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EXTENDED MATERIALS AND METHODS:

1. Image analysis

Calculations were performed in MATLAB using cus-
tom built code unless otherwise stated.

a. Measurement of cilia coverage fraction and wavelength
from fixed samples

Coverage fraction and wavelength were measured from
2D binarized images of the entire trachea surface as the
one shown in Extended Data Fig. 1A. The raw data from
which these images were obtained was collected as de-
scribed in Methods §1c (Multiciliated cell imaging). Bi-
narized images were assembled from the raw data as fol-
lows.

First, the maximum intensity projection of the z-stack
collected for each tile was calculated. Maximum intensity
projections of all the tiles from a trachea were stitched to-
gether using the ImageJ [1] “Stitching” plugin [2], yield-
ing an image as the one shown in Extended Data Fig. 1A.

Next, a bandpass filter was applied to stitched image to
reduce noise. The filtered image was then binarized using
the “imbinarize” function in matlab. “Imbinarize” com-
putes a threshold for each pixel using the local mean in-
tensity around the neighborhood of each pixel (Bradley’s
method). The sensitivity factor for the adaptive thresh-
old can have values in the range [0,1]. A high sensitivity
value leads to thresholding more pixels as foreground at
the risk of including some background pixels. We chose
a value of 0.99 since the spatial filtering was effective
in discriminating the background from the signal. Vi-
sual inspection showed that the threshold was accurate
at identifying multiciliated cells. However, the high value
of sensitivity used introduced isolated white pixels that
did not correspond to multiciliated cells. To remove these
artifacts, objects with areas smaller than 30 pixels were
excluded from the final binarized image (for reference a
typical multiciliated cell is composed of ∼90 pixels). All
binarized images were further inspected manually to val-
idate the thresholding.

Finally, we note that a mask was used to exclude from
the coverage fraction and wavelength calculations the
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pixels at the edge of each stitched trachea image. These
edge pixels are not part of the trachea. All masks were
drawn manually.

b. Measurement of cilia coverage fraction and wavelength
from live samples

Coverage fraction and wavelength were measured from
2D binarized images where regions with white pixels cor-
respond to regions of cilia activity (See Extended Data
Fig. 1C). The raw data from which these images were ob-
tained was collected as described in Methods §1c (Cilia
live imaging). Binarized images were obtained from the
raw data as follows. The median intensity projection
of each image stack was calculated. Subsequently, the
median image was substracted from each frame of the
original stack. From this resulting stack a maximum in-
tensity projection was obtained. The maximum inten-
sity projection was binarized in ImageJ using the default
threshold. This method allowed for identification of re-
gions where pixel values fluctuate due to ciliary beating,
rendering a binarized image where the white pixels corre-
spond to regions of cilia activity. Images were inspected
manually to verify that only regions where cilia activity
was observed were included. The coverage fraction, ϕ̄,
was calculated from binarized images according to equa-
tion M2. To obtain the wavelength, λ, we computed the
correlation function defined in equation M4. From this
function we extracted the wavelength, λ, by determining
its first local maximum. Extended Data Fig. 1D shows a
plot of S2 for all the fields of view analysed. The squares
mark the first local maximum of S2, which corresponds
to λ.

c. Analysis of number and orientation of cilia

The number and orientation of cilia was measured
from maximum intensity projections of Centrin and
Centriolin image z-stacks. Extended Data Fig. 1C shows
an example of such images. The raw data from which
the maximum intensity projection was obtained was col-
lected as described in Methods §1c (Basal body imaging).

Cilia quantification: Each cilium extends from a
single basal body, therefore the number of cilia in a cell
corresponds to the number of basal bodies in a cell.
Centrin-GFP images were analysed to identify individual
basal bodies as follows. First, images were filtered using
a bandpass filter. The center of bright puncta that
corresponded to basal bodies was identified with subpixel
resolution based on local maximum intensity and size.
Basal bodies were binned by cell and counted to obtain
the number of cilia in each cell. The boundaries of each
cell was traced manually from Vangl1 staining. Figure
1F shows a histogram of the number of cilia per cell
counted from 375 cells.

Cilia orientation measurement: The orientation of a
cilium is defined by the unit vector, pi that connects
each basal body (marked by Centrin) with its corre-
sponding basal foot (marked by Centriolin). For a pair
of Centrin and Centriolin images, the orientation of each
cilium was obtained as follows.

First, the center of each basal body was identified
from the Centrin-GFP image as described in the previ-
ous section. The image was then binned in windows of
80x80 pixels centered around every identified basal body.
The same windows were identified in the Centriolin
image. For each pair of Centrin-Centriolin windows, the
2D crosscorrelation function of the images was calculated
for all possible directions. The orientation of a cilium, pi
was defined as the direction where the crosscorrelation
between Centrin and Centriolin windows was maximum
(For an illustration of this see Extended Data Fig. 1B).
Prior to computing the crosscorrelation, each image
window was processed by substracting its mean and
multiplying it by a gaussian kernel of size 80x80 pixels
and standard deviation 20.
In some cases Centriolin staining was weak, and the
analysis yielded a spurious direction. To correct for
this, orientation vectors were filtered by calculating
the maximum to mean ratio of each window. Vectors
obtained from windows with a maximum to mean ratio
less than 40 were excluded from further calculations.
Once the orientations of all cilia, pi, in an image were
obtained, their organisation was measured as follows.

To measure the cellular-scale organisation, we de-
fine the order parameter, m:

m = |〈pi〉| (S1)

where pi is the unit vector that describes the orientation
of the i-th cilium in a cell. The average is taken over
all cilia in a cell. Values of m for all cells analysed are
shown in Figure 1H (cell).

To measure tissue-scale cilia organisation we assign
an orientation to each cell defined by:

P = 〈pi〉 (S2)

Thus P is a unit vector obtained by averaging the unit
orientation vectors of all cilia within a cell. The tissue-
scale organisation of cilia is then measured by calculating
the order parameter, M , according to:

M = |〈Pj〉|, (S3)

where the average is calculated over all the cells in a
field of view. All fields of view analysed have dimensions
of 1584x1584 pixels and contain ∼ 35 multiciliated cells.
All values obtained are shown in Figure 1H (Tissue).

To determine how the orientation of cilia varies
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across neighboring cells in the tissue, we compute the
spatial correlation function of P defined as:

O(r) = 〈Pj · Pj+r〉 (S4)

where Pj is the average orientation of cilia in the jth cell
as defined by Eq. S2 and Pj+r is the average orientation
of cilia in the cells at a distance less than or equal to
r. The average is taken over the polarity vectors that
correspond to all multiciliated cells in an image. This
function is well approximated by an exponential decay
of the form O = 0.32e−n/r0 + 0.68 where r0 = 12.2µm.
While the orientation of cilia decays with a characteristic
length scale of r0 = 1.13 cells, we note that O decays to
a constant value of 0.68, showing that orientation of cilia
in cells remains highly correlated over the entire field of
view.

d. Analysis of flows

Flow fields were measured from time-lapse imaging of
tissues with tracer particles. The raw data was collected
as described in Methods §1c (Flow imaging). Particle
Image Velocimetry (PIV) fields were generated using
“mpiv” [3]. Field parameters were optimized based on
bead dilution used in flow field visualization experiments,
and then held constant across all analyses to reduce
systematic errors due to inconsistent discretization.
Parameters used are given in table I. Using these pa-

PIV type ’MQD’

Window size 128

Window overlap 0.5

Iterations 4

TABLE I. Parameters used for PIV analysis

rameters a velocity vector is obtained every 8 pixels (in
the x and y directions). Therefore, the typical number
of velocity vectors per field of view was ∼ 50, 000.
Velocity fields were filtered using a standard filter and
interpolated spatially using Kriging interpolation. Fil-
tering and interpolation were done with “mpiv filter” [3].

To calculate the speed of the flow, velocity fields
were averaged temporally. For images captured with
a 4X objective temporal averaging= 5 minutes and
time step=1 second. For images captured at 40X
magnification, temporal averaging= 1 second and time
step=0.3-0.13 seconds. Probability density functions
(PDFs) of the velocity vectors of the time averaged
fields were obtained (Figure 2F). From these PDFs the
average speed, and the average values of the x (vx) and y
(vy) components of the velocity were calculated (Figure
2E). To assign units to the simulated data, the average
speed for all simulated flows was matched to the average
speed in ten flow fields measured (Figure 2F).

e. Analysis of ciliary beating

The cilia beat frequency and wave velocity were mea-
sured from kymogrpahs of time-lapse imaging of ciliary
beating with a temporal resolution of 250-350 frames per
second. This data was obtained as described in Meth-
ods §1c (Cilia live imaging). Kymographs were obtained
for lines drawn parallel or perpendicular to cilia in an
image (Extended Data Fig. 2E). Lines were drawn along
traces in the kymograph that correspond to cilia beat cy-
cles. The slope of these lines was averaged over all lines
in a kymograph, yielding a measurement of cilia beat
frequency (parallel to cilium, blue line) or group wave
velocity (perpendicular to cilium, green line).

f. Literature survey of patchiness and coverage fraction

Animal Reference ϕ λ

chicken [4]

0.37

0.40

0.64

-

-

6

dog [5] 0.36 12.47

ferret [6] 0.44 10.5

hamster [7] 0.58 14.8

human [8]
0.44

0.48

14.1

16.5

pig
[9]

[10]

0.69

0.57

21.4

11.3

rabbit [11] 0.49 15.2

rat [12] 0.38 14.6

snake [13] 0.19 121.3

TABLE II. Measurements of ϕ and λ for different species.

We conducted a literature survey to find images of the
airway tissue where the pattern formed by multiciliated
cells could be identified. Scanning electron microscopy
images were found in the literature for airway tissue from
the animals shown in table II. Images were cropped from
figures, to include only the region where the multiciliated
tissue was present. Regions of the image containing mul-
ticiliated cells were identified and drawn manually. This
generated a binary image where the white pixels corre-
sponded to areas where multiciliated cells are present.
Since image frame had a limited number of pixels, in-
stead of binning we calculated coverage fraction over the
entire image as:

ϕ =
1

N

N∑
i=1

I(ri) (S5)

where I(ri) are the values of all the pixels in the binary
image as defined in equation M1 and N is the number
of pixels in the image. Wavelength was calculated by
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computing S2 according to equation M4. The wavelength
λ corresponds to the local maximum of S2. In the case of
chicken, two images found were too small to measure λ,
we indicate this by a dash in table II. Our measurements
from this brief literature survey provide an estimation of
ϕ and λ, however, large data sets for each species will be
required to measure these parameters conclusively.

2. Size and number of images analysed in this
paper

Table III lists the size of all regions of interest (ROIs)
analyzed in this paper. For basal body imaging twelve
fields of view of the size specified in the table were
analysed. For cilia live imaging 60X, seven fields of view
of the size specified in the table were analysed. All sizes
are given in pixels.

For images of multiciliated cells and 4X Flow imaging
each ROI is the trachea of a different animal. The rest of
the ROIs were collected from at least 4 different animals.

3. Simulation

a. Fundamental solution

The fundamental solution of Stokes flow (also known as
the Stokeslet or Green’s function) in a liquid film was de-
rived recently by Mathijssen et al. [14]. The confinement
drastically changes the flow structure in these geometries,
and therefore it is helpful to revise this briefly.

The hydrodynamics of an incompressible Newtonian
fluid at low Reynolds number are described by the Stokes
equations,

0 = −∇p+ µ∇2v + F (r, t), 0 = ∇ · v. (S6)

where v(r, t) is the flow velocity field at position r and
time t, p(r, t) is the pressure field, µ is the dynamic vis-
cosity and F (r, t) is a force acting on the liquid. In the
absence of boundaries, the flow due to a point force,
Fs = δ3(r − rs)fs, with magnitude fs(t) and position
rs, with boundary conditions v = 0 as |r| → ∞, is

vs(r, t) = J (r − rs) · fs, (S7)

where the Oseen tensor Jij(r) in Cartesian components
is

Jij(r) =
1

8πµ

{
δij
r

+
rirj
r3

}
, (S8)

with i, j ∈ {x, y, z} and r = |r|. In a thin film, this flow
is modified by the boundaries. At the bottom surface
we enforce the no-slip condition, v = 0 at z = 0, and at
the liquid-air interface we enforce the no-shear condition,
∂v
∂z = 0 at z = H. These conditions can be satisfied

exactly using a Fourier-transform method (page 56 in
[14]) or approximated by truncating an infinite series of
images (ibid. p. 37). The resulting expressions are rather
complex, but analytically tractable. In the thin-film limit
the solution simplifies to

Fαβ = − 3z

πµ

(
1− z

2H

) zs
H

(
1− zs

2H

) 1

ρ2

{
δαβ
2
− rαrβ

ρ2

}
,

(S9)

with horizontal components α, β ∈ {x, y} and relative
distance ρ2 = (x−xs)2 + (y− ys)2, but vertical flows are
suppressed exponentially (ibid. p. 63). Here the thin-
film limit is defined as H � ρ, which is equivalent to the
far-field limit. The prefactors describe a half-parabolic
flow profile in z, and the last part gives the horizontal
flow structure (in curly brackets). A first difference with
the Oseen tensor (Eq. S8) is that the flows decay faster, as
1/ρ2 rather than 1/ρ, since the surfaces impart viscous
dissipation. Secondly, the streamline structure is very
different.

This is demonstrated in Extended Data Fig. 3, where
we show the exact solution as a function of confinement,
H, with the Stokeslet in the middle of the film, zs = H/2.
For weak confinement, we recover the bulk Stokeslet flow
(Eq. S8), where the streamlines are open and oriented
along the force direction. For strong confinement we re-
cover the thin-film limit (Eq. S9), the forward flows are
weaker because of surface dissipation. Moreover, a re-
circulation emerges with liquid moving backwards (red
colours), and the streamlines all completely close onto
one another. For intermediate confinement, a more com-
plex flow structure arises with two vortexes that are sep-
arated a distance δ ∼ H (green circles). Locally (ρ < H)
the Stokeslet limit still holds, but globally (ρ > H) the
far-field limit applies and all liquid recirculates.

Once the Green’s function Fαβ is known, it is possi-
ble to calculate the flow generated by an active carpet
by integrating the Green’s function over the carpet ar-
chitecture [15]. Puzzlingly however, because the liquid
recirculates in the far-field in a film geometry, the flux
due to a Stokeslet through any cross-section of the film is
actually zero, for any finite film height H. Specifically,
the flux through any yz plane due to a Stokeslet oriented

along x is J =
∫H

0

∫∞
−∞ Fxxdydz = 0. As pointed out

by Liron, this is also true for channels with two paral-
lel no-slip surfaces, or cylindrical pipes of finite radius
R, or any double-sided confinement [16]. In an infinite
or semi-infinite (single surface) geometry, however, the
flux does not vanish. This apparent dilemma is resolved
by realising that one may add a constant Poiseuille flow

vP (z) = − 2H2

µ
∂p
∂x

z
2H

(
1− z

2H

)
êx to the solution without

violating the boundary conditions on the film surfaces,
at z = 0, H. The flux is then specified by the pressure
gradient generated by the cilia. Therefore, if each cilium
on average exerts a force Fc along x and if cilia are dis-
tributed with a density nc per unit area, then the flux
per unit length in y is J = ncFcH

2/3µ. Note that other
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Multiciliated

cells

Basal

Body
Flow Cilia Live

12983x5312

7788x6864

6688x4080

8000x7088

1584x1584
4X 40X 40X 60X

1215x936

2048x1302

2048x1431

2048x1674

2048x1404

2048x1022

2048x1022

2048x2048

2048x2048

2048x2048

2048x2048

1024x1024

1482x1405

2048x2048

2048x2048

1095x2044

1088x406

994x1022

2048x2044

2048x2044

2048x2044

926x2042

1354x2042

1245x1088

2048x2048

1494x286

TABLE III. Size of all images analyzed. All sizes are given in pixels.

forces can also generate pressure gradients, such as grav-
ity, ∇p = −ρg, which must be added to (or subtracted
from) the total flux and flow profile.

b. Envelope approach

Here, we follow an alternative method inspired by the
‘envelope approach’ introduced by Lighthill and Blake
[17, 18] to study ciliary propulsion. Instead of mod-
elling the cilia with point forces, one can consider an
envelope that covers the tips of numerous beating cilia
that together form a continuous moving sheet. The no-
slip condition on the bottom surface is then replaced by
the motion of this envelope, ve = Up, a tangential slip
velocity that follows the orientation field p of the under-
lying cilia with an average local flow velocity U . This
approximation is justified in the case when the cilia are
close together, which is true for multiciliated cells with
Ncilia ∼ 200 cilia.

On the one hand, this approach coarse-grains the
length scales smaller than the cell, so it cannot resolve
the interesting flows around the individual cilia that can
give rise to mixing and nutrient exchange [19, 20]. On
the other hand, it is very tractable analytically (as seen
in the study of micro-swimmers and active colloids [21])
and it is straightforward to implement numerically, as is
discussed next, being suitable even for very large systems.

c. CFD solver

The flow velocity v(r) is simulated using a 3D compu-
tational fluid dynamics (CFD) solver for the incompress-
ible Navier-Stokes equations. Throughout this paper we

focus on Newtonian fluids, but in SI § 3 g we also con-
sider viscoelastic fluids with a shear-dependent viscosity.
The CFD solver is implemented in a custom-built MAT-
LAB code, optimised for low Reynolds numbers by using
an implicit Crank-Nicolson method for the viscous terms
and an Adams-Bashforth method for the advection terms
[22]. This algorithm is implemented on a staggered grid
of size Ng

x × Ng
y × Ng

z corresponding to a liquid film of
size Lx×Ly×H [µm] and with periodic boundary condi-
tions in the x and y directions, where x is defined as the
distal-to-proximal direction of the trachea. At the fluid-
air interface we enforce the no-shear condition, ∂v∂z = 0 at
z = H. On the tissue surface we apply the no-slip condi-
tion in the absence of cilia (c = 0), and in the presence of
cilia (c = 1) we impose a slip velocity set by the envelope
model, which gives the boundary condition

v(r) = cUp on z = 0. (S10)

Here the cilia distribution c(r) and orientations p(r)
are either taken directly from experiments (SI § 3 e), or
systematically generated in silico for different coverage
fractions, wavelengths, and disorder (SI § 3 f). We simu-
late this system until the (unique) solution is reached at
steady state, after which we save the three-dimensional
velocity field and the pressure field of the ciliary flow.

d. Total flux & clearance time

Once the flow is solved we compute the total flux in
the distal-to-proximal direction,

J =

∫ H

0

∫ Ly

0

vxdydz, (S11)
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which due to incompressibility is the same for all planes
perpendicular to x. Because of this condition, the flux
is equivalent to the volume-averaged flow along x, since∫∫∫

vxdxdydz = J
∫ Lx

0
dx = JLx. Using the linearity of

the Stokes equations, the flux can also be rewritten as

J = ϕHLyU〈px〉, (S12)

where the coverage fraction is

ϕ =

∫ Lx

0

∫ Ly

0

c(r)dxdy/(LxLy), (S13)

which is equivalent to Eq. M2. We also define the z-

averaged flow velocity, v̄ =
∫H

0
{vx, vy}dz/H, the mean

longitudinal flow 〈v̄x〉 = ϕU〈px〉, and the largest back-
flow, β = minx miny v̄x.

Subsequently, the clearance time is obtained by sim-
ulating particle trajectories that represent non-motile
viruses, bacteria or other harmful pathogens. These par-
ticles are subject to the computed flow and also Gaus-
sian fluctuations with diffusivity D. The Stokes-Einstein
diffusivity due to thermal noise is D ∼ 10−1µm2/s for
micron-sized particles in water of viscosity µ = 10−3 Pa·s.
However, in mucus the diffusivity is generally smaller
than water, D ∼ 10−1 − 10−4 µm2/s for micron-sized
particles, because the mucus is much thicker than water
with viscosities µ ∼ 10−3 − 1 Pa·s [23].

We run a Brownian dynamics (BD) simulation to find
the trajectories for an ensemble of N1 ≥ 103 parti-
cles. Initially the particle positions rp are uniformly
distributed across the simulation box, and follow the
Langevin equation,

∂rp
∂t

= v̄(rp) +
√

2Dη(t), (S14)

where the noise is defined by the correlation functions
〈ηi(t)〉 = 0 and 〈ηi(t)ηj(t′)〉 = δ(t − t′)δij . The Péclet
number is defined as

Pé =
λϕU

D
, (S15)

which is large if the effects of advection outcompete dif-
fusion.

These equations are integrated with a fourth order
Runge-Kutta scheme, again with periodic boundary con-
ditions in the x and y directions. For each pathogen i we
then record the time Ti taken to travel a distance Lx in
the x direction, along the D-P axis. Hence, we define the
clearance time Tc = 〈T 〉 as the first-passage time aver-
aged over an ensemble of N1 independent particles. We
verified that this quantity does not depend on individ-
ual initial positions or the simulation geometry. Rather
than absolute values, we report a non-dimensional ratio

in all figures, such as 〈T 〉(ϕ)
〈T 〉(ϕ=1) to analyse the effect of

each parameter.
Importantly, this clearance time is not only a measure

of the total flux, but also of the flow structure. In partic-
ular, it is a measure of the connectivity between stream-
lines. If the streamlines are open and connected with

the trachea outlet, the larynx, then pathogens will follow
the river and rapidly be cleared. If the streamlines are
closed, however, the particles are trapped in recirculation
zones for a long time. Therefore, even small fluctuations
(i.e. a large Péclet) can have a significant effect on the
clearance times.

To the best of our knowledge, evaluating streamline
connectivity using the first-passage time is a new con-
cept. Having said that, streamline topology is important
for transport and percolation in plasma physics [24] and
affects particle diffusion in turbulence [25]. Recent re-
sults also show that changes in streamline topology can
greatly enhance the rate of heat and mass transfer from
neutrally buoyant particles in a shear flow [26, 27].

e. Experimental input

Large scale flows: The entire trachea is imaged with
a resolution of 7176 × 4496 pixels, corresponding to
3013.9×1888.3 microns, with the D-P axis aligned along
x. Here the multiciliated cells are marked with Centrin
[Fig. 1B], so from this fluorescence signal we identify the
positions and shapes of approximately 3·104 multiciliated
cells using the Mathematica built-in segmentation func-
tion MorphologicalComponents[]. This measurement
is course-grained by a factor of 5 to generate a grid of
1476× 940 points, which subsequently is binarised to de-
termine the coverage field c(r) = 0, 1. The orientation of
the cilia cannot be measured in this assay, so for each cell
we assign a stochastic direction p such that 〈px〉 = 0.8,
in accordance with Fig. 1H. The ciliary envelope velocity
ve = cUp is then computed on each grid point of the
bottom boundary in the CFD simulation. The resulting
flows are shown in Fig. 2D, left panel. Note, this is not
the same mouse as the one shown for the flow measure-
ment in Fig. 2C, because that tissue is alive with beating
cilia whereas the former tissue is fixed to identify the
basal bodies from fluorescence.

Small scale flows: The tissue scale is imaged with fields
of view of size 68×68µm. Here we identify the boundary
of multiciliated cells by segmenting the membrane stain
Vangl1, which determines the coverage field c(r). Next,
we identify each cilium and its orientation by linking the
relative positions of its ciliary rootlet and basal foot [see
SI § 1 c]. For each cell, we then interpolate between its
Ncilia ∼ 200 cilia to extract the orientation field p(r).
The ciliary envelope velocity ve = cUp is then computed
on each of the bottom boundary grid points of the CFD
solver, with box size Lx = Ly = 68µm. The resulting
flow from one field of view is shown in Fig. 2D, right
panel. Again, this should not be compared directly with
Fig. 2C because it shows a different organism.

Nonetheless, even if it is not possible to compare
the experimental and simulated flow fields directly, we
compare the correlation functions and flow distributions
across an ensemble of different tissues, as shown in
Fig. 2E-H, using the same definitions as in the experi-
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ments, as described in SI § 1 d.

f. Controlled variations

Next, we systematically explore how the total flux and
clearance time depend on the physical properties of the
mucus flow [Fig. 3A,B]. One by one, we address (1) the
ciliary coverage fraction, (2) the patchiness, (3) Brownian
fluctuations, (4) the spatial heterogeneity, and (5) the
orientational disorder.

1. The coverage fraction ϕ is varied while keeping
the wavelength constant, with a square periodic box
of size λ = L = 128µm and film height H = 10µm.
The envelope model is enforced by discretising Eq. S10
on a grid (i, j) of 128 × 128 cells. A patch of cilia
sits at the centre of this grid, with radius R(n) =
64 n−1

24−1 where n = 1, 2, 3, . . . , 34. The discretised cov-
erage field is then generated with the function cij =
Θ
[
R2 − (i− 65)2 − (j − 65)2

]
, where Θ(x) is the unit

step function. Consequently, the coverage fraction is
ϕ =

∑
i,j cij/1282. All cilia are aligned along the tra-

chea axis, px = 1, so we find the velocities vxij = cijU

and vyij = 0 at the tissue surface. The Stokes equations

are solved with these boundary conditions (SI § 3 c) and
the resulting flows are shown in the left panels of Fig. 3C.
We then simulate an ensemble of N1 = 104 particle tra-
jectories, initially distributed randomly, and subject to
this flow and Brownian diffusion. We non-dimensionalise
our system to λ∗ = 1, U∗ = 1, D∗ = 10−4, so the Péclet
number Pé = ϕ104, which is equivalent to a diffusiv-
ity D = 0.128µm2/s, L = 128µm and envelope velocity
U = 10µm/s. In the right panel of Fig. 3C we show the

resulting mean clearance times, 〈T 〉(ϕ)
〈T 〉(ϕ=1) , as well as the

total flux, J(ϕ)
J(ϕ=1) , both normalised with respect to the

case of full coverage (ϕ = 1).
2. The patchiness λ/H is explored by varying the

wavelength λ while keeping the film height H = 10µm
constant, and also a constant periodic box size L =
128µm, coverage fraction ϕ = 0.1 and cilia alignment
px = 1. We again use a grid (i, j) of 128 × 128 cells,
on which we implement a square array of np × np cil-
iary patches, with wavelength λ = L/np and radius

R(np) = L
√
ϕ/npπ, where np = 1, 2, 3, . . . , 24. In other

words, the same number of cilia are spread out in more
and smaller patches. Using these boundary conditions
the flows are simulated, which are shown in the left pan-
els of Fig. 3D. For large patchiness a back flow emerges.
We again simulate N1 = 104 particle trajectories with
constant diffusivity D = 0.128µm2/s, L = 128µm and
mean flow velocity 〈v̄x〉 = ϕU〈px〉 = 10µm/s. In the
right panel of Fig. 3D we show the resulting mean clear-

ance times, 〈T 〉(λ/H)
〈T 〉(0) , as well as the total flux, J(λ/H)

J(0) ,

and the back flow, β(λ/H)
β(0) , all normalised with respect

to the case of uniform coverage (λ = 0). In Extended
Data Fig. 4 the 3D structure of the resulting flow for a

square ciliary array is shown for patchiness λ/H = 12.8,
with a top view and cross sections at and between the
ciliated cells. As predicted by the Stokeslet flow solu-
tion (Eq. S9), the flows above a no-slip surface tend to
follow a half-parabolic profile. However, the flows above
an active surface have an inverted profile to satisfy the
conservation of mass and momentum. There is also a
vertical component to the flow, especially near the edges
of the multiciliated cells, but this component along z is
smaller than the components along x and y.

3. The geometric order is varied by considering the
crystallinity γ, while keeping the coverage fraction ϕ =
0.1, the mean patchiness 〈λ〉/H = 8 and the cilia align-
ment px = 1 constant. We begin with a crystalline array
of 4 × 4 cilia patches, as in SI § 3 f2 above with np = 4.
These patches are displaced spatially by a random vector
(X,Y ), where both components are drawn from a Gaus-
sian distribution with standard deviation σ. The geomet-

ric order parameter is then defined as γ = 1 − σ
√

2
λ , the

crystallinity. As before we implement these patches on a
periodic 128×128 grid, but we also consider periodic im-
age systems so that if (X,Y ) leaves the grid, it appears
on the other side. Moreover, we allow patches to overlap
randomly, so the relation 〈v̄x〉 = ϕU remains satisfied.
We generate these initial conditions for an ensemble of
N2 = 50 epithelia, and for N3 = 16 different values of the
order parameter, so N2N3 = 800 flows are simulated. A
few examples of these flow patterns are shown in Fig. 4A.
For each configuration we then simulate N1 = 1000 par-
ticle trajectories, with a Péclet number of Pé = 103, so
800, 000 trajectories total. In the right panel we show
the resulting clearance times, now averaged over the en-

sembles N1 and N2, 〈T 〉(γ)
〈T 〉(1) , and the total flux, J(γ)

J(1) , both

normalised with respect to the case of crystalline order.
4. The effect of cilia alignment is examined by vary-

ing the orientational order parameter, M = 〈px〉, while
keeping the coverage fraction ϕ = 0.1, the patchiness
λ/H = 8 and the crystallinity γ = 1 constant. Again
we begin with a crystalline array of 4 × 4 cilia patches,
cij , as in SI § 3 f2 with np = 4. Now each cilia patch k
is given a random orientation Pk, which is drawn from a
circular Gaussian, the Von Mises distribution,

f(θ | α) =
eα cos(θ)

2πI0(α)
, α > 0, (S16)

where α is the distribution width and the Bessel func-
tion of the first kind I0(α) is just a normalisation factor
such that

∫
f(θ)dθ = 1. Random numbers θ are drawn

from this distribution using the Smirnov transform, i.e.
solving the inverse of the cumulative distribution, such
that 〈cos(θ)〉 = M ∈ [0, 1]. Hence we compile a grid
for the longitudinal and perpendicular surface velocities,
vxij = cijU cos(θij) and vyij = cijU sin(θij), where θij = θk
for each patch. These initial conditions are generated for
an ensemble of N2 = 50 epithelia, and for N3 = 16 dif-
ferent values of the order parameter, M(n) = 1 − n−1

16 .
We again simulate N1 = 1000 particle trajectories for
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each configuration, with Pé = 103. In the right panel of
Fig. 4B we show the resulting clearance times averaged

over N1 and N2, 〈T 〉(M)
〈T 〉(1) , and the total flux, J(M)

J(1) , both

normalised with respect to the case of aligned cilia.
5. The effect of Brownian fluctuations is tested by

varying the Péclet number, while keeping constant the
wavelength λ = L = 128µm, the film height H = 10µm,
the coverage fraction ϕ = 0.1, crystallinity γ = 1, and
cilia alignment px = 1. We use the same ciliary arrange-
ment vxij as before, (SI § 3 f2 above with np = 1), for
which the flow is shown in the fourth panel of Fig. 3D.
Using this flow, in Fig. 4C the trajectories of 50 parti-
cles are presented for each value of the Péclet number,
Pé = 100, 100, 10, by varying the diffusivity D. We then
gather statistics of N1 = 104 trajectories for the Péclet

number Pé = 104 n−1
10−1 , where n = 1, 2, 3, . . . , 10. In the

right panel we show the resulting mean clearance times,
〈T 〉(Pé)
〈T 〉(104) , and the total flux, J(Pé)

J(104) , both normalised with

respect to the case of weak fluctuations.

g. Shear-dependent viscosity

We verify the robustness of our results with respect to
viscoelastic effects [28] by considering a power-law fluid
with a shear-dependent viscosity [29]. Instead of simu-
lating a Newtonian liquid, we generalise the Stokes equa-
tions of Eq. S6 to

0 = ∇ · S, 0 = ∇ · v, (S17)

where the stress tensor is given by a constitutive equa-
tion,

S = −pI + 2µ(γ̇)E, (S18)

where I is the identity matrix, and the shear rate is de-

fined as γ̇ =
√

2E : E in terms of the deformation tensor,

E =
(∇v) + (∇v)T

2
. (S19)

The power-law for the shear-dependent viscosity is

µ(γ̇) = kγ̇n−1, (S20)

where k is a constant relative to the properties of the
fluid and the exponent n indicates whether the liquid
is shear-thinning (n < 1) or shear-thickening (n > 1).
The Newtonian flow is recovered in the case of n = 1.
The resulting shear-dependent viscosities are shown in
Extended Data Fig. 5A.

We implement this constitutive equation in our CFD
solver following Neofytou [30]. First, we simulate the
Newtonian flow solution as before, using the Newto-
nian viscosity µN , from which we determine the shear
rate averaged across the volume of the liquid film, 〈γ̇N 〉.
Then, we simulate the viscoelastic flow for various val-
ues of the exponent n, where we non-dimensionalise the

shear rate with respect to the Newtonian limit and set
k = µN/〈γ̇N 〉n−1.

To validate this solver, we first simulate the Poiseuille
flow between two parallel plates due a pressure gradient.
The analytical solution is known [29, 31] exactly for this
viscoelastic flow,

vP (z) = vmax

(
1−

(
|z|
H

)n+1
n

)
x̂, (S21)

where vmax is the maximum flow speed at the centre
line. Extended Data Fig. 5B compares the power-law
CFD simulations (points) with this theoretical flow pro-
file (lines). For the Newtonian case (n = 1, green) we re-
cover the usual parabolic Poiseuille profile, for the shear-
thickening fluid (n = 2, red) we recover the sharper ‘cusp’
flow and for the shear-thinning fluid (n = 0.5, blue) we
recover the flatter ‘plug’ flow.

We then apply the power-law CFD solver to simulate
the ciliary flows, using the boundary conditions set by the
envelope approach as before, following the same methods
as in SI § 3 f. Hence, we compare the flow structure due to
an array of multiciliated cells for different values of the
power-law exponent, n, with a constant coverage frac-
tion ϕ = 0.1, patchiness λ/H = 12.8, crystallinity γ = 1
and the cilia are all aligned 〈px〉 = 1. Perhaps surpris-
ingly, both the shear-thinning and the shear-thickening
fluids have very similar flow structures compared to the
Newtonian flow [Extended Data Fig. 5C]. For the shear-
thinning flow, the flow strength is slightly weaker com-
pared to the shear-thickening flow, but the recirculation
zones (red areas) are also slightly smaller. Still, in both
cases, particles stuck in these eddies feature a large clear-
ance time. We test this quantitatively in Extended Data
Fig. 5D, where we show the total flux and the clearance
time as a function of patchiness, repeating the analysis
described in SI § 3 f2, for both a shear thinning (n = 0.5)
and a shear-thickening fluid (n = 2). As in the Newto-
nian case, the clearance time is small for a homogeneous
carpet (low λ) but large for patchy epithelia because of
the emergence of recirculation. In Extended Data Fig. 5E
we also vary the Péclet number, repeating the analysis
described in SI § 3 f5. Again as in the Newtonian case,
the noise reduces the clearance time.

In summary, we conclude that if multiciliated cells
drive a film of a generalised Newtonian fluid with
a shear-dependent viscosity, recirculation still emerges
with patchiness, but the particle clearance can still be
reduced by disorder. It would be interesting to gener-
alise this further to other viscoelastic constitutive equa-
tions that include normal stress differences, a yield stress
or memory effects. Then, the deformation of streamlines
and recirculation zones could be larger, which may en-
hance particle clearance. Indeed, these complex fluids
can be implemented using the CFD framework described
here, which provides an interesting avenue for future re-
search.
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h. Hexagonal arrays

We also test for robustness with respect to ciliary lat-
tice structure by simulating hexagonal arrays of multi-
ciliated cells, in a Newtonian fluid, with three different
orientations [Extended Data Fig. 6A-C]. Compared to
the rectangular arrays, we still see back-flow (red areas)
and streamline recirculation when the patchiness λ/H
is large, which for large Péclet numbers still leads to
increased clearance times: In Extended Data Fig. 6D
we vary the wavelength λ, as in SI § 3 f2, and simulate
N1 = 104 particle trajectories with constant diffusivity
D = 0.128µm2/s, box size Lx = 128µm, film height H =
10µm, and mean flow velocity 〈v̄x〉 = ϕU〈px〉 = 10µm/s.
In Extended Data Fig. 6E we also vary the Brownian
fluctuations, as in SI § 3 f5, by varying the diffusivity D
with constant patchiness, λ/H = 12.8. Compared to the
square lattice, the clearance times are smaller because
the recirculating areas are smaller, but qualitatively the
results are identical.

i. Phase diagrams

Finally, we cross-compare these parameters in three
phase diagrams that combine the coverage fraction, the
patchiness, and the ciliary orientation. For all diagrams,
we generate an ensemble of ciliary carpet structures start-

ing from a crystalline array of np × np cilia patches,
as in SI § 3 f2 with γ = 1. As before the coverage
fraction is varied by changing the patch size R so that
n2
pπR

2 = ϕL2, the patchiness is varied by the number
of patches np and the patches are given a ciliary orienta-
tion with order parameter M = 〈px〉 using the Von Mises
distribution.

1. For the ϕ − λ diagram we simulate N2N3 epithe-
lia for N2 = 14 values of coverage and N3 = 10 values
of patchiness. In the resulting flow profiles we simulate
N1 = 103 tracer trajectories with Pé/ϕ = 104 and con-
stant px = 1, which together yield the mean clearance
time. The clearance time is normalised with respect to
an ideal carpet, ϕ = 1 and λ = 0.

2. For the ϕ−M diagram we simulate N2N3N4 flows
forN2 = 14 different values of coverage, N3 = 16 different
values of orientational order, and for each an ensemble
of N4 = 20 epithelia. In all the resulting flow profiles we
simulate N1 = 102 tracer trajectories with Pé/ϕ = 103

and constant λ/H = 8. The clearance time is normalised
with respect to ϕ = 1 and M = 1.

3. For the λ−M diagram we simulate N2N3N4 flows
for N2 = 16 different values of patchiness, N3 = 14 differ-
ent values of orientational order, and for each an ensem-
ble of N4 = 20 epithelia. In all the resulting flow profiles
we simulate N1 = 102 tracer trajectories with Pé = 104

and constant ϕ = 0.4. The clearance time is normalised
with respect to λ = 0 and M = 1.
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