Science Advances

Supplementary Materials for

IncRNA-GM targets Foxo1 to promote T cell-mediated autoimmunity

Yali Chen et al.

Corresponding author: Kun Chen, kunchen@cams.cn; Xuetao Cao, caoxt@immunol.org

Sci. Adv. **8**, eabn9181 (2022) DOI: 10.1126/sciadv.abn9181

This PDF file includes:

Supplementary Materials and Methods Figs. S1 to S9 Original data

Supplementary Materials and Methods

Antibodies, recombinant cytokines, and reagents

The following reagents and antibodies were used: for surface staining, anti-CD19 (1D3, eBioscience), anti-CD3 (145-2C11, Biolegend), anti-CD4 (RM4-5, Biolegend), anti-CD8a (53-6.7, Biolegend), anti-CD25 (PC61, Biolegend), anti-CD44 (IM7, Biolegend), anti-CD62L (MEL-14, Biolegend), anti-Ly-6C (HK1.4, Biolegend), anti-Ly-6G (1A8, Biolegend), anti-CD11b (M1/70, Biolegend), anti-B220 (RA3-6B2, Biolegend); for intracellular staining, anti-IL17A (TC11-18H10, BD), anti-IL4 (11B11, Biolegend), anti-IFNy (XMG1.2; eBioscience), anti-Foxp3 (150D/E4, eBioscience). For mouse T cell stimulation, anti-CD3 (145-2C11) and anti-CD28 (37.51) were from BD; recombinant mouse IL-2 (402-ML), IL-6 (406-ML), IL-4 (404-ML), IL-12 (419-ML), IL-1β (401-ML), IL-23 (1887-ML) and recombinant human TGF-β1 (7754-BH) were from R&D Systems; neutralizing anti-mouse IFN-γ (XMG1.2) was from Biolegend and anti-mouse IL-4 (11B11) was from BioXcell. For human T cell stimulation, recombinant human IL-4, IL-12, IL-6, IL-1β, and IL-23 were from PeproTech; neutralizing anti-human IFN-y (B27), anti-human IL-4 (MP4-25D2) were from Biolegend; Anti-human CD3 (UCHT1) and CD28 (CD28.2) were from Biolegend. mTOR inhibitor Rapamycin (Beyotime Biotech), mTOR activator MHY1485 (MedChemExpress), H3K9Ac inhibitor CPI-637 (Selleck), Foxo1 inhibitor AS1842856 (MedChemExpress) were used for T cell treatment.

In vitro T cell differentiation

For mouse T cell differentiation, mouse CD4⁺ T cells were purified from total splenocytes using positive selection (Miltenyi, CD4⁺ T Cell Isolation Kit), with purity of CD4⁺ T cells > 95%. The purified CD4⁺ T cells were stimulated with 5 μ g/ml anti-mouse CD3 and 2 μ g/ml anti-mouse CD28, and supplemented with a series of cytokines for T cell subsets differentiation as followed, 20 ng/ml IL-12 and 10 μ g/ml anti-IL4 for Th1 differentiation; 20 ng/ml IL-4 and 10 μ g/ml anti-IFN γ for Th2 differentiation; 30 ng/ml IL-6, 3 ng/ml h-TGF- β 1, 10 ng/ml IL-1 β , 20 ng/ml IL-23, 10 μ g/ml anti-IFN γ and 10 μ g/ml anti-IL4 for optimal pathogenic Th17 differentiation; 30 ng/ml IL-6, 10 ng/ml IL-1 β , 20 ng/ml IL-23, 10 μ g/ml anti-IFN γ and 10 μ g/ml anti-IL4 for pathogenic Th17 differentiation; 10 μ g/ml anti-IFN γ and 10 μ g/ml anti-IL4 for pathogenic Th17 differentiation; 10 μ g/ml IL-2, 10 ng/ml h-TGF- β 1, 10 μ g/ml anti-IFN γ and 10 μ g/ml anti-IL4 for iTreg differentiation. After 3-day stimulation, cells were collected for later analysis.

For human T cell differentiation, human CD4⁺ T cell subsets were collected from human peripheral blood PBMC, and then were stimulated with 5 μ g/ml anti-human CD3 and 2 μ g/ml anti-human CD28, and a series of cytokines for T cell subsets differentiation as followed, 20 ng/ml h-IL-12 and 10 μ g/ml anti-human IL4 for Th1 differentiation; 20 ng/ml h-IL-4 and 10 μ g/ml anti-human IFN γ for Th2 differentiation; 20 ng/ml h-IL-6, 3 ng/ml h-TGF- β 1, 10 ng/ml h-IL-1 β , 20 ng/ml h-IL-23, 10 μ g/ml anti-human IFN γ and 10 μ g/ml anti-human IL4 for Th17 differentiation; 100 U/ml h-IL-2, 10 ng/ml h-TGF- β 1, 10 μ g/ml anti-human IFN γ and 10 μ g/ml anti-human IL4 for iTreg differentiation.

Real-time quantitative PCR

Cells were collected at indicated times for RNA extraction. Total RNA was extracted with TRIzol reagent according to the manufacturer's methods. cDNA was synthetized from total RNA with Reverse Transcriptase M-MLV (RNase H-) Kit (Takara). Real-time quantitative PCR was analyzed by QuantStudio 6 or 7 Flex (Thermo, Applied Biosystems) using Premix Ex Taq II Kit (Takara). Cycle thresholds (CT) of different samples were normalized to β -Actin for mRNA or to U6 for lncRNA respectively.

The primers used for qPCR as following, *mlncRNA-GM*, forward: TGC CAT AAC AGA GTC TGG AAC TC, reverse: AGA AAG GTA GGA ACT GTC CAG CC; *mll17*, forward: CTC AAA GCT CAG CGT GTC CAA ACA, reverse: TAT CAG GGT CTT CAT TGC GGT GGA; *mll17f*, forward: CAG GAA GAC AGC ACC ATG AA, reverse: TCT TCT CCA ACC TGA AGG AAT TAG; *mRORc*, forward: AGG CCA TTC AGT ATG TGG TGG AGT, reverse: TGT GTG GTT GTT GGC ATT GTA GGC; *mll23r*, forward: CAC TGC CGA CCA AGG AAT CT, reverse: GCA TGA GGT TCC GAA AAG CC; *mTbx21*, forward: CTT GGA TCC TTC GCC TAC CC, reverse: CTT CCC AGA CAC CTC CAA CC; *mFoxo1*, forward: GAA GAG GCT CAC CCT GTC G, reverse: CCT CCC TCT GGA TTG AGC AT; *mFoxp3*, forward: GCG AAA GTG GCA GAG AGG TA, reverse: GAG GAG CTG CTG AGA TGT GA; *mll10rb*, forward: CTT CTG GTG CCA GCT CTA GG, reverse: GAA GTC GCA CTG AGT CGA GG; *mGpr83*, forward: CGC CCT TCA CTT TGG TCA TC, reverse: CAGAGGGAGCGCACAATGTC; mHaus3, forward: TGC CAG TTG TAA AGG GCG AT, reverse: ACC AAA CTC TCT AGT TGC CGA; mMxd4, forward: TCG GTC AGG ACT CAA GTT GC, reverse: CGG ATC CTG CCG AGA TTT GT; mGstm1, forward: ATA CTG GGA TAC TGG AAC GTC C, reverse: AGT CAG GGT TGT AAC AGA GCA T; mlfna4, forward: TGA TGA GCT ACT ACT GGT CAG C, reverse: GAT CTC TTA GCA CAA GGA TGG C; mlfnb1, forward: TAC ACT GCC TTT GCC ATC CA; reverse: AGT TGA GGA CAT CTC CCA CG; hAK026392.1 (h-lncRNA-GM), forward: AAC CTC CCA CTG CTC CCT GTC, reverse: GGC TCT GTT CTG CTT CTG TCT GC; hIL17, forward: GAG GAC AAG AAC TTC CCC CG, reverse: CTC TCA GGG TCC TCA TTG CG; hBATF, forward: GAA AAC CAG CGC GTT TCC AT, reverse: GCA GCC CAA GTT CCT ACA CT; hIL17F, forward: GAA AAC CAG CGC GTT TCC AT, reverse: GCA GCC CAA GTT CCT ACA CT; hIL23R, forward: GCC TGG CTC TGA AGT GGA AT, reverse: CCT CCA TGA CAC CAG CTG AA; hIL21, forward: TTG CTT CTT AGT TAC TCA CGG T, reverse: TGT CCA ACT GCA AGT TAG ATC CT; hFOXP3, forward: GGC CAC ATT TCA TGC ACC AG, reverse: GCT CCC TGG ACA CCC ATT C; hIL10, forward: GCT CTT GCA AAA CCA AAC CA, reverse: TCT CGA AGC ATG TTA GGC AGG; hIL10RA, forward: GTC TTG GCT CAG ACG CTC AT, reverse: CAG GGT CTG GCT ACA GTT GG; *hIL10RB*, forward: CCT TGC TGT GGT GCG TTT AC, reverse: TTG CCG CTC TCA GAG TCT TC.

FIGURES AND FIGURE LEGENDS

Fig. S1. lncRNA-GM expression in immune cells.

(A) qPCR analysis of lncRNA-GM mRNA expression in different immune cells (n=5). (B) The standard curve of copy numbers derived from plasmid DNA absolute expression measured by qPCR. Results are presented as mean \pm SD (A). One representative experiment of three is shown. PM, peritoneal macrophages; BMDM, bone marrow-derived macrophages; DC, dendritic cells; NK, natural killer cells.

Fig. S2. IncRNA-GM does not affect the development of T cells.

(**A** and **B**) Flow cytometric analysis of CD3⁺, CD19⁺ cells in lymph node (**A**) and spleen (**B**) from wide-type (WT) and *lncRNA-GM^{-/-}* mice (n=4). (**C** and **D**) Flow cytometric analysis of CD4⁺ and CD8⁺ cells in lymph node (**C**) and spleen (**D**) (n=5). (**E**) Flow cytometric analysis of T cells in thymus (n=4). (**F**) Flow cytometric analysis and quantification of nTreg (CD4⁺ CD25⁺ Foxp3⁺) thymocytes (n=3). Results are presented as mean \pm SD (**A** to **F**). One representative experiment of three is shown. NS, not significant.

Fig. S3. IncRNA-GM does not affect the proliferation of T cells.

(A and B) CD4⁺ (A) and CD8⁺ (B) T cells proliferation after treatment with anti-CD3 (5 μ g/ml) and anti-CD28 (2 μ g/ml) 3 days (n=3 to 5). Results are presented as mean \pm SD (A and B). One representative experiment of three is shown. NS, not significant.

Fig. S4. Silencing of human *lncRNA-GM* inhibits Th17-related gene expression and promotes Treg-related gene expression.

(A) qPCR analysis of *IL17*, *IL17F*, *IL21*, *IL23R* and *BATF* mRNA expression in human Th17 cells (n=3). (B) qPCR analysis of *FOXP3*, *IL10*, *IL10RA* and *IL10RB* mRNA expression in human Treg cells (n=3). Results are presented as mean \pm SD (A and B). **P* < 0.05; ***P* < 0.01; ****P* < 0.001.

(A) qPCR analysis of *Rorc* and *Tbx21* mRNA expression in naïve T and Th17 cells
(n=3). (B) Immunoblot analysis of mTOR and downstream signaling pathway in WT and *lncRNA-GM^{-/-}* Th17 cells after treatment with DMSO or 50 nM Rapamycin (Rapa). (C and D) Flow cytometric analysis (C) and quantification (D) of IL17A⁺

cells in WT and *lncRNA-GM^{-/-}* Th17 cells after treatment with DMSO and 10 µM MHY1485 (MHY) (n=3). (E) Immunoblot analysis of mTOR downstream signaling pathway in WT and *lncRNA-GM^{-/-}* Th0 (α-CD3/CD28) and Th1 cells cultured for 3 days. (F) Phosphorylation of mTOR and p70S6K was measured by flow cytometry from WT and $lncRNA-GM^{-1}$ Th1 cells (n= 4). (G) Flow cytometric analysis and quantification of IFN γ^+ cells in WT and *lncRNA-GM^{-/-}* Th1 cells after treatment with DMSO and 200 nM rapamycin (Rapa) (n=4). (H) Immunoblot analysis of mTOR downstream signaling in WT and *lncRNA-GM^{-/-}* iTreg cells. (I) Phosphorylation of mTOR was measured by flow cytometry from WT and *lncRNA-GM^{-/-}* iTreg cells (n= 4). (J) Flow cytometric analysis and quantification of Foxp3⁺ cells in iTreg cells after treatment with DMSO and 50 nM rapamycin (Rapa) (n=4). (K) Phosphorylation of mTOR was measured by flow cytometry from nTreg (CD4⁺ CD25⁺) thymocytes stimulated with anti-CD3 (5 µg/ml), anti-CD28 (2 µg/ml) and rIL-2 (10 ng/ml) 3 days (n=5). (L) Immunoblot analysis of indicated protein levels in naïve CD4⁺ T cells after treatment with 30 ng/ml IL-6 (left), 10 ng/ml IL-2 (middle) and 10 ng/ml TGF-B1 (right). Naive CD4⁺ T cells were cultured in vitro under optimal pathogenic Th17 cell polarizing conditions for 3 days. Results are presented as mean \pm SD (A, D, F, G, I, J and **K**). One representative experiment of three is shown. *P < 0.05; **P < 0.01; ***P < 0.001; NS, not significant.

Fig. S6. lncRNA-GM promotes Th17 cell differentiation independent of *in cis* function and GSTM1.

(**A** and **B**) qPCR analysis of *Haus3* and *Mxd4* mRNA expression in Th17 (**A**) or iTreg (**B**) cells from WT and *lncRNA-GM^{-/-}* mice (n=3). (**C**) Analysis of GSTM1 expression in different immune cells at BioGPS website. (**D** and **E**) qPCR (**D**) and immunoblot (**E**) analysis of GSTM1 expression in macrophages and T cells (n=3). (**F**) RIP-qPCR analysis of lncRNA-GM immunoprecipitated by GSTM1 antibody in Th17 cells (n=3). Results are presented as mean \pm SD (**A**, **B**, **D** and **F**). One representative experiment of three is shown. NS, not significant.

Fig. S7. IncRNA-GM directly binds to Foxo1 and reduces Foxo1 expression.

(A) RIP-qPCR analysis of lncRNA-GM immunoprecipitated by Flag antibody in HEK293T cells transfected with indicated plasmids (n=3). (B) qPCR analysis of *Foxo1* mRNA expression in Th17 (left) or iTreg (right) cells (n=3). (C and D) qPCR
(C) and immunoblot (D) analysis of Foxo1 levels in WT and *lncRNA-GM^{-/-}* Th1 and Th2 cells (n=3 to 4). (E) ChIP-qPCR analysis the recruitment of Foxo1 to *Tbx21*

promoter regions in Th1 cells (n=4). (F) Immunoblot analysis of p-Foxo1 (Ser256), p-p70S6K (Thr421/Ser424) and p-4EBP1 (Thr37/46) levels in naïve CD4⁺ T cells after treatment with anti-CD3 (5 μ g/ml) and anti-CD28 (2 μ g/ml) for indicated minutes. (G) Immunoblot analysis of mTOR downstream signaling pathway in WT and *lncRNA-GM^{-/-}* Th17 cells after treatment with DMSO or AS1842856 (AS). Naive CD4⁺ T cells were cultured *in vitro* under optimal pathogenic Th17 cell polarizing conditions for 3 days. Results are presented as mean ± SD (A, B, C and E). One representative experiment of three is shown. ****P* < 0.001; NS, not significant.

Fig. S8. *lncRNA-GM* deficiency reduces inflammatory cell infiltration during EAE development, independently of type I IFN production.

(A) Flow cytometric analysis of CD4⁺ and CD8⁺ T cells within total CD45^{hi} cells in brain and mesenteric lymph node (mLN) from WT and *lncRNA-GM^{-/-}* mice with EAE. (B) Flow cytometric analysis and quantification of monocytes (CD11b⁺ Ly6C^{hi}) within total CD45^{hi} cells in spleen, brain and spinal cord (SC) (n=5 to 6). (C and D) Quantification of neutrophils (CD11b⁺ Ly6G^{hi}) within total CD45^{hi} cells in brain, spleen and SC (C), and quantification of B cells (B220⁺) within total CD45^{hi} cells in brain, spleen and mLN (D) (n=4 to 6). (E) Flow cytometric analysis of IFNγ⁺ (left), IL17A⁺ (middle) and Foxp3⁺ (right) cells within total CD45^{hi} cells in spleen, brain and spinal cord. (F) ELISA detection of sera IFN- α from WT and *lncRNA-GM^{-/-}* mice with EAE (n=5 to 6). (G and H) qPCR analysis of *lfna4* and *lfnb1* mRNA expression in brain (G) and mLN (H) from WT and *lncRNA-GM^{-/-}* mice (n=4 to 5). Results are presented as mean \pm SD (**B**, **C**, **D**, **F**, **G** and **H**). One representative experiment of three is shown. **P* < 0.05; ***P* < 0.01; NS, not significant.

Fig. S9. Deficiency of *lncRNA-GM* reduces Th17 cell infiltration but promotes Treg cell infiltration during EAE by T cell adoptive transfer.

(A) Flow cytometric analysis of CD4⁺ T and CD8⁺ T cells in spleen from $Rag2^{-/-}$ recipients of WT and lncRNA- $GM^{-/-}$ (KO) mice. (**B** to **D**) Flow cytometric analysis of IL17A⁺ (**B**), IFN γ^+ (**C**) and Foxp3⁺ (**D**) cells within total CD45^{hi} cells in spleen, brain and spinal cord from $Rag2^{-/-}$ recipients. One representative experiment of three is shown.

Original Data

72kd -

Fig. 3G

p-mTOR	p-p70S6K	p-4EBP1	β-Actin
315kd -	95kd -	26kd -	55kd -
250kd -	55kd -	17kd -	43kd -
315kd -	95kd -		55kd -
250kd -	72kd - 55kd -	20KG -	43kd -
		17kd -	
mTOR	p70s6k	4EBP1	
315kd	95kd-	26kd -	
- 250kd		17kd -	
- 315kd	95kd - 72kd -	26kd -	
250kd			
		17kd -	
Fig. 4D			
Th17 Foxo1	β-Actin		
130kd -	72kd-		
95kd -			
72kd -	55kd -		
55kd -	72kd-		
130kd -	-		
95kd -	55kd -		
72kd -			
55kd			
Treg Foxo1	β-Actin		
130kd-	55kd -		
95kd -	43kd -	-	
72kd -	34kd -		
130kd	55kd -		
95kd -	43kd -		

34kd -

fig. S5B

72kd -

55kd -

43kd -

72kd -

55kd -

-

4EBP1 26kd -	72
	55 43
17kd - 26kd -	72 55 43
17kd -	

β-ac	tin
'2kd -	
5kd -	
3kd -	
2kd -	
5kd -	
3kd -	

fig.S5E

p-p70S6K	p-4EBP1	β-actin	4EBP1	
95kd -	26kd -	55kd -	26kd -	7
72kd -	~~~	43kd -	***	
95kd -			171.1	
72kd -	17kd -	55kd -	17Kd -	
	26kd -		26kd -	
		43kd -		
p70S6K				
95kd -			4764	
72kd -	17kd		17ка -	
95kd -				
72kd -				

fig. S5H

p-4I	EBP1
20K0	
17kd -	
26kd -	
17kd -	

p	70S6K
95kd - 72kd ⁻ 55kd -	
95kd - 72kd ⁻ 55kd -	

26kd -	4EBP1
17kd -	
26kd -	
17kd -	

fig. S5L

	p-Stat3 (IL-6)
130kd -	
95kd -	
72kd -	
130kd -	
95kd -	-
72kd -	
	Stat3 (IL-6)
130kd -	
95kd -	
72kd -	
	β-actin (IL-6)
55kd -	_
43kd -	

p-Stat5 (IL-2)
130kd -
95kd -
72kd -
130kd -
95kd -
72kd -
Stat5 (IL-2)
130kd -
95kd - 📰 🖛 🖛 🖛 🖛 🖛
72kd -
β-actin (IL-2)
55kd -
43kd

p-Smad2 (TGF-β1)
72kd -
55kd -
72kd -
55kd -
Smad2 (TGF-β1)
72kd -
55kd -
72kd -
55kd -
β-actin (TGF-β1)
43kd -

fig. 6E β-actin 55kd -43kd -55kd -

	GSTM	1
34kd	-	
26kd	-	
34kd	-	
26kd	-	

fig. S7D

٦	Th1
F	oxo1
95kd -	
72kd -	-
95kd -	
72kd -	

fig. S7F

F	o-Foxo1	_			
95kd -	-	-	Bitca	-	-
72kd -	100 000	-	-	999	New
95kd -					
72kd -					

55k	β-Actin
401	
43k	d-
55k	
43k	d-

p-p70S6K

95kd -72kd ⁻

55kd -

95kd -72kd ⁻

55kd -

55kd -43kd -

-	Th2
I	Foxo1
95kd -	
72kd -	
95kd -	1 A. 1997
72kd -	

p-4EBP1 26kd -17kd -26kd -

17kd -

43kd -	
p70S6K	
72kd - 55kd - 43kd -	

β-Actin

55kd -

43kd -55kd -

72kd ⁻ 55kd -43kd -

	4EBP1
26kd -	
471-1	344545
17Kd -	
26kd -	
17kd -	

55kd -
43kd -

26kd

17kd -

26kd -

17kd -

55kd -43kd -55kd -43kd -

β-actin

β-actin

p-4EBP1

fig. S7G

F	p-p70S6K			
72kd -		-	 -]
55kd -	A STATE	Rik		
72kd -				
55kd -				-

p70S6K
72kd
72kd - 55kd -