# Mettl3-mediated mRNA m<sup>6</sup>A modification controls postnatal liver development by modulating the transcription factor Hnf4a

Yan Xu<sup>1, 3, \*</sup>, Zhuowei Zhou<sup>1, \*</sup>, Xinmei Kang<sup>1, \*</sup>, Lijie Pan<sup>1, 2</sup>, Chang Liu<sup>1</sup>, Xiaoqi Liang<sup>1, 2</sup>, Jiajie Chu<sup>1, 2</sup>, Shuai Dong<sup>1</sup>, Yanli Li<sup>1</sup>, Qiuli Liu<sup>1</sup>, Yuetong Sun<sup>1</sup>, Shanshan Yu<sup>1, 2</sup>, Qi Zhang<sup>1, 2, 3, #</sup>

| Contents                                 | Pages    |
|------------------------------------------|----------|
| Supplementary Figures and Figure legends | 2 to 19  |
| Supplementary Tables                     | 20 to 28 |
| Supplementary Datasets                   | 29       |
| Supplementary References                 | 30       |

Supplementary materials: 9 Figures; 3 Tables; 5 Datasets



## **Supplementary Figures and Figure legends**

Supplementary Fig. 1. Liver-specific Mettl3 knockout mouse construction and characterization.

(a) Western blot for Mettl3 and Mettl14 of mouse liver tissues at indicated time points

after birth (3 experiments were repeated independently with similar results). (b) Western blot for METTL3 and METTL14 of human liver tissues at indicated ages (3 experiments were repeated independently with similar results). (c) Targeting strategy of Albumin-enhancer/promoter-driven Cre-mediated Mettl3 conditional knockout mouse construction. Floxed-Mettl3 allele was generated by flanking exons 2 and 4 with loxP sites. Hepatocyte-specific conditional knockout of Mettl3 (Mettl3 cKO) was achieved by crossing floxed-Mettl3 mice with Alb-enhancer/promoter-driven Cre transgenic mice. (d) Schematic diagram of breeding strategies of Mettl3 cKO mice. (e) Western blot for Mettl3 in hepatocytes isolated from Control and Mettl3 cKO mice (3 experiments were repeated independently with similar results). (f) Densitometry analysis of western blot for Mettl3 in hepatocytes isolated from Control and Mettl3 cKO mouse livers in (e) (n = 3 for each group over 3 independent experiments). (g) Western blot for Mettl3 in indicated tissues from Control and Mettl3 cKO mice (3 experiments were repeated independently with similar results). (h) Densitometry analysis of western blot for Mettl3 in Control and Mettl3 cKO liver tissues in (g) (n = 4 for each group). (i) Quantitation of Cre mRNA expression of Control and Mettl3 cKO liver tissue at day 1 after birth (n = 3 Control group; n = 4 for cKO group). (j) Genomic PCR analysis for floxdel allele (amplified with Mettl3-F1 and Mettl3-R2 primer shown on (c) in indicated tissues from Control and Mettl3 cKO mice (3 experiments were repeated independently with similar results). (k) Genomic PCR analysis of 1-day-old mouse of indicated genotype (3 experiments were repeated independently with similar results), showing successful knockout of Mettl3 at day 1

after birth in *Mettl3* cKO mouse liver. Floxdel fragments were detected using liver samples as templates, and *Alb-Cre* and floxed/wild type fragments were detected using mouse tail samples as templates. (1) LC-MS/MS analysis of m<sup>6</sup>A mRNA modification in Control and *Mettl3* cKO mouse liver tissue (n = 2 for Control group; n = 3 for cKO group). (m) Western blot for Mettl14 of Control and *Mettl3* cKO mouse liver tissues 2 weeks after birth (3 experiments were repeated independently with similar results). (n) Body weight of female Control and *Mettl3* cKO littermates at 4 weeks after birth (n = 6 for each group). (o) Representative appearances of Control and *Mettl3* cKO littermates at 5 weeks after birth (10 experiments were repeated independently with similar results). Data in (f), (h), (i), and (n) were shown as mean  $\pm$  SEM with the indicated significance (\*\*\*P < 0.001; two-tailed student's *t*-test). Source data are provided as a Source Data file.



Supplementary Fig. 2. Liver weight to body weight ratio and serum triglyceride levels of Control and *Mettl3* cKO mice.

(a) Ratio of liver weight to body weight of Control and *Mettl3* cKO mice at different time points postnatally (n = 4 for 1 week cKO group and 5 weeks groups; n = 5 for 4 weeks groups; n = 6 for 2 weeks cKO group; n = 7 for day 1 cKO group; n = 9 for 3 weeks Control group; n = 12 for 3 weeks cKO group; n = 15 for day 1 Control group and 1 week Control group). (b) Serum levels of triglyceride of Control and *Mettl3* cKO mice at different time points postnatally (n = 2 for day 1 cKO group; n = 3 for day 1 Control group; n = 4 for 1 week cKO group; n = 5 for 4 weeks groups; n = 7 for 3 weeks cKO group; n = 6 for other groups). Data in (a) and (b) were shown as mean  $\pm$  SEM with the indicated significance (\*p < 0.05, \*\*p < 0.01; two-tailed student's *t*-test). Source data are provided as a Source Data file.



Supplementary Fig. 3. Hepatic Mettl3 deletion results in liver injury.

(a) and (b) Representative H&E staining photographs of liver sections from Control and *Mettl3* cKO mice at 1 day (a) and 1 week (b) after birth (10 experiments were repeated independently with similar results). Scale bar = 50  $\mu$ m. (c) Representative Oil Red O staining photographs of liver sections from Control and *Mettl3* cKO mice at 2 weeks and 4 weeks postnatally (6 experiments were repeated independently with similar results). Scale bar = 100  $\mu$ m. (d) Quantification of Oil Red O positive area shown in (c) (n = 8 for 4 weeks cKO group; n = 12 for other groups). (e) Representative BODIPY staining fluorescent photographs of primary hepatocytes isolated from Control and *Mettl3* cKO mice (6 experiments were repeated independently with similar results). Scale bar = 100  $\mu$ m. (f) Quantitation of average nuclear diameter of liver sections from Control and *Mettl3* cKO mice (n = 45 for 4 weeks cKO group; n = 56 for 2 weeks cKO group; n = 67 for 2 weeks Control group; n = 78 for 4 weeks Control group). (g) Representative PI staining photographs of primary hepatocytes isolated from Control and *Mettl3* cKO mice (3 experiments were repeated independently with similar results). Scale bar = 100  $\mu$ m. Data in (d) and (f) were shown as mean  $\pm$  SEM with the indicated significance (\*\*p < 0.01, \*\*\*p < 0.001; two-tailed student's *t*-test). Source data are provided as a Source Data file.



Supplementary Fig. 4. Histological analysis of Control and *Mettl3* cKO liver sections.

(a) Representative Masson's trichrome staining photographs of liver sections from Control and *Mettl3* cKO mice at 5 weeks after birth. Scale bar = 50  $\mu$ m. (b) Quantification of Masson's trichrome staining positive area (n = 15 for each group). (c) Representative H&E staining photographs of liver sections from Control and *Mettl3* heterozygous mice at 3 weeks and 5 weeks after birth (10 experiments were repeated independently with similar results). Scale bar = 50  $\mu$ m. (d) Representative Ki67 immunohistochemistry staining photographs of liver sections from 5-week-old Control and *Mettl3* cKO mice (6 experiments were repeated independently with similar results). Scale bar = 50  $\mu$ m. Data in (b) were shown as mean ± SEM with the indicated significance (\*\*\*p < 0.001; two-tailed student's *t*-test). Source data are provided as a Source Data file.



Supplementary Fig. 5. Dynamic m<sup>6</sup>A modifications in postnatal mouse liver development.

(a) LC-MS/MS analysis of m<sup>6</sup>A modification in mouse liver tissues collected at indicated time points (n = 2 for each group). (b) Summary of peak number, the number of annotated genes, and the number of annotated genes in each group in m<sup>6</sup>A-RIP sequencing. (c) Summary of dynamic changes of m<sup>6</sup>A-immunoprecipitated peaks in different stages of postnatal liver development. (d) Cumulative distribution of m<sup>6</sup>A-immunoprecipitated peak enrichment in mouse liver tissue at indicated time points. Kolmogorov-Smirnov test (KS-test) was performed to compare m<sup>6</sup>A distributions among indicated ages. (e) Motif analysis of the identified m<sup>6</sup>A-immunoprecipitated peaks. P-value was calculated automatically by HOMER software. (f) Genome Browser screenshots of m<sup>6</sup>A-RIP sequencing read density signals under 4 different time points after birth at *Ppara* and *Cebpa* locus. Two replicates were contained for each time point. Source data are provided as a Source Data file.





#### c Hnf1a-Mut (2304 - 3128)

 $\label{eq:starting} type to the term of term of the term of term$ 

#### Hnf4a-Mut (1634 - 2075)



Supplementary Fig. 6. Mettl3-mediated m<sup>6</sup>A regulates the liver-enriched transcription factor network.

(a) Numbers of differentially regulated genes (DEGs) of Control and Mettl3 cKO mice at indicated time points after birth. (b) Gene set enrichment analysis (GSEA) for Hnfla pathways in RNA-sequencing data of Control and Mettl3 cKO liver tissues at 1 day, 1 week, and 4 weeks after birth. (c) WT and mutated (Mut) m<sup>6</sup>A-enriched regions of *Hnfla* and *Hnf4a* were used in dual-luciferase reporter assays. Putative m<sup>6</sup>A consensuses were in bold while the mutation sites in red. (d) Dual-luciferase reporter assays showing the effect of WT and catalytic mutant Mettl3 on *Hnfla* reporters with either WT or mutated  $m^{6}A$ -modified sites (n = 3 for each group over 3 independent experiments). (e) RT-qPCR for mRNA levels of Hnfla at different time points in Control and *Mettl3* cKO mouse liver tissues (n = 4 for each group). (f) Western blot for Hnf1a from Control and Mettl3 cKO mice liver tissues at 1 week, 2 weeks, and 4 weeks after birth (3 experiments were repeated independently with similar results). (g) The heatmap showing expression levels of Hnf4a downstream targets in 4-week-old Control and Mettl3 cKO mouse livers in RNA-sequencing data. (h) RT-qPCR analysis of Hnf4a target genes from Control and Mettl3 cKO mouse liver tissues at different postnatal time points (n = 4 for each group). Data in (d), (e), and (h) were shown as mean  $\pm$  SEM with the indicated significance (\*p<0.05, \*\*p < 0.01, \*\*\*p < 0.001; two-tailed student's *t*-test). Source data are provided as a Source Data file.



Supplementary Fig. 7. Mettl3 knockout decreases *Hnf4a* mRNA stability in postnatal liver development.

(a) GSEA analysis of RNA-sequencing showed that *Smad* signaling was significantly enriched in *Mettl3* cKO liver tissues at 4 weeks after birth. (b) Western blot showing

Lamin B1 (a marker for nuclear fraction) and Gapdh (marker for cytoplasm fraction) protein level in isolated cytoplasm and nuclear fractions from mouse primary hepatocytes and liver tissues (3 experiments were repeated independently with similar results), indicating successful separation of two fractions. (c) Nuclear/cytoplasm *Hnf4a* mRNA level in Control and *Mettl3* cKO primary hepatocytes (n = 3 for each group). (d) Nuclear/cytoplasm Hnf4a mRNA level in Control and Mettl3 cKO liver tissues (n = 3 for each group). (e) Western blot of METTL3 in HepG2 cells with METTL3 knockdown with 2 independent small Hairpin RNA (shRNA) targeting METTL3. shRNA targeting firefly luciferase (shLuc) was used as a control (also hereafter in similar experiments). (f) METTL3 relative mRNA level in HepG2 cells with or without METTL3 knockdown (n = 3 for each group). (g) Histogram showing differences of mRNA half-life between Control and Mettl3 cKO primary hepatocytes. (h) Cumulative fraction curves of total or m<sup>6</sup>A-modified genes of primary hepatocytes from Control and Mettl3 cKO mice showing differential global RNA decay rate in each group. (i) Half-life of selected genes with downregulated, upregulated, or unchanged mRNA stability between Control and Mettl3 cKO primary hepatocytes. Data in (g), (h), and (i) were analyzed from RNA-sequencing data in Supplementary Dataset 5. (j) HNF4A mRNA half-life in IGF2BP1, IGF2BP2, or IGF2BP3 knockdown in HepG2 cell line. Results were collected from published RNA-sequencing data (GSE90684). (k) Western blot of IGF2BP1 in HepG2 cells with or without IGF2BP1 knockdown. (1) IGF2BP1 relative mRNA level in HepG2 cells with or without IGF2BP1 knockdown (n = 3 for each group). (m) Mettl3 cKO mice were intravenously injected with AAV8-Ctrl or AAV8-Hnf4a at day 2, and liver tissues were collected at indicated time points for Western blot of Hnf4a (3 experiments were repeated independently with similar results). Data in (c), (d), (f), (j) and (l) were shown as mean  $\pm$  SEM with the indicated significance (\*\*\*p < 0.001; two-tailed student's *t*-test). Source data are provided as a Source Data file.



Supplementary Fig. 8. Mettl3 has minimal effects on adult liver homeostasis.

(a) Genomic PCR of Control and inducible liver-specific *Mettl3* knockout (*Mettl3* icKO) mice (3 experiments were repeated independently with similar results). Floxdel fragments were detected using liver samples as templates by *Mettl3*-F1 and *Mettl3*-R2 primers. Flox and *Alb-Cre<sup>ERT</sup>* fragments were detected using mouse tail samples as templates. Flox fragments were amplified by *Mettl3*-F2 and *Mettl3*-R2 primers, and

*Alb-Cre<sup>ERT</sup>* fragments were amplified by *Alb-CreERT-F* and *Alb-CreERT-R* primers. (b) Body weight of Control and *Mettl3* icKO littermates at different time points after tamoxifen treatment (n = 6 for 6 weeks groups; n = 7 for 4 weeks groups; n = 12 for other groups). (c) The ratio of liver weight to body weight of Control and *Mettl3* icKO mice at different time points after tamoxifen treatment (n = 3 for each group). (d) Serum levels of AST, ALB, Triglyceride, and Total bile acid of Control and *Mettl3* icKO mice at different time points after tamoxifen treatment (n = 3 for 6 weeks groups; n = 6 for 4 weeks groups; n = 10 for other groups). (e-k) RT-qPCR analysis of *Hnf4a* (e) and Hnf4a downstream targets *Apoa2* (f), *Apob* (g), *Apoc3* (h), *Cyp8b1* (i), *Fabp2* (j), and *Mttp* (k) for Control and *Mettl3* icKO mouse liver tissues at different time points after tamoxifen treatment (n = 3 for each group). Data in (b)-(k) were shown as mean  $\pm$  SEM. Source data are provided as a Source Data file.



Supplementary Fig. 9. Graphic abstract showing Mettl3-mediated m<sup>6</sup>A modification controls postnatal liver development by modulating the transcription factor Hnf4a.

# Supplementary Tables

# **Supplementary Table 1. Primers**

1. Primers for molecular cloning and genotyping

| Name                 | Sequences                                  |
|----------------------|--------------------------------------------|
| <i>Mettl3</i> -F1    | 5'-AGAGGAGGAGAAGGTGGCAGAG-3'               |
| Mettl3-R1            | 5'-CCTTTCATTCACATGGCAGCAC-3'               |
| Mettl3-F2            | 5'-AGGCTCACTTGCAAGTAAAAGGAAG-3'            |
| Mettl3-R2            | 5'-AGGCCTATAATCCTAGCACTG-3'                |
| Alb-Cre-F            | 5'-GGGCAGTCTGGTACTTCCAAGCT-3'              |
| Alb-Cre-R            | 5'-TAGCTACCTATGCGATCCAAACAAC-3'            |
| Alb-CreERT-F         | 5'-TCTCCCCACCTCTAGCCCAAAGAAA-3'            |
| Alb-CreERT-R         | 5'-AGGCAGAGGACTGTATTGATCAGTC-3'            |
| <i>Mettl3</i> -PKD-F | 5'-CCAGGCCTAAGCTTACGCGTATGTCGGACACGTGGAGC  |
|                      | TC-3'                                      |
| <i>Mettl3</i> -PKD-R | 5'-TCGTCCTTGTAGTCGAATTCTAAATTCTTAGGTTTAGAG |
|                      | A-3'                                       |
| Mettl3-AWWA-         | 5'-TGTGATGGCTGCCCCACCTGCGGATATTCACATGGAGC  |
| F                    | TA-3'                                      |
| Mettl3-AWWA-         | 5'-TGTGAATATCCGCAGGTGGGGGCAGCCATCACAACTGCA |
| R                    | AA-3'                                      |

## 2. Primers for TRC lentiviral vectors encoding shRNA construction

| Name                   | Sequences                                |
|------------------------|------------------------------------------|
| sh <i>IGF2BP1</i> -1-F | 5'-CCGGGCAGTGGTGAATGTCACCTATCTCGAGATAGGT |
|                        | GACATTCACCACTGCTTTTTG-3'                 |
| sh <i>IGF2BP1-</i> 1-R | 5'-AATTCAAAAAGCAGTGGTGAATGTCACCTATCTCGAG |

|                        | ATAGGTGACATTCACCACTGC-3'                 |
|------------------------|------------------------------------------|
| sh <i>IGF2BP1-2-</i> F | 5'-CCGGCTCCGCTTGTAAGATGATCTTCTCGAGAAGATC |
|                        | ATCTTACAAGCGGAGTTTTTG-3'                 |
| sh <i>IGF2BP1-</i> 2-R | 5'-AATTCAAAAACTCCGCTTGTAAGATGATCTTCTCGAG |
|                        | AAGATCATCTTACAAGCGGAG-3'                 |
| sh <i>METTL3</i> -1-F  | 5'-CCGGCGTCAGTATCTTGGGCAAGTTCTCGAGAACTTG |
|                        | CCCAAGATACTGACGTTTTTG-3'                 |
| sh <i>METTL3</i> -1-R  | 5'-AATTCAAAAA CGTCAGTATCTTGGGCAAGTT      |
|                        | CTCGAG AACTTGCCCAAGATACTGACG-3'          |
| sh <i>METTL3</i> -2-F  | 5'-CCGGGCCAAGGAACAATCCATTGTTCTCGAGAACAAT |
|                        | GGATTGTTCCTTGGCTTTTTG-3'                 |
| sh <i>METTL3</i> -2-R  | 5'-AATTCAAAAA GCCAAGGAACAATCCATTGTT      |
|                        | CTCGAG AACAATGGATTGTTCCTTGGC-3'          |

3. Primers for RT-qPCR

| Name                     | Sequences                   |
|--------------------------|-----------------------------|
| Cre-RT-F                 | 5'-CTCTGACAGATGCCAGGACA-3'  |
| Cre-RT-R                 | 5'-GATCAGCATTCTCCCACCAT-3'  |
| human GAPDH-RT-F         | 5'-AATGAAGGGGTCATTGATGG-3'  |
| human GAPDH-RT-R         | 5'-AAGGTGAAGGTCGGAGTCAA-3'  |
| human IGF2BP1-RT-F       | 5'-GGCCATCGAGAATTGTTGCAG-3' |
| human IGF2BP1-RT-R       | 5'-CCAGGGATCAGGTGAGACTG-3'  |
| human <i>HNF4A</i> -RT-F | 5'-TGCGACTCTCCAAAACCCTC-3'  |
| human <i>HNF4A</i> -RT-R | 5'-ATTGCCCATCGTCAACACCT-3'  |
| human METTL3-RT-F        | 5'-GAAGCAGCTGGACTCTCTGC-3'  |
| human METTL3-RT-R        | 5'-ACGGAAGGTTGGAGACAATG-3'  |
| mouse Acta2-RT-F         | 5'-CTGACAGAGGCACCACTGAA-3'  |
| mouse Acta2-RT-R         | 5'-CATCTCCAGAGTCCAGCACA-3'  |

| mouse AFP-RT-F             | 5'-ATGAAACCTATGCCCCTCCC-3'   |
|----------------------------|------------------------------|
| mouse AFP-RT-R             | 5'-TCAGGCTTTTGCTTCACCAGG-3'  |
| mouse Albumin-RT-F         | 5'-CATGACACCATGCCTGCTGAT-3'  |
| mouse Albumin -RT-R        | 5'-CTCTGATCTTCAGGAAGTGTAC-3' |
| mouse Apoa2-RT-F           | 5'-CTCCTGCGGCTAAGTGAGATG-3'  |
| mouse Apoa2-RT-R           | 5'-GAAAACAGGCAGAAGGTAGGGA-3' |
| mouse Apob-RT-F            | 5'-TACCTTGGGCATCGACACAC-3'   |
| mouse Apob-RT-R            | 5'-GTGCTGATGCTGCTCTCGTA-3'   |
| mouse Apoc3-RT-F           | 5'-GAACAAGCCTCCAAGACGGT -3'  |
| mouse Apoc3-RT-R           | 5'-GTTGGTTGGTCCTCAGGGTT-3'   |
| mouse Collal-RT-F          | 5'-TGACTGGAAGAGCGGAGAGT-3'   |
| mouse Collal-RT-R          | 5'-GTTCGGGCTGATGTACCAGT-3'   |
| mouse Cyp8b1-RT-F          | 5'-GGTACGCTTCCTCTATCGCC-3'   |
| mouse Cyp8b1-RT-R          | 5'-GGATGGCGTCTTATGGGGGAG-3'  |
| mouse Epcam-RT-F           | 5'-GGAGTCCCTGTTCCATTCTTCT-3' |
| mouse Epcam-RT-R           | 5'-GCGATGACTGCTAATGACACCA-3' |
| mouse Fabp2-RT-F           | 5'-TGGAAAGGAGCTGATTGCTGT-3'  |
| mouse Fabp2-RT-R           | 5'-AAGAATCGCTTGGCCTCAACT-3'  |
| mouse Gapdh-RT-F           | 5'-CATGGCCTTCCGTGTTCCT-3'    |
| mouse Gapdh-RT-R           | 5'-GCCTGCTTCACCACCTTCT-3'    |
| mouse <i>Hnfla</i> -RT-F   | 5'-ACTTGCAGCAGCACAACATC-3'   |
| mouse <i>Hnfla</i> -RT-R   | 5'-GAATTGCTGAGCCACCTCTC-3'   |
| mouse <i>Hnf4a</i> -RT-F   | 5'-AGAGGTTCTGTCCCAGCAGA-3'   |
| mouse <i>Hnf4a</i> -RT-R   | 5'-ATGTACTTGGCCCACTCGAC-3'   |
| mouse <i>Igf2bp1</i> -RT-F | 5'-CGGCAACCTCAACGAGAGT-3'    |
| mouse <i>Igf2bp1</i> -RT-R | 5'-GTAGCCGGATTTGACCAAGAA-3'  |
| mouse Krt7-RT-F            | 5'-AGGAGATCAACCGACGCAC-3'    |
| mouse Krt7-RT-R            | 5'-CACCTTGTTCGTGTAGGCG-3'    |
| mouse Krt19-RT-F           | 5'-GTCCTACAGATTGACAATGC-3'   |

| mouse Krt19-RT-R        | 5'-CACGCTCTGGATCTGTGACAG-3'  |
|-------------------------|------------------------------|
| mouse Mettl3-RT-F       | 5'-CTGGGCACTTGGATTTAAGGAA-3' |
| mouse Mettl3-RT-R       | 5'-TGAGAGGTGGTGTAGCAACTT-3'  |
| mouse <i>Mttp</i> -RT-F | 5'-CCAGGGCTTTTGCCTTGAAC-3'   |
| mouse <i>Mttp</i> -RT-R | 5'-GAGGACCTGTCCCACAATGG-3'   |
| mouse Pdgfrb-RT-F       | 5'-TTCCAGGAGTGATACCAGCTT-3'  |
| mouse Pdgfrb -RT-R      | 5'-AGGGGGCGTGATGACTAGG-3'    |
| mouse Sox9-RT-F         | 5'-AGTACCCGCATCTGCACAAC-3'   |
| mouse Sox9-RT-R         | 5'-ACGAAGGGTCTCTTCTCGCT-3'   |

4. Primers for m<sup>6</sup>A-RIP-qPCR

| Name                                                  | Sequences                  |
|-------------------------------------------------------|----------------------------|
| mouse Apof-positive-m <sup>6</sup> A-1-RT-F           | 5'-GCCAAGGAACGAGGTCGAGA-3' |
| mouse Apof-positive-m <sup>6</sup> A-1-RT-R           | 5'-AAGAGCAGCCGTGATCACCG-3' |
| mouse Apof-negative-m <sup>6</sup> A-RT-F             | 5'-GCCCCTGTCTCCAAATTCC-3'  |
| mouse Apof-negative-m <sup>6</sup> A-RT-R             | 5'-AAGCTGAAGCTGAAGAGCCC-3' |
| mouse <i>Cebpa</i> -positive-m <sup>6</sup> A-1-RT-F  | 5'-GGCTGGAGACCCAGAGGATG-3' |
| mouse <i>Cebpa</i> -positive-m <sup>6</sup> A-1-RT-R  | 5'-CTTTCAGGCCACACCGGAAT-3' |
| mouse <i>Cebpa</i> -negative-m <sup>6</sup> A-RT-F    | 5'-CCGCCTTCAACGACGAGTTC-3' |
| mouse <i>Cebpa</i> -negative-m <sup>6</sup> A-RT-R    | 5'-CCGGGTAGTCAAAGTCACCG-3' |
| mouse <i>Cited2</i> -positive-m <sup>6</sup> A-1-RT-F | 5'-ATCAAGGAGCTGCCCGAACT-3' |
| mouse <i>Cited2</i> -positive-m <sup>6</sup> A-1-RT-R | 5'-CAACAGCTGACTCTGCTGGG-3' |
| mouse <i>Cited2</i> -negative-m <sup>6</sup> A-RT-F   | 5'-ATGATGGCCATGAACCACGG-3' |
| mouse <i>Cited2</i> -negative-m <sup>6</sup> A-RT-R   | 5'-CTGCTGCTGGTGATGATGCG-3' |
| mouse <i>Egfr</i> -positive-m <sup>6</sup> A-1-RT-F   | 5'-CTTCTGGTAGCCATGCCCAC-3' |
| mouse <i>Egfr</i> -positive-m <sup>6</sup> A-1-RT-R   | 5'-GCCCACTTCTTGGCTCAGTG-3' |
| mouse <i>Egfr</i> -negative-m <sup>6</sup> A-RT-F     | 5'-CCAACTTTTACCGAGCCCTG-3' |
| mouse <i>Egfr</i> -negative-m <sup>6</sup> A-RT-R     | 5'-GACGGGCTGTTGAAGAAGCC-3' |

| mouse <i>Foxm1</i> -positive-m <sup>6</sup> A-1-RT-F   | 5'-GAGCTGCAGATTCCCAGCCT-3'    |
|--------------------------------------------------------|-------------------------------|
|                                                        | 5'-GATGTCTAGAAGGATCTTGCTGAGG  |
| mouse <i>Foxm1</i> -positive-m <sup>6</sup> A-1-RT-R   | -3'                           |
| mouse <i>Foxm1</i> -positive-m <sup>6</sup> A-2-RT-F   | 5'-CTCAGCTGCCCTCAGGAAGA-3'    |
| mouse <i>Foxm1</i> -positive-m <sup>6</sup> A-2-RT-R   | 5'-GGGTCTCTAGAGAGCACAGACT-3'  |
| mouse <i>Foxm1</i> -negative-m <sup>6</sup> A-RT-F     | 5'-CCCTCGGGTTAGCTCATACC-3'    |
| mouse <i>Foxm1</i> -negative-m <sup>6</sup> A-RT-R     | 5'-ATAAGCGATGCTGCCAGAGG-3'    |
| mouse <i>Hnfla</i> -positive-m <sup>6</sup> A-1-RT-F   | 5'-CCCTGTTCCTTAGGACCTGCAA-3'  |
| mouse <i>Hnfla</i> -positive-m <sup>6</sup> A-1-RT-R   | 5'-GCAGGTCTCCCTCATAGCAGG-3'   |
| mouse <i>Hnfla</i> -negative-m <sup>6</sup> A-RT-F     | 5'-AATGGCCTTGGAGAAACGCG-3'    |
| mouse <i>Hnfla</i> -negative-m <sup>6</sup> A-RT-R     | 5'-CCTCCTCTGGGCTGAGGTT-3'     |
| mouse $Hnfl\beta$ -positive-m <sup>6</sup> A-1-RT-F    | 5'-GAAACCCGTGGAGTCTCCCC-3'    |
| mouse $Hnfl\beta$ -positive-m <sup>6</sup> A-1-RT-R    | 5'-GGCTCAGTTCATTAGCACACACC-3' |
| mouse <i>Hnf1β</i> -negative-m <sup>6</sup> A-RT-F     | 5'-ACAATCCCCAGCAATCTCAG-3'    |
| mouse <i>Hnf1β</i> -negative-m <sup>6</sup> A-RT-R     | 5'-AGGCTGCTAGCCACACTGTT-3'    |
| mouse <i>Hnf4a</i> -positive-m <sup>6</sup> A-1-RT-F   | 5'-CCCTCAACTTCTTCACCCCT-3'    |
| mouse <i>Hnf4a</i> -positive-m <sup>6</sup> A-1-RT-R   | 5'-CGCTGGGAGAGAGAGGGAGTT-3'   |
| mouse <i>Hnf4a</i> -negative-m <sup>6</sup> A-RT-F     | 5'-AGAGGTTCTGTCCCAGCAGA-3'    |
| mouse <i>Hnf4a</i> -negative-m <sup>6</sup> A-RT-R     | 5'-CACACGTCTGTGATGTTGGC-3'    |
| mouse <i>Ldlr</i> -positive-m <sup>6</sup> A-1-RT-F    | 5'-GAGGAGGAAGAGACCCACCC-3'    |
| mouse <i>Ldlr</i> -positive-m <sup>6</sup> A-1-RT-R    | 5'-GGGACTGGCTATGGTACCCA-3'    |
| mouse <i>Ldlr</i> -negative-m <sup>6</sup> A-RT-F      | 5'-GACGTGCTCCCAGGATGACT-3'    |
| mouse <i>Ldlr</i> -negative-m <sup>6</sup> A-RT-R      | 5'-TTTGGAGGCCGTGTCTCGG-3'     |
| mouse Onecut1-positive-m <sup>6</sup> A-1-RT-F         | 5'-TCATGCCCACCTGAATGCCC-3'    |
| mouse <i>Onecut1</i> -positive-m <sup>6</sup> A-1-RT-R | 5'-CTTCCATTGCTGACCTGCGC-3'    |
| mouse Onecut1-negative-m <sup>6</sup> A-RT-F           | 5'-GAGCATGCCCACCACCTACA-3'    |
| mouse Onecut1-negative-m <sup>6</sup> A-RT-R           | 5'-GGTGGTGATGATGGTGAGGG-3'    |
| mouse <i>Onecut2</i> -positive-m <sup>6</sup> A-1-RT-F | 5'-GCACCTACTTCTGCAACAAACAG-3' |
| mouse <i>Onecut2</i> -positive-m <sup>6</sup> A-1-RT-R | 5'-GCGTGCTTTTTCTGTTGATGGT-3'  |

| mouse Onecut2-negative-m <sup>6</sup> A-RT-F                                                                                                                                                                                                                                                                                                                                                | 5'-GTGGTTAATGTTGACCACATGGC-3'                                                                                                                                                                                                                                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| mouse Onecut2-negative-m <sup>6</sup> A-RT-R                                                                                                                                                                                                                                                                                                                                                | 5'-GTAAAAGTTAGCCCCGATTGGGT-3'                                                                                                                                                                                                                                                            |
| mouse Ppara-positive-m <sup>6</sup> A-1-RT-F                                                                                                                                                                                                                                                                                                                                                | 5'-GCTTGGGGGATGAAGAGGGCT-3'                                                                                                                                                                                                                                                              |
| mouse <i>Ppara</i> -positive-m <sup>6</sup> A-1-RT-R                                                                                                                                                                                                                                                                                                                                        | 5'-CACCCCCATTTCGGTAGCAG-3'                                                                                                                                                                                                                                                               |
| mouse <i>Ppara</i> -positive-m <sup>6</sup> A-2-RT-F                                                                                                                                                                                                                                                                                                                                        | 5'-ACTGGCCATCTTCTGACGTC-3'                                                                                                                                                                                                                                                               |
| mouse <i>Ppara</i> -positive-m <sup>6</sup> A-2-RT-R                                                                                                                                                                                                                                                                                                                                        | 5'-CCCTCCATCCACTGGGCTAC-3'                                                                                                                                                                                                                                                               |
| mouse <i>Ppara</i> -negative-m <sup>6</sup> A-RT-F                                                                                                                                                                                                                                                                                                                                          | 5'-ACACCCTCTCTCCAGCTTCC-3'                                                                                                                                                                                                                                                               |
| mouse <i>Ppara</i> -negative-m <sup>6</sup> A-RT-R                                                                                                                                                                                                                                                                                                                                          | 5'-ACACTCGATGTTCAGGGCAC-3'                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                             | 5'-GCTACAAGACAGGAATTGACAGAT                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                          |
| mouse Sirt1-positive-m <sup>6</sup> A-1-RT-F                                                                                                                                                                                                                                                                                                                                                | G-3'                                                                                                                                                                                                                                                                                     |
| mouse <i>Sirt1</i> -positive-m <sup>6</sup> A-1-RT-F<br>mouse <i>Sirt1</i> -positive-m <sup>6</sup> A-1-RT-R                                                                                                                                                                                                                                                                                | G-3'<br>5'-GTTCCCAATGCTGGTGGAGC-3'                                                                                                                                                                                                                                                       |
| mouse <i>Sirt1</i> -positive-m <sup>6</sup> A-1-RT-F<br>mouse <i>Sirt1</i> -positive-m <sup>6</sup> A-1-RT-R<br>mouse <i>Sirt1</i> -negative-m <sup>6</sup> A-RT-F                                                                                                                                                                                                                          | G-3'<br>5'-GTTCCCAATGCTGGTGGAGC-3'<br>5'-AGTTCCAGCCGTCTCTGTGT-3'                                                                                                                                                                                                                         |
| mouse Sirt1-positive-m <sup>6</sup> A-1-RT-Fmouse Sirt1-positive-m <sup>6</sup> A-1-RT-Rmouse Sirt1-negative-m <sup>6</sup> A-RT-Fmouse Sirt1-negative-m <sup>6</sup> A-RT-R                                                                                                                                                                                                                | G-3'<br>5'-GTTCCCAATGCTGGTGGAGC-3'<br>5'-AGTTCCAGCCGTCTCTGTGT-3'<br>5'-GATCCTTTGGATTCCTGCAA-3'                                                                                                                                                                                           |
| mouse Sirt1-positive-m <sup>6</sup> A-1-RT-Fmouse Sirt1-positive-m <sup>6</sup> A-1-RT-Rmouse Sirt1-negative-m <sup>6</sup> A-RT-Fmouse Sirt1-negative-m <sup>6</sup> A-RT-RNotes: m <sup>6</sup> A-RIP-qPCR primersfor                                                                                                                                                                     | G-3'<br>5'-GTTCCCAATGCTGGTGGAGC-3'<br>5'-AGTTCCAGCCGTCTCTGTGT-3'<br>5'-GATCCTTTGGATTCCTGCAA-3'<br>• m <sup>6</sup> A positive regions were marked as                                                                                                                                     |
| mouse Sirt1-positive-m <sup>6</sup> A-1-RT-Fmouse Sirt1-positive-m <sup>6</sup> A-1-RT-Rmouse Sirt1-negative-m <sup>6</sup> A-RT-Fmouse Sirt1-negative-m <sup>6</sup> A-RT-RNotes: m <sup>6</sup> A-RIP-qPCR primers for"positive-m <sup>6</sup> A-RT" (e.g., primers for                                                                                                                   | G-3'<br>5'-GTTCCCAATGCTGGTGGAGC-3'<br>5'-AGTTCCAGCCGTCTCTGTGT-3'<br>5'-GATCCTTTGGATTCCTGCAA-3'<br>• m <sup>6</sup> A positive regions were marked as<br>two separate m <sup>6</sup> A positive regions in <i>Ppara</i>                                                                   |
| mouse <i>Sirt1</i> -positive-m <sup>6</sup> A-1-RT-F<br>mouse <i>Sirt1</i> -positive-m <sup>6</sup> A-1-RT-R<br>mouse <i>Sirt1</i> -negative-m <sup>6</sup> A-RT-F<br>mouse <i>Sirt1</i> -negative-m <sup>6</sup> A-RT-R<br>Notes: m <sup>6</sup> A-RIP-qPCR primers for<br>"positive-m <sup>6</sup> A-RT" (e.g., primers for<br>were listed as <i>Ppara</i> -positive-m <sup>6</sup> A-1-R | G-3'<br>5'-GTTCCCAATGCTGGTGGAGC-3'<br>5'-AGTTCCAGCCGTCTCTGTGT-3'<br>5'-GATCCTTTGGATTCCTGCAA-3'<br>m <sup>6</sup> A positive regions were marked as<br>two separate m <sup>6</sup> A positive regions in <i>Ppara</i><br>T and <i>Ppara</i> -positive-m <sup>6</sup> A-2-RT), and primers |

negative regions in *Ppara* were listed as *Ppara*-negative-m<sup>6</sup>A-RT).

| Supplementary <b>T</b> | Table 2. | Antibodies |
|------------------------|----------|------------|
|------------------------|----------|------------|

| Antibodies                            | Source           | Identifier      |
|---------------------------------------|------------------|-----------------|
| m <sup>6</sup> A (N6-methyladenosine) | Synaptic Systems | Cat# 202003     |
| antibody                              |                  |                 |
| anti-METTL3 antibody, Rabbit          | Proteintech      | Cat# 15073-1-AP |
| anti-METTL3 antibody, Rabbit          | Abcam            | Cat# ab195352   |
| mAb                                   |                  |                 |
| anti-METTL14 antibody, Rabbit         | Abclonal         | Cat# A8530      |

| mAb                             |                |              |
|---------------------------------|----------------|--------------|
| anti-GAPDH antibody, Rabbit     | Cell Signaling | Cat# 2118    |
| mAb                             | Technology     |              |
| anti-β-actin antibody, Rabbit   | Cell Signaling | Cat# 4970    |
| mAb                             | Technology     |              |
| mouse IgG                       | Beyotime       | Cat# A7028   |
| anti-Albumin antibody, Mouse    | R&D Systems    | Cat# MAB1455 |
| mAb                             |                |              |
| anti-SOX9 antibody, Rabbit      | Sigma          | Cat# AB5535  |
| anti-Ki67 antibody              | Abcam          | Cat# AB15580 |
| anti-alpha smooth muscle Actin  | Abcam          | Cat# AB5694  |
| (αSMA) antibody                 |                |              |
| anti-Cytokeratin 19 (CK19)      | Abcam          | Cat# AB52625 |
| antibody                        |                |              |
| anti-mouse IgG HRP-linked       | Cell Signaling | Cat# 7076    |
| antibody                        | Technology     |              |
| anti-rabbit IgG HRP-linked      | Cell Signaling | Cat# 7074    |
| antibody                        | Technology     |              |
| anti-Hnf4a antibody, Rabbit mAb | Cell Signaling | Cat# 3113    |
|                                 | Technology     |              |
| anti-Hnf1a antibody             | Abcam          | Cat# AB11974 |
| Recombinant Anti-PDGFR beta     | Abcam          | Cat# AB32570 |
| antibody                        |                |              |
| anti-IGF2BP1 antibody           | Cell Signaling | Cat# 8482    |
|                                 | Technology     |              |
| anti-Lamin B1 antibody          | Cell Signaling | Cat#13435    |
|                                 | Technology     |              |

# Supplementary Table 3. Reagents

| Reagents                                 | Source            | Identifier  |
|------------------------------------------|-------------------|-------------|
| 0.22 μm filter                           | PALL              | PN4612      |
| 0.45 μm filter                           | PALL              | PN4614      |
| 70 μm cell strainer                      | Sofra             | 251200      |
| actinomycin D                            | Sigma-Aldrich     | A1410       |
| ВОDІРУ <sup>тм</sup> 493/503             | Invitrogen        | D3922       |
| ChamQ Universal SYBR qPCR Master         |                   |             |
| Mix                                      | Vazyme            | Q711-03     |
| ClonExpress II One Step Cloning kit      | Vazyme            | C112        |
| Collagenase IV                           | Sigma-Aldrich     | C5138       |
| Complete Protease Inhibitor              | Roche             | 04693132001 |
| Dako Real™ Kit                           | Dako              | K5007       |
|                                          | ApexBio           |             |
| Direct Mouse Genotyping kit              | Technology        | k1025       |
| DMEM/F-12 (1:1) basic medium             | Thermo Scientific | C11330500BT |
| DMEM-high glucose medium                 | Thermo Scientific | C11995500BT |
| Dual-Luciferase Reporter Assay System    | Promega           | E1910       |
| EDTA antigen retrieval buffer            | ZSGB-BIO          | ZLI-9072    |
| Fetal bovine serum                       | PAN               | P30-3302    |
| GenElute <sup>TM</sup> mRNA Miniprep Kit | Sigma-Aldrich     | MRN10       |
| Glycogen                                 | Beyotime          | D0816       |
| Hematoxylin                              | Baso              | BA4041      |
| Hoechst 33342                            | Beyotime          | C1022       |
| Hybond N+ membranes                      | GE Healthcare     | RPN303B     |
| Igepal CA-630                            | Sigma-Aldrich     | I8896       |
| Immonilon ECL Ultra Western HRP          |                   |             |
| Substrate                                | Millipore         | WBULS0500   |

| In Situ Cell Death Detection Kit        | Roche             | 11684795910 |
|-----------------------------------------|-------------------|-------------|
| Lipofectamine <sup>TM</sup> 2000 kit    | Invitrogen        | 11668-019   |
| Olive Oil                               | MACKLIN           | O815211     |
| OCT compound                            | Servicebio        | G6059       |
| Penicillin/streptomycin                 | KeyGEN Biotech    | KGY0023     |
| Phanta Max DNA Polymerase               | Vazyme            | P505        |
| Phosphatase inhibitor                   | Roche             | 04906831001 |
| Propidium iodide solution               | BD                | 556547      |
| Polybrene                               | Sigma-Aldrich     | H9268       |
| PrimeScript <sup>™</sup> RT Reagent Kit | Takara            | RR047B      |
| Protein A beads                         | Thermo Scientific | 100-02D     |
| Protein G beads                         | Thermo Scientific | 100-04D     |
| Proteinase K                            | Thermo Scientific | AM2546      |
| Puromycin                               | Thermo Scientific | A1113803    |
| RNasin® Ribonuclease Inhibitor-plus     | Promega           | N2611       |
| Stbl3 E. coli                           | TransGen Biotech  | CD521-01    |
| Tamoxifen                               | Sigma-Aldrich     | T5648       |
| Triton <sup>TM</sup> X-100              | Sigma-Aldrich     | T8787       |
| TRIzol                                  | Ambion            | 15595018    |
| Tween-20                                | Sigma-Aldrich     | P1379       |
| Type I Collagen, Rat tail               | Invitrogen        | A10483-01   |
| Williams' Medium E                      | GIBCO             | 12551032    |
| Plasmids                                |                   |             |
| pMIR-REPORT                             | Ambion            | AM5795      |
|                                         | 1                 |             |
| pRL Renilla Luciferase Control Reporter |                   |             |

#### **Supplementary Datasets**

#### Supplementary Dataset 1. Annotation of m<sup>6</sup>A peaks.

Supplementary Dataset 1 was affiliated as an individual .xlsx file.

## Supplementary Dataset 2. GO analysis of m<sup>6</sup>A-modified genes.

Supplementary Dataset 2 was affiliated as an individual .xlsx file. Data were analyzed by over-representation test.

#### Supplementary Dataset 3. Time course liver tissue RNA-sequencing.

Supplementary Dataset 3 was affiliated as an individual .xlsx file. Differentially expressed genes were analyzed by nbinomWaldTest.

Supplementary Dataset 4. mRNA splicing analysis for genes in livers from different age of Control and cKO mice.

Supplementary Dataset 4 was affiliated as an individual .xlsx file. Data were analyzed by CASH<sup>1</sup>.

# Supplementary Dataset 5. RNA-sequencing of mouse primary hepatocyte treated with actinomycin D.

Supplementary Dataset 5 was affiliated as an individual .xlsx file.

# Supplementary references

1 Wu, W. *et al.* CASH: a constructing comprehensive splice site method for detecting alternative splicing events. *Brief Bioinform* **19**, 905-917, doi:10.1093/bib/bbx034 (2018).