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Supplementary Figures

SI Figure 1 Reports of RSV infections from PHE and NHS laboratories in England and Wales, stacked
by age groups, from 2014 to 2021, in 4-week reporting periods [65]
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SI Figure 2 Relative susceptibility ( ) to RSV infection as a function of exposure and age atδ
𝑒𝑥𝑝
(𝑎𝑔𝑒)

different levels of dependence on exposure and age.
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SI Figure 3 A Comparing literature estimates (red lines; dashed lines are median estimates, solid
lines 0.5x and 2x of median) for pre-2020 annual cumulative infections to simulated values.
Accepted simulations are in blue, rejected in black. For comparability with the attack rates in [37],
we only counted first infections for the first age group. B Seasonal concentration of simulations with
a negative log-likelihood less than 3000. Colour coding as in A.
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SI Figure 4: A Distribution of likelihood (negative log-likelihood) values for accepted and
rejected simulations, with the likelihood’s three components. B Density plot of likelihood values
for accepted and rejected simulations. Dashed lines show medians. C Time series of
hospitalisation counts and accepted/rejected simulations (likelihood below 1500). Counts vary
with changing number/size of reporting hospitals, simulations scaled accordingly D Distribution
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of parameter values for accepted and rejected simulations. P-values from Kolgomorov-Smirnov
test.

SI Figure 5. Correlations between parameter pairs. Blue dots are accepted, black dots rejected
simulations.
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SI Figure 6 Incidence of cases in the 0 to 0.5 year age group for the years 2016-2019, for simulations
showing a biennial pattern. Time is normalised to the onset of the season. Dashed and straight lines
are odd and even years, respectively. Simulations have stabilised as there is no difference between
the years 2016 and 2018 or 2017 and 2019.
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SI Figure 7 Cumulative density function of relative differences between 2018/19 and 2019/2020 RSV
seasons, for the 7993 simulations selected by the first two criteria (SI Table 2). Relative difference is
defined as the sum of (absolute values of) differences between matching days of the two seasons,
normalised by the average cumulative incidence (SI Methods). Parameter sets to the right of the
dashed red lines were removed, reducing the number of accepted parameterisations to 6098.
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SI Figure 8: A Peak hospitalisations as a function of binned / values for acceptedκ
𝑎𝑔𝑒

κ
𝑒𝑥𝑝

simulations, normalised to pre-pandemic peak values. B Change in the average age of under-5
hospitalisations as a function of binned / values for accepted simulations, normalised toκ

𝑎𝑔𝑒
κ

𝑒𝑥𝑝

pre-pandemic peak values.



35

SI Figure 9 Dynamics of resurgence seasons as a function of binned / values for acceptedκ
𝑎𝑔𝑒

κ
𝑒𝑥𝑝

simulations, assuming a gradual recovery of contact rates from March 2021 and showing the 10% of
the simulations with the lowest error (mean squared deviation) with respect to SARI-Watch
hospitalisation rates in 2022-22.

SI Figure 10 Simulations with the best likelihoods calculated from pre-pandemic data only
(SARI-Watch count of hospitalisations 2018-19 and 2019-200, using a stepwise recovery of contact
rates in May 2021
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SI Methods

1. Model structure and assumptions
1.1. Model structure
1.2. Model initialisation and external introductions
1.3. Susceptibility and disease severity

2. Processing simulation results
2.1. Parameter selection by regularity of annual seasons
2.2. Accounting for under-ascertainment of hospitalisation data
2.3. Likelihood calculations

1. Model structure and assumptions
1.1 Model structure
We constructed an age-structured deterministic SIRS (susceptible - infectious - recovered -
susceptible) model of RSV transmission. The model has 11 age groups with finer age strata in
early childhood (Table 1 in main text) and with first, second and third infections as separate
compartments. A compartment is defined by its type (S, I, R), age index and infection index:

refers to susceptibles that have not been infected yet (i=1) and are in the second (2) age𝑆
𝑖
𝑗 = 𝑆

1
2

group. For susceptibles the infection index is the infection they will be exposed to, whereas for I

and R it is the infection they are currently undergoing or have already recovered from, eg. 𝑅
1
2

refers to recovered individuals who have been infected once and are in the second age group
(0.5-1 year olds).
Estimates of default parameter values and their source are shown in Table 1 of the main text. We
used age demographics and the contact matrix [38] from the United Kingdom, as an example of
a northern hemisphere country with strong seasonality of RSV (Figure 1B, SI Figure 1). The
entries of the contact matrix were changed proportionately to the size of age groups relative to
the original ones in [17], while also enforcing the contact matrix to be reciprocal.
Death rates from ONS data were slightly modified so that each age group has a stationary size
close to the age structure in 2019 (SI Table 1). The proportions of the age groups as a percentage
of the total population in the model and in ONS data have a deviation smaller than 0.3% for 9 out
of 11 age groups and between 0.33% for the 45-65y group and 0.97% for the 65+ age group.

The model has 99 state variables in total, generated by the 3 types of compartment (S, I, R), 3
levels of infection and 11 age groups (3*3*11=99). We ordered variables by infection level,
compartment type and age group, so the first 9 variables are

.𝑆
1
(1),  𝑆

2
(1),  𝑆

3
(1), 𝐼

1
(1),  𝐼

2
(1),  𝐼

3
(1), 𝑅

1
(1),  𝑅

2
(1),  𝑅

3
(1){ }

The system of 99 coupled ordinary differential equations (ODE) for the state variables consists of
constant, linear and nonlinear terms, respectively.
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The constant terms are births (μ), which is modelled as a constant inflow of new individuals into

compartments and .𝑆
1
1 𝑅

1
1

To take into account maternal immunity we split the number of daily births between the

compartments and as a function of the proportion of individuals in either the S𝑆
1
1 𝑅

1
1

(susceptible) or I (currently infected) compartments or in the R (recovered) compartments in the
age group that is of childbearing age (15-45 years, 9th age group).

The proportion of births with maternal immunity, ie births into the compartment is𝑅
1
1

(SI Eq 1)µ 𝑝
𝑖𝑚𝑚𝑢𝑛𝑒

(𝑡) = µ 𝑖=1

𝑛=3

∑ 𝑅
𝑖
9(𝑡)

𝑖=1

𝑛=3

∑ 𝑆
𝑖
9(𝑡)+𝐼

𝑖
9(𝑡)+𝑅

𝑖
9(𝑡)

and births without maternal immunity are .µ 1 − 𝑝
𝑖𝑚𝑚𝑢𝑛𝑒

(𝑡)( )
The linear terms in the ODEs are:

- waning, for R: ω 𝑅
𝑖
𝑗(𝑡)

- ageing, for any compartment X: , where is the time spent in age group j1

365 𝑑𝑗 𝑋
𝑖
𝑗(𝑡) 𝑑𝑗

- deaths, for all compartments, in age group j: θ
𝑗
𝑋

𝑖

𝑗(𝑡)

- recovery from infection, for I: γ 𝐼
𝑖
𝑗(𝑡)

The nonlinear terms are the infection terms, a product of three terms: the force of infection ( ),λ
𝑖
𝑗

the susceptibles getting infected, and the seasonal forcing, .β(𝑡)
Dependence of the susceptibility to infection on age and exposure is a key control parameter in
our modelling, therefore the force of infection is specific to the age group and/or the level of
infection. For the ith infection of individuals in the jth age group, the force of infection is:

= (SI Eq 2)λ
𝑖
𝑗 β(𝑡) δ

𝑖
(𝑗) 

𝑘=1

𝑛=11

∑  𝑙=1

𝑛=3

∑ 𝐶
𝑗,𝑘

 𝐼
𝑙

(𝑘)(𝑡)

𝑁
𝑘

Where is susceptibility to the ith infection for individuals in the jth age group.δ
𝑖
(𝑗)

is the population of the kth age group and is the seasonal forcing term. is the contact𝑁
𝑘

β(𝑡) 𝐶
𝑗,𝑘

matrix from [38], rescaled proportionally for the age groups where the size (duration) of the age
group was changed.
The entire infection term F(t) is then

(SI Eq 3)𝐹(𝑡)
𝑖
(𝑗) = 𝑆

𝑖
(𝑗)β(𝑡) δ

𝑖
(𝑗)  

𝑘=1

𝑛=11

∑  𝑙=1

𝑛=3

∑ 𝐶
𝑗,𝑘

 𝐼
𝑙
(𝑘)(𝑡)

𝑁
𝑘

The seasonal forcing term is, similarly to [15], a periodic equation with an annual peak similar to
a normal distribution:
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(SI Eq 4)β(𝑡) = β
0

1 + ρ 𝑒𝑥𝑝 − 0. 5
𝑎𝑏𝑠(𝑡−𝑡

𝑝𝑒𝑎𝑘
)

7 σ ( )2( )⎡⎢⎢⎣

⎤⎥⎥⎦
where is the season width in weeks (time t is in days) and ρ is the peak strength of seasonalσ
forcing.

The full equations for the first age group are:

(SI Eq 5.1)𝑆̇
1

(1)
(𝑡) = µ 1 − 𝑝

𝑖𝑚𝑚𝑢𝑛𝑒
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(SI Eq 5.9)𝑅̇
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For the age groups j>1, the equations have the same corresponding terms, except that there are

no births, while there is an ageing term from the preceding age group. For example for :𝑆
1
(2)(𝑡)

(SI Eq 6)𝑆̇(𝑡)
1

(2)
=  − 𝐹(𝑡)

1
(2) − 1

365 𝑑(2) + θ(2)( )𝑆
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365 𝑑(1) 𝑆
1
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To calculate incidence, we add 3x11 additional equations for new infections; for infection i and
age group j the equation is:

(SI Eq 7)𝐶̇(𝑡)
𝑖

(𝑗)
= 𝐹(𝑡)

𝑖
(𝑗)

Incidence at time t is then calculated by the change in the value of from t-1 to t.𝐶(𝑡)
𝑖
(𝑗)

The equations are coded in R in vectorised format by the custom-made function
sirs_seasonal_forc_mat_immun() contained in the file essential_fcns.R, in the subfolder fcns/ at
https://github.com/mbkoltai/RSV-model.

1.2 Model initialisation and external introductions

https://github.com/mbkoltai/RSV-model
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Simulations were started with the initial condition of the entire population in the susceptible
compartments, except for 10 individuals per age group placed into the “first infection”
compartment. We integrate the equations for 30 years before introducing the NPIs, and check
whether the simulations have stabilised to an annual pattern.
Furthermore, to avoid RSV prevalence decaying to zero between seasons and to emulate the
effect of external introductions, 10 new infections are introduced each month.

1.3 Susceptibility and disease severity
We use susceptibility to (re)infection as a composite parameter to capture how age and
immunity affect the susceptibility to RSV disease. In reality, the observed decreasing clinical
severity with age is likely to be a result of both lower susceptibility of infection reflected by lower
attack rates [15,37] and infections being less severe due to higher immunity and a more
developed immune and respiratory system. We used susceptibility to infection as a composite
parameter to reflect these two effects to minimise model complexity.
Similarly, when calculating hospitalisation rates from the simulated number of cases we applied
age-specific hospitalisation rates, but applied the same per-infection-probability to 1st, 2nd and
3rd infections within age groups. Using differential rates of severity would amplify the observed
trends in the results, but would not fundamentally change them.

2. Processing simulation results
2.1 Parameter selection by regularity of annual seasons
As described in the main text, we discarded parameter sets that resulted in biennial or irregular
patterns of RSV incidence pre-pandemic, only keeping parameter sets with stable (annual)
oscillations. To do this, the relative difference between the two pre-NPI seasons were calculated
as:

/
𝑡=1

𝑡=148

∫ 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒
2018/19

(𝑡) − 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒
2019/20

(𝑡)| | 
(SI Eq 7)𝑚𝑒𝑎𝑛([𝑚𝑒𝑎𝑛(𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒

2018/19
), 𝑚𝑒𝑎𝑛(𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒

2019/20
)])

The time index t here refers to the day within the RSV season, starting with week 40. The
cumulative density function of this metric (by each age group) for the 7993 parameter sets is
shown in SI Figure 7. We used a cut-off of 15% relative difference as an upper threshold for
regular annual seasonality.

2.2 Accounting for under-ascertainment of hospitalisation data

There is likely some level of under-ascertainment in the SARI-Watch hospitalisation data that we
used for likelihood calculations. To estimate this, we took the annual sum of hospitalisations in
SARI-Watch and compared it to estimates of the full burden in the literature (SI Table 4).
Specifically, we took the ratio of the annual burden from SARi_Watch and the mean of the
annual disease burden estimates from the literature.
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For the under-5 year old age group this resulted in an under-ascertainment rate of 52.1%, and for
older adults (above 65 years) an under-ascertainment rate of 31%.
This calculation can be found in the file fcns/load_SARI_data.R.
2.3 Likelihood calculations
Likelihood values for hospitalisations were calculated by assuming that reported hospitalisation
counts (from the SARI-Watch series, counts requested from UKHSA, see Acknowledgements in
main text) at each timepoint t and age group j followed a Poisson distribution:
hosp_dataj,t ~ Poisson(k,λ) (SI Eq 8)
Since in this data series the number and size of hospitals reporting varies from week to week, we
needed to scale the simulations (hosp_simulj,t) with the catchment area of the reporting
hospitals at time point t. Since simulations were for the entire UK population, this scaling factor
(rpop) needs to be the ratio of the full population size of the relevant age group (under-5 and
over-65 year olds) used in the model (4.18 million and 12.68 million, respectively).
Additionally, there is likely under-reporting in the hospitalisation data which we approximate by
taking the ratio of the annual hospitalisation rates from SARI-Watch to the estimated full burden.
Simulated hospitalisations were also scaled by this ratio (rund_rep).
Then, to calculate the Poisson likelihood we have:
p_hospj,t = Poisson(k=hosp_dataj,t, λ=rpop*rund_rep*hosp_simulj,t) (SI Eq 9)
The joint likelihood for all timepoints is then:

(SI Eq 10)𝑃𝑟(ℎ𝑜𝑠𝑝_𝑑𝑎𝑡𝑎|ℎ𝑜𝑠𝑝_𝑠𝑖𝑚𝑢𝑙) =
𝑡=1

65

∏
𝑗=1

2

∏ 𝑝_ℎ𝑜𝑠𝑝
𝑡,𝑗

In case of the time notation t=1 means 01/10/2018 and t=65 11/05/2020, with weekly timesteps,
whereas for age groups j={1,2} corresponds to under-5-year and over-65-year age groups.
Similarly, for attack rates, we assumed that the observed number of infections (ninf) out of the
sample size (nsample) per age group follows a binomial distribution.
Then, the probability for the attack rate in age group j:
p_ARj=Binom(k=n_infj , n=n_samplej , p=AR_simulj) (SI Eq 11)
and the joint probability is

(SI Eq 12)𝑃𝑟(𝐴𝑅_𝑑𝑎𝑡𝑎|𝐴𝑅_𝑠𝑖𝑚𝑢𝑙) =
𝑗=1

11

∏ 𝑝_𝐴𝑅
𝑗

We combine these probabilities by taking their negative log-likelihood, so the total likelihood is:

(SI Eq 13)𝑁𝑒𝑔𝐿𝐿 =−
𝑡=1

65

∑
𝑗=1

2

∑ 𝑙𝑜𝑔(𝑝_ℎ𝑜𝑠𝑝
𝑡,𝑗

) +
𝑗=1

11

∑ 𝑙𝑜𝑔(𝑝_𝐴𝑅
𝑗
)( )

Because of the negative sign, a lower value means a higher likelihood.


