Supplementary Material for

"mRNA booster vaccination protects aged mice against the SARS-CoV-2 Omicron variant"

Etsuro Nanishi^{1,2†}, Marisa E. McGrath^{3†}, Timothy R. O'Meara¹, Soumik Barman^{1,2}, Jingyou Yu⁴, Huahua Wan⁴, Carly A. Dillen³, Manisha Menon¹, Hyuk-Soo Seo^{5,6}, Kijun Song⁵, Andrew Z Xu⁵, Luke Sebastian⁵, Byron Brook^{1,2}, Anna-Nicole Bosco¹, Francesco Borriello^{1,2,7,4}, Robert K. Ernst⁸, Dan H. Barouch⁴, Sirano Dhe-Paganon^{5,6}, Ofer Levy^{1,2,9††}, Matthew B. Frieman^{3††}, David J. Dowling^{1,2††}

¹⁾ *Precision Vaccines Program*, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA.

²⁾ Department of Pediatrics, Harvard Medical School, Boston, MA, USA.

³⁾ Department of Microbiology and Immunology, The Center for Pathogen Research, University of Maryland School of Medicine, Baltimore, MD, USA.

⁴⁾ Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.

⁵⁾ Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.

⁶⁾ Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.

⁷⁾ Division of Immunology, Boston Children's Hospital, Boston, MA, USA.

⁸⁾ Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD, USA.

⁹⁾ Broad Institute of MIT & Harvard, Cambridge, MA, USA.

[•] Present address: Generate Biomedicines, Cambridge, MA, USA.

[†]These authors contributed equally to this manuscript.

^{††}These authors jointly supervised this work.

***Corresponding author**: David J Dowling, *Precision Vaccines Program*, Division of Infectious Diseases, Boston Children's Hospital; Harvard Medical School, 4 Blackfan Circle, Harvard Institutes of Medicine, Rm 842, Boston, MA 02115, USA. Tel: +1 617-919-6890. e-mail: david.dowling@childrens.harvard.edu

Supplementary Figure 1. Vaccine-induced humoral immune responses wane in 19month-old mice at 32 weeks after 2-dose mRNA BNT162b2 immunization

Three- and 11-month-old BALB/c mice were immunized with 1 µg of mRNA BNT162b2 on weeks 0 and 2. Serum samples were collected at weeks 4 and 32 (**a**). Anti-spike IgG, IgG1, and IgG2a were assessed on week 4 (**b**) and week 32 (**c**), and (**d-e**) hACE2-RBD inhibition rate was assessed at both timepoints. N=39–40 per group for week 4 and N=28–40 per group for week 32. Results are presented as median. Each symbol represents an individual sample. Data were analyzed by Kruskal-Wallis test corrected for multiple comparisons. **P* <0.05, ***P* <0.01, ****P* <0.001, **** *P* <0.0001. Dashed lines represent lower limit of detection. The graphic in Supplementary Figure 1a was created with BioRender.com.

Supplementary Figure 2. *Ex vivo* flow cytometry gating strategy post murine mRNA vaccination

Representative flow cytometry plots showing the gating strategy applied to identify spikespecific CD4⁺ and CD8⁺ T cell responses to peptide pools post murine mRNA vaccination, representing wildtype SARS-CoV-2 (WT) or Omicron.

Supplementary Figure 3. 11-month-old BALBc mice demonstrate similar anti-spike IgG responses after primary mRNA vaccination series

3-month-old BALB/c mice acquired from the Jackson Laboratory (Jax) received primary mRNA vaccination series at either study week 0 at the age of 3-month (" $3M_Jax$ ") or study week 32 at the age of 11-month (" $11M_Jax$ "). 11-month-old BALB/c mice acquired from Taconic and received primary vaccination series at study week 0 (" $11M_Taconic$ "). Sera were collected 2 weeks after primary vaccination series and anti-spike IgG titers were determined. Each symbol represents an individual sample and red horizontal lines and numbers represents geometric mean titers (GMTs). Dashed lines represent lower limit of detection. N=40, 39 and 19 per group for " $3M_Jax$ ", " $11M_Jax$ ", and " $11M_Taconic$ ", respectively. Data were analyzed by Kruskal-Wallis test corrected for multiple comparisons. **** *P* <0.0001.