## **Supporting Information for:**

Label-free Profiling of 48-206 Single-Cell Proteomes per Day Enabled by a Multiplexed Nanoflow Liquid Chromatography System

## **Author List**

Kei G. I. Webber, Thy Truong, S. Madisyn Johnston, Sebastian E. Zapata, Yiran Liang, Jacob M. Davis, Alexander D. Buttars, Fletcher B. Smith, Hailey E. Jones, Arianna C. Mahoney, Richard H. Carson, Andikan J. Nwosu, Jacob L. Heninger, Gregory P. Nordin, Ying Zhu, Andrey V. Liyu, Ryan T. Kelly\* \*Corresponding Author

Figure S1. Schematic for High Voltage Switch

Figure S2. Process for analyzing a sample using the multiplexed nanoLC system.

Figure S3. Timing for multiplexing for 15-minute cycles.

Figure S4. The protein identifications for different mapping parameters.

Figure S5. 3D matrix of mass spectrometer settings and MS2-based-identifications.

Figure S6. Ranked-abundance charts for different thresholds.

Figure S7. Volcano plot of proteins enriched in K562 and Jurkat cells.

Figure S8. Upregulated mitochondrial proteins only in Jurkat cells compared to K562 cells.

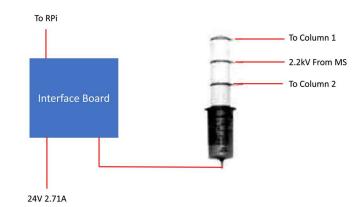

Tables S1-S4. LC gradients for injections cycles from 7-30 minutes in length

Table S5. MS settings used in this study.

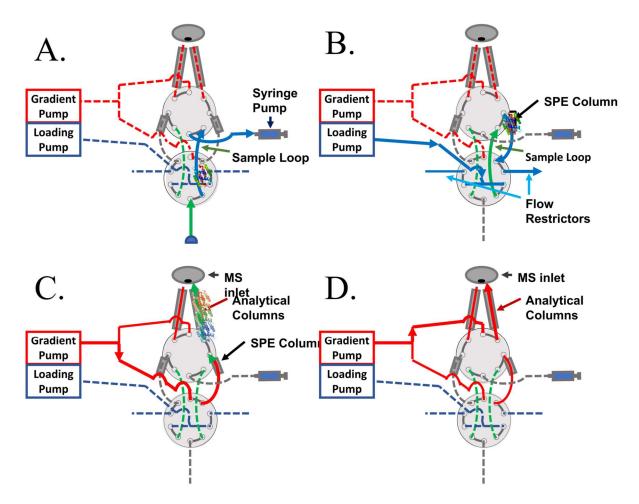
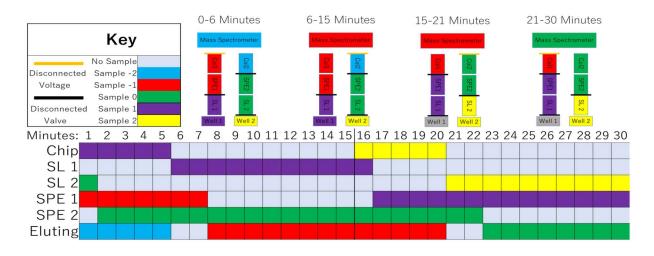
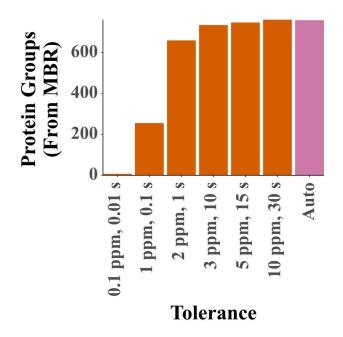

Table S6. Differentially expressed proteins between Jurkat and K562

Table S7-8. Example loading protocol for nanoLC


# Supporting Information Figures

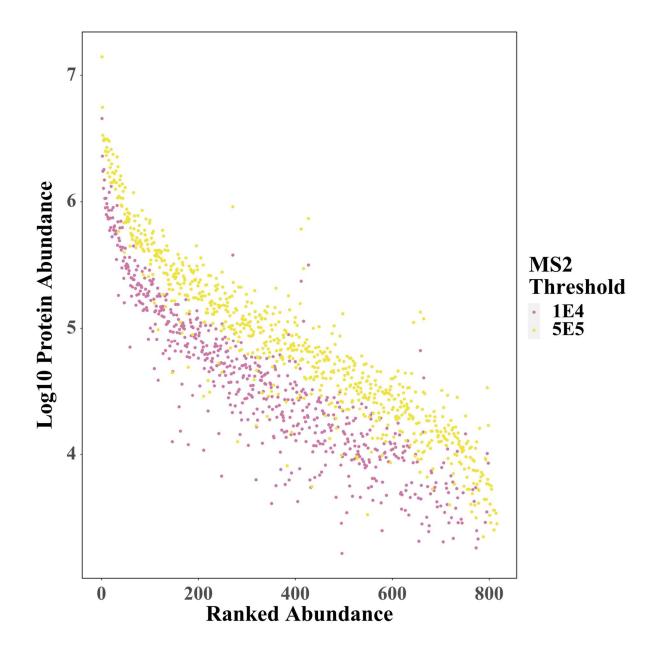



**Figure S1.** Schematic for High Voltage Switch. The Interface board receives a signal from the raspberry pi, activating a 24V 2.71A power supply, which triggers the bipolar high voltage switch. The middle post of the high voltage switch is connected to the high voltage output of the mass spectrometer and the other two posts are each connected to a column.

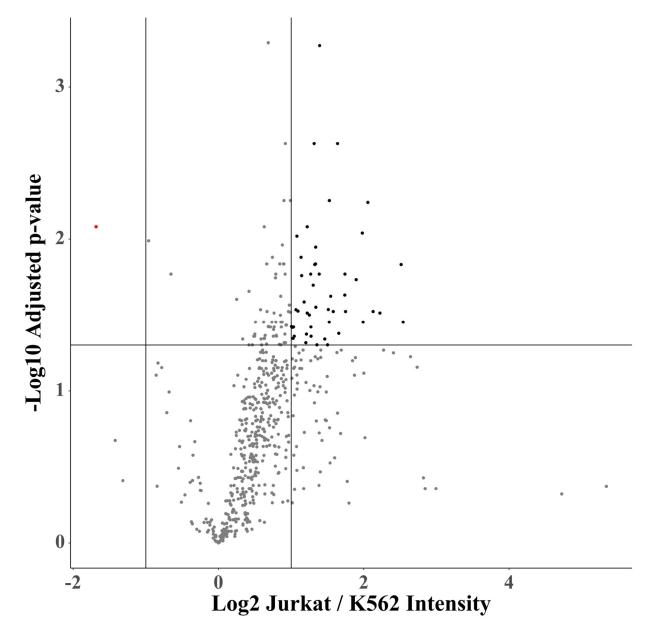


**Figure. S2.** Process for analyzing a sample using the multiplexed nanoLC system. (A) The lyophilized sample in a nanowell is reconstituted on the chip in 0.1% formic acid. The remaining time in the 15-minute cycle is spent washing the sample well to maximize analyte recovery and aspirating the sample into the sample loop. The sample's path is colored in green, and the end location of the sample is indicated by the protein depiction. (B) The next cycle is spent loading the sample from the sample loop onto the head of the SPE column. The split flow in blue passes through the flow restrictor. (C) The next cycle is spent analyzing the sample after re-equilibrating the column using the loading buffer left in the SPE loop. (D) The final cycle is spent regenerating the next sample.

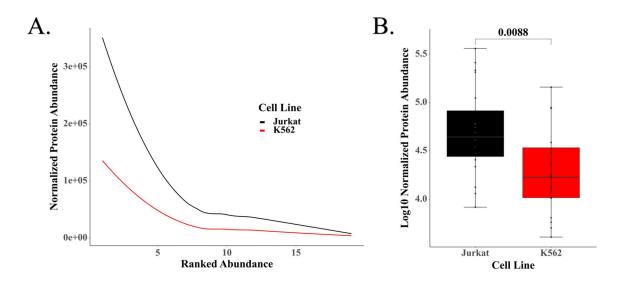



**Figure S3.** Multiplexing for 15-minute cycles. (Top) Simplified diagram of multiplexing. While a sample (Sample 1, purple) is loaded into the sample loop (SL), the previous sample (Sample 0, green) is transferred to the SPE. The sample before that (Sample -1, red) is making its way to the MS through the LC column, and the sample before that (Sample -2, blue) is finishing its elution from the column. Once the elution of Sample -2 is completed, the voltage is switched to connect the left column (Col1) and disconnect the right column to avoid interference. The valve then switches, pushing each sample to the next step of the process, and another sample (Sample 2, yellow) is loaded into the sample loop. (Bottom) Timing for multiplexing of the autosampler for 15-minute cycles. Each colored box shows which of the 5 samples is in each location as the workflow progresses.




**Figure S4.** MBR protein identifications for different mapping parameters for 15-minute cycles, where 'Auto' allows both the mass tolerance and retention time to be automatically calculated by Proteome Discoverer.




**Figure S5.** (A) 3D matrix of mass spectrometer settings for MS2-based identifications only. The shading indicates the average number of proteins identified by MS2. Note the different scales for the different MS2 thresholds. (B) The number of MS2 spectra for each set of MS acquisition settings.



**Figure S6.** Quantification effects resulting from relying on MBR for identification. The conditions with the highest number of identifications for each threshold were used to create protein abundance curves based on ranked abundances derived from analysis of 10 ng aliquots of HeLa digest. Protein abundances are log10 transformed. The lowest abundance proteins were identified using 'high-threshold' settings.



**Figure S7.** Volcano plot of protein expression in Jurkat vs K562 Cells. Values further to the right are enriched in Jurkat cells and those farther to the left in K562 cells. The black dots indicate proteins that have an absolute fold change of 2 or greater with a p value < 0.05.



**Figure S8.** Upregulated mitochondrial proteins only in Jurkat cells compared to K562 cells. (A) The protein abundances of 36 upregulated mitochondrial proteins (categorized by DAVID). Proteins were ranked according to the normalized abundances in Jurkat cells. (B) Box and whisker plot of log10-transformed protein abundances for the two cell lines. Significance was calculated using a paired t-test.

| Start Time | Mobile B |
|------------|----------|
| 0          | 10%      |
| 3          | 20%      |
| 4.3<br>4.5 | 45%      |
| 4.5        | 75%      |
| 4.7        | 75%      |
| 4.9        | 8%       |

## Table S1. LC Gradient for 7-minute Cycles

## Table S2. LC Gradient for 10-minute Cycles

| Start Time | Mobile B |
|------------|----------|
| 0          | 10%      |
| 6          | 20%      |
| 7          | 45%      |
| 7.3        | 80%      |
| 7.8        | 80%      |
| 8          | 50%      |
| 8.3        | 50%      |
| 8.5        | 80%      |
| 8.8        | 80%      |
| 8.9        | 8%       |

## Table S3. LC Gradient for 15-minute Cycles

| Start Time | Mobile B |
|------------|----------|
| 0          | 10%      |
| 9          | 20%      |
| 10.5       | 45%      |
| 11         | 80%      |
| 11.75      | 80%      |
| 12         | 60%      |
| 12.25      | 60%      |
| 12.75      | 70%      |
| 13         | 70%      |
| 13.25      | 80%      |
| 13.5       | 80%      |
| 14         | 8%       |

| Table S4 | LC Gra | adient for | · 30-minute | Cycles |
|----------|--------|------------|-------------|--------|
|----------|--------|------------|-------------|--------|

| Start Time | Mobile B |
|------------|----------|
| 0          | 10%      |
| 24         | 20%      |
| 25.5       | 45%      |
| 26         | 80%      |
| 27         | 80%      |
| 27.5       | 8%       |

### Table S5. MS Settings

#### SINGLE-CELL AND SINGLE-CELL-**10NG LIBRARY** SIZED ALIQUOTS (200 PG) ESI VOLTAGE 2200 V 2200 V MAXIMUM MS1 INJECTION TIME 502 ms 118 ms 375-1575 MS1 SCAN RANGE 375-1575 MS1 AGC TARGET 300% or as specified 300% MS1 RESOLUTION 120k or as specified 120k MAXIMUM MS2 INJECTION TIME 246 ms 118 ms 150% **MS2 AGC TARGET** 100% **MS2 RESOLUTION** 60k 15k DYNAMIC EXCLUSION WINDOW 30 s 30 s PRECURSOR INTENSITY THRESHOLD 1E4 or as specified 5.00E+03 FOR MS2 SELECTION

## Table S6. Differentially Expressed Proteins between Jurkat and K562

| GENE SYMBOL | FOLD CHANGE<br>JURKAT/K562 | P-VALUE  | BENJAMINI | CANCER DRUG TARGET |
|-------------|----------------------------|----------|-----------|--------------------|
| ACTN4       | 2.880209                   | 7.45E-05 | 0.005588  |                    |
| AKR1C1      | 5.710127                   | 0.000661 | 0.014691  |                    |
| AP1B1       | 2.047471                   | 0.004966 | 0.037996  |                    |
| BLVRB       | 3.113584                   | 2.03E-05 | 0.002345  |                    |
| CALU        | 5.820006                   | 0.004056 | 0.035198  |                    |
| CANX        | 2.409926                   | 0.000919 | 0.016975  |                    |
| CORO1C      | 2.988908                   | 0.002743 | 0.029916  |                    |
| CS          | 2.133896                   | 0.002466 | 0.029693  |                    |
| CYCS        | 3.343197                   | 0.000827 | 0.016975  | Yes                |
| ETFA        | 2.299533                   | 0.008507 | 0.048204  |                    |
| ETFB        | 2.616097                   | 0.000868 | 0.016975  |                    |
| FERMT3      | 2.830516                   | 0.009465 | 0.049818  |                    |
| FSCN1       | 2.21221                    | 0.000993 | 0.017398  |                    |
| GRPEL1      | 2.263446                   | 0.001882 | 0.025904  |                    |
| H1-5        | 0.310965                   | 0.000172 | 0.008298  |                    |
| HADHA       | 3.972428                   | 0.003966 | 0.035198  |                    |
| HNRNPL      | 2.416649                   | 0.005127 | 0.037996  |                    |
| HSPA1B      | 2.507084                   | 0.000648 | 0.014691  |                    |
| HSPA9       | 2.315643                   | 0.006092 | 0.042384  |                    |
| IGF2BP1     | 2.523059                   | 0.000605 | 0.014568  |                    |
| IMMT        | 2.852793                   | 0.002262 | 0.029049  |                    |
| KPNB1       | 2.197344                   | 0.000428 | 0.013186  |                    |
| KRT19       | 4.371127                   | 0.002688 | 0.029916  | Yes                |
| LAP3        | 2.532185                   | 0.002136 | 0.028053  |                    |
| LMNA        | 2.060674                   | 0.006623 | 0.043734  |                    |
| MAPK1       | 2.381642                   | 0.003169 | 0.031584  |                    |
| MDH2        | 2.917288                   | 0.001643 | 0.023745  |                    |

| MRPL12  | 2.036869 | 0.007433 | 0.045217 |                                   |
|---------|----------|----------|----------|-----------------------------------|
| NAMPT   | 2.556784 | 0.009289 | 0.049818 |                                   |
| OLA1    | 2.624457 | 1.86E-06 | 0.000536 |                                   |
| Р4НВ    | 2.092953 | 0.002368 | 0.029125 |                                   |
| PABPC1  | 2.006101 | 0.00471  | 0.037814 |                                   |
| PARK7   | 2.024723 | 0.005225 | 0.03823  | Yes                               |
| PARP1   | 3.152437 | 0.005868 | 0.041871 | Yes                               |
| PDIA4   | 2.491672 | 1.79E-05 | 0.002345 |                                   |
| PGD     | 2.331308 | 0.002968 | 0.030609 |                                   |
| PHB2    | 3.336464 | 0.001532 | 0.023297 |                                   |
| PPP2R1A | 2.111916 | 0.000232 | 0.009564 |                                   |
| PRDX6   | 2.469661 | 0.001252 | 0.020097 |                                   |
| PSMB5   | 2.332254 | 0.000164 | 0.008298 | Yes, Acute Lymphoblastic Leukemia |
| PSMD7   | 4.662143 | 0.003018 | 0.030609 |                                   |
| RNH1    | 3.719258 | 0.001119 | 0.018478 |                                   |
| SLC25A3 | 2.417702 | 0.006696 | 0.043734 |                                   |
| SND1    | 3.944464 | 0.000206 | 0.009137 |                                   |
| SSB     | 2.526782 | 0.000332 | 0.011299 |                                   |
| TUFM    | 2.875236 | 0.003774 | 0.035198 |                                   |
| UBE2D3  | 3.360602 | 0.002568 | 0.029916 |                                   |
| XPO1    | 4.160989 | 8.94E-05 | 0.005742 |                                   |
| YARS1   | 2.754918 | 0.007743 | 0.045637 |                                   |

## Table S7: Example Protocol for Loading from a Vial

| <b>Tip Location</b> | Action                         |
|---------------------|--------------------------------|
| Waste Vial          | Dispense 3800 nL @ 9000 nL/min |
| In the air          | Aspirate 100 nL @ 9000 nL/min  |
| DMSO vial           | Aspirate 3800 nL @ 9000 nL/min |
| Waste Vial          | Dispense 3900 nL @ 9000 nL/min |
| In the air          | Aspirate 100 nL @ 9000 nL/min  |
| Sample Vial         | Aspirate 1000 nL @ 9000 nL/min |
| In the air          | Aspirate 100 nL @ 9000 nL/min  |
| Buffer A Vial       | Aspirate 2600 nL @ 9000 nL/min |

## Table S8: Example Protocol for Loading from a Chip

| <b>Tip Location</b> | Action                               |
|---------------------|--------------------------------------|
| Waste Vial          | Dispense 3800 nL @ 9000 nL/min       |
| In the air          | Aspirate 100 nL @ 9000 nL/min        |
| DMSO vial           | Aspirate 3800 nL @ 9000 nL/min       |
| Waste Vial          | Dispense 3900 nL @ 9000 nL/min       |
| In the air          | Aspirate 100 nL @ 9000 nL/min        |
| Buffer A Vial       | <i>Aspirate 150 nL @ 9000 nL/min</i> |
| Sample Well         | Dispense 150 nL @ 9000 nL/min        |
| Sample Well         | Wait 30 seconds                      |
| Sample Well         | Aspirate 150 nL @ 9000 nL/min        |

|               | Repeat last 4 steps ( <i>in italics</i> ) 7 times to ensure thorough sample recovery |
|---------------|--------------------------------------------------------------------------------------|
| Buffer A Vial | Aspirate 100 nL @ 9000 nL/min                                                        |
| Sample Well   | Dispense 100 nL @ 9000 nL/min                                                        |
| Sample Well   | Wait 30 seconds                                                                      |
| Sample Well   | Aspirate 100 nL @ 9000 nL/min                                                        |
| In the air    | Aspirate 100 nL @ 9000 nL/min                                                        |
| Buffer A Vial | Aspirate 2600 nL @ 9000 nL/min                                                       |