Assessment of compound-specific fatty acid δ^{13} C and δ^{2} H values to track fish mobility in a small subalpine catchment

Matthias Pilecky^{1,2,*}, Libor Závorka¹, David X. Soto³, Fen Guo⁴, Leonard I. Wassenaar^{1,2,5}, and Martin J. Kainz^{1,2}

Supplementary Information

- WasserCluster Lunz Biologische Station, Inter-University Center for Aquatic Ecosystem Research, Dr. Carl-Kupelwieser Promenade 5, 3293 Lunz am See, Austria
- Donau-Universität Krems, Department for Biomedical Research, Dr. Karl-Dorrek-Straße 30, 3500 Krems, Austria
- International Atomic Energy Agency, Isotope Hydrology Section, Vienna International Centre, A-1400, Vienna, Austria
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 511458, China
- University of Saskatchewan, Dept. of Geological Science, 114 Science Place, Saskatoon, SK S7N 5E2, Canada
- *) corresponding author
- LZ: libor.zavorka@wcl.ac.at (ORCID: 0000-0002-0489-3681)
- MP: matthias.pilecky@donau-uni.ac.at (0000-0002-3404-5923)
- MJK: martin.kainz@donau-uni.ac.at (ORCID: 0000-0002-2388-1504)
- FG: <u>fen.guo@gdut.edu.cn</u> (ORCID: 0000-0002-4976-5456)
- LIW: <u>len.wassenaar@usask.ca</u> (ORCID: 0000-0001-5532-0771)
- DXS: d.soto@iaea.org (ORCID: 0000-0003.4210-293X)

	v		ଟ ¹³ C _{FAbulk} vs. VPDB				$\delta^2 H_{FAbulk}$ vs. VSMOW			
Site	Taxa	n	brain	eye	liver	muscle	brain	eye	liver	muscle
Bodingbach	C. gobio	3	-37.1 ± 0.3	-36.6 ± 0.0	-37.9 ± 1.0	-39.0 ± 0.9	-290.6 ± 1.4	-265.6 ± 0.0	-277.0 ± 21.7	-278.8 ± 22.9
_	O. mykiss	3	-35.6 ± 0.2	-37.4 ± 1.5	-37.8 ± 1.4	-39.3 ± 0.8	-294.0 ± 10.4	-283.4 ± 12.5	-270.9 ± 15.7	-277.6 ± 13.5
	S. trutta	3	-37.1 ± 1.0	-37.7 ± 0.0	-38.5 ± 0.8	-38.4 ± 2.2	-306.1 ± 2.9	-290.7 ± 0.0	-276.3 ± 14.6	-290.0 ± 16.9
Faltlbach	C. gobio	13	-39.6 ± 0.8	-38.9 ± 1.9	-39.2 ± 1.5	-40.5 ± 1.2	-272.8 ± 5.8	-247.4 ± 15.3	-237.2 ± 10.1	-257.4 ± 11.9
Kothbergbach (oben)	C. gobio	4	-37.9 ± 0.9	-38.0 ± 0.0	-37.7 ± 1.0	-38.2 ± 1.6	-278.9 ± 4.9	-256.8 ± 0.0	-231.8 ± 4.1	-249.1 ± 2.3
	O. mykiss	1	-35.8 ± NA	-37.4 ± NA	-37.1 ± NA	-38.3 ± NA	-300.1 ± NA	-265.3 ± NA	-269.3 ± NA	$-272.6 \pm NA$
	S. trutta	1	-34.3 ± NA	-37.4 ± NA	-37.2 ± NA	-37.8 ± NA	-285.3 ± NA	-258.2 ± NA	-243.2 ± NA	$-256.4 \pm NA$
Kothbergbach (unten)	C. gobio	1	-38.1 ± NA	-39.8 ± NA	-38.4 ± NA	-38.4 ± NA	-288.1 ± NA	-258.5 ± NA	-251.1 ± NA	$-264.5 \pm NA$
	S. trutta	5	-36.2 ± 0.7	-37.5 ± 1.7	-38.1 ± 1.1	-39.0 ± 1.3	-299.2 ± 8.0	-292.5 ± 8.7	-268.8 ± 7.9	-277.9 ± 5.3
Lackenbach	C. gobio	3	-37.6 ± NA	-37.8 ± NA	$-38.0 \pm NA$	-38.6 ± 1.0	-290.9 ± NA	-274.5 ± NA	-255.7 ± NA	-282.6 ± 8.4
	O. mykiss	8	-36.3 ± 0.4	-38.1 ± 1.0	-37.6 ± 0.3	-38.8 ± 0.8	-297.0 ± 8.0	-275.6 ± 5.4	-272.7 ± 3.7	-282.5 ± 4.1
	S. trutta	1	$-37.6 \pm NA$	$-37.8 \pm NA$	NA	$-38.0 \pm NA$	$-290.9 \pm NA$	$-274.5 \pm NA$	NA	$-282.8 \pm NA$
Oberer Seebach (Lend)	C. gobio	3	-35.1 ± 1.0	-35.3 ± 0.9	-35.4 ± 0.2	-35.6 ± 0.5	-282.2 ± 17.9	-286.8 ± 0.3	-272.2 ± 9.9	-273.8 ± 13.1
	S. trutta	7	-34.0 ± 1.0	-36.0 ± 0.8	-35.6 ± 1.2	-36.3 ± 0.9	-295.8 ± 3.8	-281.6 ± 11.6	-264.9 ± 17.6	-275.1 ± 6.9
Oberer Seebach	C. gobio	5	-33.6 ± 0.4	-35.5 ± 1.6	-34.6 ± 1.2	-34.9 ± 1.4	-282.7 ± 12.0	-256.4 ± 16.0	-267.7 ± 7.5	-268.9 ± 9.1
(Ritrodat)	S. trutta	6	-32.7 ± 0.6	-34.9 ± 0.8	-34.9 ± 1.1	-35.4 ± 0.7	-296.3 ± 4.5	-277.0 ± 5.5	-267.1 ± 5.3	-278.3 ± 3.4
Ois (alte Säge)	O. mykiss	5	-36.8 ± 0.8	-39.0 ± 0.4	NA	-38.8 ± 0.3	-293.9 ± 6.2	-290.5 ± 5.7	NA	-284.7 ± 13.4
	S. trutta	5	-36.6 ± 1.7	-38.6 ± 1.5	NA	-38.8 ± 1.2	-289.8 ± 12.8	-284.1 ± 7.2	NA	-283.3 ± 7.1
Ois (Holzhüttenboden)	C. gobio	8	-35.7 ± 0.3	-35.5 ± 0.6	-36.6 ± 1.1	-37.0 ± 0.8	-282.2 ± 6.0	-269.2 ± 2.1	-261.7 ± 13.9	-278.3 ± 6.9
	S. trutta	3	-35.0 ± 0.4	-37.4 ± 1.5	-37.1 ± NA	-37.6 ± NA	-298.7 ± 3.9	-282.7 ± 0.4	$-280.7 \pm NA$	$-287.0 \pm NA$
Tagles (unten)	C. gobio	6	-36.1 ± 1.0	-37.6 ± 1.0	-37.2 ± 1.2	-37.4 ± 1.0	-292.0 ± 5.8	-280.2 ± 0.2	-283.6 ± 9.1	-284.1 ± 4.0
	S. trutta	6	-34.6 ± 0.7	-37.9 ± 2.1	-36.5 ± 1.3	-36.8 ± 1.0	-301.6 ± 6.0	-292.2 ± 3.7	-287.8 ± 5.7	-290.2 ± 4.0
Taschlbach	S. trutta	7	-39.6 ± 0.3	-41.9 ± 1.5	-40.1 ± 1.0	-42.0 ± 0.6	-301.3 ± 6.6	-280.2 ± 10.4	-254.2 ± 7.6	-278.7 ± 7.9
Weiße Ois	S. trutta	16	-38.8 ± 0.9	-40.6 ± 0.9	-39.8 ± 1.4	-41.5 ± 1.1	-287.3 ± 5.7	-264.9 ± 3.4	-259.3 ± 10.9	-284.4 ± 6.2
(Rehberghütte)										
Weiße Ois (Faltl)	S. trutta	2	-37.6 ± 1.8	-41.4 ± 2.8	-38.7 ± 2.3	-40.6 ± 2.9	-294.0 ± 4.2	-271.5 ± 0.3	-255.9 ± 7.3	-258.6 ± 14.9
Ybbs (Göstling,	C. gobio	5	-35.3 ± 0.7	-35.2 ± 0.9	-36.3 ± 1.6	-36.8 ± 1.3	-289.5 ± 4.4	-267.7 ± 8.5	-271.3 ± 8.3	-272.6 ± 14.4
Lagerhaus)	O. mykiss	6	-35.1 ± 0.6	-36.9 ± 1.1	-36.8 ± 0.6	-37.5 ± 0.9	-305.1 ± 4.5	-286.2 ± 7.9	-278.6 ± 7.5	-289.1 ± 3.2
	S. trutta	1	-33.9 ± NA	-37.8 ± NA	-34.8 ± NA	-36.1 ± NA	-301.3 ± NA	NA	-258.9 ± NA	$-280.7 \pm NA$
Ybbs (Kläranlage	C. gobio	7	-36.1 ± 0.8	-36.3 ± 1.7	-36.3 ± 1.3	-36.2 ± 0.8	-291.5 ± 8.5	-258.8 ± 3.9	-266.6 ± 16.1	-269.9 ± 9.1
Lunz)	O. mykiss	2	-36.1 ± NA	-36.5 ± 0.4	-37.3 ± 1.4	-36.7 ± 1.2	-301.1 ± NA	-292.9 ± 1.2	-281.5 ± 29.0	-288.0 ± 1.8
	S. trutta	2	-35.5 ± 0.0	-35.2 ± 0.0	$-37.2 \pm NA$	-36.1 ± 0.0	-304.1 ± 0.0	-279.2 ± 4.0	-281.9 ± NA	-274.1 ± 3.1
Ybbs (Lunz Großau)	C. gobio	4	-35.1 ± 0.6	-34.9 ± 0.9	-34.9 ± 0.7	-35.4 ± 0.6	-284.1 ± 2.6	-252.7 ± 4.5	-258.8 ± 17.7	-270.0 ± 7.0
	O. mykiss	7	-35.0 ± 1.0	-36.4 ± 1.7	-36.4 ± 0.5	-36.6 <u>+</u> 0.9	-303.3 ± 7.2	-277.0 ± 18.7	-285.5 ± 7.0	-290.7 ± 6.7

Table S1. Mean fatty acid bulk δ^{13} C and δ^{2} H values and standard deviation at individual sampling sites (2016).

Figure S2. Changes in fish fatty acid isotope values for (A) δ^{13} C and (B) δ^{2} H at 9 different sampling sites between 2016 and 2018.

Figure S3. LDA of δ^{4} H and δ^{43} C values of 11 FA quantified in all samples; proportions of trace: LD1 = 48.2 %, LD2 = 23.6 %, LD3 = 7.8 %). Interactive

3Dplot of the first three dimensions of the LDA site-specificity plot downloadable as .html-file.