1	A cognitive neurogenetic approach to uncovering the structure of executive
2	functions
3 4	Supplementary Information
5	This file contains: Supplementary results, 3 supplementary figures and 8 supplementary
6	tables.
7	
8	Supplementary results
9	Functional enrichment of genes that showed enhanced expression in MFG and
10	SCG
11	We used Toppgene suite to perform functional annotation of candidate genes ¹
12	(https://toppgene.cchmc.org/). It detects functional enrichment of input gene list based on
13	Go Term, Mouse phenotype, Disease, Pathway, Transcription factors and so on. The
14	suite included multiple data sources, such as Gene Ontology (GO) ²
15	(<u>http://geneontology.org/</u>), which contained GO Molecular Function, GO Biological
16	Process and GO cellular component. Mouse phenotype
17	(http://www.informatics.jax.org/). Pathway annotations included data from the Kyoto
18	Encyclopedia of Genes and Genomes (KEGG) ³
19	(https://www.genome.jp/kegg/pathway.html), BioCarta (http://www.biocarta.com/genes/),
20	BioCyc ⁴ (<u>https://biocyc.org/</u>), Reactome ⁵ (<u>https://reactome.org/</u>), GenMAPP ⁶ , and
21	Molecular Signature Database (MSigDb) (<u>https://www.gsea-</u>
22	msigdb.org/gsea/msigdb/index.jsp). Human Phenotype Ontology
23	(https://hpo.jax.org/app/), which included gene annotations to hereditary diseases.
24	Hypergeometric distribution is used as the standard method to test statistical
25	significance. The FDR ⁷ method was used for multiple comparisons correction.
26	
27	MFG-related genes showed significant enrichment (see Supplementary Data). In terms
28	of GO molecular functions , these genes were enriched for gated channel activity (p =
29	3.33 x 10 ⁻²¹ , FDR-BH corrected, hereafter), ion channel activity ($p = 2.26 \times 10^{-19}$),
	1

30	voltage-gated cation channel activity ($p = 2.26 \times 10^{-19}$), cation channel activity ($p = 4.44 \times 10^{-19}$)
31	10 ⁻¹⁹), channel activity ($p = 8.09 \times 10^{-19}$). In terms of GO biological process , these
32	genes showed overrepresentation in synaptic signaling ($p = 2.70 \times 10^{-53}$), anterograde
33	trans-synaptic signaling ($p = 2.70 \times 10^{-53}$), chemical synaptic transmission ($p = 2.70 \times 10^{-53}$)
34	⁵³), trans-synaptic signaling ($p = 9.04 \times 10^{-53}$) and cell-cell signaling ($p = 3.62 \times 10^{-41}$). In
35	terms of GO cellular component, the MFG-related genes are mainly enriched for
36	synapse ($p = 8.54 \times 10^{-52}$), neuron projection ($p = 3.49 \times 10^{-40}$), glutamatergic synapse (p
37	= 9.86 x 10 ⁻³⁵), synaptic membrane ($p = 1.67 \times 10^{-34}$), and somatodendritic compartment
38	($p = 1.21 \times 10^{-33}$). For mouse phenotype , these genes were enriched for abnormal
39	synaptic transmission ($p = 1.60 \times 10^{-18}$), abnormal CNS synaptic transmission ($p = 1.59 \times 10^{-18}$)
40	10 ⁻¹⁶), abnormal nervous system physiology ($p = 1.81 \times 10^{-16}$), abnormal
41	learning/memory/conditioning ($p = 7.39 \times 10^{-16}$), abnormal cognition ($p = 7.39 \times 10^{-16}$). In
42	annotation of pathway , these genes showed enrichment in neuroactive ligand-receptor
43	interaction ($p = 6.49 \times 10^{-14}$), calcium signaling pathway ($p = 1.05 \times 10^{-12}$), monoamine
44	GPCRs ($p = 1.78 \times 10^{-8}$), Heterotrimeric G-protein signaling pathway-Gi alpha and Gs
45	alpha mediated pathway ($p = 1.47 \times 10^{-7}$), and axon guidance ($p = 3.06 \times 10^{-7}$). For
46	disease , these genes are enriched in schizophrenia ($p = 1.18 \times 10^{-26}$), chronic alcoholic
47	intoxication ($p = 1.43 \times 10^{-15}$), bipolar disorder ($p = 1.43 \times 10^{-15}$), autistic disorders ($p =$
48	1.80 x 10 ⁻¹³), mental disorders ($p = 3.04 \times 10^{-13}$).

49

50 SCG-related genes also showed significant enrichment (see Supplementary Data). For 51 **GO molecular functions:** signaling receptor binding ($p = 1.97 \times 10^{-9}$, FDR-BH corrected, 52 hereafter), channel activity ($p = 2.36 \times 10^{-7}$), passive transmembrane transporter activity $(p = 2.36 \times 10^{-7})$, metal ion transmembrane transporter activity $(p = 6.32 \times 10^{-7})$, 53 54 potassium channel activity ($p = 6.32 \times 10^{-7}$). For **GO biological process:** synaptic signaling ($p = 3.85 \times 10^{-28}$), trans-synaptic signaling ($p = 1.09 \times 10^{-27}$), cell-cell signaling 55 56 $(p = 1.67 \times 10^{-27})$, anterograde trans-synaptic signaling $(p = 2.24 \times 10^{-27})$, and chemical synaptic transmission ($p = 2.24 \times 10^{-27}$). For **GO cellular component**: synapse (p = 7.8557 58 x 10⁻³⁵), neuron projection ($p = 1.90 \times 10^{-31}$), somatodendritic compartment ($p = 2.28 \times 10^{-35}$)

 10^{-25}), synaptic membrane (*p* = 4.12 x 10^{-20}), and dendritic tree (*p* = 4.12 x 10^{-20}). For 59 **mouse phenotype**: abnormal nervous system physiology ($p = 1.30 \times 10^{-13}$), abnormal 60 CNS synaptic transmission ($p = 1.79 \times 10^{-10}$), abnormal synaptic transmission ($p = 4.67 \times 10^{-10}$) 61 62 10⁻¹⁰), abnormal learning/memory/conditioning ($p = 3.39 \times 10^{-9}$), abnormal cognition (p =63 3.39 x 10⁻⁹). For **pathway:** neuroactive ligand-receptor interaction ($p = 1.44 \times 10^{-5}$), spinal 64 cord injury ($p = 3.58 \times 10^{-5}$), ensemble of genes encoding core extracellular matrix 65 including ECM glycoproteins, collagens and proteoglycans ($p = 5.96 \times 10^{-5}$), Myometrial relaxation and contraction pathways ($p = 3.43 \times 10^{-4}$), and calcium regulation in the 66 cardiac cell ($p = 4.47 \times 10^{-4}$). For **disease:** anxiety ($p = 7.79 \times 10^{-13}$), anxiety disorders (p67 = 1.30×10^{-12}), schizophrenia (*p* = 8.48×10^{-11}), mental disorders (*p* = 1.61×10^{-9}), 68 bipolar disorder ($p = 1.61 \times 10^{-9}$). 69

70

72 The PCA is based on ~3 million common SNPs on 1000Genome phase3 data. EAS: East

Asian, EUR: European, AFR: African, AMR: Ad Mixed American, SAS: South Asian,

74 StudySample: 2110 subjects used in the current study. Source data are provided as a

75 Source Data file.

76

79 Supplementary Fig. 2. Latent variable models of EFs (seven other models). See

80 Table 1 for fit statistics for these models. Source data are provided as a Source Data file.

- 81
- 82

83

84 Supplementary Fig. 3. Enrichment heritability pattern of the candidate gene sets 85 for the common EF and shifting-specific components (n = 1454 subjects). The null 86 hypothesis of 1.0 enrichment is shown by a dashed dark horizontal line. The *p* values 87 indicate the significance of the difference from the expectation. Error bars represent the 88 SE of enrichment folds (= SE(set) /%SNP). Significant results after FDR-BH correction are marked with asterisks (** represents p values < .01, * represents p values < .05, 89 90 exact p values are provided in Source Data file, one-sided test). We selected the top 10% 91 SNPs of the ranked genome data as trait-associated variants. CNS: genes preferentially 92 expressed in the central nervous system; IQ: SNPs associated with human intelligence; 93 EA: SNPs associated with educational attainment; SCZ: schizophrenia-associated SNPs; 94 ADHD: ADHD-associated SNPs; Crohn: SNPs associated with Crohn's disease. Please 95 note that the heritability (h^2) is per definition non-negative. However, in some cases, negative values can be obtained from unbiased estimators. As discussed in Yang et al.⁸ 96 97 and Elhezzani⁹, a negative estimate could be due to a close-to-zero true value or 98 substantial uncertainty in estimation. For this reason, negative enrichment was thus not 99 considered further. Source data are provided as a Source Data file. 100 101 102

- 103
- 104

	Ν	Mean	SD	Min	Max	Skew	Kurtosis	IC
Anti-saccade(d')	2015	.25	.13	.00	.58	.33	59	.90
Stop-signal (ms)	1862	215.18	40.89	110.33	320.01	.10	.01	.55ª
Stroop (ms)	1990	138.67	82.36	-77.75	347.31	.40	.07	.33
Category (ms)	2042	295.22	138.70	-89.64	667.51	.31	08	.51
Color-shape (ms)	1965	326.28	196.78	-181.69	818.83	.57	.10	.70
Number-letter (ms)	1901	300.98	172.15	-153.35	729.32	.62	.04	.79
Keep track (nc)	1980	30.70	3.11	23.00	36.00	52	27	.67 ^b
Spatial 2-back (d')	1940	2.80	.93	.20	4.65	11	32	.76
Letter 3-back (d')	1957	1.98	.89	07	4.40	.74	03	.81

Supplementary Table 1. Descriptive statistics for the nine EF measures

106 SD = standard deviation; Min = minimum; ax = maximum. IC= internal consistency. d' =

107 dprime; ms = millisecond; nc = number of corrected trials.

108 Unless otherwise noted, IC was calculated by adjusting split-half (odd-even) correlations

109 with the Spearman-Brown prophecy formula.

^a For the stop-signal task, we used four stair-cases with different starting values, which

111 were randomly mixed together. We therefore calculated the SSRT for the last two blocks.

112 The split-half correlation was calculated based on 391 subjects who had at least one

113 inflection point for one of the four stair cases in both blocks were used.

^b IC was calculated using Cronbach's alpha across 4 sets of trials at each difficulty level

115 for keep track.

116

118 Supplementary Table 2. Pearson Correlation of the nine EF measures

	1	2	3	4	5	6	7	8	9
1.Anti-saccade	_								
2.Stop-signal	.26***	_							
3.Stroop	.11***	.10***	_						
4.Category	.09***	.06*	.06**	_					
5.Color-shape	.03	.05*	.05*	.24***	_				
6.Number-letter	.10***	.08**	.08***	.31***	.32***	-			
7.Keep track	.16***	.16***	.01	.01	.04	.07**	_		
8.Spatial 2-back	.22***	.16***	.07**	.07**	.06**	.10***	.14***	_	
9.Letter 3-back	.22***	.18***	.05*	.04	.07**	.07**	.22***	.31***	_

119 The significant results after FDR-BH correction are noted with asterisks (*** represents *p*

120 values < .001, * represents *p* values < .05, exact *p* values are provided in Source Data

121 file, two-sided test). Source data are provided as a Source Data file.

122

123

Model	χ^2	df	CFI	RMSEA	SRMR
Correlated-factors models					
1. I+U+S	44.73	24	.98	.02	.02
2. S/I+U	270.89	26	.73	.08	.07
3. U/I+S	84.44	26	.93	.04	.03
4. S/U+I	347.16	26	.64	.09	.07
5. G	380.25	27	.60	.10	.07
Bifactor models					
6. C+I+U+S	28.91	18	.99	.02	.02
7. C+I+S	46.50	21	.97	.03	.03
8. C+I+U	158.44	21	.85	.07	.06
9. C+U+S	29.44	21	.99	.02	.02
10. C+I	346.93	24	.64	.10	.07
11. C+S	82.45	24	.93	.04	.03
12. C+U	259.38	24	.74	.08	.07

125 Supplementary Table 3. Model fit statistics of the 12 EF latent variable models (list-

126 wise deletion)

The good-fit models are indicated in bold. It is worth noting that although the fit indices of the bifactor three-factor (C+I+U+S) model were good (CFI= .99, RMSEA = .02,

129 SRMR= .02), the three tasks' loadings on inhibiting-specific component (anti-saccade: *p*

130 = .55, stop-signal: p = .39, Stroop: p = .43) and updating-specific component (keep track:

131 p = .20, spatial 2-back: p = .20, letter 3-back: p = .10) were not significant.

132

Model	component	p =	.01	p	= .1
		r	$p_{(FDR-BH)}$	r	p (FDR-BH)
I+U+S	I	.15	6.5e-4	.18	2.17e-4
	U	.15	5.2e-4	.19	2.17e-4
	S	.07	.10	.06	.09
U/I+S	U/I	.16	4.3e-4	.19	2.17e-4
	S	.07	.10	.06	.09
C+I+S	С	.16	4.3e-4	.19	2.17e-4
	I	.06	.11	.06	.09
	S	.10	.03	.08	.06
C+U+S	С	.16	5.2e-4	.19	2.17e-4
	U	01	.57	.07	.19
	S	.09	.04	.08	.06
C+S	С	.16	4.3e-4	.19	2.17e-4
	S	.10	.03	.08	.06

134 Supplementary Table 4. CPM prediction results using two other thresholds

I = inhibiting or inhibiting-specific; U=updating or updating-specific; S = shifting or shifting specific; U/I = (updating = inhibiting); C = common. Correction for multiple comparisons
 was performed with the FDR-BH; one-sided permutation test.

144 Supplementary Table 5. The specific brain regions for Common and Shifting-

145 specific components from the CPM results

Cluster		N		
Cluster	Х	Y	Z	IN
Common component				
precentral gyrus	44	-8	57	30
inferior temporal gyrus	-56	-45	-24	29
frontal pole	8	41	-24	27
LOC	-39	-75	44	19
LOC	-41	-75	26	16
frontal pole	6	64	22	16
inferior temporal gyrus	55	-31	-17	15
MFG	48	25	27	15
frontal pole	-39	51	17	15
middle temporal gyrus	56	-46	11	15
Shifting-specific component				
LOC	37	-65	40	20
paracingulate gyrus	6	54	16	19
planum temporale	58	-16	7	16
paracingulate/SMC	7	8	51	15
planum temporale	32	-26	13	14
frontal orbital cortex	27	16	-17	14
LOC	37	-81	1	14
postcentral gyrus	42	-20	55	11
precentral gyrus	2	-28	60	11
central opercular cortex	-55	-9	12	11

146 SMC = supplementary motor cortex, MFG = middle frontal gyrus, LOC= lateral occipital

147 cortex. N = the number of contributing edges each node had.

148 Supplementary Table 6. The brain regions for Common and Shifting-specific

		Neurosynth	No. of	(COG		
	Components	Cluster	Voxels	Х	Y Z		Node Atlas
	Common	nmon MFG		48	48 25 27		MFG (86 voxels, MNI= 48,25,27)
	Shifting-	paracingulate/ SMC	45	6	9	51	Paracingulate (54 voxels,MNI=7,8,51)
	specific	LOC	27	34	-64	40	LOC (72 voxels, MNI=37, -65,40)
150	SMC = supplem	entary motor corte	x, MFG = n	niddle fi	rontal g	gyrus,	LOC= lateral occipital
151	cortex, COG = c	center of gravity.					
152							
153							
154							
155							
156							
157							
158							
159							
160							
161							
162							
163							
164							
165							
166							
167							

149 components from the conjunction of CPM and Neurosynth results

168 Supplementary Table 7. Enrichment patterns of the Allen brain expression

Componente	Gene	Gene	Р	Р	EXP#genes	OBS#genes	P(FDR-BH)
Components	sets	boundary	(95%)	(75%)	(75%)	(75%)	(75%)
	MEG	25kb	.17	3.0e-4	244	287	3.6e-3
		50kb	.15	9.4e-3	239	266	5.6e-2
	SCG	25kb	.38	.10	241	257	.14
Common	300	50kb	.33	.09	237	252	.22
Common		25kb	.37	.09	245	262	.14
	LUC	50kb	.31	.46	240	239	.50
		25kb	.69	.12	242	256	.14
	BG	50kb	.11	.09	238	253	.22
	MFG	25kb	.14	.08	243	261	.14
		50kb	.57	.16	241	252	.27
Updating-	SCG	25kb	.16	.11	242	257	.14
specific		50kb	.60	.25	238	245	.38
	LOC	25kb	.14	.14	243	256	.15
		50kb	.74	.11	240	254	.22
		25kb	.04	.43	242	244	.43
	ЪG	50kb	.82	.68	239	232	.68
	MEG	25kb	.29	.04	145	162	.14
		50kb	.32	.05	143	158	.20
	SCG	25kb	.17	.02	139	161	.12
Shifting-	000	50kb	.64	6.8e-3	138	161	5.6e-2
specific		25kb	.30	.09	150	163	.14
	LUU	50kb	.49	.33	148	152	.44
	BC	25kb	.96	.12	139	151	.14
	ЪG	50kb	.89	.39	138	140	.47

169 candidate gene sets (using other gene boundaries)

170 See Table 3 for definition of acronyms. Correction for multiple comparisons was

171 performed with the FDR-BH. One-sided permutation test.

172 Supplementary Table 8. High dimensional mediation analyses results

Components	Gene boundary	VIE	VDE	PVM	P permutation	р (FDR-BH)
	25kb	.023	.093	.201	4.4e-3	9.4e-3
Common	35kb	.027	.114	.190	4.7e-3	9.4e-3
	50kb	.034	.142	.193	4.2e-3	9.4e-3
	25kb	.016	096	203	.995	.996
Shifting-specific	35kb	.016	104	176	.996	.996
	50kb	.019	106	220	.996	.996

173 Exposure: genotype of MFG-related genes or SCG-related genes; Mediator: selected

174 edges in CPM for EF components; Outcome: EF components. VIE = variance indirect

175 effect, VDE = variance direct effect, PVM = proportion of the variance mediated.

176 Correction for multiple comparisons was performed with the FDR-BH. One-sided

- 177 permutation test.
- 178

179

180 Supplementary References

- Chen, J., Bardes, E.E., Aronow, B.J. & Jegga, A.G. ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. *Nucleic Acids Res* 37, W305-11 (2009).
- Harris MA, C.J., Ireland A, Lomax J, Ashburner M, Foulger R, Eilbeck *et al.* The
 Gene Ontology (GO) database and informatics resource. *Nucleic Acids Res* 32(2004).
- Kanehisa M, G.S., Hattori M, Aoki-Kinoshita KF, Itoh M, & Kawashima S, K.T.,
 Araki M, Hirakawa M. From genomics to chemical genomics: new developments in KEGG. *Nucleic Acids Res* 34(2006).
- Karp PD, O.C., Moore-Kochlacs C, Goldovsky L, Kaipa P, & Ahren D, T.S.,
 Darzentas N, Kunin V, Lopez-Bigas N. Expansion of the BioCyc collection of pathway/genome databases to 160 genomes. *Nucleic Acids Res* 33, 6083-6089 (2005).
- Joshi-Tope G, G.M., Vastrik I, D'Eustachio P, Schmidt E, de, Bono B, J.B.,
 Gopinath GR, Wu GR, Matthews L, Lewis S, Birney & E, S.L. Reactome: a
 knowledgebase of biological pathways. *Nucleic Acids Res* 33(2005).
- Dahlquist KD, S.N., Vranizan K, Lawlor SC, Conklin BR. GenMAPP, a new tool
 for viewing and analyzing microarray data on biological pathways. *Nat Genet* **31**,
 19-20 (2002).

- Benjamini, Y. & Hochberg, Y. controling the false discovery rate a practical and powerful approach to multiple testing. *JOURNAL OF THE ROYAL STATISTICAL SOCIETY.Series B(Methodological)* 57, 289-300 (1995).
- 8. Yang, J. *et al.* Ubiquitous polygenicity of human complex traits: genome-wide analysis of 49 traits in Koreans. *PLoS Genet* **9**, e1003355 (2013).
- 205 9. Elhezzani, N.S. Improved estimation of SNP heritability using Bayesian multiple 206 phenotype models. *Eur J Hum Genet* 26, 723-734 (2018).
- 207