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1 Calculation of conditional position and angle uncertainties

1.1 Derivation of the formulas

For a Gaussian pump with beam waist at the crystal plane z = 0, the two-photon wavefunction

in the position basis at the crystal plane z = 0 is given by (15, 43, 44):

ψ(ρs,ρi; 0) = A exp

[
−|ρs + ρi|2

4w2
0

]
exp

[
−|ρs − ρi|2

4σ2
0

]
, (1)

where ρs ≡ (xs, ys) and ρi ≡ (xi, yi) are the transverse positions of the signal and idler photons,

respectively at z, k = π/λp, |ρs| = ρs, and |ρi| = ρi. Also, w0 is the pump beam waist at z = 0,

σ0 =
√
0.455Lλp/2π, L is the length of the crystal, and λp is the wavelength of the pump field.

Using the two-photon wave-function ψ(ρs,ρi; 0) at z = 0, we calculate the two-photon wave-

function ψ(ρs,ρi; z) at z and thereby the two-photon position probability distribution function

P (ρs,ρi; z) = |ψ∗(ρs,ρi; z)ψ(ρs,ρi; z)| at z, which can be shown to be

P (ρs,ρi; z) = |A|2 exp
[
−|ρs + ρi|2

2w(z)2

]
exp

[
−|ρs − ρi|2

2σ(z)2

]
. (2)

where w(z) = w0

√
1 + z2/(k2w4

0) and σ(z) = σ0
√

1 + z2/(k2σ4
0).

In addition to the position-momentum bases the down-converted photons are rendered en-

tangled in the angle-OAM bases as well. We obtain the two-photon angle probability distri-

bution by writing P (ρs,ρi; z) of Eq. (2) in the polar coordinates using the transformations

ρs = (rs cos θs, rs sin θs) and ρi = (ri cos θi, ri sin θi), where (rs, θs) and (ri, θi) are the polar

coordinates of the signal and idler photons at z, etc. We therefore get:

|ρs + ρi|2 = r2s + r2i + 2rsri cos(θs − θi),

|ρs − ρi|2 = r2s + r2i − 2rsri cos(θs − θi),

P (rs, θs, ri, θi; z) = |A|2 exp
[
−r

2
s + r2i + 2rsri cos(θs − θi)

2w(z)2

]
× exp

[
−r

2
s + r2i − 2rsri cos(θs − θi)

2σ(z)2

]
. (3)
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Figure S 1: Two-photon position and angle probability distribution functions: (a) and (c)
show the two-photon position probability distribution function P (ys, yi; z) and the angle prob-
ability distribution function P (θs, θi; z) respectively at various z values. (b) and (d) show the
conditional position probability distribution function P (ys|yi; z) and the conditional angle prob-
ability distribution function P (θs|θi; z) of the signal photon at various z values.

We then integrate P (rs, θs, ri, θi; z) over the radial coordinates in order to obtain the two-photon

angle probability distribution function P (θs, θi; z) as:

P (θs, θi; z) =

∫∫
rsriP (rs, θs, ri, θi; z)drsdri. (4)

As calculated using Eqs. (2) and (4), the conditional position and angle uncertainties be-

have differently upon propagation. Although it is very difficult to derive the general analytical 

expressions for the conditional position and angle uncertainties, we have obtained analytical 

expressions for how the conditional position and angle uncertainties scale with z in the near-



and far-field regions.

1.2 Near- and far-field behaviours of the conditional position uncertainty

The two-photon position probability distribution function is given by Eq. (2). By setting ρi = 0,

we write the conditional positional probability distribution function P (ρs|ρi; z) as

P (ρs|ρi; z) = |A|2 exp
[
−ρ

2
s

2

(
1

w(z)2
+

1

σ(z)2

)]
,

where w(z)2 = w2
0

[
1 +

z2

k2w4
0

]
,

σ(z)2 = σ2
0

[
1 +

z2

k2σ4
0

]
, (5)

and |ρs|2 = ρ2s. From Eq. (5), we obtain the conditional position uncertainty in the y-direction

as

∆(ys|yi; z) =
√

1
1

w(z)2
+ 1

σ(z)2

. (6)

For the experimental parameters of interest, we have w0 = 507 µm and σ0 = 11.3 µm. There-

fore, in the near-field region, we have w(z) ≫ σ(z) and thus the conditional uncertainty in the

y-direction becomes

∆(ys|yi; z) ≈ σ(z) = σ0

√
1 +

z2

k2σ4
0

. (7)

In the far-field, we have w(z) ≪ σ(z) and thus the conditional uncertainty in the y-direction

becomes

∆(ys|yi; z) ≈ w(z) = w0

√
1 +

z2

k2w4
0

. (8)
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Figure S 2: Propagation of conditional position and angle uncertainties: (a) Numerically
calculated conditional position uncertainty ∆(ys|yi; z) as a function of z. The two dotted lines
show the z-scaling of the uncertainty in the near- and far-field regions. (b) Numerically calcu-
lated conditional angle uncertainty ∆(θs|θi; z) as a function of z. The two dotted lines show the
z-scaling of the uncertainty in the near- and far-field regions.

1.3 Near- and far-field behaviours of the conditional angle uncertainty

The two-photon angle probability distribution function is given by Eq. (4). The conditional

angle probability distribution function P (θs|θi; z) is obtained by setting θi = 0 in Eq. (4). As

we are interested only in obtaining the near- and far-field scalings of the conditional angle

uncertainty, we take P (rs, θs, ri, θi; z) = P (rs, θs, θi; z)δ(rs − ri). Thus we write Eq. (4) as

P (θs, θi; z) =

∫
P (r, θs, θi; z)r

2dr. (9)

Using Eq. (3) and the Mathematica software, we evaluate the above integral and obtain

P (θs, θi; z) =
P0

[C +D cos(θs − θi)]3/2
, (10)

where

P0 =
|A|2

√
π/2

8
,

C =
1

2

[
1

w(z)2
+

1

σ(z)2

]
,

D =
1

2

[
1

w(z)2
− 1

σ(z)2

]
. (11)



The ratio of C and D can be written as

C

D
=

w(z)2 + σ(z)2

−w(z)2 + σ(z)2

=
(w2

0 + σ2
0) +

z2

k2

[
1
w2

0
+ 1

σ2
0

]
(−w2

0 + σ2
0) +

z2

k2

[
− 1

w2
0
+ 1

σ2
0

] . (12)

In our experiments, we have w0 = 507 µm and σ0 = 11 µm. Thus we have w0 ≫ σ0, and under

this approximation we write the above ratio as

C

D
=

w2
0 + z2/(k2σ2

0)

−w2
0 + z2/(k2σ2

0)
=
z2 + k2σ2

0w
2
0

z2 − k2σ2
0w

2
0

. (13)

Next, we study the behaviour of P (θs, θi; z) in the near field regions. We make use of the fact

that for θi = 0, P (θs, θi; z) is maximum at θs = 0. Therefore, we have

Pmax(θs, θi = 0; z) =
P0

[C +D]3/2
. (14)

We next find the value of θs at which P (θs, θi; z) = Pmax(θs, θi = 0; z)/2, in which case θs can

be taken as the half-width of the conditional angle probability distribution function. We thus

equate

P (θs, θi; z) = Pmax(θs, θi = 0; z)/2

or,
P0

[C +D cos θs]3/2
=

P0

2[C +D]3/2

or, C +D cos θs = 22/3(C +D). (15)

Solving the above equation, we get two solutions for θs:

θ(+)
s = cos−1

[
(22/3 − 1)

C

D
+ 22/3

]
and θ(−)

s = − cos−1

[
(22/3 − 1)

C

D
+ 22/3

]
. (16)



The angle uncertainty ∆(θs|θi; z) can therefore be written as

∆(θs|θi; z) = θ(+)
s − θ(−)

s

= 2 cos−1

[
(22/3 − 1)

C

D
+ 22/3

]
. (17)

Using the approximation cos−1 x =
√

2(1− x) for x ∈ [0, 1], we write the above uncertainty

as:

∆(θs|θi; z) = 2

√
2(22/3 − 1)

[
−C
D

− 1

]
. (18)

Substituting for C/D from Eq. (12), we obtain

∆(θs|θi; z) = 4
√

22/3 − 1×

√
z2

k2σ2
0w

2
0 − z2

. (19)

In the near-field regions, we have k2σ2
0w

2
0 ≫ z2. Therefore, we can write the angle uncertainty

in the near-field regions as

∆(θs|θi; z) ≈
4
√
22/3 − 1

kσ0w0

z. (20)

Thus in the near-field regions the angle uncertainty increases linearly with z. In the far-field,

we use the fact that for θi = 0, P (θs, θi; z) is maximum at θs = π. Therefore, in the far-filed

we have Pmax(θs, θi = 0; z) = P0/[C − D]3/2. Now, proceeding in the similar manner as

above, and using the far-field approximation z2 ≫ k2σ2
0w

2
0, we find the angle uncertainty in the

far-field regions to be

∆(θs|θi; z) ≈ 4
√
22/3 − 1kσ0w0

1

z
. (21)

We thus find t hat i n t he f ar-field re gion th e an gle un certainty ∆(θs|θi; z)  be comes inversely 

proportional to z and as a consequence decreases upon propagation. Figure S 2(b) shows the 

numerically calculated conditional angle uncertainty ∆(θs|θi; z) as a function of z. The two 

dotted lines in Fig. S 2(b) show the z-scaling of the uncertainty in the near- and far-field regions.
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Figure S 3: Numerically calculated position uncertainty ws(z) of the signal photon as a function
of z. The two dotted lines show the z-scaling of the uncertainty in the near- and far-field regions.

2 Calculation of signal photon position uncertainty

From the two-photon probability distribution in Eq. (2), we find the position probability distri-

bution P (ρs; z) of the signal photon in the following manner

P (ρs; z) =

∫
P (ρs,ρi; z)dρi = N exp

[
−ρ2s/2ws(z)

2
]
, (22)

where ws(z) = ∆(ys|yi; z)/
√

1− (D/C)2 is the position uncertainty of the signal photon. We

now plot ws(z) as a function of z in Fig. S 3. We find that ws(z) monotonically increases upon

propagation. The two dotted lines in Fig. S 3 show the near- and far-field z scalings of ws(z).

We find that in the near- and far-field ws(z) behaves as ws(z) ≈ w(z)/2 and ws(z) ≈ σ(z)/2,

respectively.

3 Calculation of conditional momentum and OAM uncertain-
ties

Using the two-photon wave-function in the position basis ψ(ρs,ρi; z) calculated in the previous

section, we calculate the two-photon wave-function ψ(ps,pi; z) in the transverse momentum



basis, which is given by (44)

ψ(ps,pi; z) = A exp

[
−|ps + pi|2w2

0

4ℏ2

]
exp

[
−|ps − pi|2σ2

0

4ℏ2

]
exp

[
− iz

kℏ2
p2s + p2i

]
, (23)

where ps ≡ (psx, psy) and pi ≡ (pix, piy) are the transverse momenta of the signal and idler

photons, respectively. Using the above equation, we find that the conditional momentum prob-

ability distribution function P (ps|pi; z) of the signal photon is given by

P (ps|pi; z) = A exp

[
−p

2
s(w

2
0 + σ2

0)

2ℏ2

]
, (24)

where p2s = |ps|2. The standard deviation of P (ps|pi; z) in the y-direction ∆(psy|piy; z) is

the conditional momentum uncertainty of the signal photon. The above equation shows that

P (ps|pi; z) is independent of z and that ∆(psy|piy; z) does not change upon propagation.

For a Gaussian pump the two-photon state produced by SPDC in the OAM basis can be

written as (17)

|Ψ⟩ =
∞∑

ls=−∞

√
Sls|ls⟩s| − ls⟩i, (25)

where lsℏ and −lsℏ are the OAMs of signal and idler photons, respectively. The form of the 

two-photon state above implies that if the signal photon is detected with OAM lsℏ, then the 

idler photon is guaranteed to be detected with OAM −lsℏ. For the above state, and with 

li = 0, the conditional two-photon OAM probability distribution function takes the follow-

ing form: P (ls|li; z) = Sls δls,0. This implies that the corresponding conditional OAM uncer-

tainty ∆(ls|li; z) is equal to zero. However, in an experimental situation, one always measures 

∆(ls|li; z) to be non-zero (17). There are several reasons for this, which includes the pump not 

being an ideal Gaussian beam, the experimental imperfections such as misalignment and back-

ground noise, and the mode dependent detection efficiencies of OAM d etectors. These cause 

an additional contribution in P (ls|li; z) measurement. Therefore, in our experiments, we model



the conditional OAM probability distribution function as:

P (ls|li; z) = Slsδls,0 +N exp

[
− l2s
2σ2

f

]
, (26)

where S0, σf andN are the fitting parameters. We take the width of P (ls|li; z) as the conditional

OAM uncertainty ∆(ls|li; z).

4 Coincidence Measurement with EMCCD camera

In this section we outline how we use an Andor iXon Ultra-897 EMCCD camera having 512×

512 pixel grid with 16 × 16 µm2 pixel-size for measuring coincidence counts in position and

angle bases. For this, we record 106-107 images of the SPDC field with an exposure time of

1 ms - 5 ms over a few hours with average flux of 0.5 - 2.0 photons per pixel. We operate

the camera at -60◦C with the electron-multiplication gain of 1000, the horizontal pixel readout

rate of 5-17 MHz, the vertical pixel shift speed of 0.3 µs, and the vertical clock amplitude of

+4V. In SPDC, a signal and idler photon pair gets generated within a very short time interval,

usually of the order of 100 fs, which is much smaller than the exposure time (1 − 5 ms) of the

EMCCD camera. Therefore, in all likelihood, the signal and idler photons belonging to a pair

arrive within the same image. However, within the same image, we can also have signal and

idler photons that are not from the same down-conversion pair. These give rise to the accidental

coincidences, which between the pixels (or pixel groups) p and q can be estimated by computing

the coincidence counts between kth and (k+1)th images. Therefore, as detailed in Ref. (52,53),

the true coincidence count Cpq due to down-converted pairs between two pixels or two groups

of pixels, p and q, of the EMCCD camera can be expressed as

Cpq =
1

N

N∑
k=1

n(k)
p n(k)

q − 1

N

N∑
k=1

n(k)
p n(k+1)

q , (27)

where the first term is the total coincidence and the second term is the accidental coincidence.
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Figure S 4: Measuring position coincidence using EMMCD:(a) Acquired images of SPDC
field and binning the pixels into signal ys and idler yi bars. (b) The top and the bottom images
represent the total coincidence and the accidental coincidence calculated using the first and the
second terms of Eq. (28), respectively. Subtraction of these two terms gives (c) the measured
two-photon position probability distribution function P (ys, yi; z).
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Figure S 5: Measuring angle coincidence using EMMCD:(a) Acquired images of SPDC field 
and binning the pixels into signal angular sector θs and idler angular sector θi. (b) The top and 
the bottom images represent the total coincidence and the accidental coincidence calculated 
using the first and the second terms of Eq. (29), r espectively. Subtraction of these two terms 
gives (c) the measured two-photon angle probability distribution function P (θs, θi; z).

For measuring the two-photon position probability distribution function P (ys, yi; z), we

take millions of images using the EMCCD camera. For each image, we group the pixels into

horizontal strips, ys and yi, as shown in Fig. S 4(a). The coincidence count between ys and yi

can be written using Eq. (27) as



Cysyi =
1

N

N∑
k=1

n(k)
ys n

(k)
yi

− 1

N

N∑
k=1

n(k)
ys n

(k+1)
yi

, (28)

where n(k)
ys and n

(k)
yi are the photon counts of ys and yi respectively. The top image in Fig.

S 4(b) represents total coincidence as a function of ys and yi, and it is evaluated by using the

first term of Eq. (28). The bottom image in Fig. S 4(b) represents the accidental coincidence

as a function of ys and yi, and it is evaluated using the second term of Eq. (28). The difference

of these two images is proportional to the true coincidence Cysyi and thus to the two-photon

position probability distribution function P (ys, yi; z), as shown in Fig. S 4(c). At ys = yi, the

correlation becomes artificially perfect because we are correlating a pixel with itself. So, we

discard the points with ys = yi as outliers.

For measuring the two-photon angle probability distribution P (θs, θi; z), we group the pixels

for each image into angular sectors as shown in Fig. S 5(a). The coincidence count between the

angular sectors at θs and θi is given by:

Cθsθi =
1

N

N∑
k=1

n
(k)
θs
n
(k)
θi

− 1

N

N∑
k=1

n
(k)
θs
n
(k+1)
θi

, (29)

where n(k)
θs

and n(k)
θi

are the photon counts of angular sectors θs and θi respectively. The top

image in Fig. S 5(b) represents the total coincidence as a function of θs and θi, and it is evaluated 

using the first t erm o f E q. ( 29). T he b ottom i mage i n F ig. S  5 (b) r epresents t he accidental 

coincidence as a function of θs and θi, and it is evaluated using the second term of Eq. (29). The 

difference of these two images is proportional to the two-photon angle probability distribution 

P (θs, θi; z), as shown in Fig. S 5(c). At θs = θi, the correlation becomes artificially perfect 

because we are correlating a pixel with itself. So, we discard the points with θs = θi as outliers.
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Figure S 6: Experimentally measured two-photon position and angle correlations: (a) and
(b) show the experimentally measured two-photon position and angle probability distributions
P (ys, yi; z) and P (θs, θi; z) as a function of the propagation distance z. (c) and (d) show the
plots of the position and angle uncertainties ∆(ys|yi; z) and ∆(θs|θi; z) as a function of z. The
experimental points are shown with solid dots while the solid curves represent the numerical
simulations.

5 Measurement of the two-photon position and angle proba-
bility distribution functions

Figure S 6(a) shows the experimentally measured two-photon position probability distribution 

function P (ys, yi; z) at different z. For imaging the transverse planes between z = 0.35 cm 

and z = 1.5 cm, we keep the magnification o f t he i maging s ystem t o b e 1  w hile f or imag-

ing the transverse planes between z = 10 and z = 60 cm, we keep the magnification to



be 0.25. We scale the measured P (ys, yi; z) such that its maximum value is equal to one.

We find that the photons are correlated in position in the near field whereas they get position

anti-correlated in the far-field. In order to extract ∆(ys|yi; z) from the measured P (ys, yi; z),

we fit P (ys, yi; z) with the function: Pf (ys, yi; z) = bPr(ys, yi; z) + aPn(ys, yi; z), where

Pr(ys, yi; z) = exp[−(ys + yi − d)2/(2σ2
1(z))] × exp[−(ys − yi − f)2/(2σ2

2(z))] is consid-

ered as the probability distribution due to the down-converted photons, while Pn(ys, yi; z) =

exp[−(ys + yi − d)2/(2n2)] × exp[−(ys − yi − f)2/(2m2)] is considered as the noise con-

tribution. Here b, a, σ1(z), σ2(z), d, f , m and n are the fitting parameters. We consider

n ≫ σ1(z), m ≫ σ2(z) such that the noise contribution remains much broader than the two-

photon position probability distribution. The width ∆(ys|yi = 0; z) can now be expressed as

∆(ys|yi = 0; z) = σ1(z)σ2(z)/
√
σ2
1(z) + σ2

2(z). Figure S 6(c) shows ∆(ys|yi = 0; z) as a

function of z. The simulation has been carried out using the expression given in Eq. (2).

Figure S 6(b) shows the experimentally measured P (θs, θi; z) at different z. We scale 

P (θs, θi; z) such that its maximum value is equal to one. The P (θs, θi; z) plots show that 

near the crystal plane the signal and idler photons have the highest probability of arriving 

at the same angular positions. However in the far-field t he s ignal a nd i dler p hotons have 

the highest probability of arriving at angular positions separated by π radians. We fit the 

measured P (θs, θi; z) with the analytic function: Pf (θs, θi; z) = bPr(θs, θi; z) + a, where 

Pr(θs, θi; z) = 1/(1 + q cos(θs − θi − c))3/2. Here, b, a, q, and c, are the fitting parame-

ters. We derive the fitting function by putting r s =  r i in Eq. ( 4). Next, we evaluate ∆(θs|θi; z) 

by finding the standard deviation of Pr(θs|θi; z ) at various z  v alues. Figure S  6(d) shows the 

experimental ∆(θs|θi; z) as a function of z. We find that near the crystal ∆(θs|θi; z) increases 

as a function of z. However, beyond z = 10 cm, ∆(θs|θi; z) starts to monotonically decreas as 

a function of z. The numerical simulations have been carried out using the expression given in 

Eq. (4).
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Figure S 7: Experimentally measured two-photon OAM correlation: (a) and (b) are the
experimentally measured P (ls, li; z) and P (ls|li; z) at z = 50 cm. The fitting is based on the
noise model described in Eq. (26).

6 Measurement of the two-photon momentum and OAM prob-
ability distribution functions

Equation (24) shows that P (ps|pi; z) is independent of z and that ∆(psy|piy; z) does not change

upon propagation. For the given experimental parameters, the calculated value of ∆(psy|piy; z)

is 1.97ℏ mm −1. The two-photon OAM probability distribution function P (ls, li; z) remains

unchanged as a function of z. We verify this by making several measurements of P (ls, li; z) as

a function of z. We plot the experimentally measured two-photon OAM probability distribution

function P (ls, li; z) and the conditional OAM probability distribution function P (ls|li; z) at

z = 50 cm in Figs. S 7(a) and S 7(b), respectively. As described in Sec. 3, we fit the conditional

distribution with the analytical function P (ls|li; z) = Slsδls,0 + N exp
[
−l2s/(2σ2

f )
]
, where S0,

N and σf are the fitting parameters, and thus find the uncertainty ∆(ls|li; z) to be 0.72ℏ radian−1

in our experiments.



7 Measurement of the two-photon angle probability distribu-
tion function in turbulence

In this section, we present how the conditional angle uncertainty propagates after the two-

photon field passes through turbulence. Figure S 8(a) illustrates the propagation of SPDC pho-

tons through a planar turbulence kept at a distance z = d from the crystal plane located at

z = 0. We are interested in finding the two-photon angle probability distribution function at

a propagation distance z. The presence of turbulence introduces statistical randomness in the

two-photon field, and so we need to describe the field propagation in terms of the two-photon

cross-spectral density function. From z = 0 up to z = d, the two photon field remains pure

and can be described by the two-photon wave-function ψ(ρs,ρi; z). Therefore, the two-photon

cross-spectral density function W (ρ′
s1,ρ

′
i1,ρ

′
s2,ρ

′
i2; zt) right after the turbulence plane z = d

can be written as

W (ρ′
s1,ρ

′
i1,ρ

′
s2,ρ

′
i2; d) = ψ∗(ρ′

s2,ρ
′
i2; d)ψ(ρ

′
s1,ρ

′
i1; d)×Wturb(ρ

′
s1,ρ

′
s2,ρ

′
i1,ρ

′
i2), (30)

where, ρ′
s ≡ (x′s, y

′
s), and ρ′

i ≡ (x′i, y
′
i) are the transverse co-ordinates of signal and idler

photons respectively, at z = d. The term ψ∗(ρ′
s2,ρ

′
i2; d)ψ(ρ

′
s1,ρ

′
i1; d) is the two-photon cross

spectral density function right before the turbulence plane. The effect due to the turbulence is

captured through the cross-spectral density functionWturb(ρ
′
s1,ρ

′
s2,ρ

′
i1,ρ

′
i2), which we approx-

imate by modelling the turbulence in terms of a Gaussian function

Wturb(ρ
′
s1,ρ

′
s2,ρ

′
i1,ρ

′
i2) = exp

[
−[|ρ′

s2 − ρ′
s1|2 + |ρ′

i2 − ρ′
i1|2]/(2r2)

]
, (31)

where r is the turbulence strength (55). We rewrite the above equation as

W (ρ′
s1,ρ

′
i1,ρ

′
s2,ρ

′
i2; d) = Wturb(ρ

′
s1,ρ

′
s2,ρ

′
i1,ρ

′
i2)e

ik
2d

(ρ′2s2+ρ′2i2−ρ′2s1−ρ′2i1)

∫
ψ∗(ρ′′

s1,ρ
′′
i1; 0)

× ψ(ρ′′
s2,ρ

′′
i2; 0)e

ik
2d

(ρ′′2s2+ρ′′2i2 −ρ′′2s1−ρ′′2i1 )e−
ik
d
(ρ′

s2·ρ′′
s2−ρ′

s1·ρ′′
s1)

× e−
ik
d
(ρ′

i2·ρ′′
i2−ρ′

i1·ρ′′
i1)dρ′′

s2dρ
′′
s1dρ

′′
i2dρ

′′
i1, (32)
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Figure S 8: Two-photon angle correlation in turbulence:(a) Illustrating the propagation of
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perimentally measured two-photon angle probability distribution function P (θs, θi; z) at various
z in the presence of turbulence. (d) The numerical and experimental plots of ∆(θs|θi; z) as a
function of z.

where ψ(ρ′′
s ,ρ

′′
i ; 0) is the two-photon wave-function at the crystal plane z = 0 and is given by

Eq. (1). Now, by propagating W (ρ′
s1,ρ

′
i1,ρ

′
s2,ρ

′
i2; d) from z = d up to z = z, we find the

two-photon cross-spectral density function at z and thereby the two-photon position probability

distribution function P (ρs,ρi; z):

P (ρs,ρi; z) =

∫
W (ρ′

s1,ρ
′
i1,ρ

′
s2,ρ

′
i2; zt)e

ik
2(z−d)

(ρ′2s2+ρ′2i2)e−
ik

2(z−d)
(ρ′2s1+ρ′2i1)e−

ik
(z−d)

ρs·(ρ′
s2−ρ′

s1)

× e
ik

(z−d)
ρi·(ρ′

i2−ρ′
i1)dρ′

s2dρ
′
s1dρ

′
i2dρ

′
i1. (33)

By substituting Eq. (32) into Eq. (33), we compute P (ρs, ρi; z) as a function of z. We then use 

the transformations ρs = (rs cos θs, rs sin θs) and ρi = (ri cos θi, ri sin θi) in order to obtain



P (θs, θi; z) using Eq. (33).

Figure S 8(c) shows the experimentally measured P (θs, θi; z) at different z (see Sec. 5 for

the measurement details). Figure S 8(b) shows the P (θs, θi; z) calculated using Eq. (4) at dif-

ferent z for the relevant experimental parameters of d = 15 cm, L = 5 mm, w0 = 507 µm. For

the simulation plots, we use the turbulence strength r as a fitting parameter and find its value

to be 0.125 mm. We note that the experimentally measured P (θs, θi; z) contains some noise

distribution, which gets prominent at large z. This can be attributed to the fact that in the ex-

periment, we insert a distributed turbulence in the path of the two-photon field, whereas in the

simulations, we approximate that as a planar turbulence. Nevertheless, the diagonal correlation

in the experimentally observed P (θs, θi; z) matches with that of the numerical simulations. Us-

ing the procedure described in Sec. 5 B, we extract the conditional angle uncertainty ∆(θs|θi; z)

from Figure S 8(c) and plot them in Figure S 8(d). In order to minimize the effect of noise

distribution on the estimation of ∆(θs|θi; z), we select a region of P (θs, θi; z) as shown by the

dotted red box in Fig. S 8(c).

8 Measurement of the two-photon OAM probability distri-
bution in turbulence

In this section, we present a theoretical model to evaluate the influence of turbulence on the con-

ditional OAM distribution P (ls|li; z). Within paraxial approximation and the Gaussian pump 

beam assumption (17), the OAM remains conserved in SPDC. This means that if the idler 

photon is detected with OAM liℏ = 0, the signal photon is guaranteed to be detected with 

OAM lsℏ = 0. For the measurement of conditional OAM distribution we choose li = 0. 

Therefore the signal mode can be represented as: ψs(ρ
′
s; d) = exp [−ρ′s2/4σr2]. For evaluating 

the influence of turbulence on the conditional OAM distribution P ( ls|li =  0; z ) of the signal 

photon, we simply need to evaluate how the Gaussian mode ψs(ρ
′
s; d) = exp [−ρ′s2/4σr2] gets
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Figure S 9: The experimentally measured P (ls|li; z) at z = 50 cm in turbulence. The fitting is
based on the noise model described in Eq. (37).

affected by turbulence. For this purpose, we calculate the cross-spectral density function of

the signal photon right after the turbulence plane z = d [see Fig. S 8(a)]. From z = 0 up

to z = d, the signal field ψs(ρ
′
s; d) remains pure. Therefore, the cross-spectral density func-

tion W (ρ′
s2,ρ

′
s1; d) right after the turbulence plane z = d can be written as W (ρ′

s2,ρ
′
s1; d) =

ψ∗(ρ′
s2; d)ψ(ρ

′
s1; d)Wturb(ρ

′
s2,ρ

′
s1), where ρ′

s ≡ (x′s, y
′
s), is the transverse co-ordinates of sig-

nal photon at z = d plane. The term ψ∗(ρ′
s2; d)ψ(ρ

′
s1; d) is the cross spectral density func-

tion of the signal photon at z = d right before the turbulence plane. Wturb(ρ
′
s2,ρ

′
s1) is the

cross-spectral density introduced by the turbulence. We approximate it as Wturb(ρ
′
s2,ρ

′
s1) =

exp [−|ρ′
s2 − ρ′

s1|2/(2r2)], where r is the turbulence strength. Therefore, we have

W (ρ′
s2,ρ

′
s1; d) = exp

[
−ρ

′2
s1 + ρ′2s2
4σ2

r

]
exp

[
−|ρ′

s2 − ρ′
s1|2

2r2

]
. (34)

Now, by propagating the above cross-spectral density function from z = d to z = z, we obtain

the cross-spectral density function W (ρs1,ρs2; z) at z = z

W (ρs1,ρs2; z) = exp

[
− ik

2R(z)
(ρ2s2 − ρ2s1)

]
exp

[
−ρ

2
s1 + ρ2s2
4σ2

r(z)

]
exp

[
− ∆ρ2s
2r2(z)

]
, (35)

where ∆ρs = |ρ2 − ρ1|, r(z) = r

√
1 +

(
z−zt
ksσrδ

)2

, σr(z) = σr

√
1 +

(
z−zt
ksσrδ

)2

, 1
δ2

= 1
r2

+

1
4σ2

r
, and ks = π/λp. We use the transformation ρs1 ≡ (rs1 cos θs1, rs1 sin θs1) and ρs2 ≡



(rs2 cos θs2, rs2 sin θs2) in order to write W (ρs1,ρs2; z) as Ws(rs, θs1, θs2; z). The OAM distri-

bution of the signal photon is same as the conditional distribution P (ls|li; z), which we write

as

P (ls|li, z) =
∫∫∫

rsWs(rs, θs1, θs2; z)e
ils(θs2−θs1)drsdθs1dθs2. (36)

We compute the above integral numerically and find that it very closely fits the function a exp [−b|ls|],

where a and b are fitting parameters. For reasons described in section 3, we have added the noise

term N exp
[
− l2s

2σ2
f

]
in Eq. (36). We thus write the conditional OAM distribution as

P (ls|li, z) = a exp [−b|ls|] +N exp

[
− l2s
2σ2

f

]
. (37)

Figure S 9 shows the experimentally measured P (ls|li; z) at z = 50 cm. We fit P (ls|li; z = 50)

with Eq. (37) and obtain the experimental uncertainty ∆(ls|li; z) to be 0.94ℏ radian−1.

9 Effects of a finite-size detector on angle-OAM entangle-
ment

In our analysis so far, we have considered the photon detectors to have an aperture of infinite

extent, as we take the upper limit of radial integration to be ∞ in Eq. (4). However, experiments

are always carried out with detectors of finite extent. In this section, we numerically analyze the

effects of using finite-size detectors on the revival of entanglement in the angle-OAM entangle-

ment bases. The two-photon angle probability distribution function P (θs, θi; z) in this case is

given by

P (θs, θi; z) =

∫ D/2

0

∫ D/2

0

rsriP (rs, θs, ri, θi; z)drsdri, (38)

where D represents the diameter of the detector. Using the above equation, we numerically 

calculate ∆(θs|θi; z) as a function of z upto a propagation distance of z = 1 km for different 

values of D. We use the conditional OAM uncertainty ∆(ls|li; z) = 0.72ℏ corresponding to
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probability distribution given in Eq. (26). Here we assume that ∆(ls|li; z) is not affected by the 

finite aperture s ize. In order to show the behaviour of ∆(θs|θi; z)∆(ls|li; z ) f rom z  =  1  mm 

to 1 km, we plot ∆(θs|θi; z)∆(ls|li; z) as a function of ln(z) using the relevant experimental 

parameters. We see that for all values of D, the entanglement revives at z = 24 cm. We 

find that due to finite D, the product ∆(θs|θi; z)∆(ls|li; z) starts increasing upon long-distance 

propagation and beyond a certain z the entanglement is not witnessed in the angle-OAM bases. 

Furthermore, we find that the increase in diameter D  increases the propagation distance upto 

which the entanglement in the angle-OAM bases remains intact. Therefore, one can decide the 

minimum aperture size for a given application based on the distance upto which one needs the 

entanglement in the angle-OAM bases to be intact.



10 Witnessing revival in the angle-OAM basis through En-
tanglement of Formation

The entanglement of formation (EOF) has been recently introduced in Ref. (46) for certifying

continuous-variable entanglement in position-momentum, angle-OAM, and time-energy bases.

Some recent experiments have used this quantity for certifying position-momentum entangle-

ment (47). In this section, we show that in addition to EPR correlation product, the revival fea-

ture in the angle-OAM bases can also be witnessed through EOF. The minimum value E(min)
f

of EOF is related to the conditional Shannon entropies in the angle-OAM bases as (46)

E
(min)
f (z) = log(2π)−H(ls|li; z)− h(θs|θi; z), (39)

where

h(θs|θi; z) = h(θs, θi; z)− h(θi; z) = −
∫
P (θs, θi; z) logP (θs, θi; z)dθsdθi +

∫
P (θi; z)

× logP (θi; z)dθi

and

H(ls|li; z) = H(ls, li; z)−H(li; z) = −
∑
ls,li

P (ls, li; z) logP (ls, li; z) +
∑
li

P (li; z) logP (li; z)

(40)

are the conditional Shannon entropies in the angle and OAM bases, respectively. E(min)
f lies

between 0 and ∞. E(min)
f > 0 implies the presence of entanglement while E(min)

f = 0 implies

the absence of entanglement. We use P (θi; z) =
∫
P (θs, θi; z)dθs, where P (θs, θi; z) is given

in Eq. (4), and calculate h(θs|θi; z) using the relevent experimental parameters. We next use

Eqs. (25) and (26) for writing the following OAM distributions:

P (ls, li; z) = Slsδls,−li +N exp

[
−(ls + li)

2

2σ2
f

]
and P (ls, li; z) =

∑
ls

P (ls, li; z). (41)
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Figure S 11: Minimum value E(min)
f of entanglement of formation in the angle-OAM bases as

a function of z with and without turbulence.

Using the above probability distributions, we calculate the conditional OAM entropy H(ls|li; z)

and finally plot Emin
f (z) as a function of z in Fig. S 11 (solid red curve). We find that E(min)

f

decreases rapidly upon propagation and reaches zero within a propagation distance of 1 cm

from the crystal. However, E(min)
f revives and becomes positive beyond z = 24 cm.

We next calculate EOF in the presence of turbulence. In order to calculate h(θs|θi; z) in

turbulence, we use Eq. (33) for P (θs, θi; z) and P (θi; z) =
∫
P (θs, θi; z)dθs for idler photon

angle distribution. We then follow the model presented in Sec. 8 and use Eq. (37) for writing

P (ls, li; z) in the turbulence which is given by

P (ls, li; z) = Sls exp [−b|ls + li|] +N exp

[
−(ls + li)

2

2σ2
f

]
. (42)

We write the corresponding idler OAM distribution as P (li; z) =
∑

ls
P (ls, li; z), and using

P (ls, li; z) and P (li; z), we calculate H(θs|θi; z). Figure S 11 (green solid line) shows E(min)
f

as a function of z. We find that in the presence of turbulence the revival takes place at z  =  30 

cm. Thus we see that the revival of entanglement in the angle-OAM bases can also be witnessed 

through entanglement of formation.
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