 – 803 for Figure 4:  

“Gillespie algorithm was used to simulate population dynamics. 100 estimates of the donor conjugation 

rate are shown for each parameter combination (summarized using boxplots with the same graphical 

convention as in Figure 3).” 

 

20. Fig. 4 caption, L765: incubation times are specific to each parameter setting – and also differ 

between LDM and SIM?  

 

We thank the reviewer for comments surrounding the confusion regarding chosen incubation times for 

analyzing the stochastic simulations. As discussed under comment ‘11’ and ‘17’, additional text and an SI 

table were added to provide more information about incubation times. 

 

21. To play devil’s advocate, the superior precision of the LDM method might be expected given that 

the estimate is derived from a much larger sample size of populations. For instance in Fig. 4, each 

LDM estimate is based on 100 simulated populations while each SIM estimate is based on only 

one. Similarly, in SI section 8, the variance in the ASM estimate is derived for a single measurement 

of Tt (I think) whereas the variance in the LDM estimate is derived for W wells (plotted in SI Fig. 

10 for W=10 and W=100). Multiple replicates are clearly necessary for an estimate based on a 

stochastic process, but the authors might acknowledge that the improvement in precision comes at 

the cost of doing a larger experiment (or rebut my thinking if you disagree). To that end – the 

authors could also consider pointing out, when describing the experimental protocol, that the 

number of replicate wells used to derive one estimate in the LDM can be varied; 84 is convenient 

for the layout of a single microtitre plate, but there is no reason a user couldn’t adjust this, either 

decrease (at the cost of lower precision) to run higher- throughput assays across multiple 

environments, or increase to improve precision.  

 

We thank the reviewer for the comment. We agree that the precision of the LDM estimate is improved by 

virtue of using information from multiple populations, and that the more populations used (the higher the 

value of 𝑊), the lower the variance of the estimate. This was something that we were alluding to in the 

“The LDM approach has improved precision” section of the discussion. However, we have added a few 

words (highlighted) to make this even clearer (lines 499 – 504): 

 

“For the number of parallel co-cultures in our protocol, the LDM estimate had smaller variance compared 

to other estimates, even under parameter settings where different estimates shared similar accuracy (e.g., 

Figure 4). This greater precision likely originates from the difference in the distribution of the number of 

transconjugants (𝑇𝑡̃) and the distribution of the probability of transconjugant absence (𝑝0(𝑡̃), where 

variance decreases with the number of co-cultures), something we explore analytically in SI section 8.” 

 

We also thought that the relationship between the number of co-cultures and the variance in the LDM 
estimate warranted further exploration (especially as a function of the time of the assay). We have enlarged 

the discussion and analysis in SI Section 8, where we use simulations to explore how LDM estimate 

variance changes with the number of populations followed. For the number of wells we are using (in the 

range between 50 and 100) the estimate appears to be accurate with low variance. We produce a new figure, 

where we show how variance changes with both the number of populations/wells and the assay time (which 

will affect the value of 𝑝0(𝑡̃)). We include this added part of the SI section here for the convenience of the 

reviewer: 

 

As illustrated in SI Figure 10, the variance in the LDM estimate changes with the number of populations 

(W). How does this number affect the variance in the LDM estimate? Here we use simulations to further 

explore this question. In SI Figure 11a, we present the variance of LDM estimates as a function of assay 



time (𝑡̃) and the number of populations (W). Generally, as the number of populations decreases or as the 

boundaries of the time interval are approached (where nearly none or all of the populations have 

transconjugants) the variance in the LDM estimate rises. The exception seems to be for times that are very 

long, but the low variance is likely a result of having many infinite estimates that are not included in the 

estimate variance (SI Figure 11b). Both infinite estimates (SI Fig. 11b) and zero estimates (SI Fig. 11c) are 

more likely as the number of populations decreases; in other words, the interval of assay times producing 

non-zero finite estimates increases with the number of populations. Generally, the greater the number of 

populations and the more intermediate the assay time (e.g., where approximately half of the populations 

have transconjugants), the lower the variance. 

Suppose an experimenter is considering some number of wells (populations) and wants to decide how many 

estimates to produce. For instance, with 500 wells, the experimenter could decide to run a single LDM 

assay and obtain a single estimate (with W = 500) or perhaps instead could run 5 assays (with W = 100), 

10 assays (with W = 50), 50 assays (with W = 10) or 100 assays (with W = 5) for 5, 10, 50, and 100 

estimates, respectively. Does it make a difference to the precision or accuracy to split or lump wells? Here 

we explore this question through simulation. How do we compare different partitions of wells? Let us 

consider some total number of wells, call this W∗, and consider some factor of W∗, which we will call W′;
i.e., W∗/W′ = 𝑛, where 𝑛 is an integer. Here we will compare a single estimate with W∗ wells with the

mean of 𝑛 estimates that each use W′ wells. Thus, for SI Figure 11d, each point for W = 500 is a single

estimate, where each point for W = 5, W = 10, W = 50, and W = 100 is the mean of 100, 50, 10, and 5

estimates, respectively. With these comparisons in mind, we see two slight effects of different partitioning

patterns. First, the variance is a bit higher for the single estimate coming from the largest number of wells.

We attribute this shift to the fact that other quantities involved in the estimate (e.g., density of donors and

recipients) are only being computed once for each point for W = 500 in Fig. SI 11d, whereas these

quantities are being computed multiple times for smaller W values, such that anomalous values would tend

to get muted as the estimates were averaged. The second effect is a more notable one. We see that as the

number of wells per estimate goes down, slight inaccuracies in the estimate start to occur. Why does this

happen?

To answer this question, let us consider the LDM estimate: 

𝛾𝐷 = − ln 𝑝0(𝑡̃) (
𝜓𝐷 + 𝜓𝑅

𝐷0𝑅0(𝑒(𝜓𝐷+𝜓𝑅)𝑡̃ − 1)
) 

The main thing that will be affected by the number of populations is 𝑝0(𝑡̃). Specifically, as W decreases,

the variance in the fraction of populations without transconjugants increases. Suppose that we have 𝑛 LDM 

estimates under consideration, and for each one a value 𝑝̂0(𝑡̃) is needed. Here we define:

𝑝̂0(𝑡̃)̅̅ ̅̅ ̅̅ ̅ =
∑ 𝑝̂0,𝑖(𝑡̃)𝑛

𝑖=1

𝑛
, 

where 𝑝̂0,𝑖(𝑡̃) is the fraction of populations without transconjugants for the 𝑖th estimate. Now, by Jensen’s

inequality, we have: 

− ln {
∑ 𝑝̂0,𝑖(𝑡̃)𝑛

𝑖=1

𝑛
} (

𝜓𝐷 + 𝜓𝑅

𝐷0𝑅0(𝑒(𝜓𝐷+𝜓𝑅)𝑡̃ − 1)
) <

1

𝑛
∑ − ln 𝑝̂0,𝑖(𝑡̃) (

𝜓𝐷 + 𝜓𝑅

𝐷0𝑅0(𝑒(𝜓𝐷+𝜓𝑅)𝑡̃ − 1)
)

𝑛

𝑖=1

 



 

 

− ln 𝑝̂0(𝑡̃)̅̅ ̅̅ ̅̅ ̅ (
𝜓𝐷 + 𝜓𝑅

𝐷0𝑅0(𝑒(𝜓𝐷+𝜓𝑅)𝑡̃ − 1)
) <

1

𝑛
∑ − ln 𝑝̂0,𝑖(𝑡̃) (

𝜓𝐷 + 𝜓𝑅

𝐷0𝑅0(𝑒(𝜓𝐷+𝜓𝑅)𝑡̃ − 1)
)

𝑛

𝑖=1

 

 

As W gets large, the value 𝑝̂0(𝑡̃) is close to 𝑝̂0(𝑡̃)̅̅ ̅̅ ̅̅ ̅ for smaller W values. Thus, using the terminology from 

above: 

 

𝛾𝐷[W∗] <
1

𝑛
∑ 𝛾𝐷[W′𝑖],

𝑛

𝑖=1

 

 

where 𝛾𝐷[W∗] is the conjugation rate for the largest number of wells (W∗), and 𝛾𝐷[W′𝑖] is the conjugation 

rate for the 𝑖th assay using a smaller number of wells (W′). Thus, we see that as we partition wells into 

smaller numbers per estimate, the mean estimate will rise, which is what we see in SI Figure 11d. As a 

consequence, we recommend a reasonably large number of wells in the LDM assay. A number between 50 

and 100 appears sufficient to avoid inaccuracy and is also convenient when using a microtiter plate format 

for populations. 

 



SI Figure 11: The variance of LDM estimates using stochastic simulation. Different number of 

populations (W) are used for the LDM estimates, as indicated. The parameters used here are the same 

baseline parameters in SI Figure 1 which were 𝜓𝐷 =  𝜓𝑅 =  𝜓𝑇 = 1, and 𝛾𝐷 = 𝛾𝑇 = 10−6. The dynamic

variables were initialized with 𝐷0 = 𝑅0 =  102 and 𝑇0 = 0. (a) The variation of each estimate is given at

15-minute intervals where more than 1 out of the 100 calculated estimates produced a finite non-zero value.

We ignore infinite estimates in the calculation of the variance. (b) The number of estimates with an infinite
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value out of the 100 calculated. (c) The number of estimates with a zero value out of the 100 calculated. (d) 

A total of 500 populations is partitioned in different ways—split into 100 groups of 5 populations (W=5), 

50 groups of 10 populations (W=10), 10 groups of 50 populations (W=50), 5 groups of 100 populations 

(W=100), or a single group of 500 populations (W=500). Each plotted point is the mean conjugation rate 

of the rates calculated for each group (where the number of populations within each group vary as indicated 

by the W value). Each partitioning was run 10 times. 

22. SI section 1a, L52-7: I’d find it helpful to state what these assumptions mean in terms of model

parameters (i.e., y=0 and D, R constant?).

We strongly agree with the reviewer that assumptions are made clearer when stated mathematically, so we 

have added a number of parentheticals and an extra sentence to clarify this passage, which now reads as 

follows (SI lines 52 – 61): 

“First, the change in cell density of donors due to growth is assumed to be negligible (i.e., 𝑑𝐷/𝑑𝑡 ≈ 0). 

Likewise, the change in cell density of recipients due to growth and to conjugation (i.e., transformation into 

transconjugants) is assumed to be negligible (i.e., 𝑑𝑅/𝑑𝑡 ≈ 0). Finally, transconjugants are assumed to be 

rare in the population such that the increase in transconjugant cell density is primarily through plasmid 

conjugation from donors to recipients (i.e., in equation [1.3], 𝛾𝐷𝑅 ≫ 𝜓𝑇 + 𝛾𝑇𝑅). All of these assumptions 

are satisfied if the cell growth rate is zero (𝜓 = 0), the conjugation rate (𝛾) is small, the system starts 

without transconjugants (𝑇0 = 0), and the densities of donors and recipients remain much greater than the

density transconjugants for the period under consideration (𝐷 ≫ 𝑇 and 𝑅 ≫ 𝑇).” 

23. SI table 4, 5th row: “per replicate” is a confusing word choice here – perhaps, “to obtain one

estimate”?

We agree with the reviewers suggested word change. We have made the following highlighted word 

changes to SI Table 4 (SI line 225).  

SI Table 4: Comparison of implementations. 

Summary TDR SIM ASM LDM 

Assay conditions minimizing the change in density due to growth X 

Minimize incubation time necessary for producing transconjugants X 

An incubation time results in a subset of parallel populations having no 

transconjugants 
X 

Assay occurs over a period of exponential cell growth X* X X 

Assay requires multiple parallel mating cultures to obtain one estimate X 

Assay requires a measurement of transconjugant density X X X 

Assay requires a measurement of population growth rate X* 

Assay requires a measurement of transconjugant growth rate X 

* For the SIM assay, either the entire assay is conducted over exponentially growing cultures or an

independent estimate for (maximum) population growth rate is needed.



24. SI Fig. 5 – clarify which model has been simulated (equations 4.1-4.4?). Also add tD = tT = 0 (I

assume) to the list of baseline parameter values.

We agree with the reviewer’s suggested change. We have made the following highlighted word changes to 

SI Figure 5 legend (lines 448 – 460): 

“SI Figure 5 : The effect of incubation time (𝒕̃) on estimating conjugation rate. The Gillespie algorithm 

with equations [4.1]-[4.4] was used to simulate population dynamics. Donor conjugation rate for each 

parameter combination was estimated at 30-minute intervals (summarized using boxplots with the same 

graphical convention as in Figure 3). The gray dashed line indicates the true value for the donor conjugation 

rate (here, 10−14). The baseline parameter values were 𝜓𝐷 =  𝜓𝑅 =  𝜓𝑇 = 𝜓𝐹 =  1, 𝛾𝐷𝑅 = 𝛾𝐷𝐹 = 𝛾𝑇𝑅 =
𝛾𝑇𝐹 = 1 × 10−14, and 𝜏𝐷 = 𝜏𝑇 = 0. The dynamic variables were initialized with 𝐷0 = 𝑅0 =  105 and

𝑇0 = 𝐹0 = 0. The LDM, SIM, TDR, and ASM estimates are in separate plots with estimate specific colors

(brown, orange, cyan, and green, respectively). (a) Baseline parameters were simulated as the non-

heterogenous parameter comparison. (b) An unequal growth rate was simulated with 𝜓𝐷 =  𝜓𝑇 = 0.5. (c)

An unequal growth rate was simulated with 𝜓𝑅 =  𝜓𝑇 = 2. (d) An unequal conjugation rate was simulated

with 𝛾𝑇𝑅 = 10−8. (e) A non-zero plasmid loss rate was simulated with 𝜏𝐷 = 𝜏𝑇 = 0.0001.”

25. SI sections 4f-4h: I’d find it helpful to introduce these sections by briefly explaining the

motivation/aim(s) of the following analysis. Similarly, at the end of section 4h, it would be helpful

to add a conclusion – is there some additional insight into interpretation of experimental data?

We thank the reviewer for the useful suggestion. We agree that this would increase the readability. We have 

added the following highlighted words to the indicated sections: 

SI lines 464 – 466 for SI section 4f: 

“To investigate the incongruency observed between the SIM and LDM estimates in Figure 6, we 

extend equations [4.1]-[4.4] to incorporate batch culture dynamics by tracking the change in resource 

concentration.” 

SI lines 478 – 501 for SI section 4g: 

“Here we used equations [4.5]-[4.12] which incorporates batch culture dynamics to simulate the 

cross-species case study with the experimentally measured parameters to investigate the incongruency 

observed between the SIM and LDM estimates in Figure 6. Most of the parameters were from the average 

of six experiments (𝐷0 = 1.17 x 105, 𝑅0 = 3.33 x 104, 𝜓𝐷 = 1.91, 𝜓𝑅 = 1.47, 𝜓𝑇 = 1.48, 𝛾𝐷𝑅 = 1.96 x 10-13,

and 𝛾𝑇𝑅 = 1.96 x 10-7) with the remaining parameters informed by the 24 hour densities as to mimic the

batch culture conditions of the experiment (𝐶0 = 4.41 x 109, 𝑄 = 1 x 107, and 𝑒 = 1). We used the numerical

solution to calculate the SIM estimate over time.  

We compared the numerical solution to the actual experimental measurements from the cross-

species experiments. The simulated density and conjugation estimate (SI Figure 6a solid lines) were similar 

to the average experimental densities and the experimental SIM estimate (SI Figure 6a circle data points). 

Thus, the experimental LDM estimates for the cross-species conjugation rates (𝛾𝐷𝑅 = 1.96 x 10-13) and the

within-species (𝛾𝑇𝑅 = 1.96 x 10-7) along with the measured growth rates are sufficient to recapture a

relatively inflated experimental SIM estimate. In contrast, a simulation with homogenous conjugation rates 

using either the cross- or within-species conjugation rate does not closely align with the experimental data 

(SI Figure 6b and c, respectively). These simulations also demonstrate that the heterogeneity in the 

measured growth rates is insufficient to produce the mismatch observed in the experimental data (SI Figure 

6b and c). This was worth checking given that heterogeneity in growth rates violates a modeling assumption 

of the SIM approach. This adds further support that the parametric heterogeneity in the conjugation rates is 

the potential cause for the incongruency between the LDM and SIM estimates reported in Figure 6.” 



 

 

 

SI lines 518 – 538 for SI section 4h: 

“In this section, we explored a violation of a modeling assumption in the SIM approach by using a model 

variation where the functional form of growth rate and conjugation rate are not proportional. This is relevant 

given that there are plasmid systems that will readily violate this proportional assumption (e.g., IncP 

plasmids). Here we assume that while growth rates follow the Monod equation, conjugation rates are not 

dependent on resource and remain constant after resources are depleted. We found that using this model 

and the same experimentally measured parameter values used in SI Figure 6 resulted in a higher SIM 

estimate at 24 hours (SI Figure 7a) compared to the scenario where conjugation rate is proportional to 

growth rate (SI Figure 7b). It is worth noting that by using this new model and these particular parameter 

values, the recipient pool is completely depleted which coincides with the SIM estimate no longer being a 

finite, positive value. This differs from SI Figure 7b where the SIM estimate hits an asymptote remaining 

at a finite, positive value. In this case, the recipient pool is not depleted because in this version of the model 

(SI section 4f) the conjugation rates approach zero as the resources are depleted. We acknowledge that a 

violation of the proportional assumption would lead to an inflation of the SIM estimate at 24 hours, which 

is the same pattern we show in our experimental results in Figure 6. However, we used an IncF plasmid in 

our experiment which was the plasmid system used in the original SIM study where the experimental results 

were consistent with a proportional relationship. We note that this analysis is relevant to other plasmid 

systems where this assumption is known to be violated or has not been experimentally validated.” 

 

26. SI Fig. 6 caption (L512, 514): “significantly” has connotations of having done a statistical test – 

rather say “substantially”?  

 

We thank the reviewer for catching this mistake. We have removed and replaced the word “significantly” 

in the legend for Fig S6 with the highlighted word changes, which now reads (SI lines 511 – 514): 

 

“(b) A scenario with homogenous low conjugation rates (𝛾𝐷𝑅 = 𝛾𝑇𝑅 = 1.96 x 10-13) deviates markedly from 

the experimental measurements. (c) A scenario with homogenous high conjugation rates (𝛾𝐷𝑅 = 𝛾𝑇𝑅 = 1.96 

x 10-7) deviates substantially from the experimental measurements.”  

 

27. SI section 6b – around L636/SI Fig. 8b: the growth rate varies over time – which value was taken 

as the final estimate? The maximum?  

 

We thank the reviewer for pointing this out. The purpose of the growth rate assays is to determine the 

incubation time necessary to get the donor and recipient strains in exponential growth before they are mixed 

at the start of the conjugation assay. We have made the following highlighted word changes to the relevant 

section to clarify (SI lines 646 – 645): 

 

“The growth rates were calculated by taking the slope of each neighboring time point using equation [1.12] 

(SI Figure 8b). Using the growth rates calculated over time, an incubation time was chosen that coincided 
with the population growing at or near the maximum growth rate for each strain to ensure bacterial cultures 

entered the phase of maximal or close to maximal growth before the start of the conjugation assay. Thus, 

the growth rate estimates over time were used solely for determining the pre-assay growth period before 

the conjugation assay is executed and not to calculate the LDM estimate itself. A pre-assay growth period 

of 4 hours was used for both donors, E(pF) and K(pF), and the recipient, E(Ø).”   

 

28. SI section 6c – please clarify, does the ratio of [Strep]/[Tet] remain constant in dual-antibiotic 

medium? (I.e., it’s not a two-way gradient?)  
 

We apologize for the lack of clarity. We have made the following highlighted word changes to the relevant 

section (SI lines 671 – 676): 



“Then 500 μl of dual-antibiotic medium (streptomycin and tetracycline) was added to each well at 

increasing concentrations, forming a 2-fold gradient across the column. We note that the ratio of the two 

antibiotics was kept constant over the gradient. For each strain, this was repeated in three columns. After 

an overnight incubation, the well with the lowest concentration of the dual antibiotic medium across all 

replicates with no turbid growth was identified as the strain-specific MIC (SI Table 7).” 

29. SI section 6d, L723: just to check, was the final density = 4 x 10^-7 x initial density (i.e. dilution

factor 0.25 x 10^7) or was the dilution factor 4 x 10^7?

We thank the reviewer for pointing this out. We have made the following highlighted word changes to help 

clarify that it was the dilution factor (SI lines 731 – 734): 

“In the laboratory, we used the protocol implemented by Alexander and MacLean to estimate 𝜋𝑥 with a

few adjustments. Briefly, the transconjugants were diluted (using a dilution factor of 4 x 10-7) and 50 μl 

were dispersed into all wells in a deep-well microtiter plate.” 

30. SI section 6d, around L761: I’m confused about why this issue arises – why is the recipient colony

count so low on plates supplemented with antibiotic selecting for the recipient?

Thanks for asking about this. The issue arises mainly due to the recipient and transconjugant densities 

becoming very similar and that the recipient-selecting agar plates permit both transconjugant and recipient 

growth. To explain in more detail, the colony counts of the recipient and transconjugant plates (which are 

always within normal range, ~20 to 300 colonies) are turned into densities using the colony counts and the 

dilution spread on the plate. We then change the estimated densities with the appropriate factor to correct 

for the extinction probabilities. Given that the transconjugant extinction probability on the transconjugant-

selecting agar plates is higher than the recipient extinction probability on the recipient-selecting agar plates 

(i.e., 0.99 vs. 0.55, respectively), the transconjugant density increases relatively more than the recipient 

density. After the correction, we subtract the transconjugant density from the recipient density which results 

sometimes in a negative number given that transconjugants can grow on the recipient-selective plates (given 

that these plates are selecting for the host type). In other words, this is indicative that many or all the colonies 

growing on the recipient-selective plates may be transconjugants. To clarify why a negative value may 

arise, we added the following highlighted word to the relevant section (SI lines 764 – 780): 

“Given the high transconjugant extinction probability on the transconjugant-selecting agar plates (see SI 

Table 9), the transconjugant density increases after the correction. Indeed, the transconjugant population 

can become more common than the “estimated” recipient population. We say “estimated” because there 

are no agar plates that select only for recipient cells. Specifically, the “recipient-selecting” agar plates 

allow for both recipient and transconjugant growth. To determine the recipient density, we subtract the 

transconjugant density from the density of cells calculated from the “recipient-selecting” agar plate 

counts. When the transconjugants are more abundant than—or at relatively similar densities to—

recipients, the exact recipient density cannot be determined due to its relative scarcity. Specifically, the 

subtractive plating scheme could result in a negative value. We note that this happens rarely given that 

transconjugant densities are typically orders of magnitude lower than recipients. In the cases of high 

conjugation rates and long incubation times, this issue is more likely to arise. If the recipient density went 

negative after subtraction, then the non-subtracted recipient density was used instead. An overestimate for 

recipient density leads to an underestimate for the SIM estimate at 24 hours; therefore, the differences 

between the cross-species LDM and SIM estimates shown in Figure 6 are conservative.” 

31. L807: “10^4, 10^5, and 10^6-fold dilution” (missing word)



Thank you for catching the wrong word. We have added the following highlighted word to the relevant 

sentence (SI lines 819 – 820): 

“Four columns were used for each initial density (104, 105, and 106 cells per ml) where 2 rows were used 

for each incubation time (0, 1, 2, and 3 hours) resulting in 8 wells per density-time treatment.” 

32. SI section 7 – Again, I’d find it helpful to start off with a statement of motivation/aim for this

section.

We thank the reviewer for the useful suggestion. We agree that we could increase the readability. We have 

added the following highlighted words to the top of SI section 7 (SI lines 902 – 912): 

“SI section 7: Probability generating function, low-order moments, and failure to establish 

The aim of the first part of this section is to explore the connection between mutation and conjugation 

processes further. In the second part of this section, we derive a general expression for the LDM estimate 

that incorporates cases when the transconjugant doesn’t always establish a successful lineage (i.e., non-zero 

extinction probability).  

Keller and Antal (7) studied a generalization of the process explored by Luria and Delbrück (4). To start, 

Keller and Antal consider a wildtype population expanding from a single cell as follows:” 
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