

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

BMJ Open

Development and validation of an early warning score to identify COVID-19 in the emergency department based on routine laboratory tests: a multicenter case-control study

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-059111
Article Type:	Original research
Date Submitted by the Author:	10-Nov-2021
Complete List of Authors:	Boer, Arjen-Kars; Catharina Hospital Deneer, Ruben; Catharina Hospital, ; Eindhoven University of Technology, Maas, Maaike; Catharina Ziekenhuis, emergency department Ammerlaan, Heidi; Catharina Hospital van Balkom, Roland; Catharina Hospital Thijssen, Wendy; Catharina ziekenhuis, Emergency medicine Bennenbroek, Sophie; Catharina Hospital Leers, Mathie; Zuyderland Medical Centre Heerlen, Clinical Chemistry & Hematology Martens, Remy; Zuyderland Medical Centre Heerlen, Clinical Chemistry & Hematology Buijs, Madelon; Atalmedial Kerremans, Jos; Alrijne Hospital Location Leiderdorp Messchaert, Muriël ; Gelre Hospitals van Suijlen, Jeroen; Gelre Hospitals van Riel, Natal; Eindhoven University of Technology, ; Amsterdam University Medical Centres Scharnhorst, Volkher; Catharina Hospital; Eindhoven University of Technology,
Keywords:	COVID-19, STATISTICS & RESEARCH METHODS, ACCIDENT & EMERGENCY MEDICINE, Clinical chemistry < PATHOLOGY, Health informatics < BIOTECHNOLOGY & BIOINFORMATICS
	·

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	Develo	opment and validation of an early warning score to identify				
2	COVID-19 in the emergency department based on routine laboratory					
3	tests: a multicenter case-control study					
4						
5	Arjen-Ka	ars Boer ^{1*} , Ruben Deneer ^{1,2*†} , Maaike Maas ³ , Heidi S. M. Ammerlaan ⁴ , Roland H. H.				
6	van Balk	om ⁵ , Wendy A.M.H. Thijssen ³ , Sophie Bennenbroek ³ , Mathie P. G. Leers ⁶ , Remy				
7	J.H. Martens ⁶ , Madelon M. Buijs ⁷ , Jos J. Kerremans ⁸ , Muriël Messchaert ⁹ , Jeroen D.E. van					
8	Suijlen ⁹ ,	Natal A.W. van Riel ^{2,10} and Volkher Scharnhorst ^{1,2}				
9						
10	* Both au	uthors contributed equally				
11	† Corresp	bonding author				
12						
13	1	Department of Laboratory Medicine, Catharina Hospital Eindhoven,				
14		Michelangelolaan 2, 5623 EJ, Eindhoven, the Netherlands				
15	2	Faculty of Biomedical Engineering, Technical University Eindhoven, Groene				
16		Loper 3, 5612 AE, Eindhoven, the Netherlands				
17	3	Department of Emergency Medicine, Catharina Hospital Eindhoven,				
18		Michelangelolaan 2, 5623 EJ, Eindhoven, the Netherlands				
19	4	Department of Internal Medicine, Catharina Hospital Eindhoven,				
20		Michelangelolaan 2, 5623 EJ, Eindhoven, the Netherlands				
21	5	Department of Pulmonary Diseases, Catharina Hospital Eindhoven,				
22		Michelangelolaan 2, 5623 EJ, Eindhoven, the Netherlands				

1 2						
2 3 4	23	6	Department of Laboratory Medicine, Zuyderland Medical Center, Dr. H. van der			
5 6	24		Hoffplein 1, 6162 BG, Sittard-Geleen, the Netherlands			
7 8	25	7	Atalmedial Diagnostic Centers, Jan Tooropstraat 138, 1061 AD Amsterdam, the			
9 10 11	26		Netherlands			
12 13	27	8	Department of Medical Microbiology & Infection Prevention, Alrijne Hospital,			
14 15	28		Simon Smitweg 1, 2353 GA Leiderdorp, the Netherlands			
16 17 18	29	9	Department of Clinical Chemistry, Gelre Hospital, Albert Schweitzerlaan 31, 7334			
19 20	30		DZ Apeldoorn, the Netherlands			
21 22	31	10	Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef			
23 24 25	32		9, 1105 AZ Amsterdam, the Netherlands.			
25 26 27 28	33					
29 30 31	34	Word c	ount: 3645			
32 33	35					
35 36 37	36	Keywor	rds			
38 39	37	COVID-1	9, SARS-CoV-2, emergency department, triage, early warning score, prediction			
40 41	38	model, rou	atine laboratory tests			
42 43 44 45	39					
46 47 40 Corresponding author						
48 49 50	41	Ruben Deneer				
51 52 53	42	Michelangelolaan 2				
54 55 56	43	5623 EJ Eindhoven, the Netherlands				
57 58 59 60	44	ruben.deneer@catharinaziekenhuis.nl				
		2				

Abstract

46 Objectives: Identifying patients with a possible SARS-CoV-2 infection in the emergency 47 department (ED) is challenging. Symptoms differ, incidence rates vary and test capacity may 48 be limited. As PCR testing all ED patients is neither feasible nor effective in most centers, a 49 rapid, objective, low-cost early warning score to triage ED patients for a possible infection is 50 developed.

Design: Case-control study.

Setting: Secondary and tertiary hospitals in the Netherlands.

Participants: Patients presenting at the ED with venous blood sampling from July 2019 to
July 2020 (N = 10417, 279 SARS-CoV-2 positive). The temporal validation cohort covered
the period from July 2020 to October 2021 (N = 14080, 1093 SARS-CoV-2 positive). The
external validation cohort consisted of patients presenting at the ED of three hospitals in the
Netherlands (N = 12061, 652 SARS-CoV-2 positive).

58 Primary outcome measures The primary outcome was one or more positive SARS-CoV-2
59 PCR-test results, within one day prior to, or one week after, ED presentation.

60 Results: The resulting "CoLab-score" consists of 10 routine laboratory measurements, and

61 age. The score showed good discriminative ability (AUC: 0.930, 95% CI: 0.909 to 0.945).

62 The lowest CoLab-score had a high sensitivity for COVID-19 (0.984, 95% CI: 0.970 to 0.991,

63 specificity: 0.411, 95% CI: 0.285 to 0.520). Conversely, the highest score had high specificity

64 (0.978, 95% CI: 0.973 to 0.983, sensitivity: 0.608, 95% CI: 0.522 to 0.685). Results were

65 confirmed in temporal and external validation.

66 Conclusions: The CoLab-score is based on routine laboratory measurements and is available
67 within one hour after presentation. Depending on the prevalence, COVID-19 may be safely

Page 5 of 44

1

BMJ Open

2 3 4	68	ruled-out in over one third of ED presentations. Highly suspect cases can be identified
5 6	69	regardless of presenting symptoms. The CoLab-score is a valuable tool to guide PCR testing,
7 8 9	70	triage ED patients, and is available to any center with access to routine laboratory tests.
9 10 11 12	71	
13 14 15	72	Article summary
16 17 18	73	Strengths and limitations of this study
19 20	74	• A comprehensive panel of 28 laboratory tests was measured for 10.417 emergency
21 22	75	department (ED) presentations and combined with SARS-CoV-2 PCR test results.
23 24 25	76	• Using regression analysis, a simple score was developed consisting of only 10 routine
25 26 27	77	ED laboratory tests and age.
28 29	78	• The score was temporally and externally validation in 3 other centers, is available
30 31 32	79	within 1 hour after presentation and can be used to triage patients with a possible SARS-
32 33 34	80	CoV-2 infection in the ED.
35 36	81	• No evidence was found that the performance was affected by vaccinations and new
37 38 39 40 41 42	82	SARS-CoV-2 variants.
	83	• The score is not a replacement for PCR-testing, but can be used to guide PCR-testing.
42 43 44	84	
45 46		
47 48		
49 50		
51 52		
53		
54 55		
56 57		
58 59		
60		

85 Introduction

COVID-19, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has evolved into a global pandemic in 2020 [1]. For emergency department (ED) physicians, identifying presenting patients with a possible COVID-19 infection remains challenging since symptoms like fever, shortness of breath or coughing overlap with other illnesses [2,3]. It is crucial however, to identify a possible COVID-19 infection as early as possible. Early identification prevents further spreading and protects hospital staff by isolating a suspected patient, pending the results of a SARS-COV-2 RNA PCR test and/or chest CT. Conversely, when PCR testing or isolation treatment capacity is limited, ruling-out COVID-19 as soon as possible can save valuable resources.

In the era of electronic health records and clinical prediction models, developing an early
warning score that can assist ED physicians in identifying patients presenting at the ED with
COVID-19 is of great value. Moreover, if only routine ED test results are required as input,
the score can be easily adopted by EDs worldwide, potentially reduce diagnostic costs and
accelerate patient triage.

Many COVID-19 prediction models have already been developed, the living systematic review by Wynants et. al [4] provides an extensive overview and critical appraisal. Unfortunately, only few models have found their way into routine care at the ED [5,6]. Early models were based on relatively small sample sizes, hampered by selection bias or were over-fitted by selecting too many features [4–6]. Aside from methodological shortcomings, most models are not developed as an early warning score for all ED patients. Firstly, they require features from tests that are not routinely performed or logged for all ED patients (e.g. the CO-RADS score from a CT-scan [7] or non-lab based clinical variables in the PRIEST EWS [8]) and are therefore not straightforward to implement or scale to a large ED patient population.

 BMJ Open

Secondly, the population on which models are commonly based, are PCR-tested patients, i.e.

a pre-selection of a possible COVID-19 infection has already been done by physicians. In this study we report the development and validation of an early warning score that, based on routine ED laboratory tests, estimates the risk of a possible COVID-19 infection in a patient presenting at the ED. The score can assist ED physicians in triaging patients and prevent further transmission of COVID-19 by quickly identifying possibly infected patients or ; infection .. ruling out a possible infection when resources are scarce.

Methods 116

1

117 Study design

2 3 4 5	116	Methods			
5 6 7	117	Study design			
8 9	118	This is a retrospective case-control study where routine laboratory test results, combined with			
10 11 12	119	age and gender, from all patient presenting at the emergency department (ED) of the			
12 13 14	120	Catharina Hospital Eindhoven from July 2019 to July 2020 were combined with SARS-CoV-			
15 16 17 18 19 20 21	121	2 PCR test results in a development dataset. A model that could predict the presence of a			
	122	COVID-19 infection was fit to this dataset. Performance of the model was assessed by i)			
	123	internal validation, ii) temporal validation and iii) external validation by using data from the			
22 23	124	ED of three other centers. The study was reviewed by the Medical research Ethics			
24 25 26	125	Committees United (MEC-U) under study number W20.071, which confirmed that the			
26 27 28	126	Medical Research Involving Human Subjects Act (In Dutch: WMO) does not apply to this			
29 30	127	study. The study was thereafter reviewed and approved by the internal hospital review board.			
31 32 33 34	128				
35 36	129	Patient and Public Involvement			
 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 	130	Patients were not involved in the design, conduct or reporting of this study.			
	131				
	132	Development dataset			
	133	All ED presentations at the Catharina Hospital Eindhoven from July 2019 to July 2020 were			
	134	included in the development dataset, provided that routine laboratory testing had been			
	135	requested by the attending ED physician. The rationale for this inclusion period is to limit the			
	136	effect of seasonal variation in the ED patient population by including the summer, fall and			
54 55 56	137	winter season of 2019 (control patients) and the winter, spring and summer season of 2020			
57 58	138	(case and control patients). The routine laboratory panel at the ED consists of 28 laboratory			
59 60	139	tests. In some cases not all tests in the routine panel were requested or one or more			

Page 9 of 44

1 2

BMJ Open

z	
ر ۸	
4	
5	
6	
7	
8	
9	
10	
11	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
∠ı วา	
22	
23	
24	
25	
26	
27	
28	
29	
30	
21	
21	
32	
33	
34	
35	
36	
37	
38	
39	
10	
40 41	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

140	quantitative results were not available due to analytical interference (hemolysis, lipemia or
141	icterus). Presentations with one or more missing values in any of the 28 laboratory test in the
142	routine ED panel, were excluded. Presentations with one or more extreme lab results (> 10
143	times standard deviation from the median) were also excluded to minimize the effect on the
144	estimation of regression coefficients. After the first case of COVID-19 in the Netherlands, all
145	patients with symptoms of COVID-19 (either fever and/or respiratory symptoms) were
146	subjected to nasopharyngeal PCR testing for SARS-CoV-2 RNA. PCR testing was performed
147	by commercial tests that were approved by the Dutch national institute of public health
148	(RIVM). If a patient had a positive PCR result in the past, subsequent presentations were
149	excluded as re-presentations might be clinically different from de novo presentations.
150	The ED lab panel results were matched to SARS-CoV-2 PCR results if the underlying
151	nasopharyngeal swab had been taken ≤ 1 day prior, or ≤ 1 week after initial blood withdrawal
152	at the ED. If multiple PCR tests were performed in this window, and at least one PCR test was
153	positive, the presentation was labelled "PCR-positive". If all PCR test results in the time
154	window were negative, the presentation was labelled as "PCR-negative". If no PCR tests were
155	performed in the time window and the presentation occurred after the first case of COVID-19
156	in the Netherlands, the presentation was labelled as "Untested". All presentations before the
157	first case were labelled as "Pre-COVID-19".

5 158

159 Laboratory tests

⁵¹ 160 The routine laboratory panel consisted of hemocytometric and chemical analyses. The
⁵³ 161 hemocytometric tests were performed on Sysmex XN-10 instruments (Sysmex Corp., Kobe,
⁵⁵ 162 Japan) and consisted of hemoglobin, hematocrit, erythrocytes, mean corpuscular volume
⁵⁷ 163 (MCV), mean cellular hemoglobin (MCH), mean cellular hemoglobin concentration
⁶⁰ 164 (MCHC), thrombocytes, leukocytes, neutrophils, eosinophils, basophils, lymphocytes and

BMJ Open

monocytes. The chemical analyses were performed on a Cobas 8000 Pro (Roche Dx, Basel,
Switzerland) instrument and consisted of glucose, total bilirubin, aspartate aminotransferase
(ASAT), alanine aminotransferase (ALAT), lactate dehydrogenase (LD), creatine kinase
(CK), alkaline phosphatase (ALP), gamma-glutamyltransferase (gGT), blood urea nitrogen
(BUN), creatinine, CKD-epi estimated glomerular filtration rate (eGFR), potassium, sodium,
chloride, albumin (bromocresol green) and C-reactive protein (CRP). These results were
combined with age and gender.

173 Modelling

All data were processed and analyzed in R version 4.1.1 [9]. Laboratory results, combined with age and gender were used as covariates in a regression model. Cases were defined as ED presentations labelled as "PCR-positive", controls were all other presentations (i.e. "PCRnegative", "Untested" or "Pre-COVID-19"). To achieve predictive accuracy, limit overfitting and perform feature selection, penalized logistic regression with an adaptive lasso penalty was chosen [10,11]. To minimize missing data, all non-numeric results at the extremes of the measuring range, were converted to numeric results by removing the "<" and ">" signs. For eGFR (CKD-epi) and CRP the raw precursor value was used instead of >90 ml/min/m2 and <6 mg/L, respectively. Considering that laboratory results of bilirubin, ASAT, ALAT, LD, CK, ALP and gGT can have heavy (right) tailed distributions, which in turn impacts model predictions, these variables were transformed logarithmically. More details regarding model fitting can be found in the document, Supplemental Material 1. Models were fitted using the glmnet-package [12].

BMJ Open

188 CoLab-score

Since this is a retrospective case-control study, the sample prevalence may not reflect the true/current COVID-19 prevalence. To obtain well-calibrated probabilities the intercept term in the model should be adjusted according to the current prevalence (details can be found in the document, **Supplemental Material 1**)[13]. However, adjusting the intercept term is not straightforward to implement in clinical practice, therefore the linear predictor of the model was categorized into a score, this score is hereafter referred to as the "CoLab-score". The categorization is based on a number needed to test of 15 (i.e. one is willing to PCR test 15 patients to find one positive) and prevalence cut-points of 1%, 2%, 5%, 10% and 40% using the intercept adjustment formula by King [13]. The intervals obtained through these breaks correspond to CoLab-scores 5 to 0, respectively. Score 0 reflects low-risk for COVID-19 and score 5 reflects high-risk. More details regarding the rationale of the CoLab-score categorization can be found in the document, Supplemental Material 1.

202 Internal validation

To assess model performance while taking overfitting into account, bootstrapping was performed. 1000 bootstrap samples were generated from the original data. On each bootstrap sample, the full model fitting procedure and CoLab-score conversion were performed. Optimism adjusted performance measures of the CoLab-score were obtained by applying the 0.632 bootstrap rule to the in-sample and out-of-bag-sample performance [14]. Performance measures included, AUC, sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of each CoLab-score. The pROC-package was used to calculate performance measures [15]. Although the full inclusion period from July 2019 to July 2020 was used for model fitting, the performance was evaluated on the period starting from the first

J.C.L

212 COVID-19 infection (24th of February 2020) to July 2020. This was done to obtain
213 performance measures that would reflect real world performance.

215 Temporal validation

For temporal validation, results from our center were prospectively analyzed from July 2020 to October 2021. During this period, the Netherlands was struck by a second wave of COVID-19 infections, starting in the fall of 2020 and subsiding in the summer of 2021. In this period there was also more widespread external PCR testing by municipal health services. The results of external conducted PCR tests were not available to our study. To overcome this limitation, the outcome in the temporal validation cohort was chosen as a composite of the hospital registration of a confirmed COVID-19 infection and/or at least one positive PCR test result. This period also covers both the emergence of new SARS-CoV-2 variants as well as vaccine rollout. However, neither vaccination status nor genomic sequencing was available to determine whether a patient was vaccinated or which variant caused the infection. Therefore, data from the Dutch national institute of public health (RIVM) was used, to divide the temporal validation period into three phases: i) from July 2020 until March 2021, no vaccination and no variants of concern identified ii) from March 2021 until June 2021, partial vaccination and B.1.1.7 (Alpha) variant identified as dominant iii) from June 2021 until October 2021, widespread vaccination and B.1.617.2 (Delta) variant identified as dominant. See Supplemental Material 2 Figure 1 for more details. The temporal validation consisted of assessing the AUC, sensitivity, specificity, PPV and NPV of each CoLab-score threshold for the entire period, as well as for each phase separately to determine a possible effect of vaccination and new variants on performance (results in the **Supplemental Material 2**). Model calibration was assessed graphically using the rms-package [16].

BMJ Open

For the external validation, several centers in the Netherlands were approached and assessed if the required panel of laboratory tests and SARS-CoV-2 PCR test results were available. Seven centers responded and three centers fulfilled the inclusion criteria: Gelre Hospitals (center 1), Atalmedial Diagnostic Centers, location Alrijne Hospital Leiderdorp (center 2) and Zuyderland Medical Center (center 3). The hematological parameters were measured with Sysmex XN10/XN20 (center 1), CELL-DYN-Sapphire (Abbott Laboratories) (center 2) and Sysmex XN10 instruments (center 3). The clinical chemistry parameters were measured with Architect c14100/c160000 (Abbott Laboratories) (center 1), Architect ci4100 (Abbott Laboratories) (center 2) and Cobas 8000 instruments (Roche Dx) (center 3). The external validation was similar to the temporal validation and consisted of assessing the AUC sensitivity, specificity, PPV and NPV of each CoLab-score threshold. Calibration was assessed graphically analogous to the temporal validation dataset. L'EX ONL

Results

251 Development dataset

12879 emergency department (ED) presentations of 10327 patients from July 2019 to July
2020 were included. After excluding cases with an incomplete lab panel, patient presentations
that occurred after a positive PCR test in the past (re-presentations) and presentations with
extreme values (>10 times standard deviation) in any of the lab results, 10417 presentations of
8610 patients remained (Figure 1 A).

	Pre-COVID	Asymptomatic	PCR negative	PCR positive
	$\mathbf{N} = 5890$	N = 3303	N = 945	N = 279
Age in years	61 (21)	60 (21)	66 (18)	69 (15)
Female gender	2909 (49.4 %)	1659 (50.2 %)	466 (49.3 %)	95 (34.1 %)
Specialism				
Internal medicine	1648 (28.0 %)	896 (27.1 %)	244 (25.8 %)	71 (25.4 %)
Surgery	1007 (17.1 %)	679 (20.6 %)	51 (5.4 %)	5 (1.8 %)
Neurology	775 (13.2 %)	468 (14.2 %)	64 (6.8 %)	5 (1.8 %)
Pulmonary medicine	714 (12.1 %)	220 (6.7 %)	326 (34.5 %)	167 (59.9 %)
Cardiology	560 (9.5 %)	322 (9.7 %)	145 (15.3 %)	6 (2.2 %)
Urology	309 (5.2 %)	148 (4.5 %)	15 (1.6 %)	7 (2.5 %)
Gastroenterology	306 (5.2 %)	224 (6.8 %)	27 (2.9 %)	1 (0.4 %)
Geriatrics	189 (3.2 %)	95 (2.9 %)	52 (5.5 %)	15 (5.4 %)
Orthopedics	147 (2.5 %)	109 (3.3 %)	11 (1.2 %)	0 (0.0 %)
Gynecology	118 (2.0 %)	82 (2.5 %)	2 (0.2 %)	0 (0.0 %)
Other	117 (2.0 %)	60 (1.8 %)	8 (0.8 %)	2 (0.7 %)
Hemoglobin in mmol/L	8.2 (1.3)	8.3 (1.3)	8.2 (1.4)	8.6 (1.1)
Hematocrit in L/L	0.403 (0.059)	0.405 (0.056)	0.405 (0.062)	0.417 (0.047)
Erythrocytes in /pL	4.41 (0.69)	4.43 (0.66)	4.41 (0.72)	4.61 (0.60)
MCV in fl	91.8 (6.4)	91.9 (6.1)	92.4 (6.7)	90.7 (5.5)
MCH in mmol	1.859 (0.157)	1.876 (0.150)	1.874 (0.172)	1.869 (0.141)
MCHC in mmol/L	20.2 (0.9)	20.4 (0.9)	20.3 (1.0)	20.6 (0.8)
Thrombocytes in /nL	263 (99)	266 (100)	269 (105)	217 (123)
Leukocytes in /nL	9.30 [7.06, 12.16]	8.92 [7.01, 11.89]	9.66 [7.17, 12.94]	6.33 [4.74, 8.4
Neutrophils in /nL	6.62 [4.51, 9.53]	6.10 [4.42, 8.94]	7.01 [4.79, 10.02]	4.71 [3.30, 6.9
Eosinophils in /nL	0.09 [0.03, 0.17]	0.09 [0.03, 0.18]	0.08 [0.02, 0.17]	0.00 0.00, 0.0
Basophils in /nL	0.04 [0.02, 0.05]	0.04 [0.02, 0.05]	0.04 [0.02, 0.05]	0.01 [0.01, 0.0
Lymphocytes in /nL	1.47 [0.93, 2.13]	1.56 [1.05, 2.18]	1.31 [0.80, 2.03]	0.86 [0.59, 1.2
Monocytes in /nL	0.70 [0.52, 0.93]	0.69 [0.52, 0.91]	0.74 [0.54, 1.01]	0.45 [0.32, 0.6
Glucose in mmol/L	6.76 [5.83, 8.39]	6.68 [5.76, 8.14]	6.98 [5.95, 8.85]	6.77 [5.98, 8.4
Bilirubin in umol/L	7.5 [5.0, 11.6]	7.4 [5.1, 10.9]	8.3 [5.6, 12.4]	8.2 [6.3, 11.4]
ASAT in U/L	24.0 [19.1, 32.2]	26.5 [21.6, 35.1]	27.7 [21.7, 39.2]	40.7 [30.2, 57
ALAT in U/L	24.3 [17.8, 35.3]	25.3 [18.4, 36.2]	25.7 [18.4, 40.0]	33.7 [23.3, 50
LD in U/L	201 [173, 240]	198 [170, 236]	215 [178, 263]	300 [238, 403
CK in U/L	82 [51, 134]	83 [52, 136]	76 [51, 125]	124 [62, 222]
ALP in IU/L	83.0 [68.0, 105.0]	81.0 [65.8, 102.5]	86.9 [67.9, 110.0]	71.0 [58.8, 85
gGT in U/L	27.0 [17.0, 53.0]	28.4 [18.4, 50.5]	37.0 [22.4, 68.9]	42.0 [28.0, 83
BUN in mmol/L	5.7 [4.3, 8.0]	5.8 [4.3, 7.8]	6.2 [4.6, 9.4]	6.1 [4.7, 8.9]

BMJ Open

CKD-epi in ml/min/m2	80.9 [58.0, 99.1]	85.0 [63.5, 103.3]	79.1 [52.1, 96.6]	76.6 [54.9, 91]
Creatinine in umol/L	79 [64, 100]	74 [61, 94]	78 [62, 105]	82 [68, 104]
Potassium in mmol/L	4.06 (0.50)	4.03 (0.49)	4.07 (0.55)	3.91 (0.47)
Sodium in mmol/L	139.2 (4.0)	138.5 (3.9)	138.0 (4.3)	136.4 (4.1)
Chloride in mmol/L	104.4 (4.6)	103.8 (4.5)	102.9 (4.8)	101.6 (4.4)
Albumin in g/L	42.4 (4.9)	42.3 (4.5)	40.8 (4.8)	38.4 (3.8)
CRP in mg/L	8 [2, 41]	5 [1, 30]	18 [3, 69]	77 [37, 136]
257				
258 Table 1: Descriptiv	e statistics of deve	elopment dataset an	nd laboratory conc	entrations.
•		-	·	

Shown are the laboratory tests routinely requested at ED presentation and their mean/median results (in the development dataset) for the presentations before the first COVID-19 patient in the Netherlands ("Pre-COVID-19"), presentations thereafter that were not tested for COVID-19 ("Untested"), tested negatively ("PCR negative") and tested positive ("PCR positive"). For results with normal distributions, the mean value and standard deviation (in round brackets) are shown. For results that have skewed or heavy tailed distributions, the median value and the interquartile range is shown [in squared brackets]. Dark grey marked figures indicate a clinically relevant difference from the Pre-COVID-19 category (based on the total allowable error). Descriptive statistics of ED presentations are shown in **Table 1**, dark grey marked figures indicate a clinically relevant difference from the Pre-COVID-19 category (based on the total allowable error [17]). For the PCR positives (N = 279), 91% (95% CI: 88 to 94%) of the cases were tested positive in their first PCR. The remaining 24 patients were positive in their second (N = 18), third (N = 5) or fourth (N = 1) PCR. CoLab-score The model obtained through adaptive lasso regression contained eleven variables, which are depicted with their regression coefficients (weights) in Table 2.

	VariableβExclusion limitRelativeimportance					
	Intercept -6.885 -					
	Erythrocytes /pL 0.9379 Erythrocytes < 2.9 /pL 52 %					
	Leukocytes /nL -0.1298 46 %					
	Eosinophils /nL	-6.834		86 %		
	Basophils /nL	-47.70	Basophils >0.33 /nL	100 %		
	\log_{10} of Bilirubin in μ mol/L	-1.142	Bilirubin >169 µmol/L	26 %		
	\log_{10} of LD in U/L	5.369	LD >1564 U/L	58 %		
	\log_{10} of ALP in IU/L	-3.114	AF >1000 IU/L	45 %		
	\log_{10} of gG1 in U/L	0.3605	gGT >1611 U/L			
	CPP in mg/I	-0.1130		43 % 15 %		
	Age in years	0.002300		$\frac{13}{0}$		
278		0.002275		1 /0		
279	Table 2: Calculation of the	CoLab-linea	r predictor (LP).			
280	The CoLab-linear predictor (LP) is calculated by summing the intercept and the products of					
281	the 11 variables with their corresponding coefficients (β 's). CoLab-LP = $-6.885 +$					
282	[erythrocytes] \times 0.9379 – [leukocytes] \times 0.1298 – [eosinophils] \times 6.834 – [basophils] \times					
283	47.7 – log10([bilirubin]) × 1	.142 + log10	[LD]) × 5.369 – log10([.	ALP]) × 3.114 +		
284	log10([gGT]) × 0.3605 – [al	bumin] × 0.1	156 + [CRP] × 0.02560 ·	+ [age] × 0.002275. The		
285	LP can be converted into a C	CoLab-score (S	see Figure 2) or into a pr	obability if the prevalence		
286	is known or estimated (see de	etails in Suppl	emental Material 1). The	CoLab-score is not valid		
287	if any of the variables exceed the limits in the third column.					
288						
289	A larger β -coefficient does not imply that a variable is more important in predicting the odds					
290	of testing positive for SARS-CoV-2, since variables are on different scales. Therefore, the					
291	relative importance is calculated based on scaled coefficients. The absolute basophil count has					
292	the highest relative importance, followed by eosinophil count.					
293	As shown in Figure 2 , the lin	near predictor	clearly discriminates bet	ween COVID-19 and non-		
294	COVID-19. The linear predic	ctor is convert	ted to CoLab-scores 0 – 5	with the cut-points		
295	depicted in Figure 2 .					

1						
2 3	296					
4 5	270					
6 7	297	Internal validation				
8 9	298	The model was valid	lated in the period star	ting from the first COV	ID-19 infection to July	7
10 11	299	2020, in this period t	the mean prevalence w	vas 7.2%. The AUC of t	he CoLab-score is 0.93	30
12 13 14	300	(95% CI: 0.909 to 0.	945).			
15	T . I.					
17 sc	oLab- ore	Sensitivity	Specificity	PPV	NPV	% of population
18	0	0.984 (0.970 - 0.991)	0.411 (0.285 - 0.520)	0.115 (0.0932 - 0.141)	0.997 (0.994 - 0.999)	38.4 (26.4 - 48.4)
20	≤ 1	0.909 (0.886 - 0.943)	0.793(0.744 - 0.826)	0.255(0.207 - 0.299) 0.271(0.217 - 0.414)	0.991 (0.989 - 0.995)	74.4 (69.4 - 77.4)
21	≤ 2 ≤ 3	0.839(0.811 - 0.889) 0.750(0.700 - 0.810)	0.887(0.800 - 0.901) 0.953(0.944 - 0.959)	0.371(0.317 - 0.414) 0.551(0.494 - 0.601)	0.988 (0.983 - 0.991) 0.980 (0.975 - 0.985)	85.2 (82.2 - 85.2) 90 1 (89 1 - 91 1)
22	≤ 4	0.608 (0.522 - 0.685)	0.978 (0.973 - 0.983)	0.682 (0.622 - 0.740)	0.970 (0.962 - 0.977)	93.8 (92.8 - 93.8)
2 3 24	301	· · · · · ·		x		, , , , , , , , , , , , , , , , , , ,
25						
26 27	302	Table 3: Diagnostic	performance CoLab	o-score in the developn	nent dataset.	
28		_				
29	303	The development dat	taset was internally va	lidation for the period 1	March 2020 – July 202	0 (N
30 31	304	= 4.527). Sensitivitie	es, specificities, positiv	ve predictive values (PP	V), negative predictive	
32 33	205					11 <
34 35	305	values (NPV) and fro	action of patients (%)	are snown for fixed cut-	offs (CoLab-score 0 til	$n \leq 1$
36 37	306	4). The numbers in r	ound brackets represe	ent the 95% bootstrappe	d confidence intervals.	The
38	307	first column defines	the threshold above w	hich CoLab-score a pat	ient is considered posi	tive.
39 40 41	308	Note that "0" lists th	he sensitivity and NPV	of CoLab-score 0 and	"≤4" lists the specifici	ity
42	309	and PPV of CoLab-s	score 5			
43 44	507	unu 11 y og CoLub s				
45 46	310					
47 48						
48 49	311	Diagnostic performa	nce is shown in Table	3. A CoLab-score of 0	has a negative predicti	ve
50 51 52	312	value (NPV) of 0.99	7 (95% CI: 0.994 to 0.	.999) and positive predict	ctive value (PPV) of 0.	.115
53 54	313	(0.0932 - 0.141), one	e third (38.4%, 95% C	I: 26.4 to 48.4%) of all	ED presentations were	
55 56	314	assigned this score a	nd can therefore be sa	fely excluded. Converse	ely, 6.2% (95% CI: 6.3	to
57 58 59	315	7.2%) of the ED pati	ients had a CoLab-sco	re = 5. Given the PPV o	f this score (0.682, 959	% CI:
60	316	0.622 to 0.740, NPV	7: 0.970, 95% CI: 0.96	2 - 0.977), subsequent P	CR testing is advised.	
		16				

1		
2 3	217	
4	517	
5 6 7	318	Temporal validation
8 9	319	As the CoLab-score was developed in our center after the first COVID-19-wave in the
10 11 12	320	Netherlands, the performance was evaluated in our center from July 2020 until October 2021.
12 13 14	321	Lab results from 17489 ED presentations were collected. After applying the inclusion flow as
15 16	322	shown in Figure 1 B, 14080 presentations remained, of which 1039 were associated with a
17 18 19	323	COVID-19 infection.
20 21	324	The mean prevalence in this period was 7.4%. The AUC of the CoLab-score in the temporal
22 23 24	325	validation set is 0.916 (95% CI: 0.906 to 0.927). The performance is comparable to the
25 26	326	development cohort, although sensitivity is slightly lower and specificity slightly higher, 95%
27 28	327	CIs overlap (cf. Table 3 and Table 4). The temporal validation dataset was also split into
29 30 31	328	three phases according to dominant SARS-CoV-2 variants and vaccine roll-out (see
32 33	329	Supplemental Material 2 Figure 1). The discriminative ability is not affected by phases with
34 35	330	different dominant variants and/or vaccination status. Diagnostic performance is also
36 37 38	331	preserved in terms of sensitivity and specificity, PPV and NPV are difficult to compare due to
39 40	332	different prevalence/pre-test probabilities in each phase (see Supplemental Material 2 Table
41 42 43	333	1).
44 45	334	In terms of the predicted probabilities, model calibration shows that overall predicted
46 47	335	probabilities are too low (see Supplemental Material 3 for the calibration plot), which is
48 49 50	336	expected since the prevalence differs and the intercept has to be adjusted to the prevalence.
50 51 52	337	In this period at least 22 COVID-19 positive patients were identified by the CoLab-score, that
53 54	338	initially did not present with COVID-specific symptoms. Most patients had neurological or
55 56 57	339	orthopedic presenting symptoms.
58 59 60	340	

- 342 For external validation, data obtained from three other centers were used, center 1 (N = 1284,
- 343 52 COVID-19 positive), center 2 (N = 2899, 99 COVID-19 positive) and center 3 (N = 3545,
- 344 336 COVID-19 positive). The inclusion flow is summarized in Figure 3. COVID-19
- $\frac{2}{5}$ 345 prevalence differed between the three centers (4.0%, 3.4% and 9.5% respectively) and was
- by 346 lower in centers 1 and 2, and higher in center 3 than in the development dataset. The AUCs of
- the CoLab-score are 0.904 (95% CI: 0.866 to 0.942), 0.886 (95% CI: 0.851 0.922) and 0.891
- ² 348 (95% CI: 0.872 0.909), for centers 1, 2, and 3 respectively.
 - 349 Diagnostic performance is shown in **Table 4**. The sensitivity of CoLab-score 0 in all centers
 - 350 is \geq 0.96. Therefore, the NPV of CoLab-score 0 was more than 99%. Calibration plots for
 - 351 external centers are shown in **Supplemental Material 3**, the observed fraction of COVID-19
 - 352 positives is slightly lower than expected in centers 1 and 2. For center 3, low probabilities
 - appear slightly underestimated and high probabilities slightly overestimated.

CoLab	Validation	Sensitivity	Specificity	PPV	NPV
-score	set				
	Temporal	0.967 (0.957 - 0.977)	0.420 (0.411 - 0.428)	0.117 (0.115 - 0.119)	0.994 (0.992 - 0.996
0	Center 1	1.000 (1.000 - 1.000)	0.333 (0.308 - 0.360)	0.059 (0.057 - 0.062)	1.000 (1.000 - 1.000
0	Center 2	0.960 (0.919 - 0.990)	0.351 (0.334 - 0.369)	0.050 (0.047 - 0.052)	0.996 (0.992 - 0.999
	Center 3	0.973 (0.955 - 0.988)	0.322 (0.307 - 0.338)	0.131 (0.127 - 0.134)	0.991 (0.986 - 0.996
	Temporal	0.888 (0.869 - 0.907)	0.790 (0.783 - 0.798)	0.252 (0.245 - 0.260)	0.989 (0.987 - 0.991
~1	Center 1	0.923 (0.846 - 0.981)	0.695 (0.670 - 0.722)	0.113 (0.102 - 0.126)	0.995 (0.991 - 0.999
≤ 1	Center 2	0.929 (0.879 - 0.970)	0.680 (0.663 - 0.697)	0.093 (0.087 - 0.100)	0.996 (0.994 - 0.998
	Center 3	0.917 (0.887 - 0.946)	0.675 (0.659 - 0.691)	0.228 (0.218 - 0.238)	0.987 (0.983 - 0.992
	Temporal	0.820 (0.796 - 0.842)	0.894 (0.889 - 0.899)	0.381 (0.368 - 0.395)	0.984 (0.982 - 0.986
~2	Center 1	0.808 (0.692 - 0.904)	0.812 (0.791 - 0.834)	0.154 (0.131 - 0.179)	0.990 (0.984 - 0.995
<u>_</u> 2	Center 2	0.869 (0.798 - 0.929)	0.802 (0.787 - 0.816)	0.135 (0.122 - 0.147)	0.994 (0.991 - 0.997
	Center 3	0.893 (0.860 - 0.926)	0.795 (0.781 - 0.809)	0.314 (0.297 - 0.330)	0.986 (0.982 - 0.990
	Temporal	0.710 (0.682 - 0.738)	0.962 (0.958 - 0.965)	0.595 (0.573 - 0.618)	0.977 (0.974 - 0.979
-2	Center 1	0.750 (0.635 - 0.865)	0.910 (0.893 - 0.926)	0.260 (0.216 - 0.309)	0.989 (0.983 - 0.994
≤s	Center 2	0.687 (0.596 - 0.778)	0.899 (0.887 - 0.910)	0.194 (0.168 - 0.222)	0.988 (0.984 - 0.991
	Center 3	0.768 (0.726 - 0.812)	0.887 (0.876 - 0.898)	0.417 (0.392 - 0.445)	0.973 (0.969 - 0.978
	Temporal	0.585 (0.555 - 0.616)	0.984 (0.982 - 0.987)	0.749 (0.724 - 0.777)	0.968 (0.965 - 0.970
-1	Center 1	0.654 (0.519 - 0.769)	0.952 (0.939 - 0.964)	0.366 (0.296 - 0.447)	0.985 (0.979 - 0.990
<u>_</u> 4	Center 2	0.556 (0.455 - 0.647)	0.953 (0.945 - 0.961)	0.295 (0.246 - 0.349)	0.984 (0.980 - 0.98
	Center 3	0.667 (0.619 - 0.720)	0.931 (0.922 - 0.940)	0.502 (0.467 - 0.541)	0.964 (0.959 - 0.96

Table 4: Diagnostic performance of the CoLab-score in the validation dataset (temporal)

- and three external hospitals.
- Sensitivities, specificities, positive predictive values (PPV) and negative predictive values
- (NPV) are shown for fixed cut-offs (CoLab-score 0 till ≤ 4) with bootstrapped 95% confidence
- intervals in parentheses. Note that "0" lists the sensitivity and NPV of CoLab-score 0 and " \leq
- 4" lists the specificity and PPV of CoLab-score 5.

2	
2	
1	
+ -	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
15	
10	
1/	
18	
19	
20	
21	
22	
23	
24	
25	
26	
20	
27	
20	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
20	
10	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
57	
52 52	
53	
54	
55	
56	
57	
58	
59	

Discussion 361

362 Given the impact of COVID-19 on society and healthcare, there is a need for simple and fast 363 detection of patients with a possible COVID-19 infection in the ED. The CoLab-score 364 described in this study, is a fast and accurate risk score to triage patients presenting at the ED 365 based on ten routine blood biomarkers and age.

366 The main strength of this study is that this score can be used as an early-warning or triaging 367 tool for the entire ED population, regardless of presenting symptoms. This is in contrast to the 368 vast majority of COVID-19 diagnostic models that have been developed on a pre-selected 369 population of PCR-tested patients [18–25]. Moreover, the CoLab-score requires only routine 370 blood tests instead of (features from) imaging such as CT-scans or laboratory tests that are not 371 routinely collected in the ED, e.g. interleukin-6 or 3-hydroxybuteric acid [4]. Compared to 372 lateral flow tests (LFTs), which provide a dichotomous result within 30 minutes and are 373 widely adopted in EDs, the CoLab-score is a continuous score. The lowest CoLab-scores (0 -374 1) offer higher sensitivity and are therefore more suitable to rule-out COVID-19 than a LFT, 375 which are only moderately sensitive (albeit more specific) [26,27]. 376 Two other studies have been published which are similar to this study [20,28]. Interestingly, 377 the study by Soltan et al., ranked basophils and eosinophils as the two most important features 378 in predicting the outcome, similar to our results [28]. Eosinophils were also seen as one of the 379 most important features by Plante et al. [20]. However, both studies focus on an artificial 380 intelligence/machine learning approach. While their approach likely results in higher 381 predictive performance due to the ability of machine learning models to capture non-linear 382 and interaction effects, the goal of this study was to develop a simple, fast and robust model 383 that can easily be implemented in current hospital IT systems.

BMJ Open

Since this is a retrospective case-control study, there is some unavoidable missing data. In our cohort 17.6% of the ED presentations could not be used due to one or more missing laboratory results. This is lower or equal to similar studies; 22% [22], 17% [19] and 11% [25]. We do not expect that presentations with missing data have led to severe inclusion bias, important to note is that 7.7% of missingness is due to analytical errors which should not cause bias. For the remaining 9.9% of missingness, the full lab panel was most frequently missing for pediatric, obstetric and surgery patients which are rarely COVID-19 patients. This is also the case for external validation centers 1 and 2, in these centers only internal medicine ED presentations were tested with a laboratory panel containing the 10 tests required for the CoLab-score. The ED lab panel of other disciplines (e.g. urology, surgery or pediatrics) differed and did not contain the required tests. Nevertheless, the majority of COVID-19 patients were internal medicine ED presentations, which is reflected by the few PCR-positive patients excluded.

The performance of the CoLab-score is affected by the time between the onset of symptoms and ED presentations. The score increases with the duration of symptoms and gradually decreases after day 7 (see **Supplemental Material 4 Figure 1** for a plot of the duration of COVID-19 related symptoms and the CoLab-linear predictor). As a consequence, some COVID-19 patients with early or late presentation after onset of symptoms can be missed. Optimal performance of the CoLab-score is achieved when the onset of symptoms is >1 and <10 days prior to ED presentation.

It was chosen to exclude re-presentations. Since the median time between initial presentation
and re-presentation was 12 days, these patients were most likely not re-infected patients, but
patients who deteriorated after initial presentation/treatment. Given that the CoLab-score
follows the host-immune response, the score is time sensitive (see Supplemental Material 4
Figure 1). Including these patients would impact the performance of the CoLab-score as

Page 23 of 44

1 2

BMJ Open

3 4	409
5 6	410
7 8 0	411
9 10 11	412
12 13	413
14 15 16	414
17 18	415
19 20 21	416
22 23	417
24 25 26	418
20 27 28	419
29 30	420
31 32 33	421
34 35	422
36 37	423
38 39 40	424
41 42	425
43 44 45	426
46 47	427
48 49 50	428
50 51 52	429
53 54	430
55 56 57	431
58 50	
60	

409 patients in a later phase of the disease show different biomarker profiles. The CoLab-score is
410 aimed towards alerting clinicians to patients presenting with a novel SARS-CoV-2 infection,
411 rather than patients who deteriorate after treatment for COVID-19.

412 Finally, the CoLab-score could lead to false positives by other viral infections. However, in an 413 historic patient cohort, the CoLab-score had only limited discriminative ability in separating 414 influenza-PCR-negative from influenza-PCR-positive patients (see Supplemental Material 4 415 Figure 2) implying specificity for SARS-CoV-2. Since the CoLab-score reflects the host-416 response to the virus, it is expected that the CoLab-score is also sensitive to future SARS-417 CoV-2 variants. This is supported by the fact that the diagnostic performance is sustained in 418 periods with different dominant variants. Moreover, there is no evidence that the diagnostic 419 performance is affected by vaccinations. Although vaccination status is not registered for all 420 presenting patients, there is no evidence that performance is reduced under increasing degrees 421 of vaccination. In a small subgroup of 12 patients for whom vaccination status was registered, and were COVID-19 positive, 8 of 12 patients had the highest CoLab-score (= 5) (see 422

423 Supplemental Material 2 Figure 2),

To conclude, the CoLab-score developed and validated in this study, based on 10 routine laboratory results and age, is available within 1 hour for any patient presenting at the ED. The score can be used by clinicians to guide PCR testing or triage patients and helps to identify COVID-19 in asymptomatic patients. The lowest CoLab-score can be used to effectively ruleout a possible SARS-CoV-2 infection, the highest score to alert physicians to a possible infection. Thus, the CoLab-score is a valuable tool to rule out COVID-19, guide PCR testing and is available to any center with access to routine laboratory tests.

2	
2	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20 21	
∠ו רך	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
79 50	
50	
57	
52 52	
ک د د	
54 57	
22	
50	
5/	
58	
59	
60	

434

435

436

437

438

439

440

441

442

432 Funding statement

Competing interests

433 This was an investigator-initiated study and no funding was received for this study.

A-KB reports no conflict of interest. RD reports no conflict of interest. MM reports no

conflict of interest. HA reports no conflict of interest. RvB reports no conflict of interest. WT

reports no conflict of interest. SB reports not conflict of interest. ML reports no conflict of

interest. RM reports no conflict of interest. MB reports no conflict of interest. JK reports no

reports no conflict of interest. VS reports no conflict of interest.

conflict of interest. MM reports no conflict of interest. JvS reports no conflict of interest. NvR

443 **Data sharing statement**

444 Datasets with source data for Table 1, Figure 2, Table 3 and Table 4, as well the R-code to fit
445 the model is available from the Dryad repository, DOI:[WILL BE PROVIDED WHEN
446 UNDER REVIEW]. Technical appendix can be found in Supplemental Material 1.

447

448 Author contributorship statement

449 Arjen-Kars Boer: Conceptualization (Lead), Data curation (Lead), Funding acquisition (Lead),
450 Investigation (Equal), Methodology (Equal), Supervision (Equal), Writing-original draft
451 (Equal), Writing-review & editing (Equal).

452 Ruben Deneer: Data curation (Equal), Formal analysis (Equal), Investigation (Equal),
 453 Methodology (Lead), Software (Lead), Visualization (Lead), Writing-original draft (Equal),
 454 Writing-review & editing (Equal).

Page 25 of 44

1

BMJ Open

2 3 4	455
5 6 7	456
7 8 9	457
10 11 12	458
12 13 14	459
15 16 17	460
18 19	461
20 21 22	462
23 24	463
25 26 27	464
28 29	465
30 31 32	100
33 34 25	466
35 36 37	467
38 39	468
40 41 42	469
43 44 45	470
46 47	471
48 49 50	472
51 52	473
53 54 55	474
56 57	475
58 59 60	476

Maaike Maas: Conceptualization (Supporting), Resources (Supporting), Supervision (Supporting), Validation (Supporting), Writing-review & editing (Equal). Heidi Ammerlaan: Conceptualization (Supporting), Resources (Supporting), Supervision (Supporting), Validation (Equal), Writing-review & editing (Equal). Roland van Balkom: Conceptualization (Supporting), Resources (Supporting), Supervision (Supporting), Validation (Supporting), Writing-review & editing (Equal). Wendy Thijssen: Conceptualization (Supporting), Resources (Supporting), Supervision (Supporting), Validation (Supporting), Writing-review & editing (Equal). Sophie Bennenbroek: Conceptualization (Supporting), Resources (Supporting), Supervision (Supporting), Validation (Supporting), Writing-review & editing (Equal). Mathie Leers: Resources (Equal), Validation (Equal), Writing-review & editing (Equal). Remy Martens: Resources (Equal), Validation (Equal), Writing-review & editing (Equal). Madelon M. Buijs: Resources (Equal), Validation (Equal), Writing-review & editing (Equal). Jos Kerremans: Resources (Equal), Validation (Equal), Writing-review & editing (Equal). Muriël Messchaert: Resources (Equal), Validation (Equal), Writing-review & editing (Equal). Jeroen van Suijlen: Resources (Supporting), Validation (Supporting), Writing-review & editing (Equal). Natal A.W. van Riel: Methodology (Supporting), Resources (Supporting), Supervision (Equal), Writing-review & editing (Equal). Volkher Scharnhorst: Conceptualization (Equal), Funding acquisition (Equal), Project administration (Lead), Resources (Equal), Supervision (Lead), Writing-review & editing

24

(Equal).

1 ว								
2 3 4	477	Refe	erences					
5 6 7	478	1	Coronavirus	Disease	(COVID-19)	Situat	ion	Reports.
7 8 9	479		https://www.who	.int/emergencies/d	iseases/novel-corona	avirus-2019	/situation-r	eports/
10 11 12	480		(accessed 4 Feb 2	2021).				
13 14 15	481	2	Guan W, Ni Z, I	Hu Y, et al. Clinic	cal Characteristics of	of Coronavi	rus Disease	e 2019 in
15 16 17	482		China.	https://doi.org/101	056/NEJMoa20020.	32	2020; 382 :	1708–20.
18 19 20	483		doi:10.1056/NEJ	MOA2002032				
20 21 22	484	3	Vetter P, Vu DL	, L'Huillier AG, e	t al. Clinical featur	res of covid	l-19. <i>BMJ</i> 2	2020; 369 .
23 24 25	485		doi:10.1136/BMJ	J.M1470				
26 27	486	4	Wynants L, Van	Calster B, Collin	s GS, et al. Predic	ction model	ls for diag	nosis and
28 29	487		prognosis of cov	vid-19: Systematic	review and critica	al appraisal	. <i>BMJ</i> 202	0; 369 :18.
30 31 32	488		doi:10.1136/bmj.	m1328				
33 34 35	489	5	Albahri AS, Ham	id RA, Alwan J k.	, <i>et al</i> . Role of biolo	gical Data	Mining and	Machine
36 37	490		Learning Technic	ques in Detecting a	nd Diagnosing the N	Novel Coron	navirus (CO	VID-19):
38 39 40	491		A Systematic Rev	view. J. Med. Syst.	2020; 44 :122. doi:10	0.1007/s109	916-020-01	582-x
41 42	492	6	Hooli S, King C.	. Generalizability of	of Coronavirus Dise	ease 2019 (COVID-19) Clinical
43 44 45	493		Prediction Model	s. Clin Infect Dis 2	020; 71 :897–897. do	oi:10.1093/c	cid/ciaa417	
46 47 48	494	7	Prokop M, Everd	lingen W van, Vel	linga T van R, <i>et al</i>	. CO-RAD	S: A Catego	orical CT
49 50	495		Assessment Sche	me for Patients Sus	pected of	Having CO	VID-19—I	Definition
51 52	496		and Evaluation	n. <i>https://doi.org</i>	g/101148/radiol202	0201473	2020; 296 :	E97–104.
53 54 55	497		doi:10.1148/RAD	DIOL.2020201473				
56 57	498	8	Goodacre S, Tho	mas B, Sutton L, e	t al. Derivation and	validation	of a clinica	l severity
58 59 60	499		score for acutely	ill adults with susp	ected COVID-19: T	he PRIEST	observatior	nal cohort

Page 27 of 44

BMJ Open

1 2 3 4	500		study. PLoS One 2021;16:e0245840. doi:10.1371/JOURNAL.PONE.0245840
5	501	9	R Core Team. R: A Language and Environment for Statistical Computing.
7 8 9	502		2020.https://www.r-project.org/
10 11 12	503	10	Zou H. The adaptive lasso and its oracle properties. <i>J Am Stat Assoc</i> 2006; 101 :1418–29.
13 14 15	504		doi:10.1198/01621450600000735
16 17	505	11	Tibshirani R. Regression Shrinkage and Selection Via the Lasso. J R Stat Soc Ser B
18 19 20	506		1996; 58 :267–88. doi:10.1111/j.2517-6161.1996.tb02080.x
21 22 23	507	12	Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models
23 24 25	508		via coordinate descent. J Stat Softw 2010;33:1-22. doi:10.18637/jss.v033.i01
26 27 28	509	13	King G, Zeng L. Logistic Regression in Rare Events Data. Polit Anal 2001;9:137-63.
29 30	510		doi:10.1093/oxfordjournals.pan.a004868
31 32 33	511	14	Efron B. Estimating the error rate of a prediction rule: Improvement on cross-validation.
34 35 36	512		J Am Stat Assoc 1983;78:316-31. doi:10.1080/01621459.1983.10477973
37 38	513	15	Robin X, Turck N, Hainard A, et al. pROC: An open-source package for R and S+ to
39 40 41	514		analyze and compare ROC curves. BMC Bioinformatics 2011;12:77. doi:10.1186/1471-
42 43	515		2105-12-77
44 45 46	516	16	Harrell Jr FE. rms: Regression Modeling Strategies. 2021.https://cran.r-
47 48 49	517		project.org/package=rms
50 51	518	17	Ricós C, Alvarez V, Cava F, et al. Current databases on biological variation: Pros, cons
52 53 54	519		and progress. Scand. J. Clin. Lab. Invest. 1999; 59 :491–500.
55 56	520		doi:10.1080/00365519950185229
58 59 60	521	18	Brinati D, Campagner A, Ferrari D, et al. Detection of COVID-19 Infection from

BMJ Open

Routine Blood Exams with Machine Learning: A Feasibility Study. J Med Syst 2020;44:1-12. doi:10.1007/s10916-020-01597-4 Joshi RP, Pejaver V, Hammarlund NE, et al. A predictive tool for identification of SARS-CoV-2 PCR-negative emergency department patients using routine test results. J *Clin Virol* 2020;**129**:104502. doi:10.1016/j.jcv.2020.104502 Plante TB, Blau AM, Berg AN, et al. Development and external validation of a machine learning tool to rule out COVID-19 among adults in the emergency department using routine blood tests: A large, multicenter, real-world study. J Med Internet Res 2020;**22**:e24048. doi:10.2196/24048 Qin L, Yang Y, Cao Q, et al. A predictive model and scoring system combining clinical and CT characteristics for the diagnosis of COVID-19. Eur Radiol 2020;30:6797-807. doi:10.1007/s00330-020-07022-1 Kurstjens S, van der Horst A, Herpers R, et al. Rapid identification of SARS-CoV-2-infected patients at the emergency department using routine testing. Clin Chem Lab Med 2020;**58**:1587–93. doi:10.1515/cclm-2020-0593 Fink DL, Khan PY, Goldman N, et al. Development and internal validation of a diagnostic prediction model for COVID-19 at time of admission to hospital. QJM An Int J Med Published Online First: 9 November 2020. doi:10.1093/gjmed/hcaa305 Giamello JD, Paglietta G, Cavalot G, et al. A simple tool to help ruling-out Covid-19 in the emergency department: derivation and validation of the LDH-CRP-Lymphocyte (LCL) score. Emerg Care J 2020;16. doi:10.4081/ecj.2020.9336 Tordjman M, Mekki A, Mali RD, et al. Pre-test probability for SARS-Cov-2-related infection score: The PARIS score. PLoS One 2020;15:e0243342.

BMJ Open

2 3 4	545		doi:10.1371/journal.pone.0243342
5 6 7	546	26	Peto T, Affron D, Afrough B, et al. COVID-19: Rapid antigen detection for SARS-CoV-
8 9	547		2 by lateral flow assay: A national systematic evaluation of sensitivity and specificity for
10 11	548		mass-testing. <i>EClinicalMedicine</i> 2021; 36 :100924.
12 13 14	549		doi:10.1016/J.ECLINM.2021.100924
15 16 17	550	27	García-Fiñana M, Hughes DM, Cheyne CP, et al. Performance of the Innova SARS-
18 19	551		CoV-2 antigen rapid lateral flow test in the Liverpool asymptomatic testing pilot:
20 21 22	552		population based cohort study. BMJ 2021;374:1637. doi:10.1136/BMJ.N1637
23 24	553	28	Soltan AAS, Kouchaki S, Zhu T, et al. Rapid triage for COVID-19 using routine clinical
25 26 27	554		data for patients attending hospital: development and prospective validation of an
27 28 29	555		artificial intelligence screening test. Lancet Digit Heal 2021;3:e78-87.
30 31	556		doi:10.1016/S2589-7500(20)30274-0
 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 	557 558		
59 60			

Figure legends

Figure 1: Inclusion flow of patients in the development (A) and temporal validation (B) dataset.

All patient admissions with routine venous blood sampling at the emergency department (ED) were included. For the development dataset, completeness of the lab panel was assessed for all the 29 laboratory tests (see Table 1), for the temporal validation dataset this was only necessary for 10 laboratory tests (see Table 2). The major causes of missingness are described in the text. In the development dataset, presentations with extreme values (>10 SD) were excluded. The same limits were applied to the temporal validation dataset (see Table 2 for limits).

Figure 2: Probability density plot of the CoLab-linear predictor.

The probability density plots for COVID (dark grey) and non-COVID patients (light grey) are plotted against the linear predictor (see table 2). The CoLab-score cut-offs (-5.83, -4.02, -3.29, -2.34 and -1.64) are depicted with vertical dashed lines. The white-boxed numbers (between the cut-offs) represent the corresponding CoLab-score. Note that while the area under both curves is identical (since these are probability density functions), in absolute numbers the "negative or untested"-group is about 36 times larger than the PCR positive group.

Figure 3: Inclusion flow of ED patients in three external centers.

2
2
3
4
5
6
7
/
8
9
10
11
10
12
13
14
15
16
10
17
18
19
20
21
∠ I 22
22
23
24
25
25
20
27
28
29
30
21
31
32
33
34
25
35
36
37
38
20
29
40
41
42
43
44
45
46
47
10
4ð
49
50
51
50
52
53
54
55
56
50
5/
58
59
60
00

581	All emergency department (ED) presentations with routine venous blood sampling were
582	included. Missingness of lab panels was assessed for the 11 variables in the CoLab-score (see
583	Table 2). Re-presentations after a positive PCR result or clinical COVID-19 registration were
584	excluded as "previous COVID-19+". Presentations with any laboratory result above the
585	limits of the CoLab-score (see Table 2) were excluded.

Center 1

Center 2

Supplemental material 1

Model fitting

Prior to model fitting, covariates were scaled to zero mean and unit variance, after model fitting coefficients were unscaled to obtain regression coefficients on the original scale. In adaptive lasso, weights are applied to each of the covariates present in the lasso constraint, the weight vector has to be calculated before the adaptive lasso regression is performed. Due to multicollinearity between laboratory tests in the routine lab panel, weights in the adaptive lasso were based on ridge regression estimates ($\hat{\beta}_{ridge}$) as recommended by Zou. To obtain $\hat{\beta}_{ridge}$ the optimal penalty (λ) for the ridge regression was chosen using 10 fold crossvalidation (CV) with area under the ROC curve (AUC) as the loss function. The λ corresponding to the maximum AUC was selected to obtain $\hat{\beta}_{ridge}$. The weight vector (\hat{w}) was calculated by $\hat{w} = 1/|\hat{\beta}_{ridge}|^2$. This weight vector was then used to fit an adaptive lasso regression where λ was chosen by the criterion ± 1 SE of the maximum AUC.

Model intercept correction

The linear predictor for a patient *i* is calculated as follows: $lp_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_n x_{in}$ Where *n* is the number of variables in the final model, x_{in} are the observed predictor variables for subject i and β_n the model coefficients. The linear predictor can then be converted to a probability for patient *i* (*P_i*) by the logistic function: $P_i = \frac{1}{1+e^{-lp_i}}$

The intercept term β_0 is sensitive to the fraction of cases versus controls in the dataset/population. Since the model is fitted to a case-control dataset where the number cases is fixed (all patients tested positive for COVID-19) and the number of controls is randomly chosen (a 6-month period pre-COVID), the intercept term β_0 is a result of this choice and will likely not be generalizable to the real-world setting. Prior correction is a method to correct the estimate of the intercept based on the true fraction of positives in the population, τ (prevalence of COVID-19 in the ED) and the fraction of cases in the development dataset, \bar{y} . The intercept term β_0 can then be corrected to obtain $\beta_{0corrected}$ using the following formula:

$$\beta_{0corrected} = \beta_0 + \beta_{adj}$$
$$\beta_{adj} = -ln\left[\left(\frac{1-\tau}{\tau}\right)\left(\frac{\bar{y}}{1-\bar{y}}\right)\right]$$

In our dataset $\bar{y} = 0.02675$ therefore:

1 0

$$\beta_{adj} = -ln\left(\frac{1-\tau}{\tau}\right) + 3.594$$

An estimate $\bar{\tau}$ can be used for the prevalence τ to obtain β_{adj} which can be plugged in the original linear predictor formula to obtain calibrated probabilities:

$$lp_{i}(\tau) = \beta_{0} - ln\left(\frac{1-\tau}{\tau}\right) + 3.594 + \beta_{1}x_{i1} + \dots + \beta_{n}x_{in}$$

CoLab-score

An alternative, which is the basis of the CoLab-score, is to choose a fixed probability P_i above which one considers a patient eligible for further testing. The probability can be expressed as a number needed to test. If one is willing to test 10 patients to find one positive, all patients with $P_i \ge 0.1$ should be considered positive. In this study a number needed to test of 15 is used, therefore all patients with a $P_i \ge 0.067$ should be considered positive. On the linear predictor scale this translates to logit(0.067) = -2.639. To determine the cutoffs for difference prevalence thresholds one solves the following equation:

 $\begin{aligned} \beta_0 + \beta_{adj} + \beta_1 x_{i1} + \dots + \beta_n x_{in} &\geq -2.639 \\ \beta_0 + \beta_1 x_{i1} + \dots + \beta_n x_{in} &\geq -2.639 - \beta_{adj} \\ lp_i(\tau) &\geq ln\left(\frac{1-\tau}{\tau}\right) - 6.233 \end{aligned}$

Choosing values for τ yields the cutoffs for the CoLab score:

$$\begin{split} lp_i(\tau = 0.4) &\geq -5.83 \text{ (CoLab-score = 1)} \\ lp_i(\tau = 0.1) &\geq -4.03 \text{ (CoLab-score = 2)} \\ lp_i(\tau = 0.05) &\geq -3.29 \text{ (CoLab-score = 3)} \\ lp_i(\tau = 0.02) &\geq -2.34 \text{ (CoLab-score = 4)} \\ lp_i(\tau = 0.01) &\geq -1.64 \text{ (CoLab-score = 5)} \end{split}$$

These thresholds correspond to CoLab-scores 0 to 5. The interpretation of these scores is as follows; if the prevalence is <1%, only CoLab-score 5 should be classified as positive and CoLab-score 0 till 4 as negative. If the prevalence is 1% - 2%, CoLab-score 4 and 5 should be classified as positive and 1 - 3 negative. Similarly, with a prevalence of 2 - 5% the split is between CoLab-score 2 and 3 and with prevalence of 5 - 10% between CoLab-score 1 - 2. If the prevalence is higher than 10% only CoLab-score 0 is classified as negative. Using the CoLab-score in this fashion, aims to preserve a number need to test of 15.

Supplemental material 2

Vaccination status and COVID-19 ED prevalence plot

Figure 1: Temporal validation period split into three phases characterized by weekly number of new COVID-19 cases at the emergency department (ED) and estimated fraction of ED patients vaccinated.

The temporal validation dataset consists of ED presentations from July 2020 until October 2021. As stated in the "Materials and Methods" section, this period was split into three phases: i) from July 2020 until March 2021, no vaccination and no variants of concern identified ii) from March 2021 until June 2021, partial vaccination and B.1.1.7 (Alpha) variant identified as dominant iii) from June 2021 until October 2021, widespread vaccination and B.1.617.2 (Delta) variant identified as dominant. The ED fraction vaccinated is estimated by merging data from the Dutch national institute of public health by the date of the ED presentation and the year of birth of the patient. The gray bars depict weekly number of new COVID-19 cases at the ED, the blue lines the estimated fraction of ED patients fully or partially vaccinated.

CoLab-score performance

Phase	Cases/controls (prevalence)	AUC	
Original strain & no vaccinations	694/7999 (8.6%)	0.909 (0.896 - 0.923)	
B.1.1.7 strain & partial vaccination	287/2845 (10.1%)	0.937 (0.921 - 0.953)	
B.1.617.2 strain & full vaccination	58/3236 (1.8%)	0.898 (0.857 - 0.939)	

CoLab- score	Phase	Sensitivity	Specificity	PPV	NPV
	Original strain & no vaccinations	0.960 (0.944 - 0.974)	0.418 (0.407 - 0.429)	0.135 (0.133 - 0.138)	0.991 (0.987 - 0.
0	B.1.1.7 strain & partial vaccination	0.983 (0.969 - 0.997)	0.432 (0.413 - 0.450)	0.162 (0.158 - 0.168)	0.996 (0.992 - 0.9
	B.1.617.2 strain & full vaccination	0.983 (0.948 - 1.000)	0.415 (0.396 - 0.432)	0.030 (0.028 - 0.031)	0.999 (0.998 - 1.0
	Original strain & no vaccinations	0.879 (0.854 - 0.902)	0.789 (0.779 - 0.798)	0.283 (0.273 - 0.294)	0.986 (0.983 - 0.9
≤1	B.1.1.7 strain & partial vaccination	0.916 (0.885 - 0.948)	0.809 (0.793 - 0.824)	0.350 (0.332 - 0.370)	0.989 (0.984 - 0.9
	B.1.617.2 strain & full vaccination	0.862 (0.776 - 0.948)	0.780 (0.765 - 0.794)	0.067 (0.059 - 0.074)	0.997 (0.995 - 0.9
	Original strain & no vaccinations	0.813 (0.784 - 0.842)	0.894 (0.887 - 0.901)	0.421 (0.404 - 0.441)	0.980 (0.978 - 0.9
≤2	B.1.1.7 strain & partial vaccination	0.864 (0.826 - 0.902)	0.897 (0.885 - 0.908)	0.484 (0.455 - 0.516)	0.983 (0.979 - 0.9
	B.1.617.2 strain & full vaccination	0.690 (0.569 - 0.810)	0.892 (0.881 - 0.902)	0.104 (0.086 - 0.123)	0.994 (0.991 - 0.9
	Original strain & no vaccinations	0.697 (0.661 - 0.731)	0.962 (0.957 - 0.966)	0.634 (0.605 - 0.662)	0.971 (0.968 - 0.9
≤3	B.1.1.7 strain & partial vaccination	0.760 (0.711 - 0.812)	0.963 (0.955 - 0.970)	0.696 (0.650 - 0.739)	0.973 (0.967 - 0.9
	B.1.617.2 strain & full vaccination	0.621 (0.483 - 0.741)	0.960 (0.954 - 0.967)	0.222 (0.178 - 0.268)	0.993 (0.990 - 0.9
≤4	Original strain & no vaccinations	0.566 (0.529 - 0.602)	0.984 (0.981 - 0.987)	0.775 (0.740 - 0.808)	0.960 (0.957 - 0.9
	B.1.1.7 strain & partial vaccination	0.645 (0.589 - 0.704)	0.983 (0.978 - 0.988)	0.809 (0.762 - 0.856)	0.961 (0.955 - 0.9
	B.1.617.2 strain & full vaccination	0.517 (0.397 - 0.638)	0.986 (0.982 - 0.990)	0.400 (0.319 - 0.500)	0.991 (0.989 - 0.9

Table 2: Diagnostic performance of the CoLab-score in the temporal validation dataset,

split by phase.

BMJ Open

Sensitivities, specificities, positive predictive values (PPV) and negative predictive values (NPV) are shown for fixed cut-offs (CoLab-score 0 till ≤ 4) with bootstrapped 95% confidence intervals in parentheses. The temporal validation dataset is split into three phases according to dominant SARS-CoV-2 strains in the Netherlands and estimated fraction of ED patients vaccinated (see Figure above). Note that "0" lists the sensitivity and NPV of CoLab-score 0 and " ≤ 4 " lists the specificity and PPV of CoLab-score 5.

Figure 2: Boxplots of CoLab linear predictor versus COVID-19 positive, split by registered vaccination status.

The CoLab linear predictor is calculated for all ED presentations in the temporal validation set. Presentations who are registered as vaccinated are labeled TRUE (N = 13). Presentations before vaccine roll-out are labeled FALSE (N = 5855). Presentations during vaccine roll-out but where no status is registered are labeled NA (N = 8212). Of the 13 presentations who were registered as vaccinated, 12 were COVID-19 positive and 1 negative.

BMJ Open

Note that vaccination status is only registered if a patient is SARS-CoV-2 PCR positive or considered positive until proven otherwise, therefore there is only one COVID-19 negative patient with a registered vaccination status.

Supplemental material 3

In the calibration plots, the proportion of observed COVID-19 positives versus expected probabilities are plotted. Observations are grouped with an average of 150 observations per group. The expected probabilities follow from applying the inverse logit function to the CoLab-linear predictor calculated from Table 2. If the observed proportion in an external dataset is lower than the expected proportion, this means risks are over-estimated, if the observed fraction is higher, risks are under-estimated. Ideally, observed proportions are equal to expected proportions, this ideal-calibration-line is shown as a straight line through the origin with a slope of 1. The logistic calibration line is a logistic regression fit of the predicted probabilities. [Intercept, slope] for plots A-D: A [1.34, 1.08], B [-0.39, 0.92], C [-0.76, 0.77], D [0.08, 0.79]. Although no validation datasets show perfect calibration, this is the result of differences in COVID-19 prevalence in the temporal validation dataset (7.4% versus 2.2%) and differences in calibration of laboratory equipment in the three external centers.

Figure 2: Probability density plots of laboratory parameters.

Probability density plots are shown for all control patients of the development dataset and the three external centers. Ideally all distributions should overlap since this implies that control patient populations are most likely similar in the development dataset to the external datasets. When comparing the distribution of the CoLab variables for all control-patients across different external validation datasets, albumin and LD show the largest deviations.

Figure 1: Association between the CoLab-linear predictor and the duration of COVID-19-related symptoms.

For all PCR-positive ED presentations in the development and temporal validation dataset, the CoLab-linear predict is plotted against the duration of COVID-related symptoms as registered in the electronic patient records. Patients with unknown duration are not plotted. Patients without symptoms were plotted at 0 days. The solid horizontal lines represent the CoLab-score thresholds, the dashed line is a LOESS regression curve with 95% CI. As the duration of symptoms is an integer, some random jitter was added to the days, for visualization purposes. Note that only the first 14 days are shown in this graph.

Figure 2: Probability density plot of CoLab-score for RS-, Rhino- and Influenza-virus PCR tested ED patients.

For 183 ED presentations that were PCR tested for either RS-, Rhino- and Influenza-virus the CoLab-score was calculated. 91 presentations were PCR positive, 92 were PCR negative. The CoLab-score is only marginally elevated for PCR positive patients, the area under the ROC-curve in separating both groups is 0.573 (95% CI: 4896-0.6563).

TRIPOD Checklist: Prediction Model Development and Validation

Title and abstract	nem			Fay
Tide		D 11	Identify the study as developing and/or validating a multivariable prediction model, the	
l itle	1	D;V	target population, and the outcome to be predicted.	1
Abstract	2	D;V	Provide a summary of objectives, study design, setting, participants, sample size, predictors, outcome, statistical analysis, results, and conclusions	3,
Introduction	1		prodictoro, outcomo, statistical analysis, results, and concilisions.	l
			Explain the medical context (including whether diagnostic or prognostic) and rationale for	
Backaround	3a	D;V	developing or validating the multivariable prediction model, including references to existing	6,
and objectives			Models.	
	3b	D;V	of the model or both.	7
Methods	•			
	4a	D:V	Describe the study design or source of data (e.g., randomized trial, cohort, or registry	8, 11
Source of data		,	data), separately for the development and validation data sets, if applicable.	
	4b	D;V	end of follow-up.	8
	50	עים.	Specify key elements of the study setting (e.g., primary care, secondary care, general	o
Participants	5d	U,V	population) including number and location of centres.	8
allopano	5b	D;V	Describe eligibility criteria for participants.	8, 9,
	50	U;V	Clearly define the outcome that is predicted by the prediction model including how and	IN//
Outcome	6a	D;V	when assessed.	9
	6b	D;V	Report any actions to blind assessment of the outcome to be predicted.	N//
	7a	D:V	Clearly define all predictors used in developing or validating the multivariable prediction	8
Predictors	75	-,. D:V	model, including how and when they were measured.	, N/
Sample size	νυ 8	D,V D:V	Explain how the study size was arrived at.	N/
Mionian data		D.V	Describe how missing data were handled (e.g., complete-case analysis, single imputation.	~
iviissing data	9	U;V	multiple imputation) with details of any imputation method.	9
	10a	D	Describe how predictors were handled in the analyses.	10
Statistical	10b	D	Specify type of model, all model-building procedures (including any predictor selection), and method for internal validation	-10 م
analysis	10c	V	For validation, describe how the predictions were calculated.	3
methods	104		Specify all measures used to assess model performance and, if relevant, to compare	44
	iua	D, V	multiple models.	- 11-
Diele meet	10e	V	Describe any model updating (e.g., recalibration) arising from the validation, if done.	N/.
RISK groups	11	D;V	Frovide details on now risk groups were created, if done.	N/.
vs. validation	12	V	criteria, outcome, and predictors.	22
Results				
	40		Describe the flow of participants through the study, including the number of participants	-
	13a	D;V	with and without the outcome and, if applicable, a summary of the follow-up time. A	F'
	13b	D;V	Describe the characteristics of the participants (basic demographics, clinical features,	
Participants			available predictors), including the number of participants with missing data for predictors	T1
			and outcome.	
	13c	V	For validation, show a comparison with the development data of the distribution of	S
Model	14a	D	Specify the number of participants and outcome events in each analysis	F1
development	14b	D	If done, report the unadjusted association between each candidate predictor and outcome.	N/
Model	15a	П	Present the full prediction model to allow predictions for individuals (i.e., all regression	T
specification	455	2	coefficients, and model intercept or baseline survival at a given time point).	
Model	150	ט	Explain now to the use the prediction model.	12,
performance	16	D;V	Report performance measures (with CIs) for the prediction model.	ТЗ,
Model-undating	17	V	If done, report the results from any model updating (i.e., model specification, model	NI/
		v	performance).	11/
DISCUSSION			Discuss any limitations of the study (such as poprepresentative sample, few events per	
Limitations	18	D;V	predictor, missing data).	21-3
	102	\/	For validation, discuss the results with reference to performance in the development data,	10
Interpretation	194	v	and any other validation data.	19-
	19b	D;V	Give an overall interpretation of the results, considering objectives, limitations, results from	19-3
Implications	20	N·N	Similar studies, and other relevant evidence.	20-1
Other information	20	D, V		20-
Supplementary	21	D.V	Provide information about the availability of supplementary resources, such as study	NI/
information	21	ט, v	protocol, Web calculator, and data sets.	IN//
Funding	22	D:V	Give the source of funding and the role of the funders for the present study.	N/

denoted by V, and items relating to both are denoted D;V. We recommend using the TRIPOD Checklist in conjunction with the TRIPOD Explanation and Elaboration document. S = Supplemental material, F = Figure, T = Table.

BMJ Open

BMJ Open

Development and validation of an early warning score to identify COVID-19 in the emergency department based on routine laboratory tests: a multicenter case-control study

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-059111.R1
Article Type:	Original research
Date Submitted by the Author:	01-Mar-2022
Complete List of Authors:	Boer, Arjen-Kars; Catharina Hospital Deneer, Ruben; Catharina Hospital, ; Eindhoven University of Technology, Maas, Maaike; Catharina Ziekenhuis, emergency department Ammerlaan, Heidi; Catharina Hospital van Balkom, Roland; Catharina Hospital Thijssen, Wendy; Catharina ziekenhuis, Emergency medicine Bennenbroek, Sophie; Catharina Hospital Leers, Mathie; Zuyderland Medical Centre Heerlen, Clinical Chemistry & Hematology Martens, Remy; Zuyderland Medical Centre Heerlen, Clinical Chemistry & Hematology Buijs, Madelon; Atalmedial Kerremans, Jos; Alrijne Hospital Location Leiderdorp Messchaert, Muriël ; Gelre Hospitals van Suijlen, Jeroen; Gelre Hospitals van Riel, Natal; Eindhoven University of Technology, ; Amsterdam University Medical Centres Scharnhorst, Volkher; Catharina Hospital; Eindhoven University of Technology,
Primary Subject Heading :	Emergency medicine
Secondary Subject Heading:	Health informatics, Infectious diseases
Keywords:	COVID-19, STATISTICS & RESEARCH METHODS, ACCIDENT & EMERGENCY MEDICINE, Clinical chemistry < PATHOLOGY, Health informatics < BIOTECHNOLOGY & BIOINFORMATICS

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	Develo	opment and validation of an early warning score to identify
2	COVID	-19 in the emergency department based on routine laboratory
3	tests: a	a multicenter case-control study
4		
5	Arjen-Ka	ars Boer ^{1*} , Ruben Deneer ^{1,2*†} , Maaike Maas ³ , Heidi S. M. Ammerlaan ⁴ , Roland H. H.
6	van Balk	om ⁵ , Wendy A.M.H. Thijssen ³ , Sophie Bennenbroek ³ , Mathie P. G. Leers ⁶ , Remy
7	J.H. Mar	tens ⁶ , Madelon M. Buijs ⁷ , Jos J. Kerremans ⁸ , Muriël Messchaert ⁹ , Jeroen D.E. van
8	Suijlen ⁹ ,	Natal A.W. van Riel ^{2,10} and Volkher Scharnhorst ^{1,2}
9		
10	* Both au	uthors contributed equally
11	† Corresp	oonding author
12		
13	1	Department of Laboratory Medicine, Catharina Hospital Eindhoven,
14		Michelangelolaan 2, 5623 EJ, Eindhoven, the Netherlands
15	2	Faculty of Biomedical Engineering, Technical University Eindhoven, Groene
16		Loper 3, 5612 AE, Eindhoven, the Netherlands
17	3	Department of Emergency Medicine, Catharina Hospital Eindhoven,
18		Michelangelolaan 2, 5623 EJ, Eindhoven, the Netherlands
19	4	Department of Internal Medicine, Catharina Hospital Eindhoven,
20		Michelangelolaan 2, 5623 EJ, Eindhoven, the Netherlands
21	5	Department of Pulmonary Diseases, Catharina Hospital Eindhoven,
22		Michelangelolaan 2, 5623 EJ, Eindhoven, the Netherlands

2 3	22	6	Department of Laboratory Medicine, Zurdenland Medical Conten Dr. H. von den				
4	23	0	Department of Laboratory Medicine, Zuyderland Medical Center, Dr. H. van der				
5 6	24	Hoffplein 1, 6162 BG, Sittard-Geleen, the Netherlands					
7 8 0	25	7 Atalmedial Diagnostic Centers, Jan Tooropstraat 138, 1061 AD Amsterdam, the					
9 10 11	26		Netherlands				
12 13	27	8	Department of Medical Microbiology & Infection Prevention, Alrijne Hospital,				
14 15	28		Simon Smitweg 1, 2353 GA Leiderdorp, the Netherlands				
16 17 18	29	9	Department of Clinical Chemistry, Gelre Hospital, Albert Schweitzerlaan 31, 7334				
19 20	30		DZ Apeldoorn, the Netherlands				
21 22	31	10	Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef				
23 24 25	32		9, 1105 AZ Amsterdam, the Netherlands.				
26 27 28	33						
29 30 31	34	Keywords					
32 33	35	COVID-19, SARS-CoV-2, emergency department, triage, early warning score, prediction					
34 35 36	36	model, rou	atine laboratory tests				
37 38 20	37						
39 40 41 42	38	Corresp	oonding author				
42 43 44	39	Ruben Der	neer				
45 46 47	40	Michelang	gelolaan 2				
48 49 50	41	5623 EJ E	indhoven, the Netherlands				
51 52 53	42	ruben.dene	eer@catharinaziekenhuis.nl				
54 55							
56 57							
58							
59 60							

43 Abstract

Objectives: Identifying patients with a possible SARS-CoV-2 infection in the emergency
department (ED) is challenging. Symptoms differ, incidence rates vary and test capacity may
be limited. As PCR testing all ED patients is neither feasible nor effective in most centers, a
rapid, objective, low-cost early warning score to triage ED patients for a possible infection is
developed.

Design: Case-control study.

Setting: Secondary and tertiary hospitals in the Netherlands.

Participants: Patients presenting at the ED with venous blood sampling from July 2019 to 52 July 2020 (N = 10417, 279 SARS-CoV-2 positive). The temporal validation cohort covered 53 the period from July 2020 to October 2021 (N = 14080, 1093 SARS-CoV-2 positive). The 54 external validation cohort consisted of patients presenting at the ED of three hospitals in the 55 Netherlands (N = 12061, 652 SARS-CoV-2 positive).

56 Primary outcome measures The primary outcome was one or more positive SARS-CoV-2
57 PCR-test results, within one day prior to, or one week after, ED presentation.

Results: The resulting "CoLab-score" consists of 10 routine laboratory measurements, and

age. The score showed good discriminative ability (AUC: 0.930, 95% CI: 0.909 to 0.945).

60 The lowest CoLab-score had a high sensitivity for COVID-19 (0.984, 95% CI: 0.970 to 0.991,

61 specificity: 0.411, 95% CI: 0.285 to 0.520). Conversely, the highest score had high specificity

62 (0.978, 95% CI: 0.973 to 0.983, sensitivity: 0.608, 95% CI: 0.522 to 0.685). Results were

63 confirmed in temporal and external validation.

64 Conclusions: The CoLab-score is based on routine laboratory measurements and is available
65 within one hour after presentation. Depending on the prevalence, COVID-19 may be safely

Page 5 of 48

2		
3 4	66	ruled-out in over one third of ED presentations. Highly suspect cases can be identified
5 6	67	regardless of presenting symptoms. The CoLab-score is continuous, in contrast to the binary
7 8 0	68	outcome of lateral flow testing, and can guide PCR testing and triage ED patients.
10 11 12	69	
13 14 15	70	Article summary
16 17 18	71	Strengths and limitations of this study
19 20	72	• A comprehensive panel of 28 laboratory tests was measured for 10.417 emergency
21 22 23	73	department (ED) presentations and combined with SARS-CoV-2 PCR test results.
25 24 25	74	• Using adaptive lasso regression analysis, the panel of 28 laboratory tests was reduced
26 27	75	to a single score consisting of a subset of 10 routine ED laboratory tests and age.
28 29 30	76	• The score was temporally validated from July 2020 to October 2021, in the presence of
30 31 32	77	vaccine roll-out and emergence of new SARS-CoV-2 variants.
33 34	78	• The score was externally validated in 3 other centers in the Netherlands.
35 36 37	79	• Missingness in the panel of laboratory tests varied between external centers, limiting
38 39	80	generalizability of the score to the ED population for which the complete panel of
40 41	81	laboratory tests was available.
42 43 44	82	
45		
46		
47 48		
49		
50		
51		
52 52		
53 54		
55		
56		
57		
58		
59 60		
00		
		4

83 Introduction

COVID-19, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has evolved into a global pandemic in 2020 [1]. For emergency department (ED) physicians, identifying presenting patients with a possible COVID-19 infection remains challenging since symptoms like fever, shortness of breath or coughing overlap with other illnesses [2,3]. It is crucial however, to identify a possible COVID-19 infection as early as possible. Early identification prevents further spreading and protects hospital staff by isolating a suspected patient, pending the results of a SARS-COV-2 RNA PCR test and/or chest CT. Conversely, when PCR testing or isolation treatment capacity is limited, ruling-out COVID-19 as soon as possible can save valuable resources.

In the era of electronic health records and clinical prediction models, developing an early
warning score that can assist ED physicians in identifying patients presenting at the ED with
COVID-19 is of great value. Moreover, if only routine ED test results are required as input,
the score can be easily adopted by EDs worldwide, potentially reduce diagnostic costs and
accelerate patient triage.

Many COVID-19 prediction models have already been developed, the living systematic review by Wynants et. al [4] provides an extensive overview and critical appraisal. Unfortunately, only few models have found their way into routine care at the ED [5,6]. Early models were based on relatively small sample sizes, hampered by selection bias or were over-fitted by selecting too many features [4–6]. Aside from methodological shortcomings of early models, most models are not developed as an early warning score for all ED patients. Firstly, they require features from tests that are not routinely performed or logged for all ED patients (e.g. the CO-RADS score from a CT-scan [7] or non-lab based clinical variables in the PRIEST EWS [8]) and are therefore not straightforward to implement or scale to a large ED patient population. Secondly, the population on which models are commonly based, are PCR-

BMJ Open

108 tested patients, i.e. a pre-selection of a possible COVID-19 infection has already been done by109 physicians.

110 Only two studies were identified that focus on patients presenting at the ED, include

111 unsuspected (and pre-pandemic) patients as controls, and rely solely on routine (laboratory)

 $\frac{2}{3}$ 112 tests [9,10].

113 In this study we report the development and validation of an early warning score that, based

114 on routine ED laboratory tests, estimates the risk of a possible COVID-19 infection in patients

115 who undergo routine laboratory testing at presentation. The score can assist ED physicians in

116 triaging patients and prevent further transmission of COVID-19 by quickly identifying

117 possibly infected patients or ruling out a possible infection when resources are scarce.

Methods

Study design

119	Study design
120	This is a retrospective case-control study where routine laboratory test results, combined with
121	age and gender, from all patient presenting at the emergency department (ED) of the
122	Catharina Hospital Eindhoven from July 2019 to July 2020 were combined with SARS-CoV-
123	2 PCR test results in a development dataset. A model that could predict the presence of a
124	COVID-19 infection was fit to this dataset. Performance of the model was assessed by i)
125	internal validation, ii) temporal validation and iii) external validation by using data from the
126	ED of three other centers. The study was reviewed by the Medical research Ethics
127	Committees United (MEC-U) under study number W20.071, which confirmed that the
128	Medical Research Involving Human Subjects Act (In Dutch: WMO) does not apply to this
129	study. The study was thereafter reviewed and approved by the internal hospital review board.
130	
131	Patient and Public Involvement
132	Patients were not involved in the design, conduct or reporting of this study.
133	
134	Development dataset
135	All ED presentations at the Catharina Hospital Eindhoven from July 2019 to July 2020 were
136	included in the development dataset, provided that routine laboratory testing had been
137	requested by the attending ED physician. The rationale for this inclusion period is to limit the
138	effect of seasonal variation in the ED patient population by including the summer, fall and
139	winter season of 2019 (control patients) and the winter, spring and summer season of 2020
140	(case and control patients). The routine laboratory panel at the ED consists of 28 laboratory
141	tests. In some cases not all tests in the routine panel were requested or one or more
	 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141

Page 9 of 48

1

BMJ Open

2	
3	
4	
5	
6	
7	
צ	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20 21	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
21	
22	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
<u>۲</u>	
11	
44 15	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
50	
5/	
58	
59	
60	

142 quantitative results were not available due to analytical interference (hemolysis, lipemia or 143 icterus). The routine ED laboratory panel is requested for (adult) patients presenting with 144 abdominal pain, chest pain, shortness of breath, syncope, sepsis or other non-specific 145 complaints, or for patients (including non-adult patients) presenting with specific complaints 146 where a suspected diagnosis has to be ruled-in or ruled-out. Presentations with one or more 147 missing values in any of the 28 laboratory test in the routine ED panel, were excluded. 148 Presentations with one or more extreme lab results, > 10 times standard deviation from the 149 median, were also excluded to minimize the effect on the estimation of regression 150 coefficients. The median was chosen as a measure of central tendency due to its resistance for 151 outliers. After the first case of COVID-19 in the Netherlands, all patients with symptoms of 152 COVID-19 (either fever and/or respiratory symptoms) were subjected to nasopharyngeal PCR 153 testing for SARS-CoV-2 RNA. PCR testing was performed by commercial tests that were 154 approved by the Dutch national institute of public health (RIVM). If a patient had a positive 155 PCR result in the past, subsequent presentations were excluded as re-presentations might be 156 clinically different from de novo presentations.

157 The ED lab panel results were matched to SARS-CoV-2 PCR results if the underlying 158 nasopharyngeal swab had been taken ≤ 1 day prior, or ≤ 1 week after initial blood withdrawal 159 at the ED. If multiple PCR tests were performed in this window, and at least one PCR test was 160 positive, the presentation was labelled "PCR-positive". If all PCR test results in the time 161 window were negative, the presentation was labelled as "PCR-negative". If no PCR tests were 162 performed in the time window and the presentation occurred after the first case of COVID-19 163 in the Netherlands, the presentation was labelled as "Untested". All presentations before the 164 first case were labelled as "Pre-COVID-19".

Laboratory tests

The routine laboratory panel consisted of hemocytometric and chemical analyses. The hemocytometric tests were performed on Sysmex XN-10 instruments (Sysmex Corp., Kobe, Japan) and consisted of hemoglobin, hematocrit, erythrocytes, mean corpuscular volume (MCV), mean cellular hemoglobin (MCH), mean cellular hemoglobin concentration (MCHC), thrombocytes, leukocytes, neutrophils, eosinophils, basophils, lymphocytes and monocytes. The chemical analyses were performed on a Cobas 8000 Pro (Roche Dx, Basel, Switzerland) instrument and consisted of glucose, total bilirubin, aspartate aminotransferase (ASAT), alanine aminotransferase (ALAT), lactate dehydrogenase (LD), creatine kinase (CK), alkaline phosphatase (ALP), gamma-glutamyltransferase (gGT), blood urea nitrogen (BUN), creatinine, CKD-epi estimated glomerular filtration rate (eGFR), potassium, sodium, chloride, albumin (bromocresol green) and C-reactive protein (CRP). These results were elien combined with age and gender.

Modelling

All data were processed and analyzed in R version 4.1.1 [11]. Laboratory results, combined with age and gender were used as covariates in a regression model. Cases were defined as ED presentations labelled as "PCR-positive", controls were all other presentations (i.e. "PCRnegative", "Untested" or "Pre-COVID-19"). To achieve predictive accuracy, limit overfitting and perform feature selection, penalized logistic regression with an adaptive lasso penalty was chosen [12,13]. To minimize missing data, all non-numeric results at the extremes of the measuring range, were converted to numeric results by removing the "<" and ">" signs. For eGFR (CKD-epi) and CRP the raw precursor value was used instead of >90 ml/min/m2 and <6 mg/L, respectively. Considering that laboratory results of bilirubin, ASAT, ALAT, LD, CK, ALP and gGT can have heavy (right) tailed distributions, which in turn impacts model

Page 11 of 48

BMJ Open

191	predictions, these variables were transformed logarithmically. More details regarding model
192	fitting can be found in the document, Supplemental Material 1. Models were fitted using the
193	glmnet-package [14].

11 194

195 CoLab-score

Since this is a retrospective case-control study, the sample prevalence may not reflect the true/current COVID-19 prevalence. To obtain well-calibrated probabilities the intercept term in the model should be adjusted according to the current prevalence (details can be found in the document, Supplemental Material 1) [15]. However, adjusting the intercept term is not straightforward to implement in clinical practice, therefore the linear predictor of the model was categorized into a score, this score is hereafter referred to as the "CoLab-score". The categorization is based on a number needed to test of 15 (i.e. one is willing to PCR test 15 patients to find one positive) and prevalence cut-points of 1%, 2%, 5%, 10% and 40% using the intercept adjustment formula by King [15]. The intervals obtained through these breaks correspond to CoLab-scores 5 to 0, respectively. Score 0 reflects low-risk for COVID-19 and score 5 reflects high-risk. More details regarding the rationale of the CoLab-score categorization can be found in the document, Supplemental Material 1.

209 Internal validation

To assess model performance while taking overfitting into account, bootstrapping was
performed. 1000 bootstrap samples were generated from the original data. On each bootstrap
sample, the full model fitting procedure and CoLab-score conversion were performed.
Optimism adjusted performance measures of the CoLab-score were obtained by applying the
0.632 bootstrap rule to the in-sample and out-of-bag-sample performance [16]. Performance

BMJ Open

measures included, AUC, sensitivity, specificity, positive predictive value (PPV) and negative
predictive value (NPV) of each CoLab-score. The pROC-package was used to calculate
performance measures [17]. Although the full inclusion period from July 2019 to July 2020
was used for model fitting, the performance was evaluated on the period starting from the first
COVID-19 infection (24th of February 2020) to July 2020. This was done to obtain
performance measures that would reflect real world performance.

222 Temporal validation

For temporal validation, results from our center were prospectively analyzed from July 2020 to October 2021. During this period, the Netherlands was struck by a second wave of COVID-19 infections, starting in the fall of 2020 and subsiding in the summer of 2021. In this period there was also more widespread external PCR testing by municipal health services. The results of external conducted PCR tests were not available to our study. To overcome this limitation, the outcome in the temporal validation cohort was chosen as a composite of the hospital registration of a confirmed COVID-19 infection and/or at least one positive PCR test result. This period also covers both the emergence of new SARS-CoV-2 variants as well as vaccine rollout. However, neither vaccination status nor genomic sequencing was available to determine whether a patient was vaccinated or which variant caused the infection. Therefore, data from the Dutch national institute of public health (RIVM) was used, to divide the temporal validation period into three phases: i) from July 2020 until March 2021, no vaccination and no variants of concern identified ii) from March 2021 until June 2021, partial vaccination and B.1.1.7 (Alpha) variant identified as dominant iii) from June 2021 until October 2021, widespread vaccination and B.1.617.2 (Delta) variant identified as dominant. See Supplemental Material 2 Figure 1 for more details. The temporal validation consisted of assessing the AUC, sensitivity, specificity, PPV and NPV of each CoLab-score threshold

Page 13 of 48

1

BMJ Open

2		
3 4	240	for the entire period, as well as for each phase separately to determine a possible effect of
5 6	241	vaccination and new variants on performance (results in the Supplemental Material 2).
7 8 9	242	Model calibration was assessed graphically using the rms-package [18].
10 11 12	243	
13 14 15	244	External validation
15 16 17	245	For the external validation, several centers in the Netherlands were approached and assessed
18 19	246	if the required panel of laboratory tests and SARS-CoV-2 PCR test results were available.
20 21	247	Seven centers responded and three centers fulfilled the inclusion criteria: Gelre Hospitals
22 23 24	248	(center 1), Atalmedial Diagnostic Centers, location Alrijne Hospital Leiderdorp (center 2) and
24 25 26	249	Zuyderland Medical Center (center 3). The hematological parameters were measured with
27 28	250	Sysmex XN10/XN20 (center 1), CELL-DYN-Sapphire (Abbott Laboratories) (center 2) and
29 30	251	Sysmex XN10 instruments (center 3). The clinical chemistry parameters were measured with
31 32 33	252	Architect c14100/c160000 (Abbott Laboratories) (center 1), Architect ci4100 (Abbott
34 35	253	Laboratories) (center 2) and Cobas 8000 instruments (Roche Dx) (center 3). The external
36 37	254	validation was similar to the temporal validation and consisted of assessing the AUC
38 39 40	255	sensitivity, specificity, PPV and NPV of each CoLab-score threshold. Calibration was
40 41 42	256	assessed graphically analogous to the temporal validation dataset.
43 44		
45		
46 47		
48		

Results

Development dataset

12879 emergency department (ED) presentations of 10327 patients from July 2019 to July 2020 were included. After excluding cases with an incomplete lab panel, patient presentations that occurred after a positive PCR test in the past (re-presentations) and presentations with extreme values (>10 times standard deviation) in any of the lab results, 10417 presentations of 8610 patients remained (Figure 1 A).

	Pre-COVID N = 5890	Untested N = 3303	PCR negative N = 945	PCR positive N = 279
Age in years	61 (21)	60 (21)	66 (18)	69 (15)
Female gender	2909 (49.4 %)	1659 (50.2 %)	466 (49.3 %)	95 (34.1 %)
Specialism				
Internal medicine	1648 (28.0 %)	896 (27.1 %)	244 (25.8 %)	71 (25.4 %)
Surgery	1007 (17.1 %)	679 (20.6 %)	51 (5.4 %)	5 (1.8 %)
Neurology	775 (13.2 %)	468 (14.2 %)	64 (6.8 %)	5 (1.8 %)
Pulmonary medicine	714 (12.1 %)	220 (6.7 %)	326 (34.5 %)	167 (59.9 %)
Cardiology	560 (9.5 %)	322 (9.7 %)	145 (15.3 %)	6 (2.2 %)
Urology	309 (5.2 %)	148 (4.5 %)	15 (1.6 %)	7 (2.5 %)
Gastroenterology	306 (5.2 %)	224 (6.8 %)	27 (2.9 %)	1 (0.4 %)
Geriatrics	189 (3.2 %)	95 (2.9 %)	52 (5.5 %)	15 (5.4 %)
Orthopedics	147 (2.5 %)	109 (3.3 %)	11 (1.2 %)	0 (0.0 %)
Gynecology	118 (2.0 %)	82 (2.5 %)	2 (0.2 %)	0 (0.0 %)
Other	117 (2.0 %)	60 (1.8 %)	8 (0.8 %)	2 (0.7 %)
Hemoglobin in mmol/L	8.2 (1.3)	8.3 (1.3)	8.2 (1.4)	8.6 (1.1)
Hematocrit in L/L	0.403 (0.059)	0.405 (0.056)	0.405 (0.062)	0.417 (0.047)
Erythrocytes in /pL	4.41 (0.69)	4.43 (0.66)	4.41 (0.72)	4.61 (0.60)
MCV in fl	91.8 (6.4)	91.9 (6.1)	92.4 (6.7)	90.7 (5.5)
MCH in mmol	1.859 (0.157)	1.876 (0.150)	1.874 (0.172)	1.869 (0.141)
MCHC in mmol/L	20.2 (0.9)	20.4 (0.9)	20.3 (1.0)	20.6 (0.8)
Thrombocytes in /nL	263 (99)	266 (100)	269 (105)	217 (123)
Leukocytes in /nL	9.30 [7.06, 12.16]	8.92 [7.01, 11.89]	9.66 [7.17, 12.94]	6.33 [4.74, 8.4
Neutrophils in /nL	6.62 [4.51, 9.53]	6.10 [4.42, 8.94]	7.01 [4.79, 10.02]	4.71 3.30, 6.9
Eosinophils in /nL	0.09 0.03 0.17	0.09 [0.03, 0.18]	0.08 [0.02, 0.17]	0.00 0.00 0.00
Basophils in /nL	0.04 0.02, 0.05	0.04 0.02, 0.05	0.04 [0.02, 0.05]	0.01 0.01, 0.0
Lymphocytes in /nL	1.47 [0.93, 2.13]	1.56 [1.05, 2.18]	1.31 [0.80, 2.03]	0.86 0.59, 1.2
Monocytes in /nL	0.70 0.52, 0.93	0.69 [0.52, 0.91]	0.74 [0.54, 1.01]	0.45 0.32, 0.6
Glucose in mmol/L	6.76 5.83, 8.39	6.68 5.76, 8.14	6.98 5.95, 8.85	6.77 5.98, 8.4
Bilirubin in umol/L	7.5 [5.0, 11.6]	7.4 [5.1, 10.9]	8.3 [5.6, 12.4]	8.2 [6.3, 11.4]
ASAT in U/L	24.0 [19.1, 32.2]	26.5 [21.6, 35.1]	27.7 [21.7, 39.2]	40.7 [30.2, 57.]
ALAT in U/L	24.3 [17.8, 35.3]	25.3 [18.4, 36.2]	25.7 [18.4, 40.0]	33.7 [23.3, 50.
LD in U/L	201 [173, 240]	198 [170, 236]	215 [178, 263]	300 [238, 403]
CK in U/L	82 [51, 134]	83 [52, 136]	76 [51, 125]	124 [62, 222]
ALP in IU/L	83.0 [68.0, 105.0]	81.0 [65.8, 102.5]	86.9 [67.9, 110.0]	71.0 [58.8, 85.
gGT in U/L	27.0 [17.0, 53.0]	28.4 [18.4, 50.5]	37.0 [22.4, 68.9]	42.0 [28.0, 83.
BUN in mmol/L	5.7 [4.3, 8.0]	5.8 [4.3, 7.8]	6.2 [4.6, 9.4]	6.1 [4.7, 8.9]

BMJ Open

CKD-epi in ml/min/m2	80.9 [58.0, 99.1]	85.0 [63.5, 103.3]	79.1 [52.1, 96.6]	76.6 [54.9, 91.2]
Potassium in mmol/L	4.06 (0.50)	4.03 (0.49)	4.07 (0.55)	3.91 (0.47)
Sodium in mmol/L	139.2 (4.0)	138.5 (3.9)	138.0 (4.3)	136.4 (4.1)
Chloride in mmol/L	104.4 (4.6)	103.8 (4.5)	102.9 (4.8)	101.6 (4.4)
Albumin in g/L	42.4 (4.9)	42.3 (4.5)	40.8 (4.8)	38.4 (3.8)
CRP in mg/L	8 [2, 41]	5 [1, 30]	18 [3, 69]	77 [37, 136]
264				

Table 1: Descriptive statistics of development dataset and laboratory concentrations.

Shown are the laboratory tests routinely requested at ED presentation and their mean/median results (in the development dataset) for the presentations before the first COVID-19 patient in the Netherlands ("Pre-COVID-19"), presentations thereafter that were not tested for COVID-19 ("Untested"), tested negatively ("PCR negative") and tested positive ("PCR positive"). For results with normal distributions, the mean value and standard deviation (in round brackets) are shown. For results that have skewed or heavy tailed distributions, the median value and the interquartile range is shown [in squared brackets]. Dark grey marked figures indicate a clinically relevant difference from the Pre-COVID-19 category (based on the total allowable error).

276 Descriptive statistics of ED presentations are shown in **Table 1**, dark grey marked figures 277 indicate a clinically relevant difference from the Pre-COVID-19 category (based on the total 278 allowable error [19]). For the PCR positives (N = 279), 91% (95% CI: 88 to 94%) of the cases 279 were tested positive in their first PCR. The remaining 24 patients were positive in their second 280 (N = 18), third (N = 5) or fourth (N = 1) PCR.

282 CoLab-score

The model obtained through adaptive lasso regression contained eleven variables, which are
 depicted with their regression coefficients (weights) in Table 2.

Variable	β	Exclusion limit	Relative importance
Intercept	-6.885		-
Erythrocytes /pL	0.9379	Erythrocytes < 2.9 /pL	52 %
Leukocytes /nL	-0.1298		46 %
Eosinophils /nL	-6.834		86 %
Basophils /nL	-47.70	Basophils >0.33 /nL	100 %
\log_{10} of Bilirubin in µmol/L	-1.142	Bilirubin >169 µmol/L	26 %
log ₁₀ of LD in U/L	5.369	LD>1564 U/L	58 %
log ₁₀ of ALP in IU/L	-3.114	AF >1000 IU/L	45 %
log ₁₀ of gGT in U/L	0.3605	gGT >1611 U/L	11 %
Albumin in g/L	-0.1156		45 %
CRP in mg/L	0.002560		15 %
Age in years	0.002275		4 %
Table 2: Calculation of the	CoLab-linea	r predictor (LP).	
The CoLab-linear predictor	(IP) is calcul	ated by summing the inter	ccent and the products of
	In) is culcul		
he 11 variables with their co	rresponding	coefficients (B's). CoLab-	LP = -6.883 +
[erythrocytes] imes 0.9379 - [let	ukocytes] × ($0.1298 - [eosinophils] \times 0$	6.834 – [basophils] \times
47.7 – log10([bilirubin]) × 1	.142 + log10	([LD]) × 5.369 – log10([4	<i>ALP])</i> × 3.114 +
log10([gGT]) × 0.3605 – [al	bumin] × 0.1	156 + [CRP] × 0.02560 -	+ [age] × 0.002275. The
LP can be converted into a C	oLab-score (see Figure 2) or into a pro	obability if the prevalenc
is known or estimated (see de	etails in Supp	lemental Material 1). The	CoLab-score is not valia
if any of the variables exceed	the limits in	the third column. The rela	ntive importance ranks th
importance of variables in pr	edicting the o	outcome, relative to the m	ost important variable (in
this case basophils).			
A larger β-coefficient does n	ot imply that	a variable is more importa	ant in predicting the odds
of testing positive for SARS-	CoV-2, since	variables are on different	scales. The most
important variables are basor	hiles, eosino	ohils and lactate dehydrog	zenase (LD).

301 As shown in Figure 2, the linear predictor clearly discriminates between COVID-19 and non-

302 COVID-19. The linear predictor is converted to CoLab-scores 0-5 with the cut-points

303 depicted in Figure 2.

305 Internal validation

306 The model was validated in the period starting from the first COVID-19 infection to July

307 2020, in this period the mean prevalence was 7.2%. The AUC of the CoLab-score is 0.930

308 (95% CI: 0.909 to 0.945).

CoLab- score	Sensitivity	Specificity	PPV	NPV	ТР	TN	FP	FN	% of population
0	0.984	0.410	0.115	0.997	133	485	799	0	28
	(0.969 -	(0.303 -	(0.094 -	(0.993 -	(165 -	(876 -	(1280 -	(2 -	(38 -
	0.991)	0.542)	0.147)	0.999)	195)	1360)	1660)	6)	51)
≤ 1	0.912	0.785	0.248	0.991	126	1520	314	4	69
	(0.892 -	(0.741 -	(0.208 -	(0.989 -	(152 -	(1690 -	(464 -	(15 -	(73 -
	0.952)	0.827)	0.300)	0.995)	185)	1850)	627)	21)	77)
≤ 2	0.856	0.880	0.357	0.988	114	1800	187	12	81
	(0.816 -	(0.864 -	(0.316 -	(0.984 -	(143 -	(1900 -	(259 -	(24 -	(83 -
	0.894)	0.900)	0.415)	0.991)	173)	2010)	317)	36)	84)
\leq 3	0.757	0.951	0.546	0.981	99	1960	77	24	89
	(0.706 -	(0.945 -	(0.496 -	(0.976 -	(127 -	(2050 -	(105 -	(40 -	(90 -
	0.809)	0.959)	0.603)	0.985)	157)	2150)	130)	57)	91)
≤ 4	0.612	0.978	0.683	0.970	74	2010	29	35	92
	(0.530 -	(0.972 -	(0.628 -	(0.963 -	(103 -	(2110 -	(48 -	(64 -	(94 -
	0.706)	0.983)	0.746)	0.978)	137)	2210)	69)	90)	94)

Table 3: Diagnostic performance CoLab-score in the development dataset.

311 The development dataset was internally validation for the period March 2020 – July 2020 (N

312 = 4.527). Sensitivities, specificities, positive predictive values (PPV), negative predictive

313 values (NPV), true positives (TP), true negatives (TN), false positives (FP) and false negatives

(FN) and fraction of presentations (%) are shown for fixed cut-offs (CoLab-score 0 till \leq 4).

315 The numbers in round brackets represent the 95% optimism adjusted bootstrapped confidence

316 intervals. The first column defines the threshold above which CoLab-score a patient is

2	
3	
4	
5	
6	
7	
/ 0	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
~~ 72	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
30	
20	
20	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
22	
54 57	
55	
56	
57	
58	
59	
60	

317 considered positive. Note that "0" lists the sensitivity and NPV of CoLab-score 0 and " ≤ 4 " 318 lists the specificity and PPV of CoLab-score 5.

319

1

Diagnostic performance is shown in Table 3. A CoLab-score of 0 has a negative predictive
value (NPV) of 0.997 (95% CI: 0.994 to 0.999) and positive predictive value (PPV) of 0.115
(0.0932 - 0.141), one third (38.4%, 95% CI: 26.4 to 48.4%) of all ED presentations were
assigned this score and can therefore be safely excluded. Conversely, 6.2% (95% CI: 6.3 to
7.2%) of the ED patients had a CoLab-score = 5. Given the PPV of this score (0.682, 95% CI:
0.622 to 0.740, NPV: 0.970, 95% CI: 0.962 - 0.977), subsequent PCR testing is advised.

327 Temporal validation

As the CoLab-score was developed in our center after the first COVID-19-wave in the
Netherlands, the performance was evaluated in our center from July 2020 until October 2021.
Lab results from 17489 ED presentations were collected. After applying the inclusion flow as
shown in Figure 1 B, 14080 presentations remained, of which 1039 were associated with a
COVID-19 infection.

333 The mean prevalence in this period was 7.4%. The AUC of the CoLab-score in the temporal 334 validation set is 0.916 (95% CI: 0.906 to 0.927). The performance is comparable to the 335 development cohort, although sensitivity is slightly lower and specificity slightly higher (cf. 336 **Table 3** and **Table 4**). The temporal validation dataset was also split into three phases 337 according to dominant SARS-CoV-2 variants and vaccine roll-out (see Supplemental 338 Material 2 Figure 1). The discriminative ability was not lower in the second or third phase, 339 compared to the first phase. Diagnostic performance is preserved in terms of sensitivity and 340 specificity, except a moderately reduced sensitivity of scores ≥ 3 in the third phase as

BMJ Open

341	compared to the first phase. PPV and NPV are incomparable due to different prevalence/pre-
342	test probabilities in each phase (see Supplemental Material 2 Table 1).
343	In terms of the predicted probabilities, model calibration shows that overall predicted
344	probabilities are too low (see Supplemental Material 3 for the calibration plot), which is
345	expected since the prevalence differs and the intercept has to be adjusted to the prevalence.
346	In this period at least 22 COVID-19 positive patients were identified by the CoLab-score, that
347	initially did not present with COVID-specific symptoms. Most patients had neurological or
348	orthopedic presenting symptoms.
349	
250	
350	External validation
351	For external validation, data obtained from three other centers were used, center 1 ($N = 1284$,
352	52 COVID-19 positive), center 2 (N = 2899, 99 COVID-19 positive) and center 3 (N = 3545,
353	336 COVID-19 positive). The inclusion flow is summarized in Figure 3. COVID-19
354	prevalence differed between the three centers (4.0%, 3.4% and 9.5% respectively) and was
355	lower in centers 1 and 2, and higher in center 3 than in the development dataset. The AUCs of
356	the CoLab-score are 0.904 (95% CI: 0.866 to 0.942), 0.886 (95% CI: 0.851 - 0.922) and 0.891
357	(95% CI: 0.872 - 0.909), for centers 1, 2, and 3 respectively.
358	Diagnostic performance is shown in Table 4 . The sensitivity of CoLab-score 0 in all centers
359	is \geq 0.96. Therefore, the NPV of CoLab-score 0 was more than 99%. Calibration plots for
360	external centers are shown in Supplemental Material 3, the observed fraction of COVID-19
361	positives is slightly lower than expected in centers 1 and 2. For center 3, low probabilities
362	appear slightly underestimated and high probabilities slightly overestimated.

CoLab- score	Validation set	Sensitivity	Specificity	PPV	NPV	ТР	TN	FP	FN
	Temporal	0.967	0.420	0.117	0.994	1005	5476	7565	34
	1	(0.956 -	(0.411 -	(0.115 -	(0.992 -	(993 -	(5366 -	(7454 -	(23 -
		0.978)	0.428)	0.119)	0.996)	1016)	5587)	7675)	46)
	Center 1	1.000	0.331	0.059	1.000	52	410	827	0
		(1.000 -	(0.307 -	(0.057 -	(1.000 -	(52 -	(380 -	(794 -	(0 -
0		1.000)	0.358)	0.061)	1.000)	52)	443)	857)	0)
0	Center 2	0.961	0.351	0.052	0.996	99	985	1823	4
		(0.922 -	(0.333 -	(0.049 -	(0.992 -	(95 -	(935 -	(1773 -	(1 -
		0.990)	0.369)	0.054)	0.999)	102)	1035)	1873)	8)
	Center 3	0.970	0.322	0.130	0.991	327	1042	2193	10
		(0.950 -	(0.306 -	(0.126 -	(0.984 -	(320 -	(991 -	(2143 -	(4 -
		0.988)	0.338)	0.133)	0.996)	333)	1092)	2244)	17)
	Temporal	0.888	0.791	0.253	0.989	923	10311	2730	116
		(0.870 -	(0.783 -	(0.245 -	(0.987 -	(904 -	(10215 -	(2640 -	(96 -
		0.908)	0.798)	0.261)	0.991)	943)	10401)	2826)	135)
	Center 1	0.923	0 694	0.113	0 995	48	858	379	4
		(0.846 -	(0.669 -	(0.101 -	(0.991 -	(44 -	(828 -	(346 -	.(1 -
		0.981)	0.720)	0 124)	0 999)	51)	(820	409)	(1)
≤ 1	Center 2	0.913	0.678	0.094	0.995	94	1905	903	9
	Center 2	(0.854 -	(0.661 -	(0.097 -	(0.992 -	(88 -	(1857 -	(855 -	(4 -
		(0.054 - 0.961)	0.696)	0 101)	(0.992 - 0.998)	(00 -	1953)	(855 -	(+ -
	Contor 3	0.901)	0.090)	0.101)	0.998)	308	2180	1055	20
	Center 5	(0.914	0.074	(0.220)	(0.987)	(207)	(2126	(1001	(10
		(0.881 - 0.044)	(0.037 -	(0.210 - 0.236)	(0.982 - 0.001)	(297 -	(2120 - 2234)	(1001 -	(19 -
	Tommorol	0.944)	0.091)	0.230)	0.991)	<u> </u>	11661	1220	107
	Temporar	0.820	0.094	(0.362)	0.904	032	(11501	(1212	(16)
		(0.790 - 0.842)	(0.889 - 0.800)	(0.307 - 0.206)	(0.962 - 0.086)	(627 - 976)	(11391 - 11720)	(1312 - 1450)	(103 - 212)
	Conton 1	0.643)	0.899)	0.390)	0.980)	870) 42	11/29)	(1430)	212)
	Center I	0.808	0.811	0.152	0.990	42	1003	234	10
		(0.092 - 0.004)	(0.788 - 0.822)	(0.129 - 0.176)	(0.984 - 0.005)	(30 -	(9/5 -	(208 - 262)	(5 -
≤ 2	Contor 2	0.904)	0.832)	0.170)	0.995)	47)	1029)	202) 560	10)
	Center 2	0.845	0.801	0.133	0.995	8/	2248	500	10
		(0.777 - 0.012)	(0.785 - 0.815)	(0.122 - 0.147)	(0.990 - 0.000)	(80 -	(2205 - 2280)	(519 - (02))	(9 -
	α α β	0.913)	0.815)	0.14/)	0.996)	94)	2289)	603)	23)
	Center 3	0.890	0.794	0.311	0.986	300	2569	666	31
		(0.855 - 0.022)	(0.779 - 0.909)	(0.294 - 0.229)	(0.981 - 0.000)	(288 - 211)	(2521 - 2(15))	(620 - 714)	(26 -
	- T 1	0.923)	0.808)	0.328)	0.990)	311)	2015)	/14)	49)
	Temporal	0./10	0.962	0.596	0.9//	(700	12540	501	301
		(0.682 -	(0.958 -	(0.5/3 - 0.610)	(0.9/4 - 0.070)	(709 -	(12496 -	(459 -	(2/2 -
		0.738)	0.965)	0.618)	0.979)	767)	12582)	545)	330)
	Center I	0.750	0.909	0.257	0.989	39	1124	113	13
		(0.635 -	(0.892 -	(0.213 -	(0.983 -	(33 -	(1104 -	(93 -	(7 -
< 3		0.865)	0.925)	0.306)	0.994)	45)	1144)	133)	19)
	Center 2	0.660	0.897	0.190	0.986	68	2519	289	35
		(0.563 -	(0.885 -	(0.163 -	(0.983 -	(58 -	(2486 -	(259 -	(26 -
	a -	0.748)	0.908)	0.218)	0.990)	77)	2549)	322)	45)
	Center 3	0.766	0.887	0.413	0.973	258	2869	366	79
		(0.718 -	(0.876 -	(0.386 -	(0.968 -	(242 -	(2835 -	(330 -	(64 -
		0.810)	0.898)	0.442)	0.978)	273)	2905)	400)	95)
	Temporal	0.585	0.984	0.750	0.968	608	12838	203	431
	P								
≤ 4	p	(0.556 -	(0.982 -	(0.724 -	(0.965 -	(578 -	(12811 -	(175 -	(400 -

Co sc	Lab- core	Validation set	Sensitivity	Specificity	PPV	NPV	ТР	TN	FP	FN
		Center 1	0.654	0.951	0.359	0.985	34	1176	61	18
			(0.519 -	(0.939 -	(0.293 -	(0.979 -	(27 -	(1161 -	(47 -	(11
			0.788)	0.962)	0.435)	0.991)	41)	1190)	76)	25)
		Center 2	0.534	0.952	0.287	0.982	55	2672	136	48
			(0.437 -	(0.943 -	(0.239 - 0.220)	(0.979 -	(45 -	(2649 -	(115 -	(39
		Contor 2	0.621)	0.959)	0.339)	0.986)	64) 224	2693)	159)	58 11
		Center 5	(0.611 -	(0.930	0.497	(0.904)	(206 -	(2980 -	(100 -	11 (Q4
			0 718)	0.938)	(0.402 - 0.534)	0.969)	(200 - 242)	3036)	255)	13
63			0.110)	0.720)	0.000.)	01,909	_ :=)	2020)	200)	10
364	Tab	le 4: Diagnos	stic performa	ance of the C	oLab-sco	re in the v	validatio	n dataset	(tempora	al)
365	and	three extern	al hospitals.							
366	Sens	ritivities, spec	ificities, posit	tive predictive	e values (H	PPV), nega	ative pred	dictive val	ues (NPV)),
367	true	positives (TP	?), true negati	ves (TN), fals	e positive:	s (FP) and	l false ne	gatives (F	N) are	
368	shov	vn for fixed ci	ut-offs (CoLa	b-score 0 till	\leq 4) with l	bootstrapp	oed 95%	confidence	e interval.	5
							T 1			
369	in po	arentheses. N	ote that $0^{\prime\prime}$ l	ists the sensit	tivity and i	NPV of Co	oLab-sco	re 0 ana	$\leq 4^{\circ}$ lists	
369 370	in po the s	arentheses. Na specificity and	ote that "0" l d PPV of CoL	ab-score 5.	tivity and I	NPV of Co	oLab-sco	re 0 ana	$\leq 4^{\circ}$ lists	
369 370	in po the s	arentheses. Na pecificity and	ote that "0" l l PPV of CoL	ists the sensil ab-score 5.	tivity and I	NPV of Co	oLab-sco	re 0 ana	$\leq 4^{-1}$ lists	
369 370	in po the s	arentheses. No	ote that "0" l	ab-score 5.	tivity and I	NPV of Co	oLab-sco	re 0 ana	$\leq 4^{\circ}$ lists	
369 370	in po the s	arentheses. No	ote that "0" l	ists the sensil ab-score 5.	livity and	NPV of Co)Lab-sco	re 0 ana	$\leq 4^{-1}$ lists	
369 370	in po the s	arentheses. No	ote that "0" l	ists the sensil ab-score 5.	livity and	NPV of Co	0Lab-sco	re 0 ana	$\leq 4^{\circ}$ lists	
369 370	in po the s	arentheses. N	ote that "0" l	ists the sensil ab-score 5.	livity and	NPV of Co	oLab-sco	re 0 ana	$\leq 4^{-1}$ lists	
369 370	in po the s	arentheses. N	ote that "0" l	ists the sensit ab-score 5.	livity and	NPV of Co	oLab-sco	re 0 ana	$\leq 4^{-1}$ lists	
369 370	in po the s	arentheses. N	ote that "0" l	ists the sensil ab-score 5.	livity and	NPV of Co	oLab-sco	re 0 ana	$\leq 4^{-1}$ lists	
369 370	in po the s	arentheses. N	ote that "0" l	ists the sensit ab-score 5.	nvity and l	NPV of Co	oLab-sco	re 0 ana	$\leq 4^{-1}$ lists	
369 370	in po the s	arentheses. N	ote that "0" l	ists the sensit ab-score 5.	nvity and l	NPV of Co		re 0 ana	$\leq 4^{-1}$ lists	
369 370	in po the s	arentheses. N	ote that "0" l	ists the sensil ab-score 5.	nvity and l	NPV of Co	<i>Lab-sco</i>	re 0 ana	$\leq 4^{-1}$ lists	
369 370	in po the s	arentheses. N	ote that "0" l	ists the sensit ab-score 5.	nvity and l	NPV of Co	oLab-sco	re 0 ana	$\leq 4^{-1}$ lists	
369 370	in po the s	arentheses. N	ote that "0" l	ists the sensit ab-score 5.	nvity and l	NPV of Co	oLab-sco	re 0 ana	$\leq 4^{-1}$ lists	
369 370	in po the s	arentheses. N	ote that "0" l	ists the sensit ab-score 5.	nvity and l	NPV of Co	oLab-sco	re 0 ana	$\leq 4^{-1}$ lists	
369 370	in po the s	arentheses. N	ote that "0" l	ists the sensit ab-score 5.	nvity and l	NPV of Co	oLab-sco	re 0 ana	$\leq 4^{-1}$ lists	
369	in po the s	arentheses. N	ote that "0" l	ists the sensit ab-score 5.	nvity and l	NPV of Co	oLab-sco	re 0 ana	$\leq 4^{-1}$ lists	
369	in po the s	arentheses. N	ote that "0" l	ists the sensit ab-score 5.	nvity and l	NPV of Co	oLab-sco	re 0 ana	$\leq 4^{-1}$ lists	
369 370	in po the s	arentheses. N	ote that "0" l	ists the sensit ab-score 5.	nvity and l	NPV of Co	oLab-sco	re 0 ana	$\leq 4^{-1}$ lists	
369 370	in po the s	arentheses. N	ote that "0" l	ists the sensit ab-score 5.	nvity and l	NPV of Co	oLab-sco	re 0 ana	$\leq 4^{-1}$ lists	
369 370	in po the s	arentheses. N	ote that "0" l	ists the sensit ab-score 5.	nvity and l	NPV of Co	oLab-sco	re 0 ana	$\leq 4^{-1}$ lists	
369 370	in po the s	arentheses. N	ote that "0" l	ists the sensit ab-score 5.	nvity and l	NPV of Co	oLab-sco	re 0 ana	$\leq 4^{-1}$ lists	
369	in po the s	arentheses. N	ote that "0" l	ists the sensit ab-score 5.	nvity and l	NPV of Co	oLab-sco	re 0 ana	$\leq 4^{-1}$ lists	

Discussion

Given the impact of COVID-19 on society and healthcare, there is a need for simple and fast
detection of patients with a possible COVID-19 infection in the ED. The CoLab-score
described in this study, is a fast and accurate risk score to triage patients presenting at the ED
based on ten routine blood biomarkers and age.

The main strength of this study is that this score can be used as an early-warning or triaging tool for the ED population presenting with abdominal pain, chest pain, shortness of breath, syncope, sepsis or other non-specific complaints where a routine blood panel is requested. This is in contrast to the vast majority of COVID-19 diagnostic models that have been developed on a pre-selected population of PCR-tested patients [9,20–26]. Moreover, the CoLab-score requires only routine blood tests, instead of (features from) imaging such as CT-scans or laboratory tests that are not routinely collected in the ED, e.g. interleukin-6 or 3-hydroxybuteric acid [4]. Compared to lateral flow tests (LFTs), which provide a dichotomous result within 30 minutes and are widely adopted in EDs, the CoLab-score is a continuous score. The lowest CoLab-scores (0 - 1) offer higher sensitivity and are therefore more suitable to rule-out COVID-19 than a LFT, which are only moderately sensitive (albeit more specific) [27,28].

Two other studies have been published which are similar to this study [9,10]. Interestingly, the study by Soltan et al., ranked basophils and eosinophils as the two most important features in predicting the outcome, similar to our results [10]. Eosinophils were also seen as one of the most important features by Plante et al. [9]. However, both studies focus on an artificial intelligence/machine learning approach. While their approach likely results in higher predictive performance due to the ability of machine learning models to capture non-linear and interaction effects, the goal of this study was to develop a simple, fast and robust model that can easily be implemented in current hospital IT systems.

Page 23 of 48

BMJ Open

Since this is a retrospective case-control study, there is some unavoidable missing data. In our cohort 17.6% of the ED presentations could not be used due to one or more missing laboratory results. This is lower or equal to similar studies; 22% [23], 17% [21] and 11% [26]. Important to note is that 7.7% of missingness is due to analytical errors which can be assumed to be missing completely at random. For the remaining 9.9% of missingness, the full lab panel was most frequently missing for pediatric, obstetric and surgery patients. These patients are presenting with specific complaints for which specific laboratory tests are requested, and hence do not match the inclusion criteria for a routine blood panel. Overall the missingness was significantly lower in the PCR-tested group versus the untested group (χ^2 -test p-value < 0.001).

In the external centers, there is a high level of missingness as a result of an incomplete laboratory panel. In the case of centers 1 and 2, only internal medicine ED presentations were tested with a laboratory panel containing the 10 tests required for the CoLab-score. The ED lab panel of other disciplines (e.g. urology, surgery or pediatrics) differed and did not contain the required tests. Nevertheless, the majority of COVID-19 patients were internal medicine ED presentations, which is reflected by the few PCR-positive patients excluded. Due to these high levels of missingness, the results of the external centers cannot be used to show that the CoLab-score generalizes to the entire ED population. Rather, the results show that for the majority of COVID-19 positive patients presenting at the ED, a routine laboratory panel is available from which the CoLab-score can be calculated, and that the performance of the CoLab-score in this population is comparable to the development population.

417 The performance of the CoLab-score is affected by the time between the onset of symptoms
 418 and ED presentations. The score increases with the duration of symptoms and gradually
 419 decreases after day 7 (see Supplemental Material 4 Figure 1 for a plot of the duration of
 420 COVID-19 related symptoms and the CoLab-linear predictor). As a consequence, some

BMJ Open

COVID-19 patients with early or late presentation after onset of symptoms can be missed. Optimal performance of the CoLab-score is achieved when the onset of symptoms is >1 and <10 days prior to ED presentation. Chemotherapy that causes myeloid suppression, will decrease neutrophilic, basophilic and eosinophilic counts and thereby "falsely" increasing the CoLab-score. Conversely, COVID-19 patients with severe anemia could have "falsely" lowered CoLab-scores. To minimize false negatives, we have therefore advised to report CoLab-scores only when the concentration of erythrocytes is $\geq 2.9 / pL$. It was chosen to exclude re-presentations after a previous presentation with COVID-19. Since the median time between initial presentation and re-presentation was 12 days, these patients were most likely not re-infected patients, but patients who deteriorated after initial presentation/treatment. Given that the CoLab-score follows the host-immune response, the score is time sensitive (see **Supplemental Material 4 Figure 1**). Including these patients would impact the performance of the CoLab-score as patients in a later phase of the disease show different biomarker profiles. The CoLab-score is aimed towards alerting clinicians to patients presenting with a novel SARS-CoV-2 infection, rather than patients who deteriorate after treatment for COVID-19. Other re-presentations were not excluded, which results in some patients appearing multiple times in a dataset. This was not corrected for in the regression model since the assumption was made that ED presentations are independent observations. The median time between re-presentations is 38 days, most likely resulting in variations in laboratory results between presentations, and hence, little to no correlation between presentations. A sensitivity analysis was performed whereby only the first presentation was included for each patient (Supplemental Material 4 Table 1), but no difference was found in performance in terms of sensitivity, specificity and AUC. The CoLab-score does not serve as a replacement for PCR-testing or LFTs, and can be used to guide PCR-testing when routine blood tests are available. Note the performance of the
BMJ Open

3 4	446
5 6 7	447
, 8 9	448
10 11 12	449
12 13 14	450
15 16	451
17 18 10	452
20 21	453
22 23	454
24 25	455
26 27 28	456
29 30	457
31 32	458
33 34 35	459
36 37	460
38 39 40	461
41 42	462
43 44	463
45 46 47	464
48 49	465
50 51	466
52 53 54	467
54 55 56	468
57 58 59	469

446 CoLab-score in a suspected/PCR-tested cohort is not equal to the (see Supplemental 447 Material 4 Table 1).

448 Finally, the CoLab-score could lead to false positives by other viral infections. However, in an 449 historic patient cohort, the CoLab-score had only limited discriminative ability in separating 450 influenza-PCR-negative from influenza-PCR-positive patients (see Supplemental Material 4 451 Figure 2) implying specificity for SARS-CoV-2. Since the CoLab-score reflects the host-452 response to the virus, it is expected that the CoLab-score is also sensitive to future SARS-453 CoV-2 variants. This is supported by the fact that the diagnostic performance is sustained in 454 periods with different dominant variants. Moreover, there is no evidence that the 455 discriminative ability of the CoLab-score is lowered by a change in the ED patient population 456 as a result of widespread vaccination. Although vaccination status is not registered for all 457 presenting patients, in a small subgroup of 12 patients for whom vaccination status was registered, and were COVID-19 positive, 8 of 12 patients had the highest CoLab-score (= 5) 458 459 (see Supplemental Material 2 Figure 2), 460 To conclude, the CoLab-score developed and validated in this study, based on 10 routine 461 laboratory results and age, is available within 1 hour for any patient presenting at the ED. The score can be used by clinicians to guide PCR testing or triage patients and helps to identify 462 463 COVID-19 in patients presenting at the ED with abdominal pain, chest pain, shortness of

464 breath, syncope, sepsis or other non-specific complaints where a routine blood panel is

465 requested. The lowest CoLab-score can be used to effectively rule-out a possible SARS-CoV-

466 2 infection, the highest score to alert physicians to a possible infection. The CoLab-score is

therefore a valuable tool to rule out COVID-19, guide PCR testing and is available to any 467

468 center with access to routine laboratory tests.

24

3 4	470
5 6 7	471
, 8 9	472
10 11 12	473
13 14 15	474
16 17	475
18 19 20	476
21 22	477
23 24 25	478
25 26 27	479
28 29 30	480
31 32 33	481
34 35	482
36 37 28	483
30 39 40	484
41 42 43	485
44 45 46	486
47 48 40	487
49 50 51	488
52 53 54	489
55 56	490
57 58 50	491
60	492

Funding statement

Competing interests

471 This was an investigator-initiated study and no funding was received for this study.

A-KB reports no conflict of interest. RD reports no conflict of interest. MM reports no

conflict of interest. HA reports no conflict of interest. RvB reports no conflict of interest. WT

reports no conflict of interest. SB reports not conflict of interest. ML reports no conflict of

interest. RM reports no conflict of interest. MB reports no conflict of interest. JK reports no

reports no conflict of interest. VS reports no conflict of interest.

conflict of interest. MM reports no conflict of interest. JvS reports no conflict of interest. NvR

Data sharing statement 481

Datasets with source data for Table 1, Figure 2, Table 3 and Table 4, as well the R-code to fit 482 the model is available from the Dryad repository, DOI: WILL BE PROVIDED WHEN 483 484 UNDER REVIEW]. Technical appendix can be found in Supplemental Material 1.

Author contributorship statement 486

487 Arjen-Kars Boer: Conceptualization (Lead), Data curation (Lead), Funding acquisition (Lead), 488 Investigation (Equal), Methodology (Equal), Supervision (Equal), Writing-original draft 489 (Equal), Writing-review & editing (Equal).

490 Ruben Deneer: Data curation (Equal), Formal analysis (Equal), Investigation (Equal), 491 Methodology (Lead), Software (Lead), Visualization (Lead), Writing-original draft (Equal), 492 Writing-review & editing (Equal).

Page 27 of 48

1

BMJ Open

2 3	493	Maaike Maas: Conceptualization (Supporting), Resources (Supporting), Supervision								
5 6	494	(Supporting), Validation (Supporting), Writing-review & editing (Equal).								
7 8 9	495	Heidi Ammerlaan: Conceptualization (Supporting), Resources (Supporting), Supervision								
10 11 12	496	(Supporting), Validation (Equal), Writing-review & editing (Equal).								
13 14	497	Roland van Balkom: Conceptualization (Supporting), Resources (Supporting), Supervision								
15 16 17	498	(Supporting), Validation (Supporting), Writing-review & editing (Equal).								
18 19 20	499	Wendy Thijssen: Conceptualization (Supporting), Resources (Supporting), Supervision								
21 22	500	(Supporting), Validation (Supporting), Writing-review & editing (Equal).								
23 24 25	501	Sophie Bennenbroek: Conceptualization (Supporting), Resources (Supporting), Supervision								
26 27 28	502	(Supporting), Validation (Supporting), Writing-review & editing (Equal).								
28 29 30 31 32 33	503	Mathie Leers: Resources (Equal), Validation (Equal), Writing-review & editing (Equal).								
	504	Remy Martens: Resources (Equal), Validation (Equal), Writing-review & editing (Equal).								
34 35 36	505	Madelon M. Buijs: Resources (Equal), Validation (Equal), Writing-review & editing (Equal).								
37 38 39	506	Jos Kerremans: Resources (Equal), Validation (Equal), Writing-review & editing (Equal).								
40 41 42	507	Muriël Messchaert: Resources (Equal), Validation (Equal), Writing-review & editing (Equal).								
43 44 45	508	Jeroen van Suijlen: Resources (Supporting), Validation (Supporting), Writing-review & editing								
46 47 48	509	(Equal).								
49 50	510	Natal A.W. van Riel: Methodology (Supporting), Resources (Supporting), Supervision (Equal),								
51 52 53	511	Writing-review & editing (Equal).								
54 55 56	512	Volkher Scharnhorst: Conceptualization (Equal), Funding acquisition (Equal), Project								
50 57 58	513	administration (Lead), Resources (Equal), Supervision (Lead), Writing-review & editing								
59 60	514	(Equal).								

1 2													
2 3 4	515	Refe	erences										
5 6 7	516	1	Coronavirus	Disease	(COVID-19)	Situati	on	Reports.					
7 8 9	517		https://www.wh	https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/									
10 11 12	518		(accessed 4 Feb	(accessed 4 Feb 2021).									
13 14	519	2	Guan W, Ni Z,	Hu Y, et al. Clin	ical Characteristics	of Coronavi	rus Disease	e 2019 in					
15 16 17	520		China.	https://doi.org/10	1056/NEJMoa20020	032	2020; 382 :	1708–20.					
17 18 19	521		doi:10.1056/NE	JMOA2002032									
20 21 22	522	3	Vetter P, Vu D	L, L'Huillier AG,	et al. Clinical featu	res of covid	-19. <i>BMJ</i> 2	2020; 369 .					
23 24 25	523		doi:10.1136/BM	IJ.M1470									
26 27	524	4	Wynants L, Va	n Calster B, Colli	ns GS, et al. Predi	iction model	s for diagr	nosis and					
28 29	525		prognosis of co	ovid-19: Systemati	c review and critic	al appraisal.	BMJ 202	0; 369 :18.					
30 31 32	526		doi:10.1136/bmj	j.m1328									
33 34 35	527	5	Albahri AS, Har	Albahri AS, Hamid RA, Alwan J k., et al. Role of biological Data Mining and Machine									
36 37	528		Learning Techni	Learning Techniques in Detecting and Diagnosing the Novel Coronavirus (COVID-19):									
38 39 40	529		A Systematic Re	A Systematic Review. J. Med. Syst. 2020;44:122. doi:10.1007/s10916-020-01582-x									
41 42	530	6	Hooli S, King C	C. Generalizability	of Coronavirus Dis	ease 2019 (COVID-19)) Clinical					
43 44 45	531		Prediction Mode	els. Clin Infect Dis	2020; 71 :897–897. d	loi:10.1093/c	id/ciaa417						
46 47 48	532	7	Prokop M, Ever	rdingen W van, Ve	llinga T van R, <i>et a</i>	l. CO-RADS	S: A Catego	orical CT					
40 49 50	533		Assessment Sch	eme for Patients Su	spected of	Having CO	VID-19—E	Definition					
51 52	534		and Evaluation	on. https://doi.ol	rg/101148/radiol202	20201473	2020; 296 :1	E 97 –104.					
53 54 55	535		doi:10.1148/RA	DIOL.2020201473	i								
56 57	536	8	Goodacre S, The	omas B, Sutton L,	et al. Derivation and	d validation	of a clinica	l severity					
58 59 60	537		score for acutely ill adults with suspected COVID-19: The PRIEST observational cohort										

BMJ Open

2 3 4	538		study. PLoS One 2021;16:e0245840. doi:10.1371/JOURNAL.PONE.0245840
5 6 7	539	9	Plante TB, Blau AM, Berg AN, et al. Development and external validation of a machine
8 9	540		learning tool to rule out COVID-19 among adults in the emergency department using
10 11	541		routine blood tests: A large, multicenter, real-world study. J Med Internet Res
12 13 14	542		2020; 22 :e24048. doi:10.2196/24048
15 16 17	543	10	Soltan AAS, Kouchaki S, Zhu T, et al. Rapid triage for COVID-19 using routine clinical
18 19	544		data for patients attending hospital: development and prospective validation of an
20 21	545		artificial intelligence screening test. Lancet Digit Heal 2021;3:e78-87.
22 23 24	546		doi:10.1016/S2589-7500(20)30274-0
25 26 27	547	11	R Core Team. R: A Language and Environment for Statistical Computing.
27 28 29	548		2020.https://www.r-project.org/
30 31 32	549	12	Zou H. The adaptive lasso and its oracle properties. <i>J Am Stat Assoc</i> 2006; 101 :1418–29.
33 34 35	550		doi:10.1198/01621450600000735
36 37	551	13	Tibshirani R. Regression Shrinkage and Selection Via the Lasso. J R Stat Soc Ser B
38 39 40	552		1996; 58 :267–88. doi:10.1111/j.2517-6161.1996.tb02080.x
41 42	553	14	Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models
43 44 45	554		via coordinate descent. J Stat Softw 2010;33:1-22. doi:10.18637/jss.v033.i01
46 47 48	555	15	King G, Zeng L. Logistic Regression in Rare Events Data. Polit Anal 2001;9:137-63.
49 50	556		doi:10.1093/oxfordjournals.pan.a004868
51 52 53	557	16	Efron B. Estimating the error rate of a prediction rule: Improvement on cross-validation.
54 55	558		J Am Stat Assoc 1983;78:316-31. doi:10.1080/01621459.1983.10477973
50 57 58	559	17	Robin X, Turck N, Hainard A, et al. pROC: An open-source package for R and S+ to
59 60	560		analyze and compare ROC curves. BMC Bioinformatics 2011;12:77. doi:10.1186/1471-

BMJ Open

2 3 4	561		2105-12-77							
5 6 7	562	18	Harrell Jr FE. rms: Regression Modeling Strategies. 2021.https://cran.r-							
8 9	563		project.org/package=rms							
10 11 12	564	19	Ricós C, Alvarez V, Cava F, et al. Current databases on biological variation: Pros, cons							
13 14	565		and progress. Scand. J. Clin. Lab. Invest. 1999; 59 :491–500.							
15 16 17	566		doi:10.1080/00365519950185229							
18 19 20	567	20	Brinati D, Campagner A, Ferrari D, et al. Detection of COVID-19 Infection from							
20 21 22	568		Routine Blood Exams with Machine Learning: A Feasibility Study. J Med Syst							
23 24	569		2020; 44 :1–12. doi:10.1007/s10916-020-01597-4							
25 26	570	21	Lashi DD Daiswar V. Hammarkind NE at al. A mediative tool for identification of							
27 28	570	21	Joshi RP, Pejaver V, Hammarlund NE, et al. A predictive tool for identification of							
29 30	571		SARS-CoV-2 PCR-negative emergency department patients using routine test results. J							
31 32	572		<i>Clin Virol</i> 2020; 129 :104502. doi:10.1016/j.jcv.2020.104502							
33 34 35	573	22	Qin L, Yang Y, Cao Q, et al. A predictive model and scoring system combining clinical							
36 37	574		and CT characteristics for the diagnosis of COVID-19. Eur Radiol 2020;30:6797-80							
38 39 40	575		doi:10.1007/s00330-020-07022-1							
41 42	576	23	Kurstjens S, van der Horst A, Herpers R, et al. Rapid identification of SARS-CoV-2-							
43 44 45	577		infected patients at the emergency department using routine testing. Clin Chem Lab Med							
43 46 47	578		2020; 58 :1587–93. doi:10.1515/cclm-2020-0593							
48 49 50	579	24	Fink DL, Khan PY, Goldman N, et al. Development and internal validation of a							
51 52	580		diagnostic prediction model for COVID-19 at time of admission to hospital. QJM An Int							
53 54 55	581		J Med Published Online First: 9 November 2020. doi:10.1093/qjmed/hcaa305							
56 57	582	25	Giamello JD, Paglietta G, Cavalot G, et al. A simple tool to help ruling-out Covid-19 in							
58 59 60	583		the emergency department: derivation and validation of the LDH-CRP-Lymphocyte							

29

BMJ Open

1 2 3 4	584		(LCL) score. <i>Emerg Care J</i> 2020; 16 . doi:10.4081/ecj.2020.9336
5 6 7	585	26	Tordjman M, Mekki A, Mali RD, et al. Pre-test probability for SARS-Cov-2-related
8 9	586		infection score: The PARIS score. <i>PLoS One</i> 2020;15:e0243342.
10 11 12	587		doi:10.1371/journal.pone.0243342
13 14 15	588	27	Peto T, Affron D, Afrough B, et al. COVID-19: Rapid antigen detection for SARS-CoV-
16 17	589		2 by lateral flow assay: A national systematic evaluation of sensitivity and specificity for
18 19	590		mass-testing. <i>EClinicalMedicine</i> 2021; 36 :100924.
20 21 22	591		doi:10.1016/J.ECLINM.2021.100924
23 24	592	28	García-Fiñana M, Hughes DM, Cheyne CP, et al. Performance of the Innova SARS-
25 26 27	593		CoV-2 antigen rapid lateral flow test in the Liverpool asymptomatic testing pilot:
27 28 29	594		population based cohort study. BMJ 2021;374:1637. doi:10.1136/BMJ.N1637
30 31 32	595		
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60	596		

597 Figure legends

Figure 1: Inclusion flow of patients in the development (A) and temporal validation (B) dataset. All patient admissions with routine venous blood sampling at the emergency department (ED) were included. For the development dataset, completeness of the lab panel was assessed for all 28 laboratory tests, for the temporal validation dataset this was only necessary for 10 laboratory tests. The major causes of missingness are described in the text. In the development dataset, presentations with extreme values (>10 SD) were excluded. The same limits were applied to the temporal validation dataset (see Table 2 for limits). Figure 2: Probability density plot of the CoLab-linear predictor. The probability density plots for COVID (dark grey) and non-COVID patients (light grey) are plotted against the linear predictor (see table 2). The CoLab-score cut-offs (-5.83, -4.02, -3.29, -2.34 and -1.64) are depicted with vertical dashed lines. The white-boxed numbers (between the cut-offs) represent the corresponding CoLab-score. Note that while the area under both curves is identical (since these are probability density functions), in absolute numbers the "negative or untested"-group is about 36 times larger than the PCR positive group. Figure 3: Inclusion flow of ED patients in three external centers. All emergency department (ED) presentations with routine venous blood sampling were included. Missingness of lab panels was assessed for the 11 variables in the CoLab-score (see

1 2		
- 3 4	620	Table 2). Re-presentations after a positive PCR result or clinical COVID-19 registration were
5 6	621	excluded as "previous COVID-19+". Presentations with any laboratory result above the
$\begin{array}{c} 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 29 \\ 30 \\ 13 \\ 23 \\ 34 \\ 53 \\ 6 \\ 7 \\ 8 \\ 9 \\ 41 \\ 42 \\ 43 \\ 45 \\ 46 \\ 7 \\ 48 \\ 9 \\ 51 \\ 52 \\ 54 \\ 55 \\ 56 \\ 7 \\ 58 \\ 9 \\ 60 \end{array}$	621	excluded as "previous COVID-19+". Presentations with any laboratory result above the limits of the CoLab-score (see Table 2) were excluded.
60		

Center 1

Center 2

Supplemental material 1

Model fitting

Prior to model fitting, covariates were scaled to zero mean and unit variance, after model fitting coefficients were unscaled to obtain regression coefficients on the original scale. In adaptive lasso, weights are applied to each of the covariates present in the lasso constraint, the weight vector has to be calculated before the adaptive lasso regression is performed. Due to multicollinearity between laboratory tests in the routine lab panel, weights in the adaptive lasso were based on ridge regression estimates ($\hat{\beta}_{ridge}$) as recommended by Zou. To obtain $\hat{\beta}_{ridge}$ the optimal penalty (λ) for the ridge regression was chosen using 10 fold crossvalidation (CV) with area under the ROC curve (AUC) as the loss function. The λ corresponding to the maximum AUC was selected to obtain $\hat{\beta}_{ridge}$. The weight vector (\hat{w}) was calculated by $\hat{w} = 1/|\hat{\beta}_{ridge}|^2$. This weight vector was then used to fit an adaptive lasso regression where λ was chosen by the criterion ± 1 SE of the maximum AUC.

Model intercept correction

The linear predictor for a patient *i* is calculated as follows: $lp_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_n x_{in}$ Where *n* is the number of variables in the final model, x_{in} are the observed predictor variables for subject i and β_n the model coefficients. The linear predictor can then be converted to a probability for patient *i* (*P_i*) by the logistic function: $P_i = \frac{1}{1+e^{-lp_i}}$

The intercept term β_0 is sensitive to the fraction of cases versus controls in the dataset/population. Since the model is fitted to a case-control dataset where the number cases is fixed (all patients tested positive for COVID-19) and the number of controls is randomly chosen (a 6-month period pre-COVID), the intercept term β_0 is a result of this choice and will likely not be generalizable to the real-world setting. Prior correction is a method to correct the estimate of the intercept based on the true fraction of positives in the population, τ (prevalence of COVID-19 in the ED) and the fraction of cases in the development dataset, \bar{y} . The intercept term β_0 can then be corrected to obtain $\beta_{0corrected}$ using the following formula:

$$\beta_{0corrected} = \beta_0 + \beta_{adj}$$
$$\beta_{adj} = -ln\left[\left(\frac{1-\tau}{\tau}\right)\left(\frac{\bar{y}}{1-\bar{y}}\right)\right]$$

In our dataset $\bar{y} = 0.02675$ therefore:

1 0

$$\beta_{adj} = -ln\left(\frac{1-\tau}{\tau}\right) + 3.594$$

An estimate $\bar{\tau}$ can be used for the prevalence τ to obtain β_{adj} which can be plugged in the original linear predictor formula to obtain calibrated probabilities:

$$lp_{i}(\tau) = \beta_{0} - ln\left(\frac{1-\tau}{\tau}\right) + 3.594 + \beta_{1}x_{i1} + \dots + \beta_{n}x_{in}$$

CoLab-score

An alternative, which is the basis of the CoLab-score, is to choose a fixed probability P_i above which one considers a patient eligible for further testing. The probability can be expressed as a number needed to test. If one is willing to test 10 patients to find one positive, all patients with $P_i \ge 0.1$ should be considered positive. In this study a number needed to test of 15 is used, therefore all patients with a $P_i \ge 0.067$ should be considered positive. On the linear predictor scale this translates to logit(0.067) = -2.639. To determine the cutoffs for difference prevalence thresholds one solves the following equation:

 $\begin{aligned} \beta_0 + \beta_{adj} + \beta_1 x_{i1} + \dots + \beta_n x_{in} &\geq -2.639 \\ \beta_0 + \beta_1 x_{i1} + \dots + \beta_n x_{in} &\geq -2.639 - \beta_{adj} \\ lp_i(\tau) &\geq ln\left(\frac{1-\tau}{\tau}\right) - 6.233 \end{aligned}$

Choosing values for τ yields the cutoffs for the CoLab score:

 $\begin{array}{l} lp_i(\tau = 0.4) \geq -5.83 \; (\text{CoLab-score} = 1) \\ lp_i(\tau = 0.1) \geq -4.03 \; (\text{CoLab-score} = 2) \\ lp_i(\tau = 0.05) \geq -3.29 \; (\text{CoLab-score} = 3) \\ lp_i(\tau = 0.02) \geq -2.34 \; (\text{CoLab-score} = 4) \\ lp_i(\tau = 0.01) \geq -1.64 \; (\text{CoLab-score} = 5) \end{array}$

These thresholds correspond to CoLab-scores 0 to 5. The interpretation of these scores is as follows; if the prevalence is <1%, only CoLab-score 5 should be classified as positive and CoLab-score 0 till 4 as negative. If the prevalence is 1% - 2%, CoLab-score 4 and 5 should be classified as positive and 1 - 3 negative. Similarly, with a prevalence of 2 - 5% the split is between CoLab-score 2 and 3 and with prevalence of 5 - 10% between CoLab-score 1 - 2. If the prevalence is higher than 10% only CoLab-score 0 is classified as negative. Using the CoLab-score in this fashion, aims to preserve a number need to test of 15.

Relative importance of variables

Since the variables included in the model are on different scales, the magnitude of the unscaled coefficients cannot be used to compare the importance of variables to each other. To give some indication of the importance of the variables in predicting the outcome, the unscaled coefficients obtained from the adaptive lasso regression were used to calculate the relative importance. The variable with the highest unscaled coefficient was used as maximum ($\beta_{unscaled,max}$), and all other scaled coefficients were divided by this maximum and multiplied by 100 to obtain the relative importance in %: $\frac{\beta_{unscaled}}{\beta_{unscaled,max}} \cdot 100$.

Supplemental material 2

Vaccination status and COVID-19 ED prevalence plot

Figure 1: Temporal validation period split into three phases characterized by weekly number of new COVID-19 cases at the emergency department (ED) and estimated fraction of ED patients vaccinated.

The temporal validation dataset consists of ED presentations from July 2020 until October 2021. As stated in the "Materials and Methods" section, this period was split into three phases: i) from July 2020 until March 2021, no vaccination and no variants of concern identified ii) from March 2021 until June 2021, partial vaccination and B.1.1.7 (Alpha) variant identified as dominant iii) from June 2021 until October 2021, widespread vaccination and B.1.617.2 (Delta) variant identified as dominant. The ED fraction vaccinated is estimated by merging data from the Dutch national institute of public health by the date of the ED presentation and the year of birth of the patient. The gray bars depict weekly number of new COVID-19 cases at the ED, the blue lines the estimated fraction of ED patients fully or partially vaccinated.

CoLab-score performance

Phase	Cases/controls (prevalence)	AUC
Original strain & no vaccinations	694/7999 (8.6%)	0.909 (0.896 - 0.923)
B.1.1.7 strain & partial vaccination	287/2845 (10.1%)	0.937 (0.921 - 0.953)
B.1.617.2 strain & full vaccination	58/3236 (1.8%)	0.898 (0.857 - 0.939)

CoLab- score	Phase	Sensitivity	Specificity	PPV	NPV
	Original strain & no vaccinations	0.960 (0.944 - 0.974)	0.418 (0.407 - 0.429)	0.135 (0.133 - 0.138)	0.991 (0.987 - 0.9
0	B.1.1.7 strain & partial vaccination	0.983 (0.969 - 0.997)	0.432 (0.413 - 0.450)	0.162 (0.158 - 0.168)	0.996 (0.992 - 0.9
	B.1.617.2 strain & full vaccination	0.983 (0.948 - 1.000)	0.415 (0.396 - 0.432)	0.030 (0.028 - 0.031)	0.999 (0.998 - 1.0
	Original strain & no vaccinations	0.879 (0.854 - 0.902)	0.789 (0.779 - 0.798)	0.283 (0.273 - 0.294)	0.986 (0.983 - 0.9
≤1	B.1.1.7 strain & partial vaccination	0.916 (0.885 - 0.948)	0.809 (0.793 - 0.824)	0.350 (0.332 - 0.370)	0.989 (0.984 - 0.9
	B.1.617.2 strain & full vaccination	0.862 (0.776 - 0.948)	0.780 (0.765 - 0.794)	0.067 (0.059 - 0.074)	0.997 (0.995 - 0.9
	Original strain & no vaccinations	0.813 (0.784 - 0.842)	0.894 (0.887 - 0.901)	0.421 (0.404 - 0.441)	0.980 (0.978 - 0.9
≤2	B.1.1.7 strain & partial vaccination	0.864 (0.826 - 0.902)	0.897 (0.885 - 0.908)	0.484 (0.455 - 0.516)	0.983 (0.979 - 0.9
	B.1.617.2 strain & full vaccination	0.690 (0.569 - 0.810)	0.892 (0.881 - 0.902)	0.104 (0.086 - 0.123)	0.994 (0.991 - 0.9
	Original strain & no vaccinations	0.697 (0.661 - 0.731)	0.962 (0.957 - 0.966)	0.634 (0.605 - 0.662)	0.971 (0.968 - 0.9
≤3	B.1.1.7 strain & partial vaccination	0.760 (0.711 - 0.812)	0.963 (0.955 - 0.970)	0.696 (0.650 - 0.739)	0.973 (0.967 - 0.9
	B.1.617.2 strain & full vaccination	0.621 (0.483 - 0.741)	0.960 (0.954 - 0.967)	0.222 (0.178 - 0.268)	0.993 (0.990 - 0.9
	Original strain & no vaccinations	0.566 (0.529 - 0.602)	0.984 (0.981 - 0.987)	0.775 (0.740 - 0.808)	0.960 (0.957 - 0.9
≤4	B.1.1.7 strain & partial vaccination	0.645 (0.589 - 0.704)	0.983 (0.978 - 0.988)	0.809 (0.762 - 0.856)	0.961 (0.955 - 0.9
	B.1.617.2 strain & full vaccination	0.517 (0.397 - 0.638)	0.986 (0.982 - 0.990)	0.400 (0.319 - 0.500)	0.991 (0.989 - 0.9

Table 2: Diagnostic performance of the CoLab-score in the temporal validation dataset,

split by phase.

BMJ Open

Sensitivities, specificities, positive predictive values (PPV) and negative predictive values (NPV) are shown for fixed cut-offs (CoLab-score 0 till ≤ 4) with bootstrapped 95% confidence intervals in parentheses. The temporal validation dataset is split into three phases according to dominant SARS-CoV-2 strains in the Netherlands and estimated fraction of ED patients vaccinated (see Figure above). Note that "0" lists the sensitivity and NPV of CoLab-score 0 and " ≤ 4 " lists the specificity and PPV of CoLab-score 5. The AUC was significantly higher in the second phase as compared to the first phase (DeLong test p-value: 0.0175), but did not differ significantly between the third and first phase (DeLong test p-value: 0.3903).

Figure 2: Boxplots of CoLab linear predictor versus COVID-19 positive, split by registered vaccination status.

The CoLab linear predictor is calculated for all ED presentations in the temporal validation set. Presentations who are registered as vaccinated are labeled TRUE (N = 13). Presentations before vaccine roll-out are labeled FALSE (N = 5855). Presentations during

BMJ Open

vaccine roll-out but where no status is registered are labeled NA (N = 8212). Of the 13 presentations who were registered as vaccinated, 12 were COVID-19 positive and 1 negative. Note that vaccination status is only registered if a patient is SARS-CoV-2 PCR positive or considered positive until proven otherwise, therefore there is only one COVID-19 negative patient with a registered vaccination status.

for open teries only

Supplemental material 3

Figure 1: CoLab-score calibration plots of the temporal validation (A), external validation center 1 (B), external validation center 2 (C) and external validation center 3 (D).

In the calibration plots, the proportion of observed COVID-19 positives versus expected probabilities are plotted. Observations are grouped with an average of 150 observations per group. The expected probabilities follow from applying the inverse logit function to the CoLab-linear predictor calculated from Table 2. If the observed proportion in an external dataset is lower than the expected proportion, this means risks are over-estimated, if the observed fraction is higher, risks are under-estimated. Ideally, observed proportions are equal to expected proportions, this ideal-calibration-line is shown as a straight line through the origin with a slope of 1. The logistic calibration line is a logistic regression fit of the predicted probabilities. [Intercept, slope] for plots A-D: A [1.34, 1.08], B [-0.39, 0.92], C [-0.76, 0.77], D [0.08, 0.79]. Although no validation datasets show perfect calibration, this is the result of differences in COVID-19 prevalence in the temporal validation dataset (7.4% versus 2.2%) and differences in calibration of laboratory equipment in the three external centers.

Figure 2: Probability density plots of laboratory parameters.

Probability density plots are shown for all control patients of the development dataset and the three external centers. Ideally all distributions should overlap since this implies that control patient populations are most likely similar in the development dataset to the external datasets. When comparing the distribution of the CoLab variables for all control-patients across different external validation datasets, albumin and LD show the largest deviations.

Figure 1: Association between the CoLab-linear predictor and the duration of COVID-19-related symptoms.

For all PCR-positive ED presentations in the development and temporal validation dataset, the CoLab-linear predict is plotted against the duration of COVID-related symptoms as registered in the electronic patient records. Patients with unknown duration are not plotted. Patients without symptoms were plotted at 0 days. The solid horizontal lines represent the CoLab-score thresholds, the dashed line is a LOESS regression curve with 95% CI. As the duration of symptoms is an integer, some random jitter was added to the days, for visualization purposes. Note that only the first 14 days are shown in this graph.

Figure 2: Probability density plot of CoLab-score for RS-, Rhino- and Influenza-virus PCR tested ED patients.

For 183 ED presentations that were PCR tested for either RS-, Rhino- and Influenza-virus the CoLab-score was calculated. 91 presentations were PCR positive, 92 were PCR negative. The CoLab-score is only marginally elevated for PCR positive patients, the area under the ROC-curve in separating both groups is 0.573 (95% CI: 4896-0.6563).

Inclusion criterion	Cases/controls (prevalence)	AUC		
Temporal validation (reference)	1039/14080 (7.4%)	0.916 (0.906 - 0.927)		
Only first presentations, re- presentations are excluded	937/11166 (8.4%)	0.919 (0.909 - 0.930)		
Only PCR-tested presentations	372/4062 (9.2%)	0.840 (0.817 - 0.862)		

CoLab- score	Validation set	Sensitivity	Specificity	PPV	NPV	ТР	TN	FP	FN
	Reference	0.967	0.420	0.117	0.994	1005	5476	7565	34
		(0.956 -	(0.411 -	(0.115 -	(0.992 -	(993 -	(5366 -	(7454 -	(23 -
		0.978)	0.428)	0.119)	0.996)	1016)	5587)	7675)	46)
	First	0.968	0.416	0.132	0.993	907	4259	5970	30
0	presentations	(0.956 -	(0.406 -	(0.130 -	(0.990 -	(896 -	(4156 -	(5876 -	(20 -
		0.979)	0.426)	0.134)	0.995)	917)	4353)	6073)	41)
	PCR-tested	0.946	0.353	0.129	0.985	352	1303	2387	20
	presentations	(0.922 -	(0.338 -	(0.125 -	(0.979 -	(343 -	(1246 -	(2331 -	(12 -
		0.968)	0.368)	0.132)	0.991)	360)	1359)	2444)	29)
	Reference	0.888	0.791	0.253	0.989	923	10311	2730	116
		(0.870 -	(0.783 -	(0.245 -	(0.987 -	(904 -	(10215 -	(2640 -	(96 -
		0.908)	0.798)	0.261)	0.991)	943)	10401)	2826)	135)
	First	0.890	0.793	0.282	0.987	834	8112	2117	103
≤ 1	presentations	(0.870 -	(0.785 -	(0.273 -	(0.985 -	(815 -	(8030 -	(2035 -	(86 -
		0.908)	0.801)	0.292)	0.990)	851)	8194)	2199)	122)
	PCR-tested	0.852	0.671	0.207	0.978	317	2477	1213	55
	presentations	(0.817 -	(0.656 -	(0.197 -	(0.973 -	(304 -	(2421 -	(1157 -	(42 -
		0.887)	0.686)	0.217)	0.983)	330)	2533)	1269)	68)
	Reference	0.820	0.894	0.382	0.984	852	11661	1380	187
		(0.796 -	(0.889 -	(0.367 -	(0.982 -	(827 -	(11591 -	(1312 -	(163 -
	— •	0.843)	0.899)	0.396)	0.986)	876)	11729)	1450)	212)
	First	0.824	0.898	0.426	0.982	//2	9187	1042	165
≤2	presentations	(0.798 -	(0.892 -	(0.410 -	(0.980 -	(748 -	(9127 -	(980 -	(145 -
		0.845)	0.904)	0.441)	0.985)	792)	9249)	1102)	189)
	PCR-tested	0.734	0.800	0.270	0.968	273	2951	739	99
	presentations	(0.688 -	(0.786 -	(0.252 -	(0.962 -	(256 -	(2902 -	(693 -	(83 -
	D (0.777)	0.812)	0.287)	0.973)	289)	2997)	/88)	116)
	Reference	0.710	0.962	0.596	0.977	/38	12540	501	301
		(0.682 -	(0.958 -	(0.573 -	(0.974 -	(709 -	(12496 -	(459 -	(272 -
	F ired	0.738)	0.965)	0.618)	0.979)	/6/)	12582)	545)	330)
< 0	FIRSt	0.716	0.966	0.658	0.974	6/1	9880	349	266
≤ 3	presentations	(0.687 -	(0.962 -	(0.633 -	(0.971 - 0.070)	(644 -	(9844 -	(314 -	(240 -
		0.744)	0.969)	0.682)	0.976)	697)	9915)	385)	293)
	PCR-tested	0.591	0.911	0.403	0.957	220	3363	327	152
	presentations	(0.540 -	(0.902 -	(0.370 -	(0.952 -	(201 -	(3328 -	(293 -	(134 -
	D = (= = = = = = =	0.640)	0.921)	0.433)	0.962)	238)	3397)	362)	171)
	Reference	0.585	0.984	0.750	0.968	608	12838	203	431
		(0.556 -	(0.982 -	(0.724 -	(0.965 -	(578 -	(12811 -	(175 -	(400 -
	First	0.015)	0.987)	0.778)	0.970)	639) 570	12866)	∠3U)	401)
-1	riist	0.590	0.987	0.805	0.963	553 (F00	10095	134	384 (255
≤4	presentations	(0.558 -	(0.985 -	(0.776 -	(0.961 -	(523 -	(10071 -	(112 -	(355 -
	DCD tootod	0.621)	0.989)	0.832)	0.966)	58Z)	10117)	158)	414)
	PUK-lested	0.452	0.959	0.526	0.945	000	3539	101	204
	presentations	(0.401 -	(0.953 -	(0.480 -	(0.941 -	(149 -	(3516 -	(128 -	(185 -
		0.503)	0.905)	0.575)	0.950)	107)	<u> 306∠)</u>	174)	223)

Table 1: Sensitivity analysis of the CoLab-score in the temporal validation dataset using different inclusion criteria.

Sensitivities, specificities, positive predictive values (PPV), negative predictive values (NPV), true positives (TP), true negatives (TN), false positives (FP) and false negatives (FN) are shown for fixed cut-offs (CoLab-score 0 till ≤ 4) with bootstrapped 95% confidence intervals in parentheses. The temporal validation dataset is used to compare the performance of the CoLab-score with inclusion criteria that differ from the development dataset. The first line shows the performance of the temporal validation dataset with the original inclusion criteria as specified in Figure 1B. The second line shows the performance of the CoLab-score when all re-presentations are excluded (i.e. no repeated presentations). The third line shows the performance of the CoLab-score in the subgroup of patients that underwent PCR-testing.

R. R. ON

TRIPOD Checklist: Prediction Model Development and Validation

Title and abstract	nem			raţ
Title	4	Del	Identify the study as developing and/or validating a multivariable prediction model, the	
litie	1	D;V	target population, and the outcome to be predicted.	1
Abstract	2	D;V	Provide a summary of objectives, study design, setting, participants, sample size,	3,
Introduction				
			Explain the medical context (including whether diagnostic or prognostic) and rationale for	
Background	3a	D;V	developing or validating the multivariable prediction model, including references to existing	6,
and objectives			models.	
, ,	3b	D;V	Specify the objectives, including whether the study describes the development or validation of the model or both	7
Methods				
	4.5		Describe the study design or source of data (e.g., randomized trial, cohort, or registry	0.44
Source of data	4a	D,V	data), separately for the development and validation data sets, if applicable.	0, 1
Source of data	4b	D·V	Specify the key study dates, including start of accrual; end of accrual; and, if applicable,	8
	10	5,1	end of follow-up.	
	5a	D;V	Specify key elements of the study setting (e.g., primary care, secondary care, general	8
Participants	5h	D·V	Describe eligibility criteria for participants	89
	5c	D;V	Give details of treatments received, if relevant.	0, 0, N/
	<u> </u>	,.	Clearly define the outcome that is predicted by the prediction model, including how and	
Outcome	ьа	D;v	when assessed.	55
	6b	D;V	Report any actions to blind assessment of the outcome to be predicted.	N/
Desident	7a	D:V	Clearly define all predictors used in developing or validating the multivariable prediction	8.
Predictors	76	<u>D.V</u>	model, including how and when they were measured.	•, •,
Sample size	۲D و	D;V	Explain how the study size was arrived at	IN/
Sample Size	0	D, V	Describe how missing data were handled (e.g. complete-case analysis, single imputation	IN/
Missing data	9	D;V	multiple imputation) with details of any imputation method.	g
	10a	D	Describe how predictors were handled in the analyses.	1(
	10h	П	Specify type of model, all model-building procedures (including any predictor selection),	10-
Statistical	100	D	and method for internal validation.	S
analysis	10c	V	For validation, describe how the predictions were calculated.	1
methods	10d	D;V	Specify all measures used to assess model performance and, if relevant, to compare	11-
	10e	V	Describe any model updating (e.g. recalibration) arising from the validation if done	N/
Risk groups	11	D:V	Provide details on how risk groups were created, if done.	N/
Development	40		For validation, identify any differences from the development data in setting, eligibility	
vs. validation	12	V	criteria, outcome, and predictors.	24
Results				[
	120		Describe the flow of participants through the study, including the number of participants	Б
	13a	D;v	diagram may be beloful	F
			Describe the characteristics of the participants (basic demographics, clinical features,	
Participants	13b	D;V	available predictors), including the number of participants with missing data for predictors	T
			and outcome.	
	13c	V	For validation, show a comparison with the development data of the distribution of	S
Model	140	-	Important variables (demographics, predictors and outcome).	
ivioael development	14a		Specify the number of participants and outcome events in each analysis.	F1,
	140	-	Present the full prediction model to allow predictions for individuals (i.e., all regression	11/
Model	15a	D	coefficients, and model intercept or baseline survival at a given time point).	Т
specification	15b	D	Explain how to the use the prediction model.	T2,
Model	16	D·V	Report performance measures (with CIs) for the prediction model	Т3
performance	.0	2 , v		10,
Model-updating	17	V	if done, report the results from any model updating (i.e., model specification, model performance)	N/
Discussion				
Limitations	10	DUV	Discuss any limitations of the study (such as nonrepresentative sample, few events per	04
Limitations	18	D;V	predictor, missing data).	21-
	1 <u>9</u> a	V	For validation, discuss the results with reference to performance in the development data,	19
Interpretation	.54	v	and any other validation data.	10
	19b	D;V	Give an overall interpretation of the results, considering objectives, limitations, results from	19-
Implications	20		Similar Studies, and Uther relevant evidence.	20
Other information	20	D, V		20-
Supplementary	<u></u>	D 11	Provide information about the availability of supplementary resources, such as study	
information	21	D;V	protocol, Web calculator, and data sets.	N/.

denoted by V, and items relating to both are denoted D;V. We recommend using the TRIPOD Checklist in conjunction with the TRIPOD Explanation and Elaboration document. S = Supplemental material, F = Figure, T = Table.

BMJ Open

BMJ Open

Development and validation of an early warning score to identify COVID-19 in the emergency department based on routine laboratory tests: a multicenter case-control study

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-059111.R2
Article Type:	Original research
Date Submitted by the Author:	19-May-2022
Complete List of Authors:	Boer, Arjen-Kars; Catharina Hospital Deneer, Ruben; Catharina Hospital, ; Eindhoven University of Technology, Maas, Maaike; Catharina Ziekenhuis, emergency department Ammerlaan, Heidi; Catharina Hospital van Balkom, Roland; Catharina Hospital Thijssen, Wendy; Catharina ziekenhuis, Emergency medicine Bennenbroek, Sophie; Catharina Hospital Leers, Mathie; Zuyderland Medical Centre Heerlen, Clinical Chemistry & Hematology Martens, Remy; Zuyderland Medical Centre Heerlen, Clinical Chemistry & Hematology Buijs, Madelon; Atalmedial Kerremans, Jos; Alrijne Hospital Location Leiderdorp Messchaert, Muriël ; Gelre Hospitals van Suijlen, Jeroen; Gelre Hospitals van Riel, Natal; Eindhoven University of Technology, ; Amsterdam University Medical Centres Scharnhorst, Volkher; Catharina Hospital; Eindhoven University of Technology,
Primary Subject Heading :	Emergency medicine
Secondary Subject Heading:	Health informatics, Infectious diseases
Keywords:	COVID-19, STATISTICS & RESEARCH METHODS, ACCIDENT & EMERGENCY MEDICINE, Clinical chemistry < PATHOLOGY, Health informatics < BIOTECHNOLOGY & BIOINFORMATICS

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	Development and validation of an early warning score to identify				
2	COVID-19 in the emergency department based on routine laboratory				
3	tests: a multicenter case-control study				
4					
5	Arjen-Kars Boer ^{1*} , Ruben Deneer ^{1,2*†} , Maaike Maas ³ , Heidi S. M. Ammerlaan ⁴ , Roland H. H.				
6	van Balkom ⁵ , Wendy A.M.H. Thijssen ³ , Sophie Bennenbroek ³ , Mathie P. G. Leers ⁶ , Remy				
7	J.H. Martens ⁶ , Madelon M. Buijs ⁷ , Jos J. Kerremans ⁸ , Muriël Messchaert ⁹ , Jeroen D.E. van				
8	Suijlen ⁹ , Natal A.W. van Riel ^{2,10} and Volkher Scharnhorst ^{1,2}				
9					
10	* Both authors contributed equally				
11	[†] Corresponding author				
12					
13	1	Department of Laboratory Medicine, Catharina Hospital Eindhoven,			
14		Michelangelolaan 2, 5623 EJ, Eindhoven, the Netherlands			
15	2	Faculty of Biomedical Engineering, Technical University Eindhoven, Groene			
16		Loper 3, 5612 AE, Eindhoven, the Netherlands			
17	3	Department of Emergency Medicine, Catharina Hospital Eindhoven,			
18		Michelangelolaan 2, 5623 EJ, Eindhoven, the Netherlands			
19	4	Department of Internal Medicine, Catharina Hospital Eindhoven,			
20		Michelangelolaan 2, 5623 EJ, Eindhoven, the Netherlands			
21	5	Department of Pulmonary Diseases, Catharina Hospital Eindhoven,			
22		Michelangelolaan 2, 5623 EJ, Eindhoven, the Netherlands			

2	a a	6		
4	23	6 Department of Laboratory Medicine, Zuyderland Medical Center, Dr. H. van der		
5 6	24	Hoffplein 1, 6162 BG, Sittard-Geleen, the Netherlands		
7 8	25	7 Atalmedial Diagnostic Centers, Jan Tooropstraat 138, 1061 AD Amsterdam, the		
9 10 11	26		Netherlands	
12 13	27	8	Department of Medical Microbiology & Infection Prevention, Alrijne Hospital,	
14 15	28		Simon Smitweg 1, 2353 GA Leiderdorp, the Netherlands	
16 17	29	9	Department of Clinical Chemistry, Gelre Hospital, Albert Schweitzerlaan 31, 7334	
18 19 20	30	DZ Apeldoorn, the Netherlands		
21 22	31	10	Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef	
23 24	32		9, 1105 AZ Amsterdam, the Netherlands.	
25 26				
27 28	33			
29 30 21	34	Keywords		
32 33	35	COVID-19, SARS-CoV-2, emergency department, triage, early warning score, prediction		
34 35	36	model, routine laboratory tests		
36 37 38	37			
39 40	20	Corresponding outbox		
41 42	38	Corresponding author		
43 44	39	Ruben De	neer	
45 46 47	40	Michelangelolaan 2		
48 49 50	41	5623 EJ Eindhoven, the Netherlands		
51 52 53	42	ruben.den	eer@catharinaziekenhuis.nl	
54 55				
56 57				
58				
59 60				

43 Abstract

Objectives: Identifying patients with a possible SARS-CoV-2 infection in the emergency
department (ED) is challenging. Symptoms differ, incidence rates vary and test capacity may
be limited. As PCR testing all ED patients is neither feasible nor effective in most centers, a
rapid, objective, low-cost early warning score to triage ED patients for a possible infection is
developed.

Design: Case-control study.

Setting: Secondary and tertiary hospitals in the Netherlands.

Participants: Patients presenting at the ED with venous blood sampling from July 2019 to 52 July 2020 (N = 10417, 279 SARS-CoV-2 positive). The temporal validation cohort covered 53 the period from July 2020 to October 2021 (N = 14080, 1093 SARS-CoV-2 positive). The 54 external validation cohort consisted of patients presenting at the ED of three hospitals in the 55 Netherlands (N = 12061, 652 SARS-CoV-2 positive).

56 Primary outcome measures The primary outcome was one or more positive SARS-CoV-2
57 PCR-test results, within one day prior to, or one week after, ED presentation.

Results: The resulting "CoLab-score" consists of 10 routine laboratory measurements, and

age. The score showed good discriminative ability (AUC: 0.930, 95% CI: 0.909 to 0.945).

60 The lowest CoLab-score had a high sensitivity for COVID-19 (0.984, 95% CI: 0.970 to 0.991,

61 specificity: 0.411, 95% CI: 0.285 to 0.520). Conversely, the highest score had high specificity

62 (0.978, 95% CI: 0.973 to 0.983, sensitivity: 0.608, 95% CI: 0.522 to 0.685). Results were

63 confirmed in temporal and external validation.

64 Conclusions: The CoLab-score is based on routine laboratory measurements and is available
65 within one hour after presentation. Depending on the prevalence, COVID-19 may be safely

1		
2 3 4	66	ruled-out in over one third of ED presentations. Highly suspect cases can be identified
5 6	67	regardless of presenting symptoms. The CoLab-score is continuous, in contrast to the binary
/ 8 9	68	outcome of lateral flow testing, and can guide PCR testing and triage ED patients.
10 11 12	69	
13 14 15	70	Article summary
16 17 18	71	Strengths and limitations of this study
19 20	72	• A comprehensive panel of 28 laboratory tests was measured for 10.417 emergency
21 22	73	department (ED) presentations and combined with SARS-CoV-2 PCR test results.
23 24 25	74	• Using adaptive lasso regression analysis, the panel of 28 laboratory tests was reduced
26 27	75	to a single score consisting of a subset of 10 routine ED laboratory tests and age.
28 29 30	76	• The score was temporally validated from July 2020 to October 2021, in the presence of
31 32	77	vaccine roll-out and emergence of new SARS-CoV-2 variants.
33 34	78	• The score was externally validated in 3 other centers in the Netherlands.
35 36 37	79	• Missingness in the panel of laboratory tests varied between external centers, limiting
38 39	80	generalizability of the score to the ED population for which the complete panel of
40 41	81	laboratory tests was available.
42 43 44	82	• The score was not directly compared to lateral flow testing.
45 46	83	
47 48		
49		
50 51		
52		
55 54		
55 56		
50 57		
58 59		
60		

84 Introduction

COVID-19, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has evolved into a global pandemic in 2020 [1]. For emergency department (ED) physicians, identifying presenting patients with a possible COVID-19 infection remains challenging since symptoms like fever, shortness of breath or coughing overlap with other illnesses [2,3]. It is crucial however, to identify a possible COVID-19 infection as early as possible. Early identification prevents further spreading and protects hospital staff by isolating a suspected patient, pending the results of a SARS-COV-2 RNA PCR test and/or chest CT. Conversely, when PCR testing or isolation treatment capacity is limited, ruling-out COVID-19 as soon as possible can save valuable resources.

In the era of electronic health records and clinical prediction models, developing an early
warning score that can assist ED physicians in identifying patients presenting at the ED with
COVID-19 is of great value. Moreover, if only routine ED test results are required as input,
the score can be easily adopted by EDs worldwide, potentially reduce diagnostic costs and
accelerate patient triage.

Many COVID-19 prediction models have already been developed, the living systematic review by Wynants et. al [4] provides an extensive overview and critical appraisal. Unfortunately, only few models have found their way into routine care at the ED [5,6]. Early models were based on relatively small sample sizes, hampered by selection bias or were over-fitted by selecting too many features [4–6]. Aside from methodological shortcomings of early models, most models are not developed as an early warning score for all ED patients. Firstly, they require features from tests that are not routinely performed or logged for all ED patients (e.g. the CO-RADS score from a CT-scan [7] or non-lab based clinical variables in the PRIEST EWS [8]) and are therefore not straightforward to implement or scale to a large ED patient population. Secondly, the population on which models are commonly based, are PCR-

BMJ Open

109 tested patients, i.e. a pre-selection of a possible COVID-19 infection has already been done by110 physicians.

111 Only two studies were identified that focus on patients presenting at the ED, include

112 unsuspected (and pre-pandemic) patients as controls, and rely solely on routine (laboratory)

 $\frac{2}{2}$ 113 tests [9,10].

114 In this study we report the development and validation of an early warning score that, based

115 on routine ED laboratory tests, estimates the risk of a possible COVID-19 infection in patients

116 who undergo routine laboratory testing at presentation. The score can assist ED physicians in

117 triaging patients and prevent further transmission of COVID-19 by quickly identifying

118 possibly infected patients or ruling out a possible infection when resources are scarce.

119 Methods

120 Study design

8 9	121	This is a retrospective case-control study where routine laboratory test results, combined with
10 11 12	122	age and gender, from all patient presenting at the emergency department (ED) of the
13 14	123	Catharina Hospital Eindhoven from July 2019 to July 2020 were combined with SARS-CoV-
15 16	124	2 PCR test results in a development dataset. A model that could predict the presence of a
17 18 19	125	COVID-19 infection was fit to this dataset. Performance of the model was assessed by i)
20 21	126	internal validation, ii) temporal validation and iii) external validation by using data from the
22 23	127	ED of three other centers. The study was reviewed by the Medical research Ethics
24 25 26	128	Committees United (MEC-U) under study number W20.071, which confirmed that the
27 28	129	Medical Research Involving Human Subjects Act (In Dutch: WMO) does not apply to this
29 30 31	130	study. The study was thereafter reviewed and approved by the internal hospital review board.
32 33 34	131	
35 36	132	Patient and Public Involvement
37 38 39	133	Patients were not involved in the design, conduct or reporting of this study.
40 41 42	134	
43 44 45	135	Development dataset
45 46 47	136	All ED presentations at the Catharina Hospital Eindhoven from July 2019 to July 2020 were
48 49	137	included in the development dataset, provided that routine laboratory testing had been
50 51	138	requested by the attending ED physician. The rationale for this inclusion period is to limit the
52 53 54	139	effect of seasonal variation in the ED patient population by including the summer, fall and
55 56	140	winter season of 2019 (control patients) and the winter, spring and summer season of 2020
57 58	141	(case and control patients). The routine laboratory panel at the ED consists of 28 laboratory
59 60	142	tests. In some cases not all tests in the routine panel were requested or one or more

Page 9 of 49

1

BMJ Open

2	
3	
4	
5	
6	
7	
/	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
10	
10	
19	
20	
21	
22	
23	
24	
24	
25	
26	
27	
28	
29	
30	
20	
31	
32	
33	
34	
35	
36	
20	
37	
38	
39	
40	
41	
42	
42 42	
43	
44	
45	
46	
47	
48	
.0 ⊿∩	
79 70	
50	
51	
52	
53	
54	
55	
55	
20	
57	
58	
59	

143 quantitative results were not available due to analytical interference (hemolysis, lipemia or 144 icterus). The routine ED laboratory panel is requested for (adult) patients presenting with 145 abdominal pain, chest pain, shortness of breath, syncope, sepsis or other non-specific 146 complaints, or for patients (including non-adult patients) presenting with specific complaints 147 where a suspected diagnosis has to be ruled-in or ruled-out. Presentations with one or more 148 missing values in any of the 28 laboratory test in the routine ED panel, were excluded. 149 Presentations with one or more extreme lab results, > 10 times standard deviation from the 150 median, were also excluded to minimize the effect on the estimation of regression 151 coefficients. The median was chosen as a measure of central tendency due to its resistance for 152 outliers. After the first case of COVID-19 in the Netherlands, all patients with symptoms of 153 COVID-19 (either fever and/or respiratory symptoms) were subjected to nasopharyngeal PCR 154 testing for SARS-CoV-2 RNA. PCR testing was performed by commercial tests that were 155 approved by the Dutch national institute of public health (RIVM). If a patient had a positive 156 PCR result in the past, subsequent presentations were excluded as re-presentations might be 157 clinically different from de novo presentations.

158 The ED lab panel results were matched to SARS-CoV-2 PCR results if the underlying 159 nasopharyngeal swab had been taken ≤ 1 day prior, or ≤ 1 week after initial blood withdrawal 160 at the ED. If multiple PCR tests were performed in this window, and at least one PCR test was 161 positive, the presentation was labelled "PCR-positive". If all PCR test results in the time 162 window were negative, the presentation was labelled as "PCR-negative". If no PCR tests were 163 performed in the time window and the presentation occurred after the first case of COVID-19 164 in the Netherlands, the presentation was labelled as "Untested". All presentations before the 165 first case were labelled as "Pre-COVID-19".

166

60

Laboratory tests

The routine laboratory panel consisted of hemocytometric and chemical analyses. The hemocytometric tests were performed on Sysmex XN-10 instruments (Sysmex Corp., Kobe, Japan) and consisted of hemoglobin, hematocrit, erythrocytes, mean corpuscular volume (MCV), mean cellular hemoglobin (MCH), mean cellular hemoglobin concentration (MCHC), thrombocytes, leukocytes, neutrophils, eosinophils, basophils, lymphocytes and monocytes. The chemical analyses were performed on a Cobas 8000 Pro (Roche Dx, Basel, Switzerland) instrument and consisted of glucose, total bilirubin, aspartate aminotransferase (ASAT), alanine aminotransferase (ALAT), lactate dehydrogenase (LD), creatine kinase (CK), alkaline phosphatase (ALP), gamma-glutamyltransferase (gGT), blood urea nitrogen (BUN), creatinine, CKD-epi estimated glomerular filtration rate (eGFR), potassium, sodium, chloride, albumin (bromocresol green) and C-reactive protein (CRP). These results were elien combined with age and gender.

Modelling

All data were processed and analyzed in R version 4.1.1 [11]. Laboratory results, combined with age and gender were used as covariates in a regression model. Cases were defined as ED presentations labelled as "PCR-positive", controls were all other presentations (i.e. "PCRnegative", "Untested" or "Pre-COVID-19"). To achieve predictive accuracy, limit overfitting and perform feature selection, penalized logistic regression with an adaptive lasso penalty was chosen [12,13]. To minimize missing data, all non-numeric results at the extremes of the measuring range, were converted to numeric results by removing the "<" and ">" signs. For eGFR (CKD-epi) and CRP the raw precursor value was used instead of >90 ml/min/m2 and <6 mg/L, respectively. Considering that laboratory results of bilirubin, ASAT, ALAT, LD, CK, ALP and gGT can have heavy (right) tailed distributions, which in turn impacts model
BMJ Open

predictions, these variables were transformed logarithmically. More details regarding model
fitting can be found in the document, Supplemental Material 1. Models were fitted using the
glmnet-package [14].

11 195

196 CoLab-score

Since this is a retrospective case-control study, the sample prevalence may not reflect the true/current COVID-19 prevalence. To obtain well-calibrated probabilities the intercept term in the model should be adjusted according to the current prevalence (details can be found in the document, Supplemental Material 1) [15]. However, adjusting the intercept term is not straightforward to implement in clinical practice, therefore the linear predictor of the model was categorized into a score, this score is hereafter referred to as the "CoLab-score". The categorization is based on a number needed to test of 15 (i.e. one is willing to PCR test 15 patients to find one positive) and prevalence cut-points of 1%, 2%, 5%, 10% and 40% using the intercept adjustment formula by King [15]. The intervals obtained through these breaks correspond to CoLab-scores 5 to 0, respectively. Score 0 reflects low-risk for COVID-19 and score 5 reflects high-risk. More details regarding the rationale of the CoLab-score categorization can be found in the document, Supplemental Material 1.

210 Internal validation

To assess model performance while taking overfitting into account, bootstrapping was
performed. 1000 bootstrap samples were generated from the original data. On each bootstrap
sample, the full model fitting procedure and CoLab-score conversion were performed.
Optimism adjusted performance measures of the CoLab-score were obtained by applying the
0.632 bootstrap rule to the in-sample and out-of-bag-sample performance [16]. Performance

measures included, AUC, sensitivity, specificity, positive predictive value (PPV) and negative
predictive value (NPV) of each CoLab-score. The pROC-package was used to calculate
performance measures [17]. Although the full inclusion period from July 2019 to July 2020
was used for model fitting, the performance was evaluated on the period starting from the first
COVID-19 infection (24th of February 2020) to July 2020. This was done to obtain
performance measures that would reflect real world performance.

223 Temporal validation

For temporal validation, results from our center were prospectively analyzed from July 2020 to October 2021. During this period, the Netherlands was struck by a second wave of COVID-19 infections, starting in the fall of 2020 and subsiding in the summer of 2021. In this period there was also more widespread external PCR testing by municipal health services. The results of external conducted PCR tests were not available to our study. To overcome this limitation, the outcome in the temporal validation cohort was chosen as a composite of the hospital registration of a confirmed COVID-19 infection and/or at least one positive PCR test result. This period also covers both the emergence of new SARS-CoV-2 variants as well as vaccine rollout. However, neither vaccination status nor genomic sequencing was available to determine whether a patient was vaccinated or which variant caused the infection. Therefore, data from the Dutch national institute of public health (RIVM) was used, to divide the temporal validation period into three phases: i) from July 2020 until March 2021, no vaccination and no variants of concern identified ii) from March 2021 until June 2021, partial vaccination and B.1.1.7 (Alpha) variant identified as dominant iii) from June 2021 until October 2021, widespread vaccination and B.1.617.2 (Delta) variant identified as dominant. See Supplemental Material 2 Figure 1 for more details. The temporal validation consisted of assessing the AUC, sensitivity, specificity, PPV and NPV of each CoLab-score threshold

BMJ Open

2		
3 4	241	for the entire period, as well as for each phase separately to determine a possible effect of
5 6	242	vaccination and new variants on performance (results in the Supplemental Material 2).
7 8 0	243	Model calibration was assessed graphically using the rms-package [18].
9 10 11 12	244	
13 14	245	External validation
15 16 17	246	For the external validation, several centers in the Netherlands were approached and assessed
18 19	247	if the required panel of laboratory tests and SARS-CoV-2 PCR test results were available.
20 21	248	Seven centers responded and three centers fulfilled the inclusion criteria: Gelre Hospitals
22 23 24	249	(center 1), Atalmedial Diagnostic Centers, location Alrijne Hospital Leiderdorp (center 2) and
24 25 26	250	Zuyderland Medical Center (center 3). The hematological parameters were measured with
27 28	251	Sysmex XN10/XN20 (center 1), CELL-DYN-Sapphire (Abbott Laboratories) (center 2) and
29 30	252	Sysmex XN10 instruments (center 3). The clinical chemistry parameters were measured with
31 32 33	253	Architect c14100/c160000 (Abbott Laboratories) (center 1), Architect ci4100 (Abbott
34 35	254	Laboratories) (center 2) and Cobas 8000 instruments (Roche Dx) (center 3). The external
36 37	255	validation was similar to the temporal validation and consisted of assessing the AUC
38 39 40	256	sensitivity, specificity, PPV and NPV of each CoLab-score threshold. Calibration was
40 41 42 43	257	assessed graphically analogous to the temporal validation dataset.
44 45		
46		

Results

Development dataset

12879 emergency department (ED) presentations of 10327 patients from July 2019 to July 2020 were included. After excluding cases with an incomplete lab panel, patient presentations that occurred after a positive PCR test in the past (re-presentations) and presentations with extreme values (>10 times standard deviation) in any of the lab results, 10417 presentations of 8610 patients remained (Figure 1 A).

	Pre-COVID N = 5890	Untested N = 3303	PCR negative N = 945	PCR positive N = 279
Age in years	61 (21)	60 (21)	66 (18)	69 (15)
Female gender	2909 (49.4 %)	1659 (50.2 %)	466 (49.3 %)	95 (34.1 %)
Specialism				
Internal medicine	1648 (28.0 %)	896 (27.1 %)	244 (25.8 %)	71 (25.4 %)
Surgery	1007 (17.1 %)	679 (20.6 %)	51 (5.4 %)	5 (1.8 %)
Neurology	775 (13.2 %)	468 (14.2 %)	64 (6.8 %)	5 (1.8 %)
Pulmonary medicine	714 (12.1 %)	220 (6.7 %)	326 (34.5 %)	167 (59.9 %)
Cardiology	560 (9.5 %)	322 (9.7 %)	145 (15.3 %)	6 (2.2 %)
Urology	309 (5.2 %)	148 (4.5 %)	15 (1.6 %)	7 (2.5 %)
Gastroenterology	306 (5.2 %)	224 (6.8 %)	27 (2.9 %)	1 (0.4 %)
Geriatrics	189 (3.2 %)	95 (2.9 %)	52 (5.5 %)	15 (5.4 %)
Orthopedics	147 (2.5 %)	109 (3.3 %)	11 (1.2 %)	0 (0.0 %)
Gynecology	118 (2.0 %)	82 (2.5 %)	2 (0.2 %)	0 (0.0 %)
Other	117 (2.0 %)	60 (1.8 %)	8 (0.8 %)	2 (0.7 %)
Hemoglobin in mmol/L	8.2 (1.3)	8.3 (1.3)	8.2 (1.4)	8.6 (1.1)
Hematocrit in L/L	0.403 (0.059)	0.405 (0.056)	0.405 (0.062)	0.417 (0.047)
Erythrocytes in /pL	4.41 (0.69)	4.43 (0.66)	4.41 (0.72)	4.61 (0.60)
MCV in fl	91.8 (6.4)	91.9 (6.1)	92.4 (6.7)	90.7 (5.5)
MCH in mmol	1.859 (0.157)	1.876 (0.150)	1.874 (0.172)	1.869 (0.141)
MCHC in mmol/L	20.2 (0.9)	20.4 (0.9)	20.3 (1.0)	20.6 (0.8)
Thrombocytes in /nL	263 (99)	266 (100)	269 (105)	217 (123)
Leukocytes in /nL	9.30 [7.06, 12.16]	8.92 [7.01, 11.89]	9.66 [7.17, 12.94]	6.33 [4.74, 8.4
Neutrophils in /nL	6.62 [4.51, 9.53]	6.10 [4.42, 8.94]	7.01 [4.79, 10.02]	4.71 3.30, 6.9
Eosinophils in /nL	0.09 0.03 0.17	0.09 0.03 0.18	0.08 0.02, 0.17	0.00 0.00 0.0
Basophils in /nL	0.04 0.02, 0.05	0.04 0.02, 0.05	0.04 0.02, 0.05	0.01 0.01, 0.0
Lymphocytes in /nL	1.47 [0.93, 2.13]	1.56 [1.05, 2.18]	1.31 [0.80, 2.03]	0.86 0.59, 1.2
Monocytes in /nL	0.70 0.52, 0.93	0.69 0.52, 0.91	0.74 [0.54, 1.01]	0.45 0.32, 0.6
Glucose in mmol/L	6.76 5.83 8.39	6.68 5.76 8.14	6.98 5.95 8.85	6.77 5.98, 8.4
Bilirubin in umol/L	7.5 [5.0, 11.6]	7.4 [5.1, 10.9]	8.3 [5.6, 12.4]	8.2 [6.3, 11.4]
ASAT in U/L	24.0 [19.1, 32.2]	26.5 [21.6, 35.1]	27.7 [21.7, 39.2]	40.7 [30.2, 57
ALAT in U/L	24.3 [17.8, 35.3]	25.3 [18.4, 36.2]	25.7 [18.4, 40.0]	33.7 [23.3, 50
LD in U/L	201 [173. 240]	198 [170. 236]	215 [178. 263]	300 [238, 403]
CK in U/L	82 [51, 134]	83 [52, 136]	76 [51, 125]	124 [62, 222]
ALP in IU/L	83.0 [68.0, 105.0]	81.0 [65.8, 102.5]	86.9 [67.9, 110.0]	71.0 [58.8, 85
gGT in U/L	27.0 [17.0, 53.0]	28.4 [18.4, 50.5]	37.0 [22.4, 68.9]	42.0 [28.0, 83
BUN in mmol/L	5.7 [4.3, 8.0]	5.8 [4.3, 7.8]	6.2 [4.6, 9.4]	6.1 [4.7, 8.9]

BMJ Open

CKD-epi in ml/min/m2	80.9 [58.0, 99.1]	85.0 [63.5, 103.3]	79.1 [52.1, 96.6]	76.6 [54.9, 91.2]
Potassium in mmol/L	4.06 (0.50)	4.03 (0.49)	4.07 (0.55)	3.91 (0.47)
Sodium in mmol/L	139.2 (4.0)	138.5 (3.9)	138.0 (4.3)	136.4 (4.1)
Chloride in mmol/L	104.4 (4.6)	103.8 (4.5)	102.9 (4.8)	101.6 (4.4)
Albumin in g/L	42.4 (4.9)	42.3 (4.5)	40.8 (4.8)	38.4 (3.8)
CRP in mg/L	8 [2, 41]	5 [1, 30]	18 [3, 69]	77 [37, 136]
265				

Table 1: Descriptive statistics of development dataset and laboratory concentrations.

Shown are the laboratory tests routinely requested at ED presentation and their mean/median results (in the development dataset) for the presentations before the first COVID-19 patient in the Netherlands ("Pre-COVID-19"), presentations thereafter that were not tested for COVID-19 ("Untested"), tested negatively ("PCR negative") and tested positive ("PCR positive"). For results with normal distributions, the mean value and standard deviation (in round brackets) are shown. For results that have skewed or heavy tailed distributions, the median value and the interquartile range is shown [in squared brackets]. Dark grey marked figures indicate a clinically relevant difference from the Pre-COVID-19 category (based on the total allowable error).

277 Descriptive statistics of ED presentations are shown in **Table 1**, dark grey marked figures 278 indicate a clinically relevant difference from the Pre-COVID-19 category (based on the total 279 allowable error [19]). For the PCR positives (N = 279), 91% (95% CI: 88 to 94%) of the cases 280 were tested positive in their first PCR. The remaining 24 patients were positive in their second 281 (N = 18), third (N = 5) or fourth (N = 1) PCR.

283 CoLab-score

The model obtained through adaptive lasso regression contained eleven variables, which are
 depicted with their regression coefficients (weights) in Table 2.

	Variable	β	Exclusion limit	Relative importance
	Intercept	-6.885		-
	Erythrocytes /pL	0.9379	Erythrocytes $< 2.9 / pL$	52 %
	Leukocytes /nL	-0.1298		46 %
	Eosinophils /nL	-6.834		86 %
	Basophils /nL	-47.70	Basophils >0.33 /nL	100 %
	log ₁₀ of Bilirubin in µmol/L	-1.142	Bilirubin >169 µmol/L	26 %
	log ₁₀ of LD in U/L	5.369	LD >1564 U/L	58 %
	log ₁₀ of ALP in IU/L	-3.114	AF >1000 IU/L	45 %
	log ₁₀ of gGT in U/L	0.3605	gGT >1611 U/L	11 %
	Albumin in g/L	-0.1156		45 %
	CRP in mg/L	0.002560		15 %
	Age in years	0.002275		4 %
	Table 2: Calculation of the	CoLab-linea	r predictor (LP).	
	The CoLab-linear predictor (LP) is calcul	ated by summing the inter	rcept and the products of
the 11 variables with their corresponding coefficients (β 's). CoLab-LP = $-6.885 +$				
[erythrocytes] \times 0.9379 – [leukocytes] \times 0.1298 – [eosinophils] \times 6.834 – [basophils] \times				
47.7 – log10([bilirubin]) × 1.142 + log10([LD]) × 5.369 – log10([ALP]) × 3.114 +				
$log10([gGT]) \times 0.3605 - [albumin] \times 0.1156 + [CRP] \times 0.02560 + [age] \times 0.002275$. The				
LP can be converted into a CoLab-score (see Figure 2) or into a probability if the prevalence				
	is known or estimated (see de	etails in Suppl	lemental Material 1). The	CoLab-score is not valid
	if any of the variables exceed	the limits in	the third column. The rela	ative importance ranks the
	importance of variables in pr	edicting the c	outcome, relative to the m	ost important variable (in
	this case basophils).			
	A larger β -coefficient does no	ot imply that	a variable is more importa	ant in predicting the odds
	of testing positive for SARS-	CoV-2, since	variables are on different	scales. The most
	important variables are basop	hiles, eosinoj	phils and lactate dehydrog	genase (LD).

% of

38.0

(28.0 -

(69.3 -

77.3)

82.9

(80.9 -

(89.0 -

91.0)

93.7

(91.7 -

93.7)

83.9)

90.0

51.0)

73.3

population

FN

4.6

(2.6 -

8.6)

24.5

(13.4 -

30.2)

39.9

(28.5 -

52.4)

67.6

(51.9 -

84.9)

107.9

(79.1 -

134.0)

FP

2119.1

(1633.5 -

2507.6)

(623.2 -

934.5)

429.1

(357.3 -

487.1)

174.9

(147.0 -

199.3)

(60.3 -

100.4)

79.4

3510.6

(3476.8 -

3547.5)

(141.6 -

204.9)

772.9

1 2 3 302 As shown in Figure 2, the linear predictor clearly discriminates between COVID-19 and non-4 5 303 COVID-19. The linear predictor is converted to CoLab-scores 0-5 with the cut-points 6 7 304 depicted in Figure 2. 8 9 10 305 11 12 13 306 Internal validation 14 15 16 307 The model was validated in the period starting from the first COVID-19 infection to July 17 18 308 2020, in this period the mean prevalence was 7.2%. The AUC of the CoLab-score is 0.930 19 20 309 (95% CI: 0.909 to 0.945). 21 22 23 CoLab-24 Sensitivity Specificity PPV NPV ТР TN score 25 0.984 0.410 0.115 0.997 273.4 1470.9 0 26 27 (0.969 -(0.302 -(0.094 -(0.993 -(241.2 -(1081.1 -28 0.991)0.543)0.147)0.999)304.4) 1950.9) 29 ≤ 1 0.912 0.785 0.248 0.991 253.5 2817.1 30 (0.741 -(0.207 -(0.989 -(226.5 -(2655.4 -(0.892 -31 0.300)0.995)287.0) 2961.2) 0.952)0.827)32 ≤ 2 0.856 0.880 0.357 0.988 238.1 3160.8 33 (209.6 -(3100.7 -(0.816 -(0.864 -(0.315 -(0.984 -34 0.900)0.415) 0.991) 267.9) 3233.7) 0.895)35 < 3 0.757 0.951 0.546 0.981 210.4 3415.1 36 (0.944 -(0.496 -(0.976 -(183.4 -(3378.0 -(0.706 -37 0.809) 0.959)0.604)0.985)240.2)3456.4) 38 ≤ 4 0.612 170.2

0.978

(0.972 -

0.983)

(0.530 -

0.706)

Table 3: Bootstrapped diagnostic performance of the CoLab-score in the development dataset.

0.683

(0.628 -

0.746)

The development dataset was internally validated for the period March 2020 – July 2020 (N 313

0.970

(0.963 -

0.978)

314 = 3868). The optimism-adjusted bootstrapped sensitivities, specificities, positive predictive

315 values (PPV), negative predictive values (NPV), true positives (TP), true negatives (TN), false

316 positives (FP) and false negatives (FN) and fraction of presentations (%) are shown for fixed

317 cut-offs (CoLab-score 0 till \leq 4). The numbers in round brackets represent the 95% optimism-

16

39

40

41 42

43 44

45

46 47

48 49

50 51

52 53 54

55 56

57 58

59 60

310

311

318 adjusted bootstrapped confidence intervals. The first column defines the threshold above 319 which CoLab-score a patient is considered positive. Note that "0" lists the sensitivity and 320 NPV of CoLab-score 0 and " \leq 4" lists the specificity and PPV of CoLab-score 5. Also note 321 that TP, TN, FP and FN are not whole numbers, as these are obtained through bootstrapping

322 and each bootstrap replicate contains a different number of controls and cases.

Diagnostic performance is shown in Table 3. A CoLab-score of 0 has a negative predictive
value (NPV) of 0.997 (95% CI: 0.993 to 0.999) and positive predictive value (PPV) of 0.115
(0.0934 - 0.147), one third (38%, 95% CI: 28 to 514%) of all ED presentations were assigned
this score and can therefore be safely excluded. Conversely, 6% (95% CI: 6 to 8%) of the ED
patients had a CoLab-score = 5. Given the PPV of this score (0.683, 95% CI: 0.628 to 0.746,
NPV: 0.970, 95% CI: 0.963 - 0.978), subsequent PCR testing is advised.

331 Temporal validation

As the CoLab-score was developed in our center after the first COVID-19-wave in the
Netherlands, the performance was evaluated in our center from July 2020 until October 2021.
Lab results from 17489 ED presentations were collected. After applying the inclusion flow as
shown in Figure 1 B, 14080 presentations remained, of which 1039 were associated with a
COVID-19 infection.

The mean prevalence in this period was 7.4%. The AUC of the CoLab-score in the temporal
validation set is 0.916 (95% CI: 0.906 to 0.927). The performance is comparable to the
development cohort, although sensitivity is slightly lower and specificity slightly higher (cf. **Table 3** and **Table 4**). The temporal validation dataset was also split into three phases
according to dominant SARS-CoV-2 variants and vaccine roll-out (see **Supplemental**

Page 19 of 49

BMJ Open

Material 2 Figure 1). The discriminative ability was not lower in the second or third phase, compared to the first phase. Diagnostic performance is preserved in terms of sensitivity and specificity, except a moderately reduced sensitivity of scores ≥ 3 in the third phase as compared to the first phase. PPV and NPV are incomparable due to different prevalence/pre-test probabilities in each phase (see Supplemental Material 2 Table 1). In terms of the predicted probabilities, model calibration shows that overall predicted probabilities are too low (see **Supplemental Material 3** for the calibration plot), which is expected since the prevalence differs and the intercept has to be adjusted to the prevalence. In this period at least 22 COVID-19 positive patients were identified by the CoLab-score, that initially did not present with COVID-specific symptoms. Most patients had neurological or orthopedic presenting symptoms. External validation For external validation, data obtained from three other centers were used, center 1 (N = 1284, 52 COVID-19 positive), center 2 (N = 2899, 99 COVID-19 positive) and center 3 (N = 3545, 336 COVID-19 positive). The inclusion flow is summarized in Figure 3. COVID-19 prevalence differed between the three centers (4.0%, 3.4% and 9.5% respectively) and was lower in centers 1 and 2, and higher in center 3 than in the development dataset. The AUCs of the CoLab-score are 0.904 (95% CI: 0.866 to 0.942), 0.886 (95% CI: 0.851 - 0.922) and 0.891 (95% CI: 0.872 - 0.909), for centers 1, 2, and 3 respectively. Diagnostic performance is shown in **Table 4**. The sensitivity of CoLab-score 0 in all centers is \geq 0.96. Therefore, the NPV of CoLab-score 0 was more than 99%. Calibration plots for external centers are shown in Supplemental Material 3, the observed fraction of COVID-19

positives is slightly lower than expected in centers 1 and 2. For center 3, low probabilities

appear slightly underestimated and high probabilities slightly overestimated.

CoLab- score	Validation set	Sensitivity	Specificity	PPV	NPV	ТР	TN	FP	FN
	Temporal	0.967	0.420	0.117	0.994	1005	5476	7565	34
		(0.956 -	(0.411 -	(0.115 -	(0.992 -	(993 -	(5366 -	(7454 -	(23 -
		0.978)	0.428)	0.119)	0.996)	1016)	5587)	7675)	46)
	Center 1	1.000	0.331	0.059	1.000	52	410	827	0
		(1.000 -	(0.307 -	(0.057 -	(1.000 -	(52 -	(380 -	(794 -	(0 -
0		1.000)	0.358)	0.061)	1.000)	52)	443)	857)	0)
0	Center 2	0.961	0.351	0.052	0.996	99	985	1823	4
		(0.922 -	(0.333 -	(0.049 -	(0.992 -	(95 -	(935 -	(1773 -	(1 -
		0.990)	0.369)	0.054)	0.999)	102)	1035)	1873)	8)
	Center 3	0.970	0.322	0.130	0.991	327	1042	2193	10
		(0.950 -	(0.306 -	(0.126 -	(0.984 -	(320 -	(991 -	(2143 -	(4 -
		0.988)	0.338)	0.133)	0.996)	333)	1092)	2244)	17)
	Temporal	0.888	0.791	0.253	0.989	923	10311	2730	116
	_	(0.870 -	(0.783 -	(0.245 -	(0.987 -	(904 -	(10215 -	(2640 -	(96 -
		0.908)	0.798)	0.261)	0.991)	943)	10401)	2826)	135)
	Center 1	0.923	0.694	0.113	0.995	48	858	379	4
≤1		(0.846 -	(0.669 -	(0.101 -	(0.991 -	(44 -	(828 -	(346 -	(1 -
		0.981)	0.720)	0.124)	0.999)	51)	891)	409)	8)
	Center 2	0.913	0.678	0.094	0.995	94	1905	903	9
		(0.854 -	(0.661 -	(0.087 -	(0.992 -	(88 -	(1857 -	(855 -	(4 -
		0.961)	0.696)	0.101)	0.998)	99)	1953)	951)	15)
	Center 3	0.914	0.674	0.226	0.987	308	2180	1055	29
		(0.881 -	(0.657 -	(0.216 -	(0.982 -	(297 -	(2126 -	(1001 -	(19 -
		0.944)	0.691)	0.236)	0.991)	318)	2234)	1109)	40)
	Temporal	0.820	0.894	0.382	0.984	852	11661	1380	187
	*	(0.796 -	(0.889 -	(0.367 -	(0.982 -	(827 -	(11591 -	(1312 -	(163 -
		0.843)	0.899)	0.396)	0.986)	876)	11729)	1450)	212)
	Center 1	0.808	0.811	0.152	0.990	42	1003	234	10
		(0.692 -	(0.788 -	(0.129 -	(0.984 -	(36 -	(975 -	(208 -	(5 -
< 2		0.904)	0.832)	0.176)	0.995)	47)	1029)	262)	16)
≤ 2	Center 2	0.845	0.801	0.135	0.993	87	2248	560	16
		(0.777 -	(0.785 -	(0.122 -	(0.990 -	(80 -	(2205 -	(519 -	(9 -
		0.913)	0.815)	0.147)	0.996)	94)	2289)	603)	23)
	Center 3	0.890	0.794	0.311	0.986	300	2569	666	37
		(0.855 -	(0.779 -	(0.294 -	(0.981 -	(288 -	(2521 -	(620 -	(26 -
		0.923)	0.808)	0.328)	0.990)	311)	2615)	714)	49)
	Temporal	0.710	0.962	0.596	0.977	738	12540	501	301
	*	(0.682 -	(0.958 -	(0.573 -	(0.974 -	(709 -	(12496 -	(459 -	(272 -
		0.738)	0.965)	0.618)	0.979)	767)	12582)	545)	330)
	Center 1	0.750	0.909	0.257	0.989	39	1124	113	13
≤ 3		(0.635 -	(0.892 -	(0.213 -	(0.983 -	(33 -	(1104 -	(93 -	(7 -
		0.865)	0.925)	0.306)	0.994)	45)	1144)	133)	19)
	Center 2	0.660	0.897	0.190	0.986	68	2519	289 [́]	35
		(0.563 -	(0.885 -	(0.163 -	(0.983 -	(58 -	(2486 -	(259 -	(26 -
		0.748)	0.908)	0.218)	0.990)	77)	2549)	322)	45)
		- /	/	-))	. ,	-)	,	-)

CoLab- score	Validation set	Sensitivity	Specificity	PPV	NPV	ТР	TN	FP	
	Center 3	0.766	0.887	0.413	0.973	258	2869	366	
		(0.718 -	(0.876 -	(0.386 -	(0.968 -	(242 -	(2835 -	(330 -	
		0.810)	0.898)	0.442)	0.978)	273)	2905)	400)	
	Temporal	0.585	0.984	0.750	0.968	608	12838	203	
	_	(0.556 -	(0.982 -	(0.724 -	(0.965 -	(578 -	(12811 -	(175 -	
		0.615)	0.987)	0.778)	0.970)	639)	12866)	230)	
	Center 1	0.654	0.951	0.359	0.985	34	1176	61	
		(0.519 -	(0.939 -	(0.293 -	(0.979 -	(27 -	(1161 -	(47 -	
< 1		0.788)	0.962)	0.435)	0.991)	41)	1190)	76)	
≥ 4	Center 2	0.534	0.952	0.287	0.982	55	2672	136	
		(0.437 -	(0.943 -	(0.239 -	(0.979 -	(45 -	(2649 -	(115 -	
		0.621)	0.959)	0.339)	0.986)	64)	2693)	159)	
	Center 3	0.665	0.930	0.497	0.964	224	3008	227	
		(0.611 -	(0.921 -	(0.462 -	(0.958 -	(206 -	(2980 -	(199 -	
		0.718)	0.938)	0.534)	0.969)	242)	3036)	255)	

Table 4: Diagnostic performance of the CoLab-score in the validation dataset (temporal)

- and three external hospitals.
- Sensitivities, specificities, positive predictive values (PPV), negative predictive values (NPV),
- true positives (TP), true negatives (TN), false positives (FP) and false negatives (FN) are
- shown for fixed cut-offs (CoLab-score 0 till \leq 4) with bootstrapped 95% confidence intervals
- in parentheses. Note that "0" lists the sensitivity and NPV of CoLab-score 0 and " ≤ 4 " lists
 - the specificity and PPV of CoLab-score 5.

Discussion

Given the impact of COVID-19 on society and healthcare, there is a need for simple and fast
detection of patients with a possible COVID-19 infection in the ED. The CoLab-score
described in this study, is a fast and accurate risk score to triage patients presenting at the ED
based on ten routine blood biomarkers and age.

The main strength of this study is that this score can be used as an early-warning or triaging tool for the ED population presenting with abdominal pain, chest pain, shortness of breath, syncope, sepsis or other non-specific complaints where a routine blood panel is requested. This is in contrast to the vast majority of COVID-19 diagnostic models that have been developed on a pre-selected population of PCR-tested patients [9,20–26]. Moreover, the CoLab-score requires only routine blood tests, instead of (features from) imaging such as CT-scans or laboratory tests that are not routinely collected in the ED, e.g. interleukin-6 or 3-hydroxybuteric acid [4]. Compared to lateral flow tests (LFTs), which provide a dichotomous result within 30 minutes and are widely adopted in EDs, the CoLab-score is a continuous score. The lowest CoLab-scores (0 - 1) offer higher sensitivity and are therefore more suitable to rule-out COVID-19 than a LFT, which are only moderately sensitive (albeit more specific) [27,28].

Two other studies have been published which are similar to this study [9,10]. Interestingly, the study by Soltan et al., ranked basophils and eosinophils as the two most important features in predicting the outcome, similar to our results [10]. Eosinophils were also seen as one of the most important features by Plante et al. [9]. However, both studies focus on an artificial intelligence/machine learning approach. While their approach likely results in higher predictive performance, due to the ability of machine learning models to capture non-linear and interaction effects, the goal of this study was to develop a simple, fast and robust model that can easily be implemented in current hospital IT systems.

Page 23 of 49

1

BMJ Open

2	
3	
4	
5	
6	
7	
8	
a	
9 10	
10	
11	
12	
13	
14	
15	
16	
10	
17	
18	
19	
20	
21	
22	
22	
23	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
34	
35	
26	
20	
3/	
38	
39	
40	
41	
42	
13	
11	
44	
45	
46	
47	
48	
49	
50	
51	
51	
52	
53	
54	
55	
56	
57	
50	
20	
59	

400 Since this is a retrospective case-control study, there is some unavoidable missing data. In our 401 cohort 17.6% of the ED presentations could not be used due to one or more missing 402 laboratory results. This is lower or equal to similar studies; 22% [23], 17% [21] and 11% [26]. 403 Important to note is that 7.7% of missingness is due to analytical errors which can be assumed 404 to be missing completely at random. For the remaining 9.9% of missingness, the full lab panel 405 was most frequently missing for pediatric, obstetric and surgery patients. These patients are 406 presenting with specific complaints for which specific laboratory tests are requested, and 407 hence do not match the inclusion criteria for a routine blood panel. Overall the missingness was significantly lower in the PCR-tested group versus the untested group (χ^2 -test p-value 408 409 <0.001). It is assumed that all presentations in the untested group are COVID-19 negative. 410 However, some presentations with asymptomatic COVID-19 could be present in the untested 411 control group. The impact of these 'false controls' is most likely small as other studies 412 indicate that there is a very low positivity rate among asymptomatic ED presentations (only a 413 few in over a thousand tested asymptomatic cases) [29,30].

414 In the external centers, there is a high level of missingness as a result of an incomplete 415 laboratory panel. In the case of centers 1 and 2, only internal medicine ED presentations were 416 tested with a laboratory panel containing the 10 tests required for the CoLab-score. The ED 417 lab panel of other disciplines (e.g. urology, surgery or pediatrics) differed and did not contain 418 the required tests. Nevertheless, the majority of COVID-19 patients were internal medicine 419 ED presentations, which is reflected by the few PCR-positive patients excluded. Due to these 420 high levels of missingness, the results of the external centers cannot be used to show that the 421 CoLab-score generalizes to the entire ED population. Rather, the results show that for the 422 majority of COVID-19 positive patients presenting at the ED, a routine laboratory panel is 423 available from which the CoLab-score can be calculated, and that the performance of the 424 CoLab-score in this population is comparable to the development population. 60

The performance of the CoLab-score is affected by the time between the onset of symptoms and ED presentations. The score increases with the duration of symptoms and gradually decreases after day 7 (see Supplemental Material 4 Figure 1 for a plot of the duration of COVID-19 related symptoms and the CoLab-linear predictor). As a consequence, some COVID-19 patients with early or late presentation after onset of symptoms can be missed. Optimal performance of the CoLab-score is achieved when the onset of symptoms is >1 and <10 days prior to ED presentation. Chemotherapy that causes myeloid suppression, will decrease neutrophilic, basophilic and eosinophilic counts and thereby "falsely" increasing the CoLab-score. Conversely, COVID-19 patients with severe anemia could have "falsely" lowered CoLab-scores. To minimize false negatives, we have therefore advised to report CoLab-scores only when the concentration of erythrocytes is ≥ 2.9 /pL. It was chosen to exclude re-presentations after a previous presentation with COVID-19. Since the median time between initial presentation and re-presentation was 12 days, these patients were most likely not re-infected patients, but patients who deteriorated after initial presentation/treatment. Given that the CoLab-score follows the host-immune response, the score is time sensitive (see Supplemental Material 4 Figure 1). Including these patients would impact the performance of the CoLab-score as patients in a later phase of the disease show different biomarker profiles. The CoLab-score is aimed towards alerting clinicians to patients presenting with a novel SARS-CoV-2 infection, rather than patients who deteriorate after treatment for COVID-19. Other re-presentations were not excluded, which results in

some patients appearing multiple times in a dataset. This was not corrected for in the regression model since the assumption was made that ED presentations are independent observations. The median time between re-presentations is 38 days, most likely resulting in variations in laboratory results between presentations, and hence, little to no correlation

449 between presentations. A sensitivity analysis was performed whereby only the first

Page 25 of 49

1

BMJ Open

2 3 4	Z
5 6 7	۷
, 8 9	۷
10 11	Z
12 13 14	Z
15 16	۷
17 18	Z
19 20 21	Z
22 23	۷
24 25	۷
26 27 28	۷
29 30	۷
31 32	2
33 34 35	2
36 37	2
38 39	۷
40 41 42	Z
43 44	۷
45 46	Z
47 48 49	۷
50 51	2
52 53	Z
54 55 56	۷
57 58	۷
59 60	Z

presentation was included for each patient (Supplemental Material 4 Table 1), but no
difference was found in performance in terms of sensitivity, specificity and AUC.

The CoLab-score does not serve as a replacement for PCR-testing or LFTs, and can be used to guide PCR-testing when routine blood tests are available. Important to note is that the CoLabscore is only valid for ED presentations where routine blood testing is requested, and as a consequence does not generalize to the ED population who is otherwise well and does not undergo routine blood testing. Using the CoLab-score in a symptomatic/PCR-tested cohort also results in different diagnostic performance characteristics, as compared to using the score on the full ED cohort (see **Supplemental Material 4 Table 1**).

459 Finally, the CoLab-score could lead to false positives by other viral infections. However, in an 460 historic patient cohort, the CoLab-score had only limited discriminative ability in separating 461 influenza-PCR-negative from influenza-PCR-positive patients (see Supplemental Material 4 Figure 2) implying specificity for SARS-CoV-2. Since the CoLab-score reflects the host-462 463 response to the virus, it is expected that the CoLab-score is also sensitive to future SARS-464 CoV-2 variants. This is supported by the fact that the discriminative ability is sustained in periods with different dominant variants. Moreover, there is no evidence that the 465 466 discriminative ability of the CoLab-score is lowered by a change in the ED patient population 467 as a result of widespread vaccination. Although vaccination status is not registered for all 468 presenting patients, in a small subgroup of 12 patients for whom vaccination status was 469 registered, and were COVID-19 positive, 8 of 12 patients had the highest CoLab-score (= 5) 470 (see Supplemental Material 2 Figure 2),

471 To conclude, the CoLab-score developed and validated in this study, based on 10 routine
472 laboratory results and age, is available within 1 hour for any patient presenting at the ED
473 where routine blood testing is requested. The score can be used by clinicians to guide PCR
474 testing or triage patients and helps to identify COVID-19 in patients presenting at the ED with 24

abdominal pain, chest pain, shortness of breath, syncope, sepsis or other non-specific complaints where a routine blood panel is requested. The lowest CoLab-score can be used to effectively rule-out a possible SARS-CoV-2 infection, the highest score to alert physicians to a possible infection. The CoLab-score is therefore a valuable tool to rule out COVID-19, guide PCR testing and is available to any center with access to routine laboratory tests. to oper terrer on

1		
2 3 4	481	Funding statement
5 6 7	482	This was an investigator-initiated study and no funding was received for this study.
8 9 10	483	
11 12 13	484	Competing interests
14 15	485	A-KB reports no conflict of interest. RD reports no conflict of interest. MM reports no
16 17 18	486	conflict of interest. HA reports no conflict of interest. RvB reports no conflict of interest. WT
19 20	487	reports no conflict of interest. SB reports not conflict of interest. ML reports no conflict of
21 22	488	interest. RM reports no conflict of interest. MB reports no conflict of interest. JK reports no
23 24 25	489	conflict of interest. MM reports no conflict of interest. JvS reports no conflict of interest. NvR
25 26 27	490	reports no conflict of interest. VS reports no conflict of interest.
28 29 30	491	
31 32 33	492	Data sharing statement
34 35	493	Datasets with source data for Table 1, Figure 2, Table 3 and Table 4, as well the R-code to fit
36 37 38	494	the model is available from the Dryad repository, DOI:[WILL BE PROVIDED WHEN
39 40	495	UNDER REVIEW]. Technical appendix can be found in Supplemental Material 1.
41 42 43	496	
44 45 46	497	Author contributorship statement
47 48 40	498	Arjen-Kars Boer: Conceptualization (Lead), Data curation (Lead), Funding acquisition (Lead),
49 50 51	499	Investigation (Equal), Methodology (Equal), Supervision (Equal), Writing-original draft
52 53 54	500	(Equal), Writing-review & editing (Equal).
55 56	501	Ruben Deneer: Data curation (Equal), Formal analysis (Equal), Investigation (Equal),
57 58	502	Methodology (Lead), Software (Lead), Visualization (Lead), Writing-original draft (Equal),
60	503	Writing-review & editing (Equal).

3 4	504	Maaike Maas: Conceptualization (Supporting), Resources (Supporting), Supervision
5 6 7	505	(Supporting), Validation (Supporting), Writing-review & editing (Equal).
8 9	506	Heidi Ammerlaan: Conceptualization (Supporting), Resources (Supporting), Supervision
10 11 12	507	(Supporting), Validation (Equal), Writing-review & editing (Equal).
13 14 15	508	Roland van Balkom: Conceptualization (Supporting), Resources (Supporting), Supervision
16 17 18	509	(Supporting), Validation (Supporting), Writing-review & editing (Equal).
19 20	510	Wendy Thijssen: Conceptualization (Supporting), Resources (Supporting), Supervision
21 22 23	511	(Supporting), Validation (Supporting), Writing-review & editing (Equal).
24 25	512	Sophie Bennenbroek: Conceptualization (Supporting), Resources (Supporting), Supervision
26 27 28	513	(Supporting), Validation (Supporting), Writing-review & editing (Equal).
29 30 31	514	Mathie Leers: Resources (Equal), Validation (Equal), Writing-review & editing (Equal).
32 33 34	515	Remy Martens: Resources (Equal), Validation (Equal), Writing-review & editing (Equal).
35 36 37	516	Madelon M. Buijs: Resources (Equal), Validation (Equal), Writing-review & editing (Equal).
38 39 40	517	Jos Kerremans: Resources (Equal), Validation (Equal), Writing-review & editing (Equal).
41 42 43	518	Muriël Messchaert: Resources (Equal), Validation (Equal), Writing-review & editing (Equal).
44 45	519	Jeroen van Suijlen: Resources (Supporting), Validation (Supporting), Writing-review & editing
46 47 48	520	(Equal).
49 50 51	521	Natal A.W. van Riel: Methodology (Supporting), Resources (Supporting), Supervision (Equal),
52 53	522	Writing-review & editing (Equal).
55 56	523	Volkher Scharnhorst: Conceptualization (Equal), Funding acquisition (Equal), Project
57 58	524	administration (Lead), Resources (Equal), Supervision (Lead), Writing-review & editing
59 60	525	(Equal).

2 3 4	526	Refe	erences								
5 6 7	527										
8 9 10	528	1	Coronavirus	Disease	(COVID-19)	Situation	Reports.				
11 12 13 14 15 16 17 18 19 20 21 22 23	529		https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/								
	530		(accessed 4 Feb 2021).								
	531	2	Guan W, Ni Z, Hu Y	Y, et al. Clinical	Characteristics of	Coronavirus Dis	ease 2019 in				
	532		China. https	s://doi.org/10105	6/NEJMoa2002032	2020;3	382 :1708–20.				
	533		doi:10.1056/NEJMO	A2002032							
23 24 25	534	3	Vetter P, Vu DL, L'	Vetter P, Vu DL, L'Huillier AG, et al. Clinical features of covid-19. BMJ 2020;369.							
26 27 28	535		doi:10.1136/BMJ.M1470								
29 30	536	4	Wynants L, Van Calster B, Collins GS, et al. Prediction models for diagnosis and								
31 32	537		prognosis of covid-19: Systematic review and critical appraisal. BMJ 2020;369:18.								
33 34 35	538		doi:10.1136/bmj.m1328								
30 37 38	539	5	Albahri AS, Hamid R	A, Alwan J k., e	t al. Role of biologie	cal Data Mining	and Machine				
39 40	540		Learning Techniques	in Detecting and	Diagnosing the Nov	vel Coronavirus ((COVID-19):				
41 42 43	541		A Systematic Review. J. Med. Syst. 2020;44:122. doi:10.1007/s10916-020-01582								
44 45	542	6	Hooli S, King C. Ge	neralizability of	Coronavirus Diseas	e 2019 (COVID	-19) Clinical				
46 47 48	543		Prediction Models. C	lin Infect Dis 202	20; 71 :897–897. doi:	10.1093/cid/ciaa4	417				
49 50 51	544	7	Prokop M, Everdinge	en W van, Vellir	nga T van R, <i>et al</i> . C	CO-RADS: A Ca	ategorical CT				
52 53	545		Assessment Scheme f	for Patients Suspe	ected of Ha	aving COVID-19	Definition				
54 55	546		and Evaluation.	https://doi.org/.	101148/radiol20202	<i>01473</i> 2020; 2	2 96 :E97–104.				
56 57 58	547		doi:10.1148/RADIOI								
59 60	548	8	Goodacre S, Thomas	B, Sutton L, et a	al. Derivation and va	alidation of a clin	nical severity				

1 2			
- 3 4	549		score for acutely ill adults with suspected COVID-19: The PRIEST observational cohort
5 6 7	550		study. PLoS One 2021;16:e0245840. doi:10.1371/JOURNAL.PONE.0245840
8 9	551	9	Plante TB, Blau AM, Berg AN, et al. Development and external validation of a machine
10 11 12	552		learning tool to rule out COVID-19 among adults in the emergency department using
12 13 14	553		routine blood tests: A large, multicenter, real-world study. J Med Internet Res
15 16	554		2020; 22 :e24048. doi:10.2196/24048
17 18 19	555	10	Soltan AAS, Kouchaki S, Zhu T, et al. Rapid triage for COVID-19 using routine clinical
20 21	556		data for patients attending hospital: development and prospective validation of an
22 23 24	557		artificial intelligence screening test. Lancet Digit Heal 2021;3:e78-87.
25 26	558		doi:10.1016/S2589-7500(20)30274-0
27 28	559	11	R Core Team. R: A Language and Environment for Statistical Computing.
29 30 31	560		2020.https://www.r-project.org/
32 33	561	12	Zou H. The adaptive lasso and its oracle properties. <i>LAm Stat Assoc</i> 2006: 101 :1418–29
34 35 26	562	12	doi:10.1198/016214506000000735
36 37	502		d01.10.1196/01021450000000755
38 39 40	563	13	Tibshirani R. Regression Shrinkage and Selection Via the Lasso. J R Stat Soc Ser B
40 41 42	564		1996; 58 :267–88. doi:10.1111/j.2517-6161.1996.tb02080.x
43 44	565	14	Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models
45 46 47	566		via coordinate descent. J Stat Softw 2010;33:1-22. doi:10.18637/jss.v033.i01
48 49		1.5	
50	567	15	King G, Zeng L. Logistic Regression in Rare Events Data. <i>Polit Anal</i> 2001;9:137–63.
51 52 53	568		doi:10.1093/oxfordjournals.pan.a004868
54 55	569	16	Efron B. Estimating the error rate of a prediction rule: Improvement on cross-validation.
56 57	570		JAm Stat Assoc 1983;78:316-31. doi:10.1080/01621459.1983.10477973
59 60	571	17	Robin X, Turck N, Hainard A, et al. pROC: An open-source package for R and S+ to
		29	

1 2			
3 4	572		analyze and compare ROC curves. BMC Bioinformatics 2011;12:77. doi:10.1186/1471-
5 6 7	573		2105-12-77
, 8 9	574	18	Harrell Jr FE. rms: Regression Modeling Strategies. 2021.https://cran.r-
10 11 12 13	575		project.org/package=rms
13 14 15	576	19	Ricós C, Alvarez V, Cava F, et al. Current databases on biological variation: Pros, cons
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 22	577		and progress. Scand. J. Clin. Lab. Invest. 1999; 59 :491–500.
	578		doi:10.1080/00365519950185229
	579	20	Brinati D, Campagner A, Ferrari D, et al. Detection of COVID-19 Infection from
	580		Routine Blood Exams with Machine Learning: A Feasibility Study. J Med Syst
	581		2020; 44 :1–12. doi:10.1007/s10916-020-01597-4
	582	21	Joshi RP, Pejaver V, Hammarlund NE, et al. A predictive tool for identification of
	583		SARS-CoV-2 PCR-negative emergency department patients using routine test results. J
33 34	584		<i>Clin Virol</i> 2020; 129 :104502. doi:10.1016/j.jcv.2020.104502
35 36 37 38 39 40 41 42 43 44 45 46 47	585	22	Qin L, Yang Y, Cao Q, et al. A predictive model and scoring system combining clinical
	586		and CT characteristics for the diagnosis of COVID-19. Eur Radiol 2020;30:6797-807.
	587		doi:10.1007/s00330-020-07022-1
	588	23	Kurstjens S, van der Horst A, Herpers R, et al. Rapid identification of SARS-CoV-2-
	589		infected patients at the emergency department using routine testing. Clin Chem Lab Med
48 49 50	590		2020; 58 :1587–93. doi:10.1515/cclm-2020-0593
50 51 52	591	24	Fink DL, Khan PY, Goldman N, et al. Development and internal validation of a
53 54	592		diagnostic prediction model for COVID-19 at time of admission to hospital. QJM An Int
55 56 57	593		J Med Published Online First: 9 November 2020. doi:10.1093/qjmed/hcaa305
58 59 60	594	25	Giamello JD, Paglietta G, Cavalot G, et al. A simple tool to help ruling-out Covid-19 in

Page 32 of 49

BMJ Open

3 4	595		the emergency department: derivation and validation of the LDH-CRP-Lymphocyte
5 6 7	596		(LCL) score. <i>Emerg Care J</i> 2020; 16 . doi:10.4081/ecj.2020.9336
, 8 9	597	26	Tordjman M, Mekki A, Mali RD, et al. Pre-test probability for SARS-Cov-2-related
10 11 12	598		infection score: The PARIS score. <i>PLoS One</i> 2020;15:e0243342.
13 14	599		doi:10.1371/journal.pone.0243342
15 16 17	600	27	Peto T, Affron D, Afrough B, et al. COVID-19: Rapid antigen detection for SARS-CoV-
18 19	601		2 by lateral flow assay: A national systematic evaluation of sensitivity and specificity for
20 21 22	602		mass-testing. <i>EClinicalMedicine</i> 2021; 36 :100924.
22 23 24	603		doi:10.1016/J.ECLINM.2021.100924
25 26 27	604	28	García-Fiñana M, Hughes DM, Cheyne CP, et al. Performance of the Innova SARS-
28 29	605		CoV-2 antigen rapid lateral flow test in the Liverpool asymptomatic testing pilot:
30 31 32	606		population based cohort study. BMJ 2021;374:1637. doi:10.1136/BMJ.N1637
33 34	607	29	Ford JS, Parikh A, Sandhu R, et al. Testing Asymptomatic Emergency Department
35 36 27	608		Patients for Coronavirus Disease 2019 (COVID-19) in a Low-prevalence Region. Acad.
37 38 39	609		Emerg. Med. 2020; 27 :771–4. doi:10.1111/acem.14044
40 41 42	610	30	Ravani P, Saxinger L, Chandran U, et al. COVID-19 screening of asymptomatic patients
43 44	611		admitted through emergency departments in Alberta: a prospective quality-improvement
45 46 47	612		study. C Open 2020;8:E887-94. doi:10.9778/cmajo.20200191
48 49	613		
50 51 52 53 54 55 56 57 58 59 60	614		

BMJ Open

2 3 4	615	Figure legends
5 6 7	616	
, 8 9	617	Figure 1: Inclusion flow of patients in the development (A) and temporal validation (B)
10 11 12 13 14 15 16 17	618	dataset.
	619	All patient admissions with routine venous blood sampling at the emergency department (ED)
	620	were included. For the development dataset, completeness of the lab panel was assessed for
18 19	621	all 28 laboratory tests, for the temporal validation dataset this was only necessary for 10
20 21	622	laboratory tests. The major causes of missingness are described in the text. In the
22 23 24	623	development dataset, presentations with extreme values (>10 SD) were excluded. The same
25 26	624	limits were applied to the temporal validation dataset (see Table 2 for limits).
27 28 29	625	
31 32 33 34 35 36 37 38 39 40 41 42 43 44	626	Figure 2: Probability density plot of the CoLab-linear predictor.
	627	The probability density plots for COVID (dark grey) and non-COVID patients (light grey) are
	628	plotted against the linear predictor (see table 2). The CoLab-score cut-offs (–5.83, –4.02, –
	629	3.29, -2.34 and -1.64) are depicted with vertical dashed lines. The white-boxed numbers
	630	(between the cut-offs) represent the corresponding CoLab-score. Note that while the area
	631	under both curves is identical (since these are probability density functions), in absolute
45 46	632	numbers the "negative or untested"-group is about 36 times larger than the PCR positive
47 48 49	633	group.
50 51 52	634	
53 54 55 56 57	635	Figure 3: Inclusion flow of ED patients in three external centers.
	636	All emergency department (ED) presentations with routine venous blood sampling were
58 59 60	637	included. Missingness of lab panels was assessed for the 11 variables in the CoLab-score (see

- *Table 2). Re-presentations after a positive PCR result or clinical COVID-19 registration were*
- excluded as "previous COVID-19+". Presentations with any laboratory result above the
- limits of the CoLab-score (see Table 2) were excluded.

.) were

Page 37 of 49 **Center 1**

BMJ Open

Center 2

Supplemental material 1

Model fitting

Prior to model fitting, covariates were scaled to zero mean and unit variance, after model fitting coefficients were unscaled to obtain regression coefficients on the original scale. In adaptive lasso, weights are applied to each of the covariates present in the lasso constraint, the weight vector has to be calculated before the adaptive lasso regression is performed. Due to multicollinearity between laboratory tests in the routine lab panel, weights in the adaptive lasso were based on ridge regression estimates ($\hat{\beta}_{ridge}$) as recommended by Zou. To obtain $\hat{\beta}_{ridge}$ the optimal penalty (λ) for the ridge regression was chosen using 10 fold crossvalidation (CV) with area under the ROC curve (AUC) as the loss function. The λ corresponding to the maximum AUC was selected to obtain $\hat{\beta}_{ridge}$. The weight vector (\hat{w}) was calculated by $\hat{w} = 1/|\hat{\beta}_{ridge}|^2$. This weight vector was then used to fit an adaptive lasso regression where λ was chosen by the criterion ± 1 SE of the maximum AUC.

Model intercept correction

The linear predictor for a patient *i* is calculated as follows: $lp_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_n x_{in}$ Where *n* is the number of variables in the final model, x_{in} are the observed predictor variables for subject i and β_n the model coefficients. The linear predictor can then be converted to a probability for patient *i* (*P_i*) by the logistic function: $P_i = \frac{1}{1+e^{-lp_i}}$

The intercept term β_0 is sensitive to the fraction of cases versus controls in the dataset/population. Since the model is fitted to a case-control dataset where the number cases is fixed (all patients tested positive for COVID-19) and the number of controls is randomly chosen (a 6-month period pre-COVID), the intercept term β_0 is a result of this choice and will likely not be generalizable to the real-world setting. Prior correction is a method to correct the estimate of the intercept based on the true fraction of positives in the population, τ (prevalence of COVID-19 in the ED) and the fraction of cases in the development dataset, \bar{y} . The intercept term β_0 can then be corrected to obtain $\beta_{0corrected}$ using the following formula:

$$\begin{split} \beta_{0corrected} &= \beta_0 + \beta_{adj} \\ \beta_{adj} &= -ln\left[\left(\frac{1-\tau}{\tau}\right)\left(\frac{\bar{y}}{1-\bar{y}}\right)\right] \end{split}$$

R

In our dataset $\bar{y} = 0.02675$ therefore:

$$\beta_{adj} = -ln\left(\frac{1-\tau}{\tau}\right) + 3.594$$

An estimate $\bar{\tau}$ can be used for the prevalence τ to obtain β_{adj} which can be plugged in the original linear predictor formula to obtain calibrated probabilities:

$$lp_{i}(\tau) = \beta_{0} - ln\left(\frac{1-\tau}{\tau}\right) + 3.594 + \beta_{1}x_{i1} + \dots + \beta_{n}x_{in}$$

CoLab-score

An alternative, which is the basis of the CoLab-score, is to choose a fixed probability P_i above which one considers a patient eligible for further testing. The probability can be expressed as a number needed to test. If one is willing to test 10 patients to find one positive, all patients with $P_i \ge 0.1$ should be considered positive. In this study a number needed to test of 15 is used, therefore all patients with a $P_i \ge 0.067$ should be considered positive. On the linear predictor scale this translates to logit(0.067) = -2.639. To determine the cutoffs for difference prevalence thresholds one solves the following equation:

 $\beta_0 + \beta_{adj} + \beta_1 x_{i1} + \dots + \beta_n x_{in} \ge -2.639$ $\beta_0 + \beta_1 x_{i1} + \dots + \beta_n x_{in} \ge -2.639 - \beta_{adj}$ $lp_i(\tau) \ge ln\left(\frac{1-\tau}{\tau}\right) - 6.233$

Choosing values for τ yields the cutoffs for the CoLab score:

$$\begin{split} lp_i(\tau = 0.4) &\geq -5.83 \text{ (CoLab-score = 1)} \\ lp_i(\tau = 0.1) &\geq -4.03 \text{ (CoLab-score = 2)} \\ lp_i(\tau = 0.05) &\geq -3.29 \text{ (CoLab-score = 3)} \\ lp_i(\tau = 0.02) &\geq -2.34 \text{ (CoLab-score = 4)} \\ lp_i(\tau = 0.01) &\geq -1.64 \text{ (CoLab-score = 5)} \end{split}$$

These thresholds correspond to CoLab-scores 0 to 5. The interpretation of these scores is as follows; if the prevalence is <1%, only CoLab-score 5 should be classified as positive and CoLab-score 0 till 4 as negative. If the prevalence is 1% - 2%, CoLab-score 4 and 5 should be classified as positive and 1 - 3 negative. Similarly, with a prevalence of 2 - 5% the split is between CoLab-score 2 and 3 and with prevalence of 5 - 10% between CoLab-score 1 - 2. If the prevalence is higher than 10% only CoLab-score 0 is classified as negative. Using the CoLab-score in this fashion, aims to preserve a number need to test of 15.

Relative importance of variables

Since the variables included in the model are on different scales, the magnitude of the unscaled coefficients cannot be used to compare the importance of variables to each other. To give some indication of the importance of the variables in predicting the outcome, the unscaled coefficients obtained from the adaptive lasso regression were used to calculate the relative importance. The variable with the highest unscaled coefficient was used as maximum ($\beta_{unscaled,max}$), and all other scaled coefficients were divided by this maximum and multiplied by 100 to obtain the relative importance in %: $\frac{\beta_{unscaled}}{\beta_{unscaled,max}} \cdot 100$.

Supplemental material 2

1.00 B.1.617.2 (δ) B.1.1.7 (α) Original strain ЕО Weekly # of COVID-19 positives at Age matched fraction vaccina 0.75 ED fraction partly vaccinated 0.50 ED fraction fully vaccinated 0.25 feo 0.00 Sep 2020 Dec 2020 Mar 2021 Jun 2021 Sep 2021 Date

Vaccination status and COVID-19 ED prevalence plot

Figure 1: Temporal validation period split into three phases characterized by weekly number of new COVID-19 cases at the emergency department (ED) and estimated fraction of ED patients vaccinated.

The temporal validation dataset consists of ED presentations from July 2020 until October 2021. As stated in the "Materials and Methods" section, this period was split into three phases: i) from July 2020 until March 2021, no vaccination and no variants of concern identified ii) from March 2021 until June 2021, partial vaccination and B.1.1.7 (Alpha) variant identified as dominant iii) from June 2021 until October 2021, widespread vaccination and B.1.617.2 (Delta) variant identified as dominant. The ED fraction vaccinated is estimated by merging data from the Dutch national institute of public health by the date of the ED presentation and the year of birth of the patient. The gray bars depict weekly number of new COVID-19 cases at the ED, the blue lines the estimated fraction of ED patients fully or partially vaccinated.

CoLab-score performance

Phase	Cases/controls (prevalence)	AUC
Original strain & no vaccinations	694/7999 (8.6%)	0.909 (0.896 - 0.923)
B.1.1.7 strain & partial vaccination	287/2845 (10.1%)	0.937 (0.921 - 0.953)
B.1.617.2 strain & full vaccination	58/3236 (1.8%)	0.898 (0.857 - 0.939)

CoLab- score	Phase	Sensitivity	Specificity	PPV	NPV
	Original strain & no vaccinations	0.960 (0.944 - 0.974)	0.418 (0.407 - 0.429)	0.135 (0.133 - 0.138)	0.991 (0.987 - 0.994
0	B.1.1.7 strain & partial vaccination	0.983 (0.969 - 0.997)	0.432 (0.413 - 0.450)	0.162 (0.158 - 0.168)	0.996 (0.992 - 0.999
	B.1.617.2 strain & full vaccination	0.983 (0.948 - 1.000)	0.415 (0.396 - 0.432)	0.030 (0.028 - 0.031)	0.999 (0.998 - 1.00
	Original strain & no vaccinations	0.879 (0.854 - 0.902)	0.789 (0.779 - 0.798)	0.283 (0.273 - 0.294)	0.986 (0.983 - 0.98
≤1	B.1.1.7 strain & partial vaccination	0.916 (0.885 - 0.948)	0.809 (0.793 - 0.824)	0.350 (0.332 - 0.370)	0.989 (0.984 - 0.99
	B.1.617.2 strain & full vaccination	0.862 (0.776 - 0.948)	0.780 (0.765 - 0.794)	0.067 (0.059 - 0.074)	0.997 (0.995 - 0.99
	Original strain & no vaccinations	0.813 (0.784 - 0.842)	0.894 (0.887 - 0.901)	0.421 (0.404 - 0.441)	0.980 (0.978 - 0.98
≤2	B.1.1.7 strain & partial vaccination	0.864 (0.826 - 0.902)	0.897 (0.885 - 0.908)	0.484 (0.455 - 0.516)	0.983 (0.979 - 0.98
	B.1.617.2 strain & full vaccination	0.690 (0.569 - 0.810)	0.892 (0.881 - 0.902)	0.104 (0.086 - 0.123)	0.994 (0.991 - 0.99
	Original strain & no vaccinations	0.697 (0.661 - 0.731)	0.962 (0.957 - 0.966)	0.634 (0.605 - 0.662)	0.971 (0.968 - 0.97
≤3	B.1.1.7 strain & partial vaccination	0.760 (0.711 - 0.812)	0.963 (0.955 - 0.970)	0.696 (0.650 - 0.739)	0.973 (0.967 - 0.97
	B.1.617.2 strain & full vaccination	0.621 (0.483 - 0.741)	0.960 (0.954 - 0.967)	0.222 (0.178 - 0.268)	0.993 (0.990 - 0.99
	Original strain & no vaccinations	0.566 (0.529 - 0.602)	0.984 (0.981 - 0.987)	0.775 (0.740 - 0.808)	0.960 (0.957 - 0.96
≤4	B.1.1.7 strain & partial vaccination	0.645 (0.589 - 0.704)	0.983 (0.978 - 0.988)	0.809 (0.762 - 0.856)	0.961 (0.955 - 0.96
	B.1.617.2 strain & full vaccination	0.517 (0.397 - 0.638)	0.986 (0.982 - 0.990)	0.400 (0.319 - 0.500)	0.991 (0.989 - 0.99

Table 2: Diagnostic performance of the CoLab-score in the temporal validation dataset,

split by phase.

Sensitivities, specificities, positive predictive values (PPV) and negative predictive values (NPV) are shown for fixed cut-offs (CoLab-score 0 till ≤ 4) with bootstrapped 95% confidence intervals in parentheses. The temporal validation dataset is split into three phases according to dominant SARS-CoV-2 strains in the Netherlands and estimated fraction of ED patients vaccinated (see Figure above). Note that "0" lists the sensitivity and NPV of CoLab-score 0 and " ≤ 4 " lists the specificity and PPV of CoLab-score 5. The AUC was significantly higher in the second phase as compared to the first phase (DeLong test p-value: 0.0175), but did not differ significantly between the third and first phase (DeLong test p-value: 0.3903).

Figure 2: Boxplots of CoLab linear predictor versus COVID-19 positive, split by registered vaccination status.

The CoLab linear predictor is calculated for all ED presentations in the temporal validation set. Presentations who are registered as vaccinated are labeled TRUE (N = 13).

Presentations before vaccine roll-out are labeled FALSE (N = 5855). Presentations during

BMJ Open

vaccine roll-out but where no status is registered are labeled NA (N = 8212). Of the 13 presentations who were registered as vaccinated, 12 were COVID-19 positive and 1 negative. Note that vaccination status is only registered if a patient is SARS-CoV-2 PCR positive or considered positive until proven otherwise, therefore there is only one COVID-19 negative patient with a registered vaccination status.

to beet terien only

Figure 1: CoLab-score calibration plots of the temporal validation (A), external validation center 1 (B), external validation center 2 (C) and external validation center 3 (D).

In the calibration plots, the proportion of observed COVID-19 positives versus expected probabilities are plotted. Observations are grouped with an average of 150 observations per group. The expected probabilities follow from applying the inverse logit function to the CoLab-linear predictor calculated from Table 2. If the observed proportion in an external dataset is lower than the expected proportion, this means risks are over-estimated, if the observed fraction is higher, risks are under-estimated. Ideally, observed proportions are equal to expected proportions, this ideal-calibration-line is shown as a straight line through the origin with a slope of 1. The logistic calibration line is a logistic regression fit of the predicted probabilities. [Intercept, slope] for plots A-D: A [1.34, 1.08], B [-0.39, 0.92], C [-0.76, 0.77], D [0.08, 0.79]. Although no validation datasets show perfect calibration, this is the result of differences in COVID-19 prevalence in the temporal validation dataset (7.4% versus 2.2%) and differences in calibration of laboratory equipment in the three external centers.

Figure 2: Probability density plots of laboratory parameters.

Probability density plots are shown for all control patients of the development dataset and the three external centers. Ideally all distributions should overlap since this implies that control patient populations are most likely similar in the development dataset to the external datasets. When comparing the distribution of the CoLab variables for all control-patients across different external validation datasets, albumin and LD show the largest deviations.

Supplemental material 4

Figure 1: Association between the CoLab-linear predictor and the duration of COVID-19-related symptoms.

For all PCR-positive ED presentations in the development and temporal validation dataset, the CoLab-linear predict is plotted against the duration of COVID-related symptoms as registered in the electronic patient records. Patients with unknown duration are not plotted. Patients without symptoms were plotted at 0 days. The solid horizontal lines represent the CoLab-score thresholds, the dashed line is a LOESS regression curve with 95% CI. As the duration of symptoms is an integer, some random jitter was added to the days, for visualization purposes. Note that only the first 14 days are shown in this graph.

Figure 2: Probability density plot of CoLab-score for RS-, Rhino- and Influenza-virus PCR tested ED patients.

For 183 ED presentations that were PCR tested for either RS-, Rhino- and Influenza-virus the CoLab-score was calculated. 91 presentations were PCR positive, 92 were PCR negative. The CoLab-score is only marginally elevated for PCR positive patients, the area under the ROC-curve in separating both groups is 0.573 (95% CI: 4896-0.6563).

Inclusion criterion	Cases/controls (prevalence)	AUC
Temporal validation (reference)	1039/14080 (7.4%)	0.916 (0.906 - 0.927)
Only first presentations, re- presentations are excluded	937/11166 (8.4%)	0.919 (0.909 - 0.930)
Only PCR-tested presentations	372/4062 (9.2%)	0.840 (0.817 - 0.862)

CoLab- score	Validation set	Sensitivity	Specificity	PPV	NPV	ТР	TN	FP	FN
	Reference	0.967	0.420	0.117	0.994	1005	5476	7565	34
		(0.956 -	(0.411 -	(0.115 -	(0.992 -	(993 -	(5366 -	(7454 -	(23 -
		0.978)	0.428)	0.119)	0.996)	1016)	5587)	7675)	46)
	First	0.968	0.416	0.132	0.993	907	4259	5970	30
0	presentations	(0.956 -	(0.406 -	(0.130 -	(0.990 -	(896 -	(4156 -	(5876 -	(20 -
		0.979)	0.426)	0.134)	0.995)	917)	4353)	6073)	41)
	PCR-tested	0.946	0.353	0.129	0.985	352	1303	2387	20
	presentations	(0.922 -	(0.338 -	(0.125 -	(0.979 -	(343 -	(1246 -	(2331 -	(12 -
		0.968)	0.368)	0.132)	0.991)	360)	1359)	2444)	29)
	Reference	0.888	0.791	0.253	0.989	923	10311	2730	116
		(0.870 -	(0.783 -	(0.245 -	(0.987 -	(904 -	(10215 -	(2640 -	(96 -
		0.908)	0.798)	0.261)	0.991)	943)	10401)	2826)	135)
	First	0.890	0.793	0.282	0.987	834	8112	2117	103
≤ 1	presentations	(0.870 -	(0.785 -	(0.273 -	(0.985 -	(815 -	(8030 -	(2035 -	(86 -
		0.908)	0.801)	0.292)	0.990)	851)	8194)	2199)	122)
	PCR-tested	0.852	0.671	0.207	0.978	317	2477	1213	55
	presentations	(0.817 -	(0.656 -	(0.197 -	(0.973 -	(304 -	(2421 -	(1157 -	(42 -
		0.887)	0.686)	0.217)	0.983)	330)	2533)	1269)	68)
	Reference	0.820	0.894	0.382	0.984	852	11661	1380	187
		(0.796 -	(0.889 -	(0.367 -	(0.982 -	(827 -	(11591 -	(1312 -	(163 -
		0.843)	0.899)	0.396)	0.986)	876)	11729)	1450)	212)
-	First	0.824	0.898	0.426	0.982	772	9187	1042	165
≤2	presentations	(0.798 -	(0.892 -	(0.410 -	(0.980 -	(748 -	(9127 -	(980 -	(145 -
		0.845)	0.904)	0.441)	0.985)	792)	9249)	1102)	189)
	PCR-tested	0.734	0.800	0.270	0.968	273	2951	739	99
	presentations	(0.688 -	(0.786 -	(0.252 -	(0.962 -	(256 -	(2902 -	(693 -	(83 -
	<u> </u>	0.777)	0.812)	0.287)	0.973)	289)	2997)	788)	116)
	Reference	0.710	0.962	0.596	0.977	738	12540	501	301
		(0.682 -	(0.958 -	(0.573 -	(0.974 -	(709 -	(12496 -	(459 -	(272 -
	— ; ,	0.738)	0.965)	0.618)	0.979)	767)	12582)	545)	330)
	First	0.716	0.966	0.658	0.974	6/1	9880	349	266
≤ 3	presentations	(0.687 -	(0.962 -	(0.633 -	(0.971 -	(644 -	(9844 -	(314 -	(240 -
		0.744)	0.969)	0.682)	0.976)	697)	9915)	385)	293)
	PCR-tested	0.591	0.911	0.403	0.957	220	3363	327	152
	presentations	(0.540 -	(0.902 -	(0.370 -	(0.952 -	(201 -	(3328 -	(293 -	(134 -
	D (0.640)	0.921)	0.433)	0.962)	238)	3397)	362)	171)
	Reference	0.585	0.984	0.750	0.968	608	12838	203	431
		(0.556 -	(0.982 -	(0.724 -	(0.965 -	(578 -	(12811 -	(175 -	(400 -
	F ired	0.615)	0.987)	0.778)	0.970)	639)	12866)	230)	461)
- 1	FIrSt	0.590	0.987	0.805	0.963	553	10095	134	384
≤4	presentations	(0.558 -	(0.985 -	(0.776 -	(0.961 -	(523 -	(10071 -	(112 -	(355 -
		0.621)	0.989)	0.832)	0.966)	582)	10117)	158)	414)
	PCR-tested	0.452	0.959	0.526	0.945	168	3539	151	204
	presentations	(0.401 -	(0.953 -	(0.480 -	(0.941 -	(149 -	(3516 -	(128 -	(185 -
		0.503)	0.965)	0.575)	0.950)	187)	3562)	174)	223)

BMJ Open

Table 1: Sensitivity analysis of the CoLab-score in the temporal validation dataset using different inclusion criteria.

Sensitivities, specificities, positive predictive values (PPV), negative predictive values (NPV), true positives (TP), true negatives (TN), false positives (FP) and false negatives (FN) are shown for fixed cut-offs (CoLab-score 0 till ≤ 4) with bootstrapped 95% confidence intervals in parentheses. The temporal validation dataset is used to compare the performance of the CoLab-score with inclusion criteria that differ from the development dataset. The first line shows the performance of the temporal validation dataset with the original inclusion criteria as specified in Figure 1B. The second line shows the performance of the CoLab-score when all re-presentations are excluded (i.e. no repeated presentations). The third line shows the performance of the CoLab-score in the subgroup of patients that underwent PCR-testing.

Revenue on the second

TR POD 49

	Due d'attern	Madel David	- 1	-1 \ / - 1' -1 - ('
I RIPOD Checklist:	Prediction	IVIODEI Deve	elopment and	d validation

Section/Topic	Item		Checklist Item	Page
Tille		DV	Identify the study as developing and/or validating a multivariable prediction model, the	
litle	1	D;V	target population, and the outcome to be predicted.	1
Abstract	2	D·V	Provide a summary of objectives, study design, setting, participants, sample size,	34
	-	D, V	predictors, outcome, statistical analysis, results, and conclusions.	0, 4
Introduction	1	1	Evaluin the medical contact (including whether diagnostic or prograstic) and rationals for	
	39	עיס	developing or validating the multivariable prediction model including references to evisting	67
Background	54	D, V	models.	0, 1
and objectives	01-	DiV	Specify the objectives, including whether the study describes the development or validation	7
	30	D;V	of the model or both.	/
Methods	1	1		1
	4a	D;V	Describe the study design or source of data (e.g., randomized trial, cohort, or registry	8, 11-1
Source of data			data), separately for the development and validation data sets, if applicable.	
	4b	D;V	end of follow-up.	8
	5 -	DV	Specify key elements of the study setting (e.g., primary care, secondary care, general	0
Dorticinanto	5a	D;V	population) including number and location of centres.	8
Participants	5b	D;V	Describe eligibility criteria for participants.	8, 9, S
	5c	D;V	Give details of treatments received, if relevant.	N/A
0.1	6a	D;V	Clearly define the outcome that is predicted by the prediction model, including how and	9
Outcome	6h	D.V	When assessed.	NI/A
	ио	ט, v	Clearly define all predictors used in developing or validating the multivariable prediction	IN/A
Predictors	7a	D;V	model, including how and when they were measured.	8, 9
1.00.000.0	7b	D;V	Report any actions to blind assessment of predictors for the outcome and other predictors.	N/A
Sample size	8	D;V	Explain how the study size was arrived at.	N/A
Missing data	٩	Γ·V	Describe how missing data were handled (e.g., complete-case analysis, single imputation,	٩
wissing data	3	D, V	multiple imputation) with details of any imputation method.	3
	10a	D	Describe how predictors were handled in the analyses.	10
Otatiotical	10b	D	Specify type of model, all model-building procedures (including any predictor selection),	10-12
Statistical	10c	V	For validation, describe how the predictions were calculated	16
methods	100	v	Specify all measures used to assess model performance and if relevant to compare	10
	10d	D;V	multiple models.	11-13
	10e	V	Describe any model updating (e.g., recalibration) arising from the validation, if done.	N/A
Risk groups	11	D;V	Provide details on how risk groups were created, if done.	N/A
Development	12	V	For validation, identify any differences from the development data in setting, eligibility	22
vs. validation			criteria, outcome, and predictors.	
Results			Describe the flow of participants through the study, including the number of participants	
	13a	D:V	with and without the outcome and, if applicable, a summary of the follow-up time. A	F1
	Tou	D, V	diagram may be helpful.	
Participante			Describe the characteristics of the participants (basic demographics, clinical features,	
Farticiparits	13b	D;V	available predictors), including the number of participants with missing data for predictors	T1
			and outcome.	
	13c	V	For validation, show a comparison with the development data of the distribution of	S3
Model	1/2	П	Specify the number of participants and outcome events in each analysis	
development	14a 14b	D	If done report the unadjusted association between each candidate predictor and outcome	N/A
	45		Present the full prediction model to allow predictions for individuals (i.e., all regression	
Model	15a	D	coefficients, and model intercept or baseline survival at a given time point).	12
specification	15b	D	Explain how to the use the prediction model.	T2, S
Model	16	D·V	Report performance measures (with CIs) for the prediction model.	T3. T4
performance		_,•		. 3, 14
Model-updating	17	V	n done, report the results from any model updating (i.e., model specification, model performance)	N/A
Discussion				
Limitationa	10		Discuss any limitations of the study (such as nonrepresentative sample, few events per	04.00
LIIIIIdiiONS	10	ט, v	predictor, missing data).	21-23
	19a	V	For validation, discuss the results with reference to performance in the development data,	19-20
Interpretation	.04	v	and any other validation data.	.520
	19b	D;V	Give an overall interpretation of the results, considering objectives, limitations, results from	19-20
Implications	20	D.1/	Similar studies, and utiler relevant evidence.	20-21
Other information	20	D, V		20-21
Supplementary		- N/	Provide information about the availability of supplementary resources, such as study	
information	21	D;V	protocol, Web calculator, and data sets.	N/A

denoted by V, and items relating to both are denoted D;V. We recommend using the TRIPOD Checklist in conjunction with the TRIPOD Explanation and Elaboration document. S = Supplemental material, F = Figure, T = Table.

BMJ Open

BMJ Open

Development and validation of an early warning score to identify COVID-19 in the emergency department based on routine laboratory tests: a multicenter case-control study

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-059111.R3
Article Type:	Original research
Date Submitted by the Author:	09-Jun-2022
Complete List of Authors:	Boer, Arjen-Kars; Catharina Hospital Deneer, Ruben; Catharina Hospital, ; Eindhoven University of Technology, Maas, Maaike; Catharina Ziekenhuis, emergency department Ammerlaan, Heidi; Catharina Hospital van Balkom, Roland; Catharina Hospital Thijssen, Wendy; Catharina ziekenhuis, Emergency medicine Bennenbroek, Sophie; Catharina Hospital Leers, Mathie; Zuyderland Medical Centre Heerlen, Clinical Chemistry & Hematology Martens, Remy; Zuyderland Medical Centre Heerlen, Clinical Chemistry & Hematology Buijs, Madelon; Atalmedial Kerremans, Jos; Alrijne Hospital Location Leiderdorp Messchaert, Muriël ; Gelre Hospitals van Suijlen, Jeroen; Gelre Hospitals van Riel, Natal; Eindhoven University of Technology, ; Amsterdam University Medical Centres Scharnhorst, Volkher; Catharina Hospital; Eindhoven University of Technology,
Primary Subject Heading :	Emergency medicine
Secondary Subject Heading:	Health informatics, Infectious diseases
Keywords:	COVID-19, STATISTICS & RESEARCH METHODS, ACCIDENT & EMERGENCY MEDICINE, Clinical chemistry < PATHOLOGY, Health informatics < BIOTECHNOLOGY & BIOINFORMATICS

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Development and validation of an early warning score to identify COVID-19 in the emergency department based on routine laboratory tests: a multicenter case-control study Arjen-Kars Boer^{1*}, Ruben Deneer^{1,2*†}, Maaike Maas³, Heidi S. M. Ammerlaan⁴, Roland H. H. van Balkom⁵, Wendy A.M.H. Thijssen³, Sophie Bennenbroek³, Mathie P. G. Leers⁶, Remy J.H. Martens⁶, Madelon M. Buijs⁷, Jos J. Kerremans⁸, Muriël Messchaert⁹, Jeroen D.E. van Suijlen⁹, Natal A.W. van Riel^{2,10} and Volkher Scharnhorst^{1,2} * Both authors contributed equally [†] Corresponding author 1 Department of Laboratory Medicine, Catharina Hospital Eindhoven, Michelangelolaan 2, 5623 EJ, Eindhoven, the Netherlands 2 Faculty of Biomedical Engineering, Technical University Eindhoven, Groene Loper 3,

- 5612 AE, Eindhoven, the Netherlands
- 17 3 Department of Emergency Medicine, Catharina Hospital Eindhoven,
 - Michelangelolaan 2, 5623 EJ, Eindhoven, the Netherlands
- 19 4 Department of Internal Medicine, Catharina Hospital Eindhoven, Michelangelolaan 2,
 20 5623 EJ, Eindhoven, the Netherlands
- 21 5 Department of Pulmonary Diseases, Catharina Hospital Eindhoven, Michelangelolaan
 - 2, 5623 EJ, Eindhoven, the Netherlands

BMJ Open

2 3 4	23	6 Department of Laboratory Medicine, Zuyderland Medical Center, Dr. H. van der					
5 6	24	Hoffplein 1, 6162 BG, Sittard-Geleen, the Netherlands					
7 8	25	7 Atalmedial Diagnostic Centers, Jan Tooropstraat 138, 1061 AD Amsterdam, the					
9 10 11	26	Netherlands					
12 13	27	8 Department of Medical Microbiology & Infection Prevention, Alrijne Hospital, Simon					
14 15	28	Smitweg 1, 2353 GA Leiderdorp, the Netherlands					
16 17 18	29	9 Department of Clinical Chemistry, Gelre Hospital, Albert Schweitzerlaan 31, 7334 DZ					
19 20	30	Apeldoorn, the Netherlands					
21 22	31	10 Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9,					
23 24 25	32	1105 AZ Amsterdam, the Netherlands.					
26 27 28	33						
29 30 31	34	Keywords					
32 33	35	COVID-19, SARS-CoV-2, emergency department, triage, early warning score, prediction					
34 35 36	36	model, routine laboratory tests					
37 38 20	37						
40 41 42	38	Corresponding author					
43 44	39	Ruben Deneer					
45 46 47 48	40	Michelangelolaan 2					
49 50	41	5623 EJ Eindhoven, the Netherlands					
51 52 53 54 55 56	42	ruben.deneer@catharinaziekenhuis.nl					
57 58 59 60							

44 Abstract

45 Objectives: Identifying patients with a possible SARS-CoV-2 infection in the emergency 46 department (ED) is challenging. Symptoms differ, incidence rates vary and test capacity may 47 be limited. As PCR testing all ED patients is neither feasible nor effective in most centers, a 48 rapid, objective, low-cost early warning score to triage ED patients for a possible infection is 49 developed.

Design: Case-control study.

Setting: Secondary and tertiary hospitals in the Netherlands.

Participants: Patients presenting at the ED with venous blood sampling from July 2019 to 53 July 2020 (N = 10417, 279 SARS-CoV-2 positive). The temporal validation cohort covered 54 the period from July 2020 to October 2021 (N = 14080, 1093 SARS-CoV-2 positive). The 55 external validation cohort consisted of patients presenting at the ED of three hospitals in the 56 Netherlands (N = 12061, 652 SARS-CoV-2 positive).

57 Primary outcome measures The primary outcome was one or more positive SARS-CoV-2
58 PCR-test results, within one day prior to, or one week after, ED presentation.

Results: The resulting "CoLab-score" consists of 10 routine laboratory measurements, and

60 age. The score showed good discriminative ability (AUC: 0.930, 95% CI: 0.909 to 0.945).

61 The lowest CoLab-score had a high sensitivity for COVID-19 (0.984, 95% CI: 0.970 to 0.991,

62 specificity: 0.411, 95% CI: 0.285 to 0.520). Conversely, the highest score had high specificity

63 (0.978, 95% CI: 0.973 to 0.983, sensitivity: 0.608, 95% CI: 0.522 to 0.685). Results were

64 confirmed in temporal and external validation.

65 Conclusions: The CoLab-score is based on routine laboratory measurements and is available
66 within one hour after presentation. Depending on the prevalence, COVID-19 may be safely

Page 5 of 49

2 3	67	ruled out in over one third of ED presentations. Highly suspect cases can be identified
4	07	ruled-out in over one unit of ED presentations. Triginy suspect cases can be identified
5 6 7	68	regardless of presenting symptoms. The CoLab-score is continuous, in contrast to the binary
7 8 9	69	outcome of lateral flow testing, and can guide PCR testing and triage ED patients.
10 11 12	70	
13 14 15	71	Article summary
16 17 18	72	Strengths and limitations of this study
19 20	73	• A comprehensive panel of 28 laboratory tests was measured for 10.417 emergency
21 22 23	74	department (ED) presentations and combined with SARS-CoV-2 PCR test results.
23 24 25	75	• Using adaptive lasso regression analysis, the panel of 28 laboratory tests was reduced
26 27	76	to a single score consisting of a subset of 10 routine ED laboratory tests and age.
28 29 30	77	• The score was temporally validated from July 2020 to October 2021, in the presence
31 32	78	of vaccine roll-out and emergence of new SARS-CoV-2 variants.
33 34 35	79	• The score was externally validated in 3 other centers in the Netherlands.
36 37	80	• Missingness in the panel of laboratory tests varied between external centers, limiting
38 39	81	generalizability of the score to the ED population for which the complete panel of
40 41 42	82	laboratory tests was available.
43 44	83	• The score was not directly compared to lateral flow testing.
45 46		
47		
48		
49 50		
51		
52		
53		
54		
55 56		
57		
58		
59		
60		

85 Introduction

COVID-19, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has evolved into a global pandemic in 2020 [1]. For emergency department (ED) physicians, identifying presenting patients with a possible COVID-19 infection remains challenging since symptoms like fever, shortness of breath or coughing overlap with other illnesses [2,3]. It is crucial however, to identify a possible COVID-19 infection as early as possible. Early identification prevents further spreading and protects hospital staff by isolating a suspected patient, pending the results of a SARS-COV-2 RNA PCR test and/or chest CT. Conversely, when PCR testing or isolation treatment capacity is limited, ruling-out COVID-19 as soon as possible can save valuable resources.

In the era of electronic health records and clinical prediction models, developing an early
warning score that can assist ED physicians in identifying patients presenting at the ED with
COVID-19 is of great value. Moreover, if only routine ED test results are required as input,
the score can be easily adopted by EDs worldwide, potentially reduce diagnostic costs and
accelerate patient triage.

Many COVID-19 prediction models have already been developed, the living systematic review by Wynants et. al [4] provides an extensive overview and critical appraisal. Unfortunately, only few models have found their way into routine care at the ED [5,6]. Early models were based on relatively small sample sizes, hampered by selection bias or were over-fitted by selecting too many features [4–6]. Aside from methodological shortcomings of early models, most models are not developed as an early warning score for all ED patients. Firstly, they require features from tests that are not routinely performed or logged for all ED patients (e.g. the CO-RADS score from a CT-scan [7] or non-lab based clinical variables in the PRIEST EWS [8]) and are therefore not straightforward to implement or scale to a large ED patient population. Secondly, the population on which models are commonly based, are PCR-

BMJ Open

tested patients, i.e. a pre-selection of a possible COVID-19 infection has already been done byphysicians.

112 Only two studies were identified that focus on patients presenting at the ED, include

113 unsuspected (and pre-pandemic) patients as controls, and rely solely on routine (laboratory)

 $\frac{2}{3}$ 114 tests [9,10].

In this study we report the development and validation of an early warning score that, based on routine ED laboratory tests, estimates the risk of a possible COVID-19 infection in patients who undergo routine laboratory testing at presentation. The score can assist ED physicians in triaging patients and prevent further transmission of COVID-19 by quickly identifying possibly infected patients or ruling out a possible infection when resources are scarce.

Methods

Study design

7	122	Sludy design
8 9 10	123	This is a retrospective case-control study where routine laboratory test results, combined with
10 11 12	124	age and gender, from all patient presenting at the emergency department (ED) of the
13 14	125	Catharina Hospital Eindhoven from July 2019 to July 2020 were combined with SARS-CoV-
15 16 17	126	2 PCR test results in a development dataset. A model that could predict the presence of a
17 18 19	127	COVID-19 infection was fit to this dataset. Performance of the model was assessed by i)
20 21	128	internal validation, ii) temporal validation and iii) external validation by using data from the
22 23	129	ED of three other centers. The study was reviewed by the Medical research Ethics
24 25 26	130	Committees United (MEC-U) under study number W20.071, which confirmed that the
27 28	131	Medical Research Involving Human Subjects Act (In Dutch: WMO) does not apply to this
29 30 31	132	study. The study was thereafter reviewed and approved by the internal hospital review board.
32 33 34	133	
35 36	134	Patient and Public Involvement
37 38 39	135	Patients were not involved in the design, conduct or reporting of this study.
40 41 42	136	
43 44	137	Development dataset
45 46 47	138	All ED presentations at the Catharina Hospital Eindhoven from July 2019 to July 2020 were
48 49	139	included in the development dataset, provided that routine laboratory testing had been
50 51	140	requested by the attending ED physician. The rationale for this inclusion period is to limit the
52 53	141	effect of seasonal variation in the ED patient population by including the summer, fall and
55 56	142	winter season of 2019 (control patients) and the winter, spring and summer season of 2020
57 58	143	(case and control patients). The routine laboratory panel at the ED consists of 28 laboratory
59 60	144	tests. In some cases not all tests in the routine panel were requested or one or more

Page 9 of 49

1

BMJ Open

2	
3	
4	
5	
6	
7	
8	
a	
10	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
37	
25	
22	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
- - -0 /17	
+/ /0	
4ð	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
50	
59	

145 quantitative results were not available due to analytical interference (hemolysis, lipemia or 146 icterus). The routine ED laboratory panel is requested for (adult) patients presenting with 147 abdominal pain, chest pain, shortness of breath, syncope, sepsis or other non-specific 148 complaints, or for patients (including non-adult patients) presenting with specific complaints 149 where a suspected diagnosis has to be ruled-in or ruled-out. Presentations with one or more 150 missing values in any of the 28 laboratory test in the routine ED panel, were excluded. 151 Presentations with one or more extreme lab results, > 10 times standard deviation from the 152 median, were also excluded to minimize the effect on the estimation of regression 153 coefficients. The median was chosen as a measure of central tendency due to its resistance for 154 outliers. After the first case of COVID-19 in the Netherlands, all patients with symptoms of 155 COVID-19 (either fever and/or respiratory symptoms) were subjected to nasopharyngeal PCR 156 testing for SARS-CoV-2 RNA. PCR testing was performed by commercial tests that were 157 approved by the Dutch national institute of public health (RIVM). If a patient had a positive 158 PCR result in the past, subsequent presentations were excluded as re-presentations might be 159 clinically different from de novo presentations. 160 The ED lab panel results were matched to SARS-CoV-2 PCR results if the underlying

The ED lab panel results were matched to SARS-CoV-2 PCR results if the underlying nasopharyngeal swab had been taken ≤ 1 day prior, or ≤ 1 week after initial blood withdrawal at the ED. If multiple PCR tests were performed in this window, and at least one PCR test was positive, the presentation was labelled "*PCR-positive*". If all PCR test results in the time window were negative, the presentation was labelled as "*PCR-negative*". If no PCR tests were performed in the time window and the presentation occurred after the first case of COVID-19 in the Netherlands, the presentation was labelled as "*Untested*". All presentations before the first case were labelled as "*Pre-COVID-19*".

168

Laboratory tests

The routine laboratory panel consisted of hemocytometric and chemical analyses. The hemocytometric tests were performed on Sysmex XN-10 instruments (Sysmex Corp., Kobe, Japan) and consisted of hemoglobin, hematocrit, erythrocytes, mean corpuscular volume (MCV), mean cellular hemoglobin (MCH), mean cellular hemoglobin concentration (MCHC), thrombocytes, leukocytes, neutrophils, eosinophils, basophils, lymphocytes and monocytes. The chemical analyses were performed on a Cobas 8000 Pro (Roche Dx, Basel, Switzerland) instrument and consisted of glucose, total bilirubin, aspartate aminotransferase (ASAT), alanine aminotransferase (ALAT), lactate dehydrogenase (LD), creatine kinase (CK), alkaline phosphatase (ALP), gamma-glutamyltransferase (gGT), blood urea nitrogen (BUN), creatinine, CKD-epi estimated glomerular filtration rate (eGFR), potassium, sodium, chloride, albumin (bromocresol green) and C-reactive protein (CRP). These results were elien combined with age and gender.

Modelling

All data were processed and analyzed in R version 4.1.1 [11]. Laboratory results, combined with age and gender were used as covariates in a regression model. Cases were defined as ED presentations labelled as "PCR-positive", controls were all other presentations (i.e. "PCRnegative", "Untested" or "Pre-COVID-19"). To achieve predictive accuracy, limit overfitting and perform feature selection, penalized logistic regression with an adaptive lasso penalty was chosen [12,13]. To minimize missing data, all non-numeric results at the extremes of the measuring range, were converted to numeric results by removing the "<" and ">" signs. For eGFR (CKD-epi) and CRP the raw precursor value was used instead of >90 ml/min/m2 and <6 mg/L, respectively. Considering that laboratory results of bilirubin, ASAT, ALAT, LD, CK, ALP and gGT can have heavy (right) tailed distributions, which in turn impacts model

BMJ Open

194	predictions, these variables were transformed logarithmically. More details regarding model
195	fitting can be found in the document, Supplemental Material 1. Models were fitted using the
196	glmnet-package [14].

198 CoLab-score

Since this is a retrospective case-control study, the sample prevalence may not reflect the true/current COVID-19 prevalence. To obtain well-calibrated probabilities the intercept term in the model should be adjusted according to the current prevalence (details can be found in the document, Supplemental Material 1) [15]. However, adjusting the intercept term is not straightforward to implement in clinical practice, therefore the linear predictor of the model was categorized into a score, this score is hereafter referred to as the "CoLab-score". The categorization is based on a number needed to test of 15 (i.e. one is willing to PCR test 15 patients to find one positive) and prevalence cut-points of 1%, 2%, 5%, 10% and 40% using the intercept adjustment formula by King [15]. The intervals obtained through these breaks correspond to CoLab-scores 5 to 0, respectively. Score 0 reflects low-risk for COVID-19 and score 5 reflects high-risk. More details regarding the rationale of the CoLab-score categorization can be found in the document, Supplemental Material 1.

212 Internal validation

To assess model performance while taking overfitting into account, bootstrapping was
performed. 1000 bootstrap samples were generated from the original data. On each bootstrap
sample, the full model fitting procedure and CoLab-score conversion were performed.
Optimism adjusted performance measures of the CoLab-score were obtained by applying the
0.632 bootstrap rule to the in-sample and out-of-bag-sample performance [16]. Performance

BMJ Open

measures included, AUC, sensitivity, specificity, positive predictive value (PPV) and negative
predictive value (NPV) of each CoLab-score. The pROC-package was used to calculate
performance measures [17]. Although the full inclusion period from July 2019 to July 2020
was used for model fitting, the performance was evaluated on the period starting from the first
COVID-19 infection (24th of February 2020) to July 2020. This was done to obtain
performance measures that would reflect real world performance.

225 Temporal validation

For temporal validation, results from our center were prospectively analyzed from July 2020 to October 2021. During this period, the Netherlands was struck by a second wave of COVID-19 infections, starting in the fall of 2020 and subsiding in the summer of 2021. In this period there was also more widespread external PCR testing by municipal health services. The results of external conducted PCR tests were not available to our study. To overcome this limitation, the outcome in the temporal validation cohort was chosen as a composite of the hospital registration of a confirmed COVID-19 infection and/or at least one positive PCR test result. This period also covers both the emergence of new SARS-CoV-2 variants as well as vaccine rollout. However, neither vaccination status nor genomic sequencing was available to determine whether a patient was vaccinated or which variant caused the infection. Therefore, data from the Dutch national institute of public health (RIVM) was used, to divide the temporal validation period into three phases: i) from July 2020 until March 2021, no vaccination and no variants of concern identified ii) from March 2021 until June 2021, partial vaccination and B.1.1.7 (Alpha) variant identified as dominant iii) from June 2021 until October 2021, widespread vaccination and B.1.617.2 (Delta) variant identified as dominant. See Supplemental Material 2 Figure 1 for more details. The temporal validation consisted of assessing the AUC, sensitivity, specificity, PPV and NPV of each CoLab-score threshold

BMJ Open

3 4	243	for the entire period, as well as for each phase separately to determine a possible effect of
5 6	244	vaccination and new variants on performance (results in the Supplemental Material 2).
7 8 0	245	Model calibration was assessed graphically using the rms-package [18].
9 10 11 12	246	
13 14	247	External validation
15 16 17	248	For the external validation, several centers in the Netherlands were approached and assessed
18 19	249	if the required panel of laboratory tests and SARS-CoV-2 PCR test results were available.
20 21	250	Seven centers responded and three centers fulfilled the inclusion criteria: Gelre Hospitals
22 23	251	(center 1), Atalmedial Diagnostic Centers, location Alrijne Hospital Leiderdorp (center 2) and
24 25 26	252	Zuyderland Medical Center (center 3). The hematological parameters were measured with
27 28	253	Sysmex XN10/XN20 (center 1), CELL-DYN-Sapphire (Abbott Laboratories) (center 2) and
29 30	254	Sysmex XN10 instruments (center 3). The clinical chemistry parameters were measured with
31 32 33	255	Architect c14100/c160000 (Abbott Laboratories) (center 1), Architect ci4100 (Abbott
33 34 35	256	Laboratories) (center 2) and Cobas 8000 instruments (Roche Dx) (center 3). The external
36 37	257	validation was similar to the temporal validation and consisted of assessing the AUC
38 39	258	sensitivity, specificity, PPV and NPV of each CoLab-score threshold. Calibration was
40 41 42 43	259	assessed graphically analogous to the temporal validation dataset.
44 45		
46		

Results

Development dataset

12879 emergency department (ED) presentations of 10327 patients from July 2019 to July 2020 were included. After excluding cases with an incomplete lab panel, patient presentations that occurred after a positive PCR test in the past (re-presentations) and presentations with extreme values (>10 times standard deviation) in any of the lab results, 10417 presentations of 8610 patients remained (Figure 1 A).

	Pre-COVID	Untested	PCR negative	PCR positive
	N = 5890	N = 3303	N = 945	N = 279
Age in years	61 (21)	60 (21)	66 (18)	69 (15)
Female gender	2909 (49.4 %)	1659 (50.2 %)	466 (49.3 %)	95 (34.1 %)
Specialism				
Internal medicine	1648 (28.0 %)	896 (27.1 %)	244 (25.8 %)	71 (25.4 %)
Surgery	1007 (17.1 %)	679 (20.6 %)	51 (5.4 %)	5 (1.8 %)
Neurology	775 (13.2 %)	468 (14.2 %)	64 (6.8 %)	5 (1.8 %)
Pulmonary medicine	714 (12.1 %)	220 (6.7 %)	326 (34.5 %)	167 (59.9 %)
Cardiology	560 (9.5 %)	322 (9.7 %)	145 (15.3 %)	6 (2.2 %)
Urology	309 (5.2 %)	148 (4.5 %)	15 (1.6 %)	7 (2.5 %)
Gastroenterology	306 (5.2 %)	224 (6.8 %)	27 (2.9 %)	1 (0.4 %)
Geriatrics	189 (3.2 %)	95 (2.9 %)	52 (5.5 %)	15 (5.4 %)
Orthopedics	147 (2.5 %)	109 (3.3 %)	11 (1.2 %)	0 (0.0 %)
Gynecology	118 (2.0 %)	82 (2.5 %)	2 (0.2 %)	0 (0.0 %)
Other	117 (2.0 %)	60 (1.8 %)	8 (0.8 %)	2(0.7%)
Hemoglobin in mmol/L	8.2 (1.3)	8.3 (1.3)	8.2 (1.4)	8.6 (1.1)
Hematocrit in L/L	0.403 (0.059)	0.405 (0.056)	0.405 (0.062)	0.417 (0.047)
Erythrocytes in /pL	4.41 (0.69)	4.43 (0.66)	4.41 (0.72)	4.61 (0.60)
MCV in fl	91.8 (6.4)	91.9 (6.1)	92.4 (6.7)	90.7 (5.5)
MCH in mmol	1.859 (0.157)	1.876 (0.150)	1.874 (0.172)	1.869 (0.141)
MCHC in mmol/L	20.2 (0.9)	20.4 (0.9)	20.3 (1.0)	20.6 (0.8)
Thrombocytes in /nL	263 (99)	266 (100)	269 (105)	217 (123)
Leukocytes in /nL	9.30 [7.06, 12,16]	8.92 [7.01, 11,89]	9.66 [7.17, 12,94]	6.33 [4.74, 8.48]
Neutrophils in /nL	6.62 [4.51, 9.53]	6.10 [4.42, 8.94]	7.01 [4.79, 10.02]	4.71 [3.30, 6.94]
Eosinophils in /nL	0.09 [0.03, 0.17]	0.09 [0.03, 0.18]	0.08 [0.02, 0.17]	0.00 [0.00, 0.02]
Basophils in /nL	0.04 [0.02, 0.05]	0.04 [0.02, 0.05]	0.04 [0.02, 0.05]	0.01 [0.01, 0.02]
Lymphocytes in /nL	1 47 [0 93 2 13]	1 56 [1 05 2 18]	1 31 [0 80 2 03]	0 86 [0 59 1 21]
Monocytes in /nL	0 70 [0 52, 0 93]	0 69 [0 52, 0 91]	0 74 [0 54 1 01]	0 45 [0 32, 0 64]
Glucose in mmol/L	6 76 [5 83 8 39]	6 68 [5 76 8 14]	6 98 [5 95 8 85]	6 77 [5 98 8 48]
Bilirubin in umol/L	75[50 116]	74[51 109]	83[56 124]	8 2 [6 3 11 4]
ASAT in U/L	24 0 [19 1 32 2]	26 5 [21 6 35 1]	27 7 [21 7 39 2]	40 7 [30 2 57 2]
ALAT in U/L	24 3 [17 8 35 3]	25.3 [18.4.36.2]	25 7 [18 4 40 0]	33 7 [23 3 50 0]
LD in U/L	201 [173 240]	198 [170 236]	215 [178 263]	300 [238 403]
CK in U/L	82 [51 134]	83 [52, 136]	76 [51 125]	124 [62, 222]
ALP in IU/L	83 0 [68 0 105 0]	81 0 [65 8 102 5]	869[679 1100]	71 0 [58 8 85 0]
$\sigma(f f n) / l$	2701170 5301	2841184 5051	3/01224 68 91	42 0 1 28 0 83 51

BMJ Open

CKD-epi in ml/min/m2	80.9 [58.0, 99.1]	85.0 [63.5, 103.3]	79.1 [52.1, 96.6]	76.6 [54.9, 91.2]
Potassium in mmol/L	4.06 (0.50)	4.03 (0.49)	4.07 (0.55)	3.91 (0.47)
Sodium in mmol/L	139.2 (4.0)	138.5 (3.9)	138.0 (4.3)	136.4 (4.1)
Chloride in mmol/L	104.4 (4.6)	103.8 (4.5)	102.9 (4.8)	101.6 (4.4)
Albumin in g/L	42.4 (4.9)	42.3 (4.5)	40.8 (4.8)	38.4 (3.8)
CRP in mg/L	8 [2, 41]	5 [1, 30]	18 [3, 69]	77 [37, 136]
268				

269 Table 1: Descriptive statistics of development dataset and laboratory concentrations.

Shown are the laboratory tests routinely requested at ED presentation and their mean/median results (in the development dataset) for the presentations before the first COVID-19 patient in the Netherlands ("Pre-COVID-19"), presentations thereafter that were not tested for COVID-19 ("Untested"), tested negatively ("PCR negative") and tested positive ("PCR positive"). For results with normal distributions, the mean value and standard deviation (in round brackets) are shown. For results that have skewed or heavy tailed distributions, the median value and the interquartile range is shown [in squared brackets]. Dark grey marked figures indicate a clinically relevant difference from the Pre-COVID-19 category (based on the total allowable error). Descriptive statistics of ED presentations are shown in Table 1, dark grey marked figures

280 Descriptive statistics of ED presentations are shown in **Table 1**, dark grey marked figures 281 indicate a clinically relevant difference from the Pre-COVID-19 category (based on the total 282 allowable error [19]). For the PCR positives (N = 279), 91% (95% CI: 88 to 94%) of the cases 283 were tested positive in their first PCR. The remaining 24 patients were positive in their second 284 (N = 18), third (N = 5) or fourth (N = 1) PCR.

51 285 52 53 54 286

286 CoLab-score

The model obtained through adaptive lasso regression contained eleven variables, which are
 depicted with their regression coefficients (weights) in Table 2.

Variable	β	Exclusion limit	Relative importance
Intercept	-6.885		-
Erythrocytes /pL	0.9379	Erythrocytes < 2.9 /pL	52 %
Leukocytes /nL	-0.1298		46 %
Eosinophils /nL	-6.834		86 %
Basophils /nL	-47.70	Basophils >0.33 /nL	100 %
log ₁₀ of Bilirubin in µmol/L	-1.142	Bilirubin >169 µmol/L	26 %
log ₁₀ of LD in U/L	5.369	LD >1564 U/L	58 %
\log_{10} of ALP in IU/L	-3.114	AF >1000 IU/L	45 %
log ₁₀ of gGT in U/L	0.3605	gGT >1611 U/L	11 %
Albumin in g/L	-0.1156	0	45 %
CRP in mg/L	0.002560		15 %
Age in years	0.002275		4 %
Table 2: Calculation of the	e CoLab-linea	r predictor (LP).	
Table 2: Calculation of the The CoLab-linear predictor	e CoLab-linea (LP) is calculo	r predictor (LP). ated by summing the inte	ercept and the products of
Table 2: Calculation of the The CoLab-linear predictor the 11 variables with their c	e CoLab-linea (LP) is calcula corresponding o	r predictor (LP). ated by summing the inte coefficients (β's). CoLab	ercept and the products of p -LP = $-6.885 +$
Table 2: Calculation of the The CoLab-linear predictorthe 11 variables with their c[erythrocytes] × 0.9379 – [a	e CoLab-linea (LP) is calcula corresponding o leukocytes] × (r predictor (LP). ated by summing the inte coefficients (β's). CoLab).1298 – [eosinophils] ×	ercept and the products of $p-LP = -6.885 + 6.834 - [basophils] \times$
Table 2: Calculation of the The CoLab-linear predictorthe 11 variables with their c[erythrocytes] × 0.9379 – [a47.7 – log10([bilirubin]) ×	e CoLab-linea (LP) is calcula corresponding d leukocytes] × (1.142 + log10	r predictor (LP). ated by summing the inte coefficients (β's). CoLab).1298 – [eosinophils] × ([LD]) × 5.369 – log10(_l	ercept and the products of -LP = – 6.885 + 6.834 – [basophils] × [ALP]) × 3.114 +
Table 2: Calculation of the The CoLab-linear predictorthe 11 variables with their c[erythrocytes] $\times 0.9379 - [a]$ $47.7 - log10([bilirubin]) \times log10([gGT]) \times 0.3605 - [a]$	e CoLab-linea (LP) is calcula corresponding o leukocytes] × (1.142 + log10 clbumin] × 0.1	r predictor (LP). ated by summing the inte coefficients (β's). CoLab 0.1298 – [eosinophils] × ([LD]) × 5.369 – log10(₁ 156 + [CRP] × 0.02560	ercept and the products of p-LP = -6.885 + $6.834 - [basophils] \times$ $[ALP]) \times 3.114 +$ $+ [age] \times 0.002275.$ The
Table 2: Calculation of the The CoLab-linear predictorthe 11 variables with their c[erythrocytes] $\times 0.9379 - [a]$ $47.7 - log10([bilirubin]) \times log10([gGT]) \times 0.3605 - [a]$ LP can be converted into a	e CoLab-linea (LP) is calcula orresponding a leukocytes] × (1.142 + log10 lbumin] × 0.1 CoLab-score (s	r predictor (LP). ated by summing the inte coefficients (β's). CoLab 0.1298 – [eosinophils] × ([LD]) × 5.369 – log10(156 + [CRP] × 0.02560 see Figure 2) or into a pi	ercept and the products of p-LP = -6.885 + $6.834 - [basophils] \times$ $[ALP]) \times 3.114 +$ $+ [age] \times 0.002275. The probability if the prevalence$

if any of the variables exceed the limits in the third column. The relative importance ranks the
importance of variables in predicting the outcome, relative to the most important variable (in

300 this case basophils).

A larger β-coefficient does not imply that a variable is more important in predicting the odds
 of testing positive for SARS-CoV-2, since variables are on different scales. The most
 important variables are basophiles, eosinophils and lactate dehydrogenase (LD).

305 As shown in **Figure 2**, the linear predictor clearly discriminates between COVID-19 and non-

306 COVID-19. The linear predictor is converted to CoLab-scores 0-5 with the cut-points

307 depicted in Figure 2.

309 Internal validation

310 The model was validated in the period starting from the first COVID-19 infection to July

311 2020, in this period the mean prevalence was 7.2%. The AUC of the CoLab-score is 0.930

312 (95% CI: 0.909 to 0.945).

CoLab- score	Sensitivity	Specificity	PPV	NPV	ТР	TN	FP	FN	% of population
0	0.984	0.410	0.115	0.997	273.4	1470.9	2119.1	4.6	38.0
	(0.969 -	(0.302 -	(0.094 -	(0.993 -	(241.2 -	(1081.1 -	(1633.5 -	(2.6 -	(28.0 -
	0.991)	0.543)	0.147)	0.999)	304.4)	1950.9)	2507.6)	8.6)	51.0)
≤ 1	0.912	0.785	0.248	0.991	253.5	2817.1	772.9	24.5	73.3
	(0.892 -	(0.741 -	(0.207 -	(0.989 -	(226.5 -	(2655.4 -	(623.2 -	(13.4 -	(69.3 -
	0.952)	0.827)	0.300)	0.995)	287.0)	2961.2)	934.5)	30.2)	77.3)
≤ 2	0.856	0.880	0.357	0.988	238.1	3160.8	429.1	39.9	82.9
	(0.816 -	(0.864 -	(0.315 -	(0.984 -	(209.6 -	(3100.7 -	(357.3 -	(28.5 -	(80.9 -
	0.895)	0.900)	0.415)	0.991)	267.9)	3233.7)	487.1)	52.4)	83.9)
≤ 3	0.757	0.951	0.546	0.981	210.4	3415.1	174.9	67.6	90.0
	(0.706 -	(0.944 -	(0.496 -	(0.976 -	(183.4 -	(3378.0 -	(147.0 -	(51.9 -	(89.0 -
	0.809)	0.959)	0.604)	0.985)	240.2)	3456.4)	199.3)	84.9)	91.0)
≤ 4	0.612	0.978	0.683	0.970	170.2	3510.6	79.4	107.9	93.7
	(0.530 -	(0.972 -	(0.628 -	(0.963 -	(141.6 -	(3476.8 -	(60.3 -	(79.1 -	(91.7 -
	0.706)	0.983)	0.746)	0.978)	204.9)	3547.5)	100.4)	134.0)	93.7)
313									

Table 3: Bootstrapped diagnostic performance of the CoLab-score in the development

315 dataset.

316 The development dataset was internally validated for the period March 2020 – July 2020 (N

317 = 3868). The optimism-adjusted bootstrapped sensitivities, specificities, positive predictive

318 values (PPV), negative predictive values (NPV), true positives (TP), true negatives (TN), false

319 positives (FP) and false negatives (FN) and fraction of presentations (%) are shown for fixed

cut-offs (CoLab-score 0 till \leq 4). The numbers in round brackets represent the 95% optimism-

BMJ Open

321adjusted bootstrapped confidence intervals. The first column defines the threshold above322which CoLab-score a patient is considered positive. Note that "0" lists the sensitivity and323NPV of CoLab-score 0 and " \leq 4" lists the specificity and PPV of CoLab-score 5. Also note324that TP, TN, FP and FN are not whole numbers, as these are obtained through bootstrapping

325 and each bootstrap replicate contains a different number of controls and cases.

Diagnostic performance is shown in Table 3. A CoLab-score of 0 has a negative predictive
value (NPV) of 0.997 (95% CI: 0.993 to 0.999) and positive predictive value (PPV) of 0.115
(0.0934 - 0.147), one third (38%, 95% CI: 28 to 514%) of all ED presentations were assigned
this score and can therefore be safely excluded. Conversely, 6% (95% CI: 6 to 8%) of the ED
patients had a CoLab-score = 5. Given the PPV of this score (0.683, 95% CI: 0.628 to 0.746,
NPV: 0.970, 95% CI: 0.963 - 0.978), subsequent PCR testing is advised.

334 Temporal validation

As the CoLab-score was developed in our center after the first COVID-19-wave in the
Netherlands, the performance was evaluated in our center from July 2020 until October 2021.
Lab results from 17489 ED presentations were collected. After applying the inclusion flow as
shown in Figure 1 B, 14080 presentations remained, of which 1039 were associated with a
COVID-19 infection.

The mean prevalence in this period was 7.4%. The AUC of the CoLab-score in the temporal validation set is 0.916 (95% CI: 0.906 to 0.927). The performance is comparable to the development cohort, although sensitivity is slightly lower and specificity slightly higher (cf. **Table 3** and **Table 4**). The temporal validation dataset was also split into three phases according to dominant SARS-CoV-2 variants and vaccine roll-out (see **Supplemental** Page 19 of 49

1

BMJ Open

2
2
د ۸
4
5
6
7
8
9
10
11
11
12
13
14
15
16
17
18
19
20
20
∠ I วา
22
23
24
25
26
27
28
29
20
50 51
31
32
33
34
35
36
37
38
30
39
4U 41
41
42
43
44
45
46
47
48
<u>4</u> 0
79 50
50
51
52
53
54
55
56
57
58
50
27
60

	345	Material 2 Figure 1). The discriminative ability was not lower in the second or third phase,
	346	compared to the first phase. Diagnostic performance is preserved in terms of sensitivity and
	347	specificity, except a moderately reduced sensitivity of scores ≥ 3 in the third phase as
)	348	compared to the first phase. PPV and NPV are incomparable due to different prevalence/pre-
' 2 3	349	test probabilities in each phase (see Supplemental Material 2 Table 1).
+ 5 5	350	In terms of the predicted probabilities, model calibration shows that overall predicted
7 3	351	probabilities are too low (see Supplemental Material 3 Figure 1 for the calibration plot),
) 	352	which is expected since the prevalence differs and the intercept has to be adjusted to the
2 3	353	prevalence.
1 5	354	In this period at least 22 COVID-19 positive patients were identified by the CoLab-score, that
5 7	355	initially did not present with COVID-specific symptoms. Most patients had neurological or
5))	356	orthopedic presenting symptoms.
1 2 3	357	
1 5 5	358	External validation
7 3	359	For external validation, data obtained from three other centers were used, center 1 ($N = 1284$,
))	360	52 COVID-19 positive), center 2 (N = 2899, 99 COVID-19 positive) and center 3 (N = 3545,
 2 2	361	336 COVID-19 positive). The inclusion flow is summarized in Figure 3. COVID-19
5 1 5	362	prevalence differed between the three centers (4.0%, 3.4% and 9.5% respectively) and was
5 7	363	lower in centers 1 and 2, and higher in center 3 than in the development dataset. The AUCs of
3	364	the CoLab-score are 0.904 (95% CI: 0.866 to 0.942), 0.886 (95% CI: 0.851 - 0.922) and 0.891
) 2	365	(95% CI: 0.872 - 0.909), for centers 1, 2, and 3 respectively.
3 1 5	366	Diagnostic performance is shown in Table 4. The sensitivity of CoLab-score 0 in all centers
5		
7	367	is \geq 0.96. Therefore, the NPV of CoLab-score 0 was more than 99%. Calibration plots for

COVID-19 positives is slightly lower than expected in centers 1 and 2. For center 3, low

probabilities appear slightly underestimated and high probabilities slightly overestimated.

CoLab-

Validation

CoLab- score	Validation set	Sensitivity	Specificity	PPV	NPV	ТР	TN	FP	FN
	Temporal	0.967	0.420	0.117	0.994	1005	5476	7565	34
		(0.956 -	(0.411 -	(0.115 -	(0.992 -	(993 -	(5366 -	(7454 -	(23 -
		0.978)	0.428)	0.119)	0.996)	1016)	5587)	7675)	46)
	Center 1	1.000	0.331	0.059	1.000	52	410	827	0
		(1.000 -	(0.307 -	(0.057 -	(1.000 -	(52 -	(380 -	(794 -	(0 -
0		1.000)	0.358)	0.061)	1.000)	52)	443)	857)	0)
U	Center 2	0.961	0.351	0.052	0.996	99	985	1823	4
		(0.922 -	(0.333 -	(0.049 -	(0.992 -	(95 -	(935 -	(1773 -	(1 -
		0.990)	0.369)	0.054)	0.999)	102)	1035)	1873)	8)
	Center 3	0.970	0.322	0.130	0.991	327	1042	2193	10
		(0.950 -	(0.306 -	(0.126 -	(0.984 -	(320 -	(991 -	(2143 -	(4 -
		0.988)	0.338)	0.133)	0.996)	333)	1092)	2244)	17)
	Temporal	0.888	0.791	0.253	0.989	923	10311	2730	116
≤ 1		(0.870 -	(0.783 -	(0.245 -	(0.987 -	(904 -	(10215 -	(2640 -	(96 -
		0.908)	0.798)	0.261)	0.991)	943)	10401)	2826)	135)
	Center 1	0.923	0.694	0.113	0.995	48	858	379	4
		(0.846 -	(0.669 -	(0.101 -	(0.991 -	(44 -	(828 -	(346 -	(1 -
		0.981)	0.720)	0.124)	0.999)	51)	891)	409)	8)
	Center 2	0.913	0.678	0.094	0.995	94	1905	903	9
		(0.854 -	(0.661 -	(0.087 -	(0.992 -	(88 -	(1857 -	(855 -	(4 -
		0.961)	0.696)	0.101)	0.998)	99)	1953)	951)	15)
	Center 3	0.914	0.674	0.226	0.987	308	2180	1055	29
		(0.881 -	(0.657 -	(0.216 -	(0.982 -	(297 -	(2126 -	(1001 -	(19 -
		0.944)	0.691)	0.236)	0.991)	318)	2234)	1109)	40)
	Temporal	0.820	0.894	0.382	0.984	852	11661	1380	187
		(0.796 -	(0.889 -	(0.367 -	(0.982 -	(827 -	(11591 -	(1312 -	(163 -
		0.843)	0.899)	0.396)	0.986)	876)	11729)	1450)	212)
	Center 1	0.808	0.811	0.152	0.990	42	1003	234	10
		(0.692 -	(0.788 -	(0.129 -	(0.984 -	(36 -	(975 -	(208 -	(5 -
< 2		0.904)	0.832)	0.176)	0.995)	47)	1029)	262)	16)
<u> </u>	Center 2	0.845	0.801	0.135	0.993	87	2248	560	16
		(0.777 -	(0.785 -	(0.122 -	(0.990 -	(80 -	(2205 -	(519 -	(9 -
		0.913)	0.815)	0.147)	0.996)	94)	2289)	603)	23)
	Center 3	0.890	0.794	0.311	0.986	300	2569	666	37
		(0.855 -	(0.779 -	(0.294 -	(0.981 -	(288 -	(2521 -	(620 -	(26 -
		0.923)	0.808)	0.328)	0.990)	311)	2615)	714)	49)
	Temporal	0.710	0.962	0.596	0.977	738	12540	501	301
		(0.682 -	(0.958 -	(0.573 -	(0.974 -	(709 -	(12496 -	(459 -	(272 -
		0.738)	0.965)	0.618)	0.979)	767)	12582)	545)	330)
	Center 1	0.750	0.909	0.257	0.989	39	1124	113	13
≤ 3		(0.635 -	(0.892 -	(0.213 -	(0.983 -	(33 -	(1104 -	(93 -	(7 -
		0.865)	0.925)	0.306)	0.994)	45)	1144)	133)	19)
	Center 2	0.660	0.897	0.190	0.986	68	2519	289	35
		(0.563 -	(0.885 -	(0.163 -	(0.983 -	(58 -	(2486 -	(259 -	(26 -
		0.748)	0.908)	0.218)	0.990)	77)	2549)	322)	45)

CoLab- score	Validation set	Sensitivity	Specificity	PPV	NPV	TP	TN	FP	
	Center 3	0.766	0.887	0.413	0.973	258	2869	366	
		(0.718 -	(0.876 -	(0.386 -	(0.968 -	(242 -	(2835 -	(330 -	
		0.810)	0.898)	0.442)	0.978)	273)	2905)	400)	
	Temporal	0.585	0.984	0.750	0.968	608	12838	203	
	_	(0.556 -	(0.982 -	(0.724 -	(0.965 -	(578 -	(12811 -	(175 -	(
		0.615)	0.987)	0.778)	0.970)	639)	12866)	230)	
	Center 1	0.654	0.951	0.359	0.985	34	1176	61	
		(0.519 -	(0.939 -	(0.293 -	(0.979 -	(27 -	(1161 -	(47 -	
< 1		0.788)	0.962)	0.435)	0.991)	41)	1190)	76)	
<u>></u> 4	Center 2	0.534	0.952	0.287	0.982	55	2672	136	
		(0.437 -	(0.943 -	(0.239 -	(0.979 -	(45 -	(2649 -	(115 -	
		0.621)	0.959)	0.339)	0.986)	64)	2693)	159)	
	Center 3	0.665	0.930	0.497	0.964	224	3008	227	
		(0.611 -	(0.921 -	(0.462 -	(0.958 -	(206 -	(2980 -	(199 -	
		0.718)	0.938)	0.534)	0.969)	242)	3036)	255)	

Table 4: Diagnostic performance of the CoLab-score in the validation dataset (temporal)

- and three external hospitals.
- Sensitivities, specificities, positive predictive values (PPV), negative predictive values (NPV),
- true positives (TP), true negatives (TN), false positives (FP) and false negatives (FN) are
- shown for fixed cut-offs (CoLab-score 0 till \leq 4) with bootstrapped 95% confidence intervals
- in parentheses. Note that "0" lists the sensitivity and NPV of CoLab-score 0 and " ≤ 4 " lists
 - the specificity and PPV of CoLab-score 5.

380 Discussion

Given the impact of COVID-19 on society and healthcare, there is a need for simple and fast
detection of patients with a possible COVID-19 infection in the ED. The CoLab-score
described in this study, is a fast and accurate risk score to triage patients presenting at the ED
based on ten routine blood biomarkers and age.

The main strength of this study is that this score can be used as an early-warning or triaging tool for the ED population presenting with abdominal pain, chest pain, shortness of breath, syncope, sepsis or other non-specific complaints where a routine blood panel is requested. This is in contrast to the vast majority of COVID-19 diagnostic models that have been developed on a pre-selected population of PCR-tested patients [9,20–26]. Moreover, the CoLab-score requires only routine blood tests, instead of (features from) imaging such as CT-scans or laboratory tests that are not routinely collected in the ED, e.g. interleukin-6 or 3-hydroxybuteric acid [4]. Compared to lateral flow tests (LFTs), which provide a dichotomous result within 30 minutes and are widely adopted in EDs, the CoLab-score is a continuous score. The lowest CoLab-scores (0 - 1) offer higher sensitivity and are therefore more suitable to rule-out COVID-19 than a LFT, which are only moderately sensitive (albeit more specific) [27,28].

Two other studies have been published which are similar to this study [9,10]. Interestingly, the study by Soltan et al., ranked basophils and eosinophils as the two most important features in predicting the outcome, similar to our results [10]. Eosinophils were also seen as one of the most important features by Plante et al. [9]. However, both studies focus on an artificial intelligence/machine learning approach. While their approach likely results in higher predictive performance, due to the ability of machine learning models to capture non-linear and interaction effects, the goal of this study was to develop a simple, fast and robust model that can easily be implemented in current hospital IT systems.

Page 23 of 49

BMJ Open

Since this is a retrospective case-control study, there is some unavoidable missing data. In our cohort 17.6% of the ED presentations could not be used due to one or more missing laboratory results. This is lower or equal to similar studies; 22% [23], 17% [21] and 11% [26]. Important to note is that 7.7% of missingness is due to analytical errors which can be assumed to be missing completely at random. For the remaining 9.9% of missingness, the full lab panel was most frequently missing for pediatric, obstetric and surgery patients. These patients are presenting with specific complaints for which specific laboratory tests are requested, and hence do not match the inclusion criteria for a routine blood panel. Overall the missingness was significantly lower in the PCR-tested group versus the untested group (χ^2 -test p-value <0.001). It is assumed that all presentations in the untested group are COVID-19 negative. However, some presentations with asymptomatic COVID-19 could be present in the untested control group. The impact of these 'false controls' is most likely small as other studies indicate that there is a very low positivity rate among asymptomatic ED presentations (only a few in over a thousand tested asymptomatic cases) [29,30]. The vast majority of controls were not tested for COVID-19, because they were either pre-pandemic or untested patients (89% in the development dataset). Clinical data always contains some unavoidable 'noise' in the form of misregistrations, misdiagnoses or patients who were missed. We have tried to mitigate this by including a large pre-pandemic control group and including all PCR tests within 1 week after discharge.

In the external centers, there is a high level of missingness as a result of an incomplete
laboratory panel. In the case of centers 1 and 2, only internal medicine ED presentations were
tested with a laboratory panel containing the 10 tests required for the CoLab-score. The ED
lab panel of other disciplines (e.g. urology, surgery or pediatrics) differed and did not contain
the required tests. Nevertheless, the majority of COVID-19 patients were internal medicine
ED presentations, which is reflected by the few PCR-positive patients excluded. Due to these

BMJ Open

high levels of missingness, the results of the external centers cannot be used to show that the
CoLab-score generalizes to the entire ED population. Rather, the results show that for the
majority of COVID-19 positive patients presenting at the ED, a routine laboratory panel is
available from which the CoLab-score can be calculated, and that the performance of the
CoLab-score in this population is comparable to the development population. Differences in
the distribution of CoLab variables between centers are shown in Supplemental Material 3
Figure 2.

The performance of the CoLab-score is affected by the time between the onset of symptoms and ED presentations. The score increases with the duration of symptoms and gradually decreases after day 7 (see Supplemental Material 4 Figure 1 for a plot of the duration of COVID-19 related symptoms and the CoLab-linear predictor). As a consequence, some COVID-19 patients with early or late presentation after onset of symptoms can be missed. Optimal performance of the CoLab-score is achieved when the onset of symptoms is >1 and <10 days prior to ED presentation. Chemotherapy that causes myeloid suppression, will decrease neutrophilic, basophilic and eosinophilic counts and thereby "falsely" increasing the CoLab-score. Conversely, COVID-19 patients with severe anemia could have "falsely" lowered CoLab-scores. To minimize false negatives, we have therefore advised to report CoLab-scores only when the concentration of erythrocytes is $\geq 2.9 / pL$. It was chosen to exclude re-presentations after a previous presentation with COVID-19. Since the median time between initial presentation and re-presentation was 12 days, these patients

450 were most likely not re-infected patients, but patients who deteriorated after initial

451 presentation/treatment. Given that the CoLab-score follows the host-immune response, the

452 score is time sensitive (see **Supplemental Material 4 Figure 1**). Including these patients

453 would impact the performance of the CoLab-score as patients in a later phase of the disease

454 show different biomarker profiles. The CoLab-score is aimed towards alerting clinicians to

Page 25 of 49

1

BMJ Open

2
3
4
5
6
7
8
9
10
11
12
12
13
14
15
16
17
18
19
20
21
22
23
24
27
25
20
27
28
29
30
31
32
33
34
35
36
30 27
3/
38
39
40
41
42
43
44
45
46
17
47
40
49
50
51
52
53
54
55
56
57
58
50
22
οU

455 patients presenting with a novel SARS-CoV-2 infection, rather than patients who deteriorate 456 after treatment for COVID-19. Other re-presentations were not excluded, which results in 457 some patients appearing multiple times in a dataset. This was not adjusted for in the 458 regression model since the assumption was made that ED presentations are independent 459 observations. The median time between re-presentations is 38 days, most likely resulting in 460 variations in laboratory results between presentations, and hence, little to no correlation 461 between presentations. A sensitivity analysis was performed whereby only the first 462 presentation was included for each patient (Supplemental Material 4 Table 1), but no 463 difference was found in performance in terms of sensitivity, specificity and AUC. 464 The CoLab-score does not serve as a replacement for PCR-testing or LFTs, and can be used to 465 guide PCR-testing when routine blood tests are available. Important to note is that the CoLab-466 score is only valid for ED presentations where routine blood testing is requested, and as a 467 consequence does not generalize to the ED population who is otherwise well and does not 468 undergo routine blood testing. Using the CoLab-score in a symptomatic/PCR-tested cohort 469 also results in different diagnostic performance characteristics, as compared to using the score 470 on the full ED cohort (see Supplemental Material 4 Table 1). 471 Finally, the CoLab-score could lead to false positives by other viral infections. However, in an 472 historic patient cohort, the CoLab-score had only limited discriminative ability in separating 473 influenza-PCR-negative from influenza-PCR-positive patients (see Supplemental Material 4 474 Figure 2) implying specificity for SARS-CoV-2. Since the CoLab-score reflects the host-475 response to the virus, it is hypothesized that the CoLab-score could also be sensitive to future 476 SARS-CoV-2 variants. This is supported by the fact that the discriminative ability is sustained 477 in periods with different dominant variants, although the sensitivity of scores ≥ 3 is somewhat 478 lower in the third phase (see Supplemental Material 2 Table 1). Although vaccination status

479 is not registered for all presenting patients, in a small subgroup of 12 patients for whom

vaccination status was registered, and were COVID-19 positive, 8 of 12 patients had the
highest CoLab-score (= 5) (see Supplemental Material 2 Figure 2). Continuous assessment
of the performance of the CoLab-score is required due to the emergence of new variants and
changes in the host's immune response.

To conclude, the CoLab-score developed and validated in this study, based on 10 routine laboratory results and age, is available within 1 hour for any patient presenting at the ED where routine blood testing is requested. The score can be used by clinicians to guide PCR testing or triage patients and helps to identify COVID-19 in patients presenting at the ED with abdominal pain, chest pain, shortness of breath, syncope, sepsis or other non-specific complaints where a routine blood panel is requested. The lowest CoLab-score can be used to effectively rule-out a possible SARS-CoV-2 infection, the highest score to alert physicians to a possible infection. The CoLab-score is therefore a valuable tool to rule out COVID-19, guide PCR testing and is available to any center with access to routine laboratory tests.

494 Data Availability Statement

495 Datasets with source data for Table 1, Figure 2 and Table 4, as well the R-code to fit the496 model is available from a Dryad repository [31].

ien

Funding statement

499 This was an investigator-initiated study and no funding was received for this study.

2	
3	501
4 5	
6 7	502
8	503
9 10	504
11 12	304
13	505
14 15 16	506
17 18	507
19 20 21	508
22 23 24	509
25 26 27	510
28 29	511
30 31	512
32 33	E10
34 35	513
36 37	514
37 38 39	515
40 41 42	516
43 44	517
45 46 47	518
48 49 50	519
50 51 52	520
53 54 55	521
56 57	522
58 59 60	523

Competing interests

A-KB reports no conflict of interest. RD reports no conflict of interest. MM reports no
conflict of interest. HA reports no conflict of interest. RvB reports no conflict of interest. WT
reports no conflict of interest. SB reports not conflict of interest. ML reports no conflict of
interest. RM reports no conflict of interest. MB reports no conflict of interest. JK reports no
conflict of interest. MM reports no conflict of interest. JvS reports no conflict of interest. NvR
reports no conflict of interest. VS reports no conflict of interest.

509 Author contributorship statement

Arjen-Kars Boer: Conceptualization (Lead), Data curation (Lead), Funding acquisition
(Lead), Investigation (Equal), Methodology (Equal), Supervision (Equal), Writing-original
draft (Equal), Writing-review & editing (Equal).

513 Ruben Deneer: Data curation (Equal), Formal analysis (Equal), Investigation (Equal),
514 Methodology (Lead), Software (Lead), Visualization (Lead), Writing-original draft (Equal),
515 Writing-review & editing (Equal).

516 Maaike Maas: Conceptualization (Supporting), Resources (Supporting), Supervision
517 (Supporting), Validation (Supporting), Writing-review & editing (Equal).

518 Heidi Ammerlaan: Conceptualization (Supporting), Resources (Supporting), Supervision
519 (Supporting), Validation (Equal), Writing-review & editing (Equal).

520 Roland van Balkom: Conceptualization (Supporting), Resources (Supporting), Supervision
521 (Supporting), Validation (Supporting), Writing-review & editing (Equal).

522 Wendy Thijssen: Conceptualization (Supporting), Resources (Supporting), Supervision
 523 (Supporting), Validation (Supporting), Writing-review & editing (Equal).

BMJ Open

524	Sophie Bennenbroek: Conceptualization (Supporting), Resources (Supporting), Supervision
525	(Supporting), Validation (Supporting), Writing-review & editing (Equal).
526	Mathie Leers: Resources (Equal), Validation (Equal), Writing-review & editing (Equal).
527	Remy Martens: Resources (Equal), Validation (Equal), Writing-review & editing (Equal).
528	Madelon M. Buijs: Resources (Equal), Validation (Equal), Writing-review & editing (Equal).
529	Jos Kerremans: Resources (Equal), Validation (Equal), Writing-review & editing (Equal).
530	Muriël Messchaert: Resources (Equal), Validation (Equal), Writing-review & editing (Equal).
531	Jeroen van Suijlen: Resources (Supporting), Validation (Supporting), Writing-review &
532	editing (Equal).
533	Natal A.W. van Riel: Methodology (Supporting), Resources (Supporting), Supervision
534	(Equal), Writing-review & editing (Equal).
535	Volkher Scharnhorst: Conceptualization (Equal), Funding acquisition (Equal), Project
536	administration (Lead), Resources (Equal), Supervision (Lead), Writing-review & editing
537	(Equal).

1 2								
3 4	539	Refe	erences					
5 6 7	540							
8 9 10	541	1	Coronavirus	Disease	(COVID-19)	Situation	Reports.	
10 11 12	542		https://www.who.int	/emergencies/dise	eases/novel-coronavir	us-2019/situation-r	eports/	
13 14 15	543		(accessed 4 Feb 202	1).				
16 17	544	2	Guan W, Ni Z, Hu	Y, et al. Clinica	l Characteristics of C	oronavirus Diseas	e 2019 in	
18 19 20	545		China. <i>http</i>	os://doi.org/10105	56/NEJMoa2002032	2020; 382 :	:1708–20.	
21 22 23	546		doi:10.1056/NEJMC	A2002032				
24 25	547	3	Vetter P, Vu DL, L	'Huillier AG, et	al. Clinical features of	of covid-19. BMJ	2020; 369 .	
26 27 28	548		doi:10.1136/BMJ.M1470					
29 30	549	4	Wynants L, Van Calster B, Collins GS, et al. Prediction models for diagnosis and					
31 32	550		prognosis of covid-19: Systematic review and critical appraisal. BMJ 2020;369:18					
33 34 35	551		doi:10.1136/bmj.m1	328				
30 37 38	552	5	Albahri AS, Hamid RA, Alwan J k., et al. Role of biological Data Mining and Mach					
39 40	553		Learning Techniques in Detecting and Diagnosing the Novel Coronavirus (COVII					
41 42	554		19): A Systematic Review. J. Med. Syst. 2020;44:122. doi:10.1007/s10916-020-01582					
43 44 45	555		х					
46 47 48	556	6	Hooli S, King C. G	eneralizability of	Coronavirus Disease	2019 (COVID-19) Clinical	
49 50	557		Prediction Models.	Clin Infect Dis 20	20; 71 :897–897. doi:10	0.1093/cid/ciaa417		
52 53	558	7	Prokop M, Everding	gen W van, Vellin	nga T van R, <i>et al.</i> CO	D-RADS: A Categ	orical CT	
54 55	559		Assessment Scheme	for Patients Sus	pected of	Having COV	VID-19—	
56 57	560		Definition and Eva	luation. https://d	oi.org/101148/radiol2	2020201473 2020;	296 :E97–	
58 59 60	561		104. doi:10.1148/RA	ADIOL.20202014	73			

BMJ Open

1 2			
3 4	562	8	Goodacre S, Thomas B, Sutton L, et al. Derivation and validation of a clinical severity
5 6	563		score for acutely ill adults with suspected COVID-19: The PRIEST observational
7 8 9	564		cohort study. PLoS One 2021;16:e0245840. doi:10.1371/JOURNAL.PONE.0245840
10 11 12	565	9	Plante TB, Blau AM, Berg AN, et al. Development and external validation of a
13 14	566		machine learning tool to rule out COVID-19 among adults in the emergency
15 16	567		department using routine blood tests: A large, multicenter, real-world study. J Med
17 18 19	568		Internet Res 2020;22:e24048. doi:10.2196/24048
20 21	569	10	Soltan AAS, Kouchaki S, Zhu T, et al. Rapid triage for COVID-19 using routine
22 23 24	570		clinical data for patients attending hospital: development and prospective validation of
25 26	571		an artificial intelligence screening test. Lancet Digit Heal 2021;3:e78-87.
27 28 29	572		doi:10.1016/S2589-7500(20)30274-0
30 31	573	11	R Core Team. R: A Language and Environment for Statistical Computing.
32 33 34	574		2020.https://www.r-project.org/
35 36	575	12	Zou H. The adaptive lasso and its oracle properties. J Am Stat Assoc 2006;101:1418-
37 38 39	576		29. doi:10.1198/01621450600000735
40 41 42	577	13	Tibshirani R. Regression Shrinkage and Selection Via the Lasso. J R Stat Soc Ser B
43 44	578		1996; 58 :267–88. doi:10.1111/j.2517-6161.1996.tb02080.x
45 46 47	579	14	Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models
48 49 50	580		via coordinate descent. J Stat Softw 2010;33:1-22. doi:10.18637/jss.v033.i01
51 52	581	15	King G, Zeng L. Logistic Regression in Rare Events Data. Polit Anal 2001;9:137-63.
53 54 55	582		doi:10.1093/oxfordjournals.pan.a004868
56 57 58	583	16	Efron B. Estimating the error rate of a prediction rule: Improvement on cross-
59 60	584		validation. J Am Stat Assoc 1983;78:316–31. doi:10.1080/01621459.1983.10477973

1 2			
2 3 4 5 6 7 8 9 10 11 2 3 14 5 6 7 8 9 10 11 2 3 14 5 6 7 8 9 10 11 2 3 14 5 6 7 8 9 10 11 2 3 2 4 25 26 27 8 9 30 31 2 33 45 36 37 8 9 40 11 2 31 45 6 7 8 9 10 11 2 31 45 6 7 8 9 10 11 2 32 4 5 26 27 8 9 30 31 22 3 34 5 36 37 8 9 40 31 22 32 4 5 26 27 8 9 30 31 22 33 45 36 37 8 9 40 41 22 32 4 5 6 7 8 9 30 31 22 33 45 36 37 8 9 40 41 22 32 45 26 27 8 9 30 31 23 34 35 36 37 8 9 40 41 22 35 45 56 7 8 9 9 0 1 22 3 24 55 67 8 9 30 31 22 33 44 5 66 7 8 9 9 0 1 22 33 44 5 66 7 8 9 9 0 1 22 3 34 5 36 7 8 9 9 0 1 22 3 34 5 36 7 8 9 9 0 1 22 3 34 5 36 7 8 9 9 0 1 22 3 34 5 36 7 8 9 9 0 1 2 3 34 5 5 6 7 8 9 9 0 1 2 3 3 4 5 5 6 7 8 9 9 0 1 2 3 3 4 5 5 6 7 8 9 0 1 2 3 3 4 5 5 6 7 8 9 9 0 1 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	585	17	Robin X, Turck N, Hainard A, et al. pROC: An open-source package for R and S+ to
	586		analyze and compare ROC curves. BMC Bioinformatics 2011;12:77. doi:10.1186/1471-
	587		2105-12-77
	588	18	Harrell Jr FE. rms: Regression Modeling Strategies. 2021.https://cran.r-
	589		project.org/package=rms
	590	19	Ricós C, Alvarez V, Cava F, et al. Current databases on biological variation: Pros, cons
	591		and progress. Scand. J. Clin. Lab. Invest. 1999; 59 :491–500.
	592		doi:10.1080/00365519950185229
	593	20	Brinati D, Campagner A, Ferrari D, et al. Detection of COVID-19 Infection from
	594		Routine Blood Exams with Machine Learning: A Feasibility Study. J Med Syst
	595		2020; 44 :1–12. doi:10.1007/s10916-020-01597-4
	596	21	Joshi RP, Pejaver V, Hammarlund NE, et al. A predictive tool for identification of
	597		SARS-CoV-2 PCR-negative emergency department patients using routine test results. J
	598		<i>Clin Virol</i> 2020; 129 :104502. doi:10.1016/j.jcv.2020.104502
	599	22	Qin L, Yang Y, Cao Q, et al. A predictive model and scoring system combining
	600		clinical and CT characteristics for the diagnosis of COVID-19. Eur Radiol
	601		2020; 30 :6797–807. doi:10.1007/s00330-020-07022-1
	602	23	Kurstjens S, van der Horst A, Herpers R, et al. Rapid identification of SARS-CoV-2-
	603		infected patients at the emergency department using routine testing. Clin Chem Lab
	604		Med 2020;58:1587-93. doi:10.1515/cclm-2020-0593
	605	24	Fink DL, Khan PY, Goldman N, et al. Development and internal validation of a
	606		diagnostic prediction model for COVID-19 at time of admission to hospital. QJM An
	607		Int J Med Published Online First: 9 November 2020. doi:10.1093/qjmed/hcaa305
BMJ Open

Page 32 of 49

3 4	608	25	Giamello JD, Paglietta G, Cavalot G, et al. A simple tool to help ruling-out Covid-19
5 6	609		in the emergency department: derivation and validation of the LDH-CRP-Lymphocyte
7 8 9	610		(LCL) score. <i>Emerg Care J</i> 2020; 16 . doi:10.4081/ecj.2020.9336
10 11 12	611	26	Tordjman M, Mekki A, Mali RD, et al. Pre-test probability for SARS-Cov-2-related
13 14	612		infection score: The PARIS score. PLoS One 2020;15:e0243342.
15 16 17	613		doi:10.1371/journal.pone.0243342
18 19	614	27	Peto T, Affron D, Afrough B, et al. COVID-19: Rapid antigen detection for SARS-
20 21	615		CoV-2 by lateral flow assay: A national systematic evaluation of sensitivity and
22 23 24	616		specificity for mass-testing. <i>EClinicalMedicine</i> 2021; 36 :100924.
25 26 27	617		doi:10.1016/J.ECLINM.2021.100924
28 29	618	28	García-Fiñana M, Hughes DM, Cheyne CP, et al. Performance of the Innova SARS-
30 31	619		CoV-2 antigen rapid lateral flow test in the Liverpool asymptomatic testing pilot:
32 33 34	620		population based cohort study. BMJ 2021; 374 :1637. doi:10.1136/BMJ.N1637
35 36 27	621	29	Ford JS, Parikh A, Sandhu R, et al. Testing Asymptomatic Emergency Department
37 38 39	622		Patients for Coronavirus Disease 2019 (COVID-19) in a Low-prevalence Region.
40 41	623		Acad. Emerg. Med. 2020;27:771–4. doi:10.1111/acem.14044
42 43 44	624	30	Ravani P, Saxinger L, Chandran U, et al. COVID-19 screening of asymptomatic
45 46	625		patients admitted through emergency departments in Alberta: a prospective quality-
47 48 49	626		improvement study. C Open 2020;8:E887-94. doi:10.9778/cmajo.20200191
50 51	627	[datas	set] 31 Boer A-K, Deneer R. Source data for: Development and validation of an early
52 53 54	628		warning score to identify COVID-19 in the emergency department based on routine
55 56	629		laboratory tests: a multicenter case-control study. Dryad Digit Repos Published Online
57 58 59 60	630		First: 2021. doi:https://doi.org/10.5061/dryad.5hqbzkh6x

31

BMJ Open

632 Figure legends

Figure 1: Inclusion flow of patients in the development (A) and temporal validation (B) dataset. All patient admissions with routine venous blood sampling at the emergency department (ED) were included. For the development dataset, completeness of the lab panel was assessed for all 28 laboratory tests, for the temporal validation dataset this was only necessary for 10 laboratory tests. The major causes of missingness are described in the text. In the development dataset, presentations with extreme values (>10 SD) were excluded. The same limits were applied to the temporal validation dataset (see Table 2 for limits). Figure 2: Probability density plot of the CoLab-linear predictor. The probability density plots for COVID (dark grey) and non-COVID patients (light grey) are plotted against the linear predictor (see table 2). The CoLab-score cut-offs (-5.83, -4.02, -3.29, -2.34 and -1.64) are depicted with vertical dashed lines. The white-boxed numbers (between the cut-offs) represent the corresponding CoLab-score. Note that while the area under both curves is identical (since these are probability density functions), in absolute numbers the "negative or untested"-group is about 36 times larger than the PCR positive group. Figure 3: Inclusion flow of ED patients in three external centers. All emergency department (ED) presentations with routine venous blood sampling were

included. Missingness of lab panels was assessed for the 11 variables in the CoLab-score (see

- *Table 2). Re-presentations after a positive PCR result or clinical COVID-19 registration were*
- excluded as "previous COVID-19+". Presentations with any laboratory result above the
- limits of the CoLab-score (see Table 2) were excluded.

.) were

Page 37 of 49 **Center 1**

BMJ Open

Center 2

Supplemental material 1

Model fitting

Prior to model fitting, covariates were scaled to zero mean and unit variance, after model fitting coefficients were unscaled to obtain regression coefficients on the original scale. In adaptive lasso, weights are applied to each of the covariates present in the lasso constraint, the weight vector has to be calculated before the adaptive lasso regression is performed. Due to multicollinearity between laboratory tests in the routine lab panel, weights in the adaptive lasso were based on ridge regression estimates ($\hat{\beta}_{ridge}$) as recommended by Zou. To obtain $\hat{\beta}_{ridge}$ the optimal penalty (λ) for the ridge regression was chosen using 10 fold crossvalidation (CV) with area under the ROC curve (AUC) as the loss function. The λ corresponding to the maximum AUC was selected to obtain $\hat{\beta}_{ridge}$. The weight vector (\hat{w}) was calculated by $\hat{w} = 1/|\hat{\beta}_{ridge}|^2$. This weight vector was then used to fit an adaptive lasso regression where λ was chosen by the criterion ± 1 SE of the maximum AUC.

Model intercept correction

The linear predictor for a patient *i* is calculated as follows: $lp_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_n x_{in}$ Where *n* is the number of variables in the final model, x_{in} are the observed predictor variables for subject i and β_n the model coefficients. The linear predictor can then be converted to a probability for patient *i* (*P_i*) by the logistic function: $P_i = \frac{1}{1+e^{-lp_i}}$

The intercept term β_0 is sensitive to the fraction of cases versus controls in the dataset/population. Since the model is fitted to a case-control dataset where the number cases is fixed (all patients tested positive for COVID-19) and the number of controls is randomly chosen (a 6-month period pre-COVID), the intercept term β_0 is a result of this choice and will likely not be generalizable to the real-world setting. Prior correction is a method to correct the estimate of the intercept based on the true fraction of positives in the population, τ (prevalence of COVID-19 in the ED) and the fraction of cases in the development dataset, \bar{y} . The intercept term β_0 can then be corrected to obtain $\beta_{0corrected}$ using the following formula:

$$\begin{split} \beta_{0corrected} &= \beta_0 + \beta_{adj} \\ \beta_{adj} &= -ln\left[\left(\frac{1-\tau}{\tau}\right)\left(\frac{\bar{y}}{1-\bar{y}}\right)\right] \end{split}$$

R

In our dataset $\bar{y} = 0.02675$ therefore:

$$\beta_{adj} = -ln\left(\frac{1-\tau}{\tau}\right) + 3.594$$

An estimate $\bar{\tau}$ can be used for the prevalence τ to obtain β_{adj} which can be plugged in the original linear predictor formula to obtain calibrated probabilities:

$$lp_{i}(\tau) = \beta_{0} - ln\left(\frac{1-\tau}{\tau}\right) + 3.594 + \beta_{1}x_{i1} + \dots + \beta_{n}x_{in}$$

CoLab-score

An alternative, which is the basis of the CoLab-score, is to choose a fixed probability P_i above which one considers a patient eligible for further testing. The probability can be expressed as a number needed to test. If one is willing to test 10 patients to find one positive, all patients with $P_i \ge 0.1$ should be considered positive. In this study a number needed to test of 15 is used, therefore all patients with a $P_i \ge 0.067$ should be considered positive. On the linear predictor scale this translates to logit(0.067) = -2.639. To determine the cutoffs for difference prevalence thresholds one solves the following equation:

 $\beta_0 + \beta_{adj} + \beta_1 x_{i1} + \dots + \beta_n x_{in} \ge -2.639$ $\beta_0 + \beta_1 x_{i1} + \dots + \beta_n x_{in} \ge -2.639 - \beta_{adj}$ $lp_i(\tau) \ge ln\left(\frac{1-\tau}{\tau}\right) - 6.233$

Choosing values for τ yields the cutoffs for the CoLab score:

$$\begin{split} lp_i(\tau = 0.4) &\geq -5.83 \text{ (CoLab-score = 1)} \\ lp_i(\tau = 0.1) &\geq -4.03 \text{ (CoLab-score = 2)} \\ lp_i(\tau = 0.05) &\geq -3.29 \text{ (CoLab-score = 3)} \\ lp_i(\tau = 0.02) &\geq -2.34 \text{ (CoLab-score = 4)} \\ lp_i(\tau = 0.01) &\geq -1.64 \text{ (CoLab-score = 5)} \end{split}$$

These thresholds correspond to CoLab-scores 0 to 5. The interpretation of these scores is as follows; if the prevalence is <1%, only CoLab-score 5 should be classified as positive and CoLab-score 0 till 4 as negative. If the prevalence is 1% - 2%, CoLab-score 4 and 5 should be classified as positive and 1 - 3 negative. Similarly, with a prevalence of 2 - 5% the split is between CoLab-score 2 and 3 and with prevalence of 5 - 10% between CoLab-score 1 - 2. If the prevalence is higher than 10% only CoLab-score 0 is classified as negative. Using the CoLab-score in this fashion, aims to preserve a number need to test of 15.

Relative importance of variables

Since the variables included in the model are on different scales, the magnitude of the unscaled coefficients cannot be used to compare the importance of variables to each other. To give some indication of the importance of the variables in predicting the outcome, the unscaled coefficients obtained from the adaptive lasso regression were used to calculate the relative importance. The variable with the highest unscaled coefficient was used as maximum ($\beta_{unscaled,max}$), and all other scaled coefficients were divided by this maximum and multiplied by 100 to obtain the relative importance in %: $\frac{\beta_{unscaled}}{\beta_{unscaled,max}} \cdot 100$.

Supplemental material 2

1.00 B.1.617.2 (δ) B.1.1.7 (α) Original strain ЕО Weekly # of COVID-19 positives at Age matched fraction vaccina 0.75 ED fraction partly vaccinated 0.50 ED fraction fully vaccinated 0.25 feo 0.00 Sep 2020 Dec 2020 Mar 2021 Jun 2021 Sep 2021 Date

Vaccination status and COVID-19 ED prevalence plot

Figure 1: Temporal validation period split into three phases characterized by weekly number of new COVID-19 cases at the emergency department (ED) and estimated fraction of ED patients vaccinated.

The temporal validation dataset consists of ED presentations from July 2020 until October 2021. As stated in the "Materials and Methods" section, this period was split into three phases: i) from July 2020 until March 2021, no vaccination and no variants of concern identified ii) from March 2021 until June 2021, partial vaccination and B.1.1.7 (Alpha) variant identified as dominant iii) from June 2021 until October 2021, widespread vaccination and B.1.617.2 (Delta) variant identified as dominant. The ED fraction vaccinated is estimated by merging data from the Dutch national institute of public health by the date of the ED presentation and the year of birth of the patient. The gray bars depict weekly number of new COVID-19 cases at the ED, the blue lines the estimated fraction of ED patients fully or partially vaccinated.

CoLab-score performance

Phase	Cases/controls (prevalence)	AUC
Original strain & no vaccinations	694/7999 (8.6%)	0.909 (0.896 - 0.923)
B.1.1.7 strain & partial vaccination	287/2845 (10.1%)	0.937 (0.921 - 0.953)
B.1.617.2 strain & full vaccination	58/3236 (1.8%)	0.898 (0.857 - 0.939)

CoLab- score	Phase	Sensitivity	Specificity	PPV	NPV
	Original strain & no vaccinations	0.960 (0.944 - 0.974)	0.418 (0.407 - 0.429)	0.135 (0.133 - 0.138)	0.991 (0.987 - 0.994)
0	B.1.1.7 strain & partial vaccination	0.983 (0.969 - 0.997)	0.432 (0.413 - 0.450)	0.162 (0.158 - 0.168)	0.996 (0.992 - 0.999
	B.1.617.2 strain & full vaccination	0.983 (0.948 - 1.000)	0.415 (0.396 - 0.432)	0.030 (0.028 - 0.031)	0.999 (0.998 - 1.000
	Original strain & no vaccinations	0.879 (0.854 - 0.902)	0.789 (0.779 - 0.798)	0.283 (0.273 - 0.294)	0.986 (0.983 - 0.988
≤1	B.1.1.7 strain & partial vaccination	0.916 (0.885 - 0.948)	0.809 (0.793 - 0.824)	0.350 (0.332 - 0.370)	0.989 (0.984 - 0.993
	B.1.617.2 strain & full vaccination	0.862 (0.776 - 0.948)	0.780 (0.765 - 0.794)	0.067 (0.059 - 0.074)	0.997 (0.995 - 0.999
	Original strain & no vaccinations	0.813 (0.784 - 0.842)	0.894 (0.887 - 0.901)	0.421 (0.404 - 0.441)	0.980 (0.978 - 0.983
≤2	B.1.1.7 strain & partial vaccination	0.864 (0.826 - 0.902)	0.897 (0.885 - 0.908)	0.484 (0.455 - 0.516)	0.983 (0.979 - 0.988
	B.1.617.2 strain & full vaccination	0.690 (0.569 - 0.810)	0.892 (0.881 - 0.902)	0.104 (0.086 - 0.123)	0.994 (0.991 - 0.996
	Original strain & no vaccinations	0.697 (0.661 - 0.731)	0.962 (0.957 - 0.966)	0.634 (0.605 - 0.662)	0.971 (0.968 - 0.974
≤3	B.1.1.7 strain & partial vaccination	0.760 (0.711 - 0.812)	0.963 (0.955 - 0.970)	0.696 (0.650 - 0.739)	0.973 (0.967 - 0.978
	B.1.617.2 strain & full vaccination	0.621 (0.483 - 0.741)	0.960 (0.954 - 0.967)	0.222 (0.178 - 0.268)	0.993 (0.990 - 0.995
	Original strain & no vaccinations	0.566 (0.529 - 0.602)	0.984 (0.981 - 0.987)	0.775 (0.740 - 0.808)	0.960 (0.957 - 0.963
≤4	B.1.1.7 strain & partial vaccination	0.645 (0.589 - 0.704)	0.983 (0.978 - 0.988)	0.809 (0.762 - 0.856)	0.961 (0.955 - 0.967
	B.1.617.2 strain & full vaccination	0.517 (0.397 - 0.638)	0.986 (0.982 - 0.990)	0.400 (0.319 - 0.500)	0.991 (0.989 - 0.993

Table 1: Diagnostic performance of the CoLab-score in the temporal validation dataset,

split by phase.

BMJ Open

Sensitivities, specificities, positive predictive values (PPV) and negative predictive values (NPV) are shown for fixed cut-offs (CoLab-score 0 till ≤ 4) with bootstrapped 95% confidence intervals in parentheses. The temporal validation dataset is split into three phases according to dominant SARS-CoV-2 strains in the Netherlands and estimated fraction of ED patients vaccinated (see Figure above). Note that "0" lists the sensitivity and NPV of CoLab-score 0 and " ≤ 4 " lists the specificity and PPV of CoLab-score 5. The AUC was significantly higher in the second phase as compared to the first phase (DeLong test p-value: 0.0175), but did not differ significantly between the third and first phase (DeLong test p-value: 0.3903).

Figure 2: Boxplots of CoLab linear predictor versus COVID-19 positive, split by registered vaccination status.

The CoLab linear predictor is calculated for all ED presentations in the temporal validation set. Presentations who are registered as vaccinated are labeled TRUE (N = 13).

Presentations before vaccine roll-out are labeled FALSE (N = 5855). Presentations during

BMJ Open

vaccine roll-out but where no status is registered are labeled NA (N = 8212). Of the 13 presentations who were registered as vaccinated, 12 were COVID-19 positive and 1 negative. Note that vaccination status is only registered if a patient is SARS-CoV-2 PCR positive or considered positive until proven otherwise, therefore there is only one COVID-19 negative patient with a registered vaccination status.

to beet terien only

Figure 1: CoLab-score calibration plots of the temporal validation (A), external validation center 1 (B), external validation center 2 (C) and external validation center 3 (D).

In the calibration plots, the proportion of observed COVID-19 positives versus expected probabilities are plotted. Observations are grouped with an average of 150 observations per group. The expected probabilities follow from applying the inverse logit function to the CoLab-linear predictor calculated from Table 2. If the observed proportion in an external dataset is lower than the expected proportion, this means risks are over-estimated, if the observed fraction is higher, risks are under-estimated. Ideally, observed proportions are equal to expected proportions, this ideal-calibration-line is shown as a straight line through the origin with a slope of 1. The logistic calibration line is a logistic regression fit of the predicted probabilities. [Intercept, slope] for plots A-D: A [1.34, 1.08], B [-0.39, 0.92], C [-0.76, 0.77], D [0.08, 0.79]. Although no validation datasets show perfect calibration, this is the result of differences in COVID-19 prevalence in the temporal validation dataset (7.4% versus 2.2%) and differences in calibration of laboratory equipment in the three external centers.

Figure 2: Probability density plots of laboratory parameters.

Probability density plots are shown for all control patients of the development dataset and the three external centers. Ideally all distributions should overlap since this implies that control patient populations are most likely similar in the development dataset to the external datasets. When comparing the distribution of the CoLab variables for all control-patients across different external validation datasets, albumin and LD show the largest deviations.

Supplemental material 4

Figure 1: Association between the CoLab-linear predictor and the duration of COVID-19-related symptoms.

For all PCR-positive ED presentations in the development and temporal validation dataset, the CoLab-linear predict is plotted against the duration of COVID-related symptoms as registered in the electronic patient records. Patients with unknown duration are not plotted. Patients without symptoms were plotted at 0 days. The solid horizontal lines represent the CoLab-score thresholds, the dashed line is a LOESS regression curve with 95% CI. As the duration of symptoms is an integer, some random jitter was added to the days, for visualization purposes. Note that only the first 14 days are shown in this graph.

Figure 2: Probability density plot of CoLab-score for RS-, Rhino- and Influenza-virus PCR tested ED patients.

For 183 ED presentations that were PCR tested for either RS-, Rhino- and Influenza-virus the CoLab-score was calculated. 91 presentations were PCR positive, 92 were PCR negative. The CoLab-score is only marginally elevated for PCR positive patients, the area under the ROC-curve in separating both groups is 0.573 (95% CI: 4896-0.6563).

Inclusion criterion	Cases/controls (prevalence)	AUC
Temporal validation (reference)	1039/14080 (7.4%)	0.916 (0.906 - 0.927)
Only first presentations, re- presentations are excluded	937/11166 (8.4%)	0.919 (0.909 - 0.930)
Only PCR-tested presentations	372/4062 (9.2%)	0.840 (0.817 - 0.862)

CoLab- score	Validation set	Sensitivity	Specificity	PPV	NPV	ТР	TN	FP	FN
	Reference	0.967	0.420	0.117	0.994	1005	5476	7565	34
		(0.956 -	(0.411 -	(0.115 -	(0.992 -	(993 -	(5366 -	(7454 -	(23 -
		0.978)	0.428)	0.119)	0.996)	1016)	5587)	7675)	46)
	First	0.968	0.416	0.132	0.993	907	4259	5970	30
0	presentations	(0.956 -	(0.406 -	(0.130 -	(0.990 -	(896 -	(4156 -	(5876 -	(20 -
		0.979)	0.426)	0.134)	0.995)	917)	4353)	6073)	41)
	PCR-tested	0.946	0.353	0.129	0.985	352	1303	2387	20
	presentations	(0.922 -	(0.338 -	(0.125 -	(0.979 -	(343 -	(1246 -	(2331 -	(12 -
		0.968)	0.368)	0.132)	0.991)	360)	1359)	2444)	29)
	Reference	0.888	0.791	0.253	0.989	923	10311	2730	116
		(0.870 -	(0.783 -	(0.245 -	(0.987 -	(904 -	(10215 -	(2640 -	(96 -
		0.908)	0.798)	0.261)	0.991)	943)	10401)	2826)	135)
	First	0.890	0.793	0.282	0.987	834	8112	2117	103
≤ 1	presentations	(0.870 -	(0.785 -	(0.273 -	(0.985 -	(815 -	(8030 -	(2035 -	(86 -
		0.908)	0.801)	0.292)	0.990)	851)	8194)	2199)	122)
	PCR-tested	0.852	0.671	0.207	0.978	317	2477	1213	55
	presentations	(0.817 -	(0.656 -	(0.197 -	(0.973 -	(304 -	(2421 -	(1157 -	(42 -
		0.887)	0.686)	0.217)	0.983)	330)	2533)	1269)	68)
	Reference	0.820	0.894	0.382	0.984	852	11661	1380	187
		(0.796 -	(0.889 -	(0.367 -	(0.982 -	(827 -	(11591 -	(1312 -	(163 -
		0.843)	0.899)	0.396)	0.986)	876)	11729)	1450)	212)
-	First	0.824	0.898	0.426	0.982	772	9187	1042	165
≤2	presentations	(0.798 -	(0.892 -	(0.410 -	(0.980 -	(748 -	(9127 -	(980 -	(145 -
		0.845)	0.904)	0.441)	0.985)	792)	9249)	1102)	189)
	PCR-tested	0.734	0.800	0.270	0.968	273	2951	739	99
	presentations	(0.688 -	(0.786 -	(0.252 -	(0.962 -	(256 -	(2902 -	(693 -	(83 -
		0.777)	0.812)	0.287)	0.973)	289)	2997)	788)	116)
	Reference	0.710	0.962	0.596	0.977	738	12540	501	301
		(0.682 -	(0.958 -	(0.573 -	(0.974 -	(709 -	(12496 -	(459 -	(272 -
	— ; ,	0.738)	0.965)	0.618)	0.979)	767)	12582)	545)	330)
	First	0.716	0.966	0.658	0.974	6/1	9880	349	266
≤ 3	presentations	(0.687 -	(0.962 -	(0.633 -	(0.971 -	(644 -	(9844 -	(314 -	(240 -
		0.744)	0.969)	0.682)	0.976)	697)	9915)	385)	293)
	PCR-tested	0.591	0.911	0.403	0.957	220	3363	327	152
	presentations	(0.540 -	(0.902 -	(0.370 -	(0.952 -	(201 -	(3328 -	(293 -	(134 -
	D (0.640)	0.921)	0.433)	0.962)	238)	3397)	362)	171)
	Reference	0.585	0.984	0.750	0.968	608	12838	203	431
		(0.556 -	(0.982 -	(0.724 -	(0.965 -	(578 -	(12811 -	(175 -	(400 -
	F ired	0.615)	0.987)	0.778)	0.970)	639)	12866)	230)	461)
- 1	FIrSt	0.590	0.987	0.805	0.963	553	10095	134	384
≤4	presentations	(0.558 -	(0.985 -	(0.776 -	(0.961 -	(523 -	(10071 -	(112 -	(355 -
		0.621)	0.989)	0.832)	0.966)	582)	10117)	158)	414)
	PCR-tested	0.452	0.959	0.526	0.945	168	3539	151	204
	presentations	(0.401 -	(0.953 -	(0.480 -	(0.941 -	(149 -	(3516 -	(128 -	(185 -
		0.503)	0.965)	0.575)	0.950)	187)	3562)	174)	223)

BMJ Open

Table 1: Sensitivity analysis of the CoLab-score in the temporal validation dataset using different inclusion criteria.

Sensitivities, specificities, positive predictive values (PPV), negative predictive values (NPV), true positives (TP), true negatives (TN), false positives (FP) and false negatives (FN) are shown for fixed cut-offs (CoLab-score 0 till ≤ 4) with bootstrapped 95% confidence intervals in parentheses. The temporal validation dataset is used to compare the performance of the CoLab-score with inclusion criteria that differ from the development dataset. The first line shows the performance of the temporal validation dataset with the original inclusion criteria as specified in Figure 1B. The second line shows the performance of the CoLab-score when all re-presentations are excluded (i.e. no repeated presentations). The third line shows the performance of the CoLab-score in the subgroup of patients that underwent PCR-testing.

Review on the

TR POD 49

TRIPOD Checklist: Prediction Model Development and Validation

Title and abstract	nom			Tage
		- D. V	Identify the study as developing and/or validating a multivariable prediction model, the	
Title	1	D;V	target population, and the outcome to be predicted.	1
Abstract	2	D;V	Provide a summary of objectives, study design, setting, participants, sample size, predictors, outcome, statistical analysis, results, and conclusions.	3, 4
ntroduction				
			Explain the medical context (including whether diagnostic or prognostic) and rationale for	
Background	3a	D;V	developing or validating the multivariable prediction model, including references to existing	6, 7
and objectives			models.	
	3b	D;V	Specify the objectives, including whether the study describes the development or validation	7
lethods				
liotiliouo		D .)/	Describe the study design or source of data (e.g., randomized trial, cohort, or registry	
Course of data	4a	D;V	data), separately for the development and validation data sets, if applicable.	8, 11-
Source of data	4h		Specify the key study dates, including start of accrual; end of accrual; and, if applicable,	Q
	40	D, V	end of follow-up.	0
	5a	D:V	Specify key elements of the study setting (e.g., primary care, secondary care, general	8
Participants	E h		population) including number and location of centres.	0.00
	50	D;V	Cive details of treatments received if relevant	8, 9, 5
	50	D, v	Clearly define the outcome that is predicted by the prediction model, including how and	IN/A
Outcome	6a	D;V	when assessed.	9
	6b	D;V	Report any actions to blind assessment of the outcome to be predicted.	N/A
	70		Clearly define all predictors used in developing or validating the multivariable prediction	0 0
Predictors	<i>i</i> a	D,V	model, including how and when they were measured.	0, 9
	7b	D;V	Report any actions to blind assessment of predictors for the outcome and other predictors.	N/A
Sample size	8	D;V	Explain how the study size was arrived at.	N/A
Missing data	9	D;V	Describe how missing data were handled (e.g., complete-case analysis, single imputation,	9
0	100	D	multiple imputation) with details of any imputation method.	10
	10a	D	Specify type of model, all model-building procedures (including any predictor selection)	10_1
Statistical	10b	D	and method for internal validation.	S1
analysis	10c	V	For validation, describe how the predictions were calculated.	16
methods	104		Specify all measures used to assess model performance and, if relevant, to compare	44.4
	Tuu	D, v	multiple models.	11-1,
	10e	V	Describe any model updating (e.g., recalibration) arising from the validation, if done.	N/A
Risk groups	11	D;V	Provide details on how risk groups were created, if done.	N/A
Development	12	V	For validation, identify any differences from the development data in setting, eligibility	22
Counto	[]	[Describe the flow of participants through the study including the number of participants	
	13a	D;V	with and without the outcome and, if applicable, a summary of the follow-up time. A	F1
		,	diagram may be helpful.	
Participante		D;V	Describe the characteristics of the participants (basic demographics, clinical features,	
r anticipanto	13b		available predictors), including the number of participants with missing data for predictors	T1
			and outcome.	
	13c	V	For validation, show a comparison with the development data of the distribution of	S3
Model	142	П	Specify the number of participants and outcome events in each analysis	F1 F
development	14b	D	If done, report the unadjusted association between each candidate predictor and outcome.	N/A
Madal	45		Present the full prediction model to allow predictions for individuals (i.e., all regression	
IVIODEI	15a	U	coefficients, and model intercept or baseline survival at a given time point).	12
specification	15b	D	Explain how to the use the prediction model.	T2, S
Model	16	D:V	Report performance measures (with CIs) for the prediction model.	T3. T
performance	-	,-	If done report the regulation and model undering (i.e. model excellence)	-, .
Model-updating	17	V	n done, report the results from any model updating (i.e., model specification, model performance).	N/A
Discussion				
	1.0	עים	Discuss any limitations of the study (such as nonrepresentative sample, few events per	21 2
	10	D;V	predictor, missing data).	21-23
	19a	V	For validation, discuss the results with reference to performance in the development data,	19-2
Interpretation			and any other validation data.	
	19b	D;V	Give an overall interpretation of the results, considering objectives, limitations, results from	19-2
Implications	20	D.V	Similar Studies, and Uner relevant evidence.	20-2
Other information	20	D, v		20-2
Supplementarv	.	D 1/	Provide information about the availability of supplementary resources, such as study	
information	21	D;V	protocol, Web calculator, and data sets.	N/A

denoted by V, and items relating to both are denoted D;V. We recommend using the TRIPOD Checklist in conjunction with the TRIPOD Explanation and Elaboration document. S = Supplemental material, F = Figure, T = Table.