Supplementary information

Supplementary Table 1, Supplementary Fig. 1-6, and Supplementary Video 1-7.

Supplementary Table

Supplementary Table 1. List of primers used in the current study.

Name	Sequence (5'-3')	
Primers for Genotyping		
ZF_ <i>il1b</i> _E4_GF	CGACATTTCACATCTGCACCG	
ZF_ <i>il1b</i> _E4_GR	GTACCTTGGATGACGTTCGC	
Primers for qPCR		
ZF_ <i>il1b</i> _QF	TGGACTTCGCAGCACAAAATG	
ZF_ <i>il1b</i> _QR	GTTCACTTCACGCTCTTGGATG	
ZF_tnfa_QF	TTCACGCTCCATAAGACCCA	
ZF_tnfa_QR	CCGTAGGATTCAGAAAAGCG	
ZF_il34_QF	ATCGGACCATGCTTTGCCTG	
ZF_ <i>il34</i> _QR	CCCTACAACAGCAACACGGA	
ZF_il6_QF	TGAAGACACTCAGAGACGAGCAGTT	
ZF_il6_QR	AGGTTTGAGGAGAGGAGTGCTGAT	
ZF_il8_QF	CCTGGCATTTCTGACCATCAT	
ZF_ <i>il8</i> _QR	GATCTCCTGTCCAGTTGTCAT	
ZF_il10_QF	TCAGAGCAGGAGAGTCGAATGCA	
ZF_ <i>il10</i> _QR	CGATTGGGGTTGTGGAGTGCTT	
ZF_ccl2_QF	GTCTGGTGCTCTTCGCTTTC	
ZF_ccl2_QR	TGCAGAGAAGATGCGTCGTA	
ZF_lcp1_QF	GAAGCTCTGATCGCTCTGCT	

ZF_lcp1_QR	GTTGTTGATTTTGGGGGCATC
ZF_caspase3_QF	TAGTGTGTGTGTTGCTCAGTC
ZF_caspase3_QR	CTCGACAAGCCTGAATAAAG
ZF_b-actin_QF	TTCCTTCCTGGGTATGGAATC
ZF_b-actin_QR	GCACTGTGTTGGCATACAGG

Primers for ISH Probes

ZF_ <i>il1b</i> _PF	TGCAATGCACGATTTGCGAT
ZF_ <i>il1b</i> _PF	AGAATAAGCAGCACTTGGGGA
ZF_ <i>il6</i> _PF	TCAGAGACGAGCAGTTTGAGAG
ZF_ <i>il6</i> _PR	CCTCTTGGGGTCTTTCCCTC

Supplementary Figures

Supplementary Fig. 1. Redistribution of macrophages in response to peripheral trauma. (a-c) The number of *mpeg1*+ macrophages in various positions, including the brain (b), yolk (y), aorta-gonad-mesonephros (AGM, a), caudal hematopoietic tissue (CHT, c) and tail (t), and the total number of *mpeg1*+ macrophages (d) of zebrafish body at 3 hpt and 6 hpt. Independent t-test, **, p < 0.01 compared with CTRL. Scale bar, 40 µm (brain), 200 µm (yolk, AGM, CHT, and tail).

Supplementary Fig. 2. Dendra2 photo-conservation and confirmation. (**a**) Schematic diagram of the body regions for photo-conservation (tail/CHT) and confirmation (head and tail/CHT). (**b**) Photo-conserved magenta+ macrophages were detected in the tail/CHT region but not in the head region. Scale bar, 200 μm.

Supplementary Fig. 3. Recruitment of photo-conserved macrophages in the traumatic site. (a) Photoconserved magenta+ macrophages were detected in the traumatic site of 4dpf zebrafish larvae. Scale bar, 200 μ m, 20 μ m (enlarge).

Supplementary Fig. 4. Peripheral macrophages return to caudal hematopoietic tissue after peripheral trauma. (a-b) Light-sheet imaging showed that *mpeg1*+ macrophages returned to caudal hematopoietic tissue at 2 days post-trauma. Scale bar, 100 μm.

Supplementary Fig. 5. Inflammatory, apoptotic, and leukocyte responses in the brain after peripheral trauma. (a) Experimental setup. (b) qPCR results show that inflammatory cytokine (*il1b*), apoptosis (*caspase3*), and leukocyte invasion (*lcp1*) sequentially increased in the brain after peripheral trauma. One-way ANOVA, **, p < 0.01 compared with CTRL.

Supplementary Fig. 6. Systemic inflammation-mediated brain proteomic responses to peripheral trauma. (a-b) The volcano plot illustrated the proteins significantly (p < 0.05, independent t-test) changed (> 1.5 folds) in the brain at 1 dpt in *il1b^{Mut}*/CTRL and *il1b^{Mut}*+PT/CTRL. (c) The volcano plot illustrated the identified proteins significantly changed in the brain of *il1b^{Mut}* zebrafish at 1 dpt. (d) Heatmap illustrated the fold change of identified proteins among CTRL, PT, *il1b^{Mut}*, and *il1b^{Mut}*+PT groups. (e) Classification of identified proteins into various molecular pathways or processes.

Supplementary Videos

Supplementary Video 1. Leukocyte activities in the brain of zebrafish larvae without peripheral trauma. Red arrow, active leukocytes.

Supplementary Video 2. Leukocyte activities in the brain of zebrafish larvae with peripheral trauma. Red arrow, active leukocytes.

Supplementary Video 3. Leukocyte activities in the brain of *il1b* mutant zebrafish larvae. Red arrow, active leukocytes.

Supplementary Video 4. Leukocyte activities in the brain of *il1b* mutant zebrafish larvae with peripheral trauma. Red arrow, active leukocytes.

Supplementary Video 5. Distribution pattern 1 of active leukocytes in the mid-hindbrain boundary of zebrafish larvae. Red arrow, active leukocytes.

Supplementary Video 6. Distribution pattern 2 of active leukocytes within the brain of zebrafish larvae. Red arrow, active leukocytes.

Supplementary Video 7. Distribution pattern 3 of active leukocytes migrating from the peripheral tissue into the brain. Red arrow, active leukocytes.