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Supplementary Figure 1. Deletion of PCGF6 does not affect pluripotency
maintenance of human PSCs.

a. Schematic diagram of guide RNA design targeting PCGF6 and genotypes of
generated PCGF6-KO clones. The sgRNA-targeting sequences were highlighted in
blue, and PAM sequences are in red. The below schematic diagram showing the
genotype of the two PCGF6 knockout clones (178bp and 203bp deletion respectively).
b. Genotyping analysis of PCGF6 knockout human PSCs by PCR (n = 3). ¢. Relative
expression level of PCGF6 in the wild-type (WT) and PCGF6-KO human PSCs. The
level of gene expression in the WT human PSCs is set as 1 (n=3). d. Colony size of
WT and PCGF6-KO cells (n = 80). e. Protein level of OCT4 and NANOG in WT and
PCGF6-KO human PSCs; TUBULIN was used as loading control (n = 3). f. Protein
level of PRC1.6 components (EHMT2, L3MBTL2, HDACI1, E2F6, MGA, RYBP,
MAX) in WT and PCGF6-KO human PSCs; o-TUBULIN was used as loading
control (n = 3). g-h. Heatmap illustrating the RNA expression in WT and PCGF6-KO
human PSCs for selected genes of pluripotency (g) and components of PRC
complexes (h) based on RNA-seq analysis. TPM, Transcripts Per Kilobase Million.
Each point represents a biological replicate. Data are presented as the mean & SD.
Statistical significance was determined using the unpaired, two-tailed t-test in ¢, d, e
(*p<0.05, **p<0.01, ***p<0.001). Exact P values and statistical parameters are

provided as a Source Data file.
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Supplementary Figure 2. PCGF6 regulates endoderm differentiation of human
PSCs.

a. Schematic representation of definitive endoderm (DE) and pancreatic
differentiation of human PSCs. b. qRT-PCR analysis for expression of endoderm
markers (FOXA2 and SOX17) in WT and PCGF6-KO human PSCs during endoderm
differentiation. Results are shown relative to undifferentiated WT (n = 3). ¢. Left
panel: Flow cytometric analysis showing the percentage of CXCR4-positive cells in
differentiated WT and PCGF6-KO cells. Right panel: the percentage of
CXCR4-positive cells was counted (n = 3). d. qRT-PCR analysis for expression of
pancreatic markers (PDXI, NKX6.1, HNF44 and CDX2) in WT and PCGF6-KO
human PSCs during pancreatic differentiation (n = 3). e. Immunostaining of the
pancreatic marker (PDX1) in WT and PCGF6-KO cells after pancreatic differentiation
(n = 3). Scale bars, 200 um. f. QRT-PCR analysis for expression of cardiac markers (7,
GATA4 and NKX2.5) in WT and PCGF6-KO human PSCs during cardiac
differentiation (n = 3). g. Immunostaining of the cardiac marker (T) in WT and
PCGF6-KO cells after cardiac differentiation (n = 3). Scale bars, 200 um. h. KEGG
pathway analysis of up-regulated genes in PCGF6-KO PSCs. The y axis shows the
KEGG signaling pathway categories, the x axis refers to pathway enrichment. i. Venn
diagram showing the overlap of PRC1.6 targets in WT cells and up-regulated PCGF6
targets in PCGF6-KO cells. j. The heatmap showing the enrichment of PCGF6, RYBP,
RING1B, MAX (WT and PCGF6-KO), E2F6 (WT and PCGF6-KO) and H2AK119ub
(WT and PCGF6-KO) at PCGF6-related PRC1.6 targets in human PSCs. ChIP-seq
data of RYBP and RINGI1B were obtained from GEO database GSM2805870 and
GSM2805868, respectively. k. ChIP-qPCR analysis for RING1B, EHMT2 and
HDACI binding at WNT genes (FZD4, FZD9, RSPO4 and AXIN2) in human PSCs.
IgG served as negative control. ChIP enrichments are normalized to Input (n=3).
Each point represents a biological replicate. Data are presented as the mean & SD.
Statistical significance was determined using the unpaired, two-tailed t-test in b-d, f,
k (*p<0.05, **p<0.01, ***p<0.001). Exact P values and statistical parameters are

provided as a Source Data file.
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Supplementary Figure 3. PCGF6 knockout delays pluripotency exits during
neuroectoderm differentiation.

a. Schematic representation of neuronal differentiation of human PSCs. b. qRT-PCR
analysis for expression of pluripotent markers (OCT4 and NANOG) in WT,
PCGF6-KO and SOX2-rescue cells during neuroectoderm differentiation. Results are
shown relative to undifferentiated WT (n = 2). ¢. Immunostaining of pluripotent
markers (OCT4 and NANOG) in WT, PCGF6-KO and SOX2-rescue cells after
neuroectoderm differentiation (n = 3). Scale bars, 200 pm. d. qRT-PCR analysis of
PCGF6 expression in WT, PCGF6-KO, PCGF6+PCGF6 (PCGF6-KO/PCGF6
re-expressing) human PSCs. Results are shown relative to WT (n = 3). e. Protein level
of PCGF6 and SOX2 in WT, PCGF6-KO and PCGF6"+PCGF6 human PSCs was
evaluated and quantified; GAPDH was used as a loading control (n = 3). f. gqRT-PCR
analysis for expression of neural markers (SOXI and PAX6) in WT, PCGF6-KO and
PCGF6"+PCGF6 cells during neuroectoderm differentiation (n = 3). g.
Immunostaining of the neural progenitor markers (SOX1 and PAX6) in WT,
PCGF6-KO and PCGF67+PCGF6 cells after neuroectoderm differentiation (n = 3).
Scale bars, 200 pm. h. qRT-PCR analysis for expression of neural progenitor marker
(SOX1) and neuron markers (VEUN and TUJI) in WT and PCGF6-KO human PSCs
after neuron differentiation (21-days) (n = 3). i. Immunostaining of neural markers
(TUJ1 and SOX1) in WT, and PCGF6-KO cells after neuron differentiation (n = 3).
Scale bars, 200 um. Each point represents a biological replicate. Data are presented as
the mean & SD. Statistical significance was determined using the unpaired, two-tailed
t-test in b, d, f, h (*p<0.05, **p<0.01, ***p<0.001). Exact P values and statistical

parameters are provided as a Source Data file.
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Supplementary Figure 4. SRE-deficiency blocks neuroectoderm differentiation
of human PSCs.

a. Bedgraph for PCGF6, RING1B, RYBP, MAX, E2F6 and HDAC2 bound at SOX?2
locus. The x axis corresponds to genomic locations with the scale indicated at the top
of panel, and the y axis corresponds to ChIP-seq signal intensity. b. ChIP-qPCR
analysis for EHMT2, HDACI1 and RING1B binding at SRE locus in human PSCs.
IgG served as negative control. (n=3). Arrowheads represent the genomic position of
qPCR primers. ¢. Bedgraph for RING1B bound at SOX2 locus in different human cell
lines. 1: PCGF6 ChlIP-seq in this study; 2: H2AK119Ub ChIP-seq in this study; 3~12:
RINGIB ChIP-seq in human cell lines, including 3: HI cell line (GSM2805868); 4:
HUES64 cell line (GSM2805868); 5: WAO09/H9 reprogramed naive human PSCs
(GSE164786); 6: WA(09/H9 primed human PSCs (GSE164786);, 7:
Bone-marrow-derived primary human mesenchymal stem cells (hMSC) (GSE125166);
8: osteogenic cells derived from bone-marrow-derived primary human mesenchymal
stem cells (hnBMSC) (GSE125166); 9: ME-1 cell line (GSE128771); 10: HEK 293FT
cells (GSE175673); 11: the human SCLC cell line (NCI-H1963, GSE191106); 12:
human chronic myeloid leukemia cell line (K562, GSE167869). The x axis
corresponds to genomic locations with the scale indicated at the top of panel, and the
y axis corresponds to ChIP-seq signal intensity. d. Schematic diagram of guide RNA
design targeting SRE. The sgRNA-targeting sequences were highlighted, and the
deletion is depicted by horizontal blue box. e. Genotyping analysis of SRE knockout
human PSCs (n = 3). f. Venn diagrams showing the overlap of PCGF6-activated genes
and MYC-binding genes. The down-regulated PCGF6 targets means the overlap of
down-regulated genes identified by RNA-seq and PCGF6 target genes identified by
ChIP-seq. g. Co-immunoprecipitation assay in 293T cells with tagged PCGF6/MYC
transfection (n = 3). h. qRT-PCR analysis for expression of MYC in the WT and
MY C-knockdown human PSCs. Results are shown relative to wild-type H9 (n = 3). (i)
Western blot analysis of MYC in control and MYC-knockdown human PSCs.
a-TUBULIN served as a loading control (n = 3). j-k. ChIP-qPCR analysis of

PCGF6-binding in WT and MYC-knockdown human PSCs at SRE (j) and other
6



PCGF6- and MYC-co-occupied target genes (KLFI1, OTXI1, FOXO3, INPP5F and
WDR36) (k). ChIP enrichments are normalized to 100% input (n = 3). Each point
represents a biological replicate. Data are presented as the mean =+ SD. Statistical
significance was determined using the unpaired, two-tailed t-test in b, h, j-k (*p<0.05,
*$p<0.01, ***p<0.001). Exact P values and statistical parameters are provided as a

Source Data file.
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Supplementary Figure 5. Analyses of the co-occupancy of PCGF6 and MYC.

a. The overlap of H2AK119ub binding genes and PCGF6 targets in human PSCs was
displayed by Venn diagrams. The numbers showed the genes bound or co-bound by
each protein identified by ChIP-seq. b. Tag density heatmaps illustrating changes of
MYC bound in wildtype and PCGF6-KO human PSCs at PCGF6-MYC shared
activated genes. ¢. Heatmaps for enrichment of PCGF6, MYC (WT and PCGF6-KO
human PSCs), certain histone modifications (H3K27ac, H3K4mel and H3K4me3)
and transcription factors (P300, DNasel, Pol2 and CTCF) on PCGF6-MYC shared
activated sites (£2.5kb from the centers). ChIP-seq data were obtained from
ENCODE human ESC ChIP-seq. d. Heatmaps for enrichment of PCGF6, MYC,
certain histone modifications (H3K27ac, H3K4mel and H3K4me3), transcription
factors (P300, DNasel, Pol2 and CTCF) and pluripotent factors (NANOG, POUS5SF1
and SOX2) on PCGF6-MYC shared sites or PCGF6 only sites (+2.5kb from the
centers). ChIP-seq data were obtained from ENCODE human ESC ChIP-seq. e.
Heatmaps for enrichment of PCGF6, MYC, certain histone modifications (H3K27ac,
H3K4mel and H3K4me3), transcription factors (P300, DNasel, Pol2 and CTCF) on
PCGF6-MYC shared sites or MYC only sites (£2.5 kb from the centers). ChIP-seq
data were obtained from ENCODE human ESC ChIP-seq.



Supplementary Table 1. Primers for qRT-PCR analyses

Primer

Forward Primer 5°- 3

Reverse Primer 5°- 3°

Name

GAPDH AATGAAGGGGTCATTGATGG AAGGTGAAGGTCGGAGTCAA
NANOG CCCCAGCCTTTACTCTTCCTA CCAGGTTGAATTGTTCCAGGTC
PCGF6 GGCCCGATCCTAGTGCG AATAAGCGGGTAAAGACCCAGG
OCT4 CAAAGCAGAAACCCTCGTGC TCTCACTCGGTTCTCGATACTG
SOX2 GTCATTTGCTGTGGGTGATG AGAAAAACGAGGGAAATGGG
SOX17 GCATGACTCCGGTGTGAATCT TCACACGTCAGGATAGTTGCAGT
FOXA2 GGAGCAGCTACTATGCAGAGC CGTGTTCATGCCGTTCATCC
EOMES CACATTGTAGTGGGCAGTGG CGCCACCAAACTGAGATGAT

T TATGAGCCTCGAATCCACATAGT TATGAGCCTCGAATCCACATAGT
AXIN2 CTGGTGCAAAGACATAGCCA AGTGTGAGGTCCACGGAAAC
FZD9 CGGCACCAACACAGAGAAG CGTAGACATAGCAAACGATGAC
SYTI11 AGAGGAGGATGTCATGCTAGG GATGTAGGGGTCAGATCCCTG
NLGN3 ACAGTGGTGCTAAACCCGTC ATTGCCATAACTGGCGAGGAT
PAX6 TCCGTTGGAACTGATGGAGT GTTGGTATCCGGGGACTTC
SOX1 ATTATTTTGCCCGTTTTCCC TCAAGGAAACACAATCGCTG
PDX1 TTAGGATGTGGACGTAATTCCTGTT GGCCACTGTGCTTGTCTTCA
NKX6.1 AGACCCACTTTTTCCGGACA CCAACGAATAGGCCAAACGA
HNF4A ACTACATCAACGACCGCCAGT ATCTGCTCGATCATCTGCCAG
CDX2 CTGGAGCTGGAGAAGGAGTTTC ATTTTAACCTGCCTCTCAGAGAGC
GATA4 CAGGCGTTGCACAGATAGTG CCCGACACCCCAATCTC

NKX2.5 CTCCCAACATGACCCTGAGT CTCATTGCACGCTGCATAAT
TUJ1 TGGATTCGGTCCTGGATGTG ACCTTGCTGATGAGCAACGT
MYC#1 GGCTCCTGGCAAAAGGTCA CTGCGTAGTTGTGCTGATGT
MYC#2 TCCCTCCACTCGGAAGGAC CTGGTGCATTTTCGGTTGTTG




Supplementary Table 2. Primers for ChIP-qPCR analyses

Primer Name Forward Primer 5°- 3" Reverse Primer 5°- 3’

unbound control-1 CAGACCAGCACTTTCGGTGT TTGTCCCCAAACAAACCACC

unbound control-2 AGCTCAGGCCTCAAGACCTT AAGAAGATGCGGCTGACTGT

SRE-P1 TCATCCTCTTCAGGCAGCATT ACCAATATGGTGACCGTCTGAG
SRE-P2 GGTGGAAGCGTTTGTCTGATG GGCGTTTCGAAGGCACAG
SRE-P3 TATTTAGCAAGCCGGGACGG  GGAAGGGGTGTGGTTACCG
SRE-P4 GAAACGAAAAAGCTCGCGGT TAACCGGCTATCGGTGATGC

SRE-P5 TGACCCGACTGTGGGTACTT  AAATCAGCTGAAACCCGCCT
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