

#### Figure S1. Localization of Paraspeckle Components and the RNA-Binding Proteins after RNAPII Inhibition, related to Figure 1.

(A-C) The effect of THZ1 treatment for 1 hr on the localization of SFPQ was analyzed by IF in the HeLa (A), MRC5 (B), and RPE (C) cell lines. Scale bars, 10 µm.

(D) The CITI formation was analyzed in various cell cycle stage in RPE cells. It is of note that S-phase cells were identified as positive for both CENPF and EdU, G2 cells as CENPF-positive but EdU-negative, and G1 cells as negative for both CENPF and EdU.

(E) NEAT1 localization after THZ1 treatment for 1 hr was examined by RNA FISH for NEAT1. Scale bars, 10 µm.

(F) The effect of THZ1 treatment on the localization of SC-35 (SRSF2) and PML was analyzed by IF. Scale bars, 10 µm.

(G) CITI positive cells were quantified in CDK7/9 or PAF1C KD cells. The KD of CDK7/9 or PAF1C was confirmed by RT-qPCR.

(H-J) The effect of THZ1 treatment on the localization of EWSR1 (H), hnRNPA1 (I), and TDP-43 (J) was analyzed by IF. Scale bars, 10 µm.

(K) The expression level of GFP-TAF15 in GFP-TAF15 cells was confirmed by western blot.





(A, B) The effect of SFPQ, NONO, or NEAT1 KD on the localization of NONO (A) or SFPQ (B) was analyzed by IF. Scale bars, 10 µm.

(C) The efficiency of NEAT1 KD was confirmed by RNA FISH for NEAT1 (mean with 95% CI).

(D) The efficiency of SFPQ, NONO, TAF15, and FUS KD was confirmed by western blot.

(E, F) The SFPQ levels in the nucleus were analyzed by IF with no extraction (E) or extraction (F) before fixation. The pre-extraction resistant signals were considered as the chromatin-bound fraction (mean with 95% CI).

(G) The chromatin binding of SFPQ was analyzed by fractionation western blot. The soluble fraction (Sol) was prepared by extracting cells as in (F). Remaining attached cells were further lysed to prepare the chromatin-bound fraction (Chr).

(H) The effect of SFPQ, or NONO KD on the localization of TAF15 was analyzed by IF. Scale bars, 10 μm.

(I, J) The quantification of the total area of the TAF15 (I) or FUS (J) speckles in SFPQ or NONO KD cells is shown as mean with 95 % CI.

(K, L) The effect of TAF15 or FUS KD on CITIs was analyzed by IF (K). Scale bars, 10 µm. The quantification of the total area of CITIs per cell is shown (L).

(M) The 2-color 3-D SoRa images for the indicated combination.



Figure S3. The Box B/C, but not H/ACA snoRNPs are Depleted from Nucleoli upon RNAPII Inhibition, related to Figure 4.

(A) The effect of THZ1 treatment on RNA synthesis at CITI regions was analyzed by visualizing incorporated EU. Scale bars, 10 μm. CX5461 was used as negative control for EU incorporation at nucleoli. The high contrast images for the EU signal of THZ1-treated cells are shown below.
 (B) The quantification of the total area of CITIs in UBF KD cells is shown as mean with 95% CI.

(C, D) The effect of pretreatment (C) or posttreatment (D) with CX5461 (1  $\mu$ M, 24 hr or 10  $\mu$ M, 1 hr, respectively) on THZ1-induced CITI formation was analyzed by IF. It is of note that CITIs were identified by TAF15 in (C). Scale bars, 10  $\mu$ m. The quantification of the total area of CITIs per cell is shown as mean with 95% CI.

(E) The effect of sincRNA KD by locked nucleic acid (LNA) oligos on the CITI formation was analyzed by IF. Scale bars, 10 µm. The KD of sincRNA was confirmed by RT-qPCR.

(F) The levels of NCL, DKC1, NOP56, U3-55K, FBL, and NHP2L1 after THZ1 treatment were analyzed by western blot.

(G, H) The effect of THZ1 treatment for 1 hr on the localization of NHP2L1, NOP56 (G), or DKC1 (H) was analyzed by IF. Scale bars, 10  $\mu$ m. (I) The levels of snoRNAs were quantified by RT-qPCR.

(J) The effect of SFPQ KD on the depletion of Nucleolin upon THZ1 treatment was analyzed by IF. Scale bars, 10 µm.

(K) The effect of CITI formation on paraspeckles was analyzed in FBL KD cells. Scale bars, 10 μm. CITIs and paraspeckles identified by NEAT1/SFPQ are indicated by open and closed arrows, respectively.



Figure S4. Association of SFPQ/TAF15 with TSSs of Genes, related to Figure 5.

(A) Representative peaks of SFPQ/TAF15 ChIP-seq are shown in various scales. The samples from IgG control and Input as well as RefSeqGene are aligned.

(B) SFPQ ChIP-seq signals were quantified at the rRNA coding region and intergenic region in rDNA repeats.

(C) The binding sites of SFPQ/ TAF15 within gene regions were analyzed by ChIP-seq. The average signals relative to IgG control within each category of regions were plotted. TES, transcription end site.

(D, E) The correlation between the binding of SFPQ/TAF15 to TSSs ± 1 Kb and gene expression levels was analyzed by ChIP-seq. The tracks from two representative genes are shown in (D). The average signals relative to IgG control for all genes expressed at any level are shown in upper panels in (E). In the heatmaps below, genes are sorted dependent on their expression levels defined by RNA-seq.

(F) The number of SFPQ ChIP-seq peaks determined from two biological replicates was analyzed in the indicated genomic regions.

(G) The binding sites of SFPQ/TAF15 within gene regions were analyzed by ChIP-seq normalized by spike-in control as in (C).

(H) The correlation between the binding of SFPQ/TAF15 to TSSs ± 1 Kb and gene expression levels was analyzed by ChIP-seq normalized by spike-in control as in (E).



#### Figure S5. SFPQ Remains Associated with Compartment A after THZ1 Treatment, related to Figure 5.

(A, B) Representative images for TSA labelling of SFPQ (A) or UBF (B) using the TSA-seq protocol.

(C, D) The effect of depth normalization and spike-in normalization on SFPQ TSA-seq signals were compared in the rDNA repeat unit (C). The quantification of signals within each category of regions is shown as in Figure 5C (D).

(E) The SFPQ ChIP-seq and TSA-seq signals were analyzed with the scatter plot (Pearson's correlation coefficient, r=0.6504).

(F, G) Representative genomic view of SFPQ TSA-seq normalized by spike-in control is shown (F). The signals within each compartment are shown as a box plot (G).

(H-J) Representative genomic view of SFPQ TSA-seq normalized by sequencing depth is shown (H). The signals within each compartment are shown as a scatter plot (I) or a box plot (J).



### Figure S6. The Genes in Compartment A Associate with CITIs, related to Figure 5.

(A) Representative images for the IF-FISH analysis. Scale bars, 10 μm. Colocalization between FISH signal and CITIs is indicated by white arrows.

(B) The colocalization frequency of the FISH signal and CITIs was analyzed in FBL or U3 snoRNA KD cells.

(C, D) Colocalization between the gene loci on Chr 7 (C) or Chr 2 (D) and CITIs was analyzed by FISH as in (B). The log2 ratio of UBF TSAseq signals (THZ1/DMSO) and compartment A/B prediction scores at each locus are shown above.

(E) The effect of TAF15 or FUS KD on the colocalization frequency of the FISH signal and CITIs was analyzed in THZ1-treated cells (mean with 95% CI, *n*=30 for data points from three biological replicates).



Figure S7. Highly Transcribed Genes Have a Higher Risk of Gene Fusion in Cancer, related to Figure 6 and 7.

(A) The distribution of the expression levels of all genes or a set of genes that underwent fusions (fusion genes) in TCGA samples was analyzed. The proportion of the fusion genes in each expression bin is also shown below.

(B) The number of γH2AX foci per cell was measured at the indicated time points after 4-OHT treatment.

(C) The percentage of cells that have more than 10 RAD51 foci was measured at the indicated time points after 4-OHT treatment.

(D) The effect of Actinomycin D treatment on the frequency of *MIS12-TRIM37* fusion was analyzed (mean with SD, *n*=4 for data points from one representative experiment of three biological replicates).

(E) The effect of Puromycin treatment on the frequency of *MIS12-TRIM37* fusion was analyzed (mean with 95% CI, *n*=12 for data points from three biological replicates).

(F) The effect of DSB induction on the colocalization frequency of the FISH signal of ASXL1 or SLC32A1 and CITIs was analyzed in the THZ1treated U2OS AsiSI cells (mean with 95% CI, *n*=10 for data points from one representative experiment of three biological replicates).

(G) The correlation between the SFPQ or NONO expression levels and the number of gene fusions per sample was analyzed in the indicated TCGA datasets as in Figure 6A. See also Table S2.

(H, I) The effect of BRD4 KD (H) or SRSF2 KD (I) on the frequency of *MIS12-TRIM37* fusion was analyzed (mean with SD, *n*=4 for data points from one representative experiment of three biological replicates).

(J) The position of *LINC01970* on Chr 17 and *SRSF6* on Chr 20 and the log2 ratio of UBF TSA-seq signals (THZ1/DMSO) and compartment A/B scores at these loci are shown.

(K) The nuclear import of ER-Cas9 after 4-OHT treatment (1 hr) in U2OS iCas cell line was confirmed by IF. Scale bars, 5 µm.

(L) The effect of THZ1 treatment on the frequency of *EML4-ALK* fusion was analyzed by qPCR in the cells transfected with the indicated gRNAs and treated as indicated (mean with SD, *n*=3 from one representative experiment of three biological replicates).

# Table S1. Metrics for Sequencing Experiments in This Study, related to Figure 4, S4, and S5.

| Cell | Experiment | Target     | Treatment       | Genome       | Number of total reads | Number of<br>mapped reads | FDR 0.01<br>peaks | FDR 0.05<br>peaks | 5-fold enrichment peaks |
|------|------------|------------|-----------------|--------------|-----------------------|---------------------------|-------------------|-------------------|-------------------------|
| U2OS | ChIP-seq   | SFPQ       | DMSO            | hg19         | 20,942,233            | 20,140,663                | 37,637            | 12,252            | 11,852                  |
| U2OS | ChIP-seq   | SFPQ       | DMSO (Spike-in) | hg19         | 17,752,137            | 15,184,154                | 20,096            | 6,083             | 8,697                   |
| U2OS | ChIP-seq   | SFPQ       | DMSO (Spike-in) | rDNA repeats | 19,313,925            | 164,836                   | -                 | -                 | -                       |
| U2OS | ChIP-seq   | SFPQ       | THZ1            | hg19         | 23,720,092            | 22,965,250                | 55,329            | 16,885            | 11,760                  |
| U2OS | ChIP-seq   | SFPQ       | THZ1 (Spike-in) | hg19         | 19,597,622            | 16,218,603                | 38,234            | 8,793             | 10,101                  |
| U2OS | ChIP-seq   | SFPQ       | THZ1 (Spike-in) | rDNA repeats | 21,338,700            | 275,900                   | -                 | -                 | -                       |
| U2OS | ChIP-seq   | TAF15      | DMSO            | hg19         | 19,454,100            | 18,760,462                | 2,462             | 956               | 992                     |
| U2OS | ChIP-seq   | TAF15      | DMSO (Spike-in) | hg19         | 19,572,788            | 18,254,768                | 3,519             | 1,218             | 1,376                   |
| U2OS | ChIP-seq   | TAF15      | THZ1            | hg19         | 22,531,125            | 21,780,270                | 12,724            | 1,266             | 1,023                   |
| U2OS | ChIP-seq   | TAF15      | THZ1 (Spike-in) | hg19         | 20,824,653            | 19,452,442                | 5,417             | 1,316             | 1,572                   |
| U2OS | ChIP-seq   | Input      | DMSO (Spike-in) | hg19         | 21,612,257            | 20,721,987                | 1,660             | 1,095             | 1,025                   |
| U2OS | ChIP-seq   | Input      | THZ1 (Spike-in) | hg19         | 21,579,067            | 20,752,745                | 1,745             | 1,131             | 1,052                   |
| U2OS | ChIP-seq   | Mouse IgG  | DMSO (Spike-in) | hg19         | 14,090,300            | 12,165,017                | 1,760             | 1,078             | 1,133                   |
| U2OS | ChIP-seq   | Mouse IgG  | THZ1 (Spike-in) | hg19         | 19,949,410            | 17,907,191                | 1,682             | 1,194             | 1,136                   |
| U2OS | ChIP-seq   | Rabbit IgG | DMSO (Spike-in) | hg19         | 18,390,936            | 16,969,037                | 1,743             | 1,171             | 1,128                   |
| U2OS | ChIP-seq   | Rabbit IgG | THZ1 (Spike-in) | hg19         | 14,754,651            | 12,121,073                | 2,071             | 1,258             | 1,326                   |
| U2OS | TSA-seq    | UBF        | DMSO            | hg19         | 38,998,920            | 14,428,090                | -                 | -                 | -                       |
| U2OS | TSA-seq    | UBF        | THZ1            | hg19         | 36,237,106            | 13,610,763                | -                 | -                 | -                       |
| U2OS | TSA-seq    | UBF        | DMSO-siControl  | hg19         | 35,104,424            | 13,992,880                | -                 | -                 | -                       |
| U2OS | TSA-seq    | UBF        | THZ1-siControl  | hg19         | 39,735,796            | 19,579,843                | -                 | -                 | -                       |
| U2OS | TSA-seq    | UBF        | DMSO-siTAF15    | hg19         | 48,416,368            | 20,746,599                | -                 | -                 | -                       |
| U2OS | TSA-seq    | UBF        | THZ1-siTAF15    | hg19         | 47,445,916            | 16,105,781                | -                 | -                 | -                       |
| U2OS | TSA-seq    | SFPQ       | DMSO            | hg19         | 45,019,420            | 23,271,398                | -                 | -                 | -                       |
| U2OS | TSA-seq    | SFPQ       | DMSO            | rDNA repeats | 45,019,420            | 202,555                   | -                 | -                 | -                       |
| U2OS | TSA-seq    | Input      | DMSO            | hg19         | 33,450,584            | 32,881,545                | -                 | -                 | -                       |
| U2OS | TSA-seq    | Input      | DMSO            | rDNA repeats | 33,450,584            | 175,228                   | -                 | -                 | -                       |
| U2OS | TSA-seq    | SFPQ       | THZ1            | hg19         | 41,959,368            | 11,701,143                | -                 | -                 | -                       |
| U2OS | TSA-seq    | SFPQ       | THZ1            | rDNA repeats | 41,959,368            | 108,492                   | -                 | -                 | -                       |
| U2OS | TSA-seq    | Input      | THZ1            | hg19         | 39,110,846            | 38,421,634                | -                 | -                 | -                       |
| U2OS | TSA-seq    | Input      | THZ1            | rDNA repeats | 39,110,846            | 207,978                   | -                 | -                 | -                       |
| U2OS | TSA-seq    | SFPQ       | DMSO (Spike-in) | hg19         | 211,804,024           | 97,117,947                | -                 | -                 | -                       |
| U2OS | TSA-seq    | SFPQ       | DMSO (Spike-in) | rDNA repeats | 211,804,024           | 334,915                   | -                 | -                 | -                       |
| U2OS | TSA-seq    | Input      | DMSO (Spike-in) | hg19         | 113,170,426           | 106,281,768               | -                 | -                 | -                       |
| U2OS | TSA-seq    | Input      | DMSO (Spike-in) | rDNA repeats | 113,170,426           | 384,073                   | -                 | -                 | -                       |
| U2OS | TSA-seq    | SFPQ       | THZ1 (Spike-in) | hg19         | 211,078,626           | 63,231,373                | -                 |                   | -                       |
| U2OS | TSA-seq    | SFPQ       | THZ1 (Spike-in) | rDNA repeats | 211,078,626           | 390,548                   | -                 |                   | -                       |
| U2OS | TSA-seq    | Input      | THZ1 (Spike-in) | hg19         | 82,577,772            | 72,041,017                | -                 |                   | -                       |
| U2OS | TSA-seq    | Input      | THZ1 (Spike-in) | rDNA repeats | 82,577,772            | 460,541                   | -                 | -                 | -                       |

| Conoo     | Study | Low      | / group |     | High group |      |     | Dvoluo      |
|-----------|-------|----------|---------|-----|------------|------|-----|-------------|
| Genes     |       | Fusion # | SD      | Ν   | Fusion #   | SD   | Ν   | r value     |
| CDK7      | BRCA  | 4.59     | 5.79    | 490 | 3.41       | 4.47 | 619 | 0.000209*** |
|           | SARC  | 8.07     | 10.12   | 95  | 5.93       | 6.81 | 164 | 0.0676      |
|           | LUNG  | 2.92     | 3.86    | 436 | 2.70       | 2.97 | 650 | 0.308       |
| CDK9      | BRCA  | 5.15     | 6.44    | 341 | 3.39       | 4.32 | 768 | 4.62E-06*** |
|           | SARC  | 8.08     | 9.37    | 112 | 5.68       | 7.10 | 147 | 0.0245*     |
|           | LUNG  | 2.99     | 3.21    | 247 | 2.73       | 3.39 | 839 | 0.259       |
| TFIIS     | BRCA  | 4.83     | 6.19    | 171 | 3.37       | 4.03 | 294 | 0.00603**   |
|           | SARC  | 7.24     | 7.85    | 63  | 3.60       | 5.01 | 45  | 0.00409**   |
|           | LUNG  | 2.66     | 2.83    | 238 | 2.97       | 3.56 | 243 | 0.282       |
| PAF1C     | BRCA  | 4.64     | 5.96    | 377 | 3.03       | 4.10 | 195 | 1.55E-04*** |
|           | SARC  | 7.76     | 9.00    | 50  | 6.02       | 7.12 | 58  | 0.272       |
|           | LUNG  | 2.65     | 2.67    | 138 | 2.94       | 3.86 | 450 | 0.316       |
| NELF      | BRCA  | 2.02     | 2.80    | 90  | 3.79       | 4.39 | 304 | 8.51E-06*** |
|           | SARC  | 4.20     | 6.66    | 15  | 6.42       | 7.15 | 88  | 0.240       |
|           | LUNG  | 2.37     | 2.43    | 139 | 3.93       | 5.39 | 158 | 0.00114**   |
| DSIF+SPT6 | BRCA  | 3.11     | 4.33    | 80  | 4.43       | 5.18 | 233 | 0.0274*     |
|           | SARC  | 8.59     | 8.60    | 41  | 6.37       | 8.16 | 214 | 0.0736      |
|           | LUNG  | 2.52     | 2.92    | 366 | 2.92       | 3.55 | 720 | 0.0485*     |

For Figure 6A:

TFIIS: TCEA1, TCEA2

•

PAF1C: PAF1, LEO1, RTF1, CDC73, CTR9

NELF: NELFA, NELFB, NELFCD, NELFE

DSIF: SUPT4H1, SUPT5H

BRCA: breast invasive carcinoma

SARC: sarcoma

LUNG: lung adenocarcinoma and squamous cell carcinoma

For Figure S7G:

| Conos | Study   | Low      | group |     | Higł     | n group | )    | <i>P</i> value |  |
|-------|---------|----------|-------|-----|----------|---------|------|----------------|--|
| Genes | Sludy   | Fusion # | SD    | Ν   | Fusion # | SD      | Ν    | r value        |  |
| SFPQ  | BLCA    | 2.58     | 3.53  | 60  | 2.84     | 3.44    | 354  | 0.595          |  |
|       | BRCA    | 2.25     | 3.17  | 83  | 4.02     | 5.13    | 1026 | 0.00241**      |  |
|       | CESC    | 1.34     | 2.04  | 29  | 1.55     | 2.15    | 277  | 0.604          |  |
|       | COAD    | 0.49     | 1.01  | 63  | 0.70     | 1.18    | 458  | 0.130          |  |
|       | GBM     | 1.58     | 1.67  | 79  | 1.96     | 3.37    | 90   | 0.354          |  |
|       | HNSC    | 1.32     | 1.36  | 69  | 1.46     | 1.63    | 433  | 0.430          |  |
|       | KIDNEY  | 0.61     | 1.93  | 264 | 0.54     | 1.29    | 627  | 0.606          |  |
|       | LAML    | 0.67     | 1.00  | 9   | 0.74     | 1.16    | 142  | 0.834          |  |
|       | LGG     | 1.30     | 3.08  | 252 | 2.14     | 4.62    | 276  | 0.0135*        |  |
|       | LIHC    | 1.43     | 2.29  | 47  | 2.49     | 4.95    | 327  | 0.0142*        |  |
|       | LUNG    | 2.21     | 2.51  | 247 | 2.96     | 3.55    | 839  | 2.25E-04***    |  |
|       | OV      | 1.13     | 2.03  | 23  | 0.92     | 1.62    | 356  | 0.633          |  |
|       | PRAD    | 2.85     | 3.60  | 26  | 3.59     | 3.69    | 472  | 0.308          |  |
|       | SARC    | 6.36     | 7.97  | 47  | 6.80     | 8.30    | 212  | 0.737          |  |
|       | SKCM    | 2.33     | 3.35  | 52  | 2.61     | 3.84    | 418  | 0.575          |  |
|       | STAD    | 1.26     | 3.32  | 31  | 1.88     | 4.42    | 344  | 0.332          |  |
|       | THCA    | 0.39     | 0.68  | 66  | 0.38     | 0.68    | 444  | 0.862          |  |
|       | UTERINE | 5.11     | 8.22  | 19  | 4.89     | 6.75    | 229  | 0.910          |  |
|       | UVM     | 0.25     | 0.45  | 12  | 0.41     | 1.40    | 68   | 0.451          |  |

| Conco | Study   | Low group |      |     | High group |      |     | Byoluc      |
|-------|---------|-----------|------|-----|------------|------|-----|-------------|
| Genes |         | Fusion #  | SD   | Ν   | Fusion #   | SD   | Ν   | P value     |
| NONO  | BLCA    | 2.99      | 4.23 | 74  | 2.77       | 3.26 | 340 | 0.675       |
|       | BRCA    | 3.47      | 5.31 | 126 | 3.99       | 5.10 | 983 | 0.300       |
|       | CESC    | 1.43      | 2.33 | 47  | 1.55       | 2.10 | 259 | 0.728       |
|       | COAD    | 0.58      | 1.11 | 318 | 0.84       | 1.24 | 203 | 0.0147*     |
|       | GBM     | 1.42      | 1.69 | 24  | 1.84       | 2.84 | 145 | 0.312       |
|       | HNSC    | 1.26      | 1.65 | 85  | 1.48       | 1.58 | 417 | 0.258       |
|       | KIDNEY  | 0.32      | 0.61 | 136 | 0.60       | 1.62 | 755 | 4.28E-04*** |
|       | LAML    | 0.23      | 0.44 | 13  | 0.78       | 1.18 | 138 | 6.22E-04*** |
|       | LGG     | 1.38      | 2.11 | 204 | 1.96       | 4.79 | 324 | 0.0547      |
|       | LIHC    | 2.08      | 3.86 | 106 | 2.46       | 5.01 | 268 | 0.435       |
|       | LUNG    | 2.60      | 2.75 | 438 | 2.91       | 3.70 | 648 | 0.112       |
|       | OV      | 0.65      | 1.14 | 81  | 1.01       | 1.76 | 298 | 0.0278*     |
|       | PRAD    | 1.59      | 2.32 | 22  | 3.64       | 3.71 | 476 | 1.05E-04*** |
|       | SARC    | 6.46      | 7.88 | 130 | 6.98       | 8.58 | 129 | 0.615       |
|       | SKCM    | 2.42      | 3.67 | 99  | 2.62       | 3.82 | 371 | 0.645       |
|       | STAD    | 1.85      | 3.31 | 41  | 1.83       | 4.45 | 334 | 0.962       |
|       | THCA    | 0.43      | 0.73 | 23  | 0.38       | 0.68 | 487 | 0.713       |
|       | UTERINE | 5.93      | 8.87 | 160 | 4.60       | 6.14 | 447 | 0.0815      |
|       | UVM     | 0.50      | 0.55 | 6   | 0.38       | 1.34 | 74  | 0.657       |

BLCA: bladder urothelial carcinoma, CESC: cervical squamous cell carcinoma and endocervical adenocarcinoma, COAD: colon adenocarcinoma, GBM: glioblastoma multiforme, HNSC: head and neck squamous cell carcinoma, KIDNEY: kidney chromophobe, renal clear cell carcinoma, and renal papillary cell carcinoma, LAML: acute myeloid leukemia, LGG: brain lower grade glioma, LIHC: liver hepatocellular carcinoma, OV: ovarian serous cystadenocarcinoma, PRAD: prostate adenocarcinoma, SKCM: skin cutaneous melanoma, STAD: stomach adenocarcinoma, THCA: thyroid carcinoma, UTERINE: uterine corpus endometrial carcinoma and carcinosarcoma, UVM: uveal melanoma.

# Table S3. Oligonucleotides Used in This Study, related to STAR Methods.

| Assay       | Oligo name        | Sequence (5'-3')                                            | Company |
|-------------|-------------------|-------------------------------------------------------------|---------|
| Gene fusion | Chr17-MIS12-F     | GAAGCAGTTCCTGCGCTCTG                                        | IDT     |
|             | Chr17-MIS12-R     | GATTCAACGCAGAGGTGCCC                                        | IDT     |
|             | Chr17-TRIM37-F    | GGCGAGAGAAGCTGCGAA                                          | IDT     |
|             | Chr17-TRIM37-R    | CGAGTCGCCAAGTCTCGTAT                                        | IDT     |
|             | Chr9-PIP5KL1-F    | GCGGCCGACCAATAGCA                                           | IDT     |
|             | Chr9-PIP5KL1-R    | GCCGGACCGAGGTCTGAAG                                         | IDT     |
|             | Chr9-NR6A1-F      | TAAATAAATCGGGTTTGCCGCC                                      | IDT     |
|             | Chr9-NR6A1-R      | AGGAGCTTTTGTGAGGTCGTA                                       | IDT     |
|             | Chr9-GNE-F        | ACTCGTCGCTCGACCTTGTC                                        | IDT     |
|             | Chr9-GNE-R        | GACGGGAGCAGCCAATCAC                                         | IDT     |
|             | Chr9-LINGO2-F     | CAGAAAGTGTGAGGACAGGACA                                      | IDT     |
|             | Chr9-LINGO2-R     | TAGGAGGATCTCTCCGGGCG                                        | IDT     |
|             | Chr20-ASXL1-F     | CTCTGACCCCGTGGTTATGC                                        | IDT     |
|             | Chr20-ASXL1-R     | CGTCAGTCGCCCACGG                                            | IDT     |
|             | Chr20-SLC32A1-F   | GGGTCCGCAGCATAAGTGT                                         | IDT     |
|             | Chr20-SLC32A1-R   | GTTTGCGCTCTCACCGCTA                                         | IDT     |
|             | Chr13-RASA3-F     | CCTGTGGGTCCCTGACTCAT                                        | IDT     |
|             | Chr13-RASA3-R     | TGCATGACTGAGCCACACTT                                        | IDT     |
|             | Chr13-NGR-F       | GGAAGACACGTCATCCCCTG                                        | IDT     |
|             | Chr13-NGR-R       | ACAGCCTATGGGCACATTACAT                                      | IDT     |
|             | Chr17-LINC01970-F | GAGTCATGTGCCCGGAGAG                                         | IDT     |
|             | Chr17-LINC01970-R | GGATGCGGCCCTAAGACTTG                                        | IDT     |
|             | Chr17-SRSF6-F     | TGAACGGCAAGGAGCTCTG                                         | IDT     |
|             | Chr17-SRSF6-R     | GCGGCTTCCGTAGCTGTAG                                         | IDT     |
|             | EML4-sgRNA-F      | accgGACCTGAACAGCAAGTTTGT                                    | IDT     |
|             | EML4-sgRNA-R      | aaacACAAACTTGCTGTTCAGGTC                                    | IDT     |
|             | ALK-sgRNA-F       | accgGGCCTTGCTGAAACTTCCTT                                    | IDT     |
|             | ALK-sgRNA-R       | aaacAAGGAAGTTTCAGCAAGGCC                                    | IDT     |
|             | EML4-F            | TCTACCTATGCCAGTGAACACA                                      | IDT     |
|             | EML4-R            | AATTCAGCAGAGCTGGAAGTAGA                                     | IDT     |
|             | ALK-R             | ACCCTGGGTGCCATGGAG                                          | IDT     |
| Cloning     | TAF15-HindIII-F   | TGCAgaattcCTaAtaAggCcTAttCcTTtgGtcGtttctgtagtcgtttcttcctccc | IDT     |
|             | TAF15-EcoRI-R     | GATTCAACGCAGAGGTGCCC                                        | IDT     |
|             | FUS-Xhol-F        | AGATCTCGAGCTgcAAGCaaTgattatacccaacaagcaaccca                | IDT     |
|             | FUS-KpnI-R        | GGATCCCGGGCCCGCGGTACCttaatacggcctctccctgcg                  | IDT     |
| RT-qPCR     | SNORD7-F          | ATGCGATGATGAGTGAAGTAGAG                                     | IDT     |
|             | SNORD7-R          | CAGCTCAGAGAGAAGATTAAGAG                                     | IDT     |
|             | SNORD8-F          | TCCCAATGATGAGTTGCCATGC                                      | IDT     |
|             | SNORD8-R          | CCCCTCAGATCTTCATGTGAG                                       | IDT     |
|             | SNORD10-F         | GCTCTGTGATGGAGCCCATG                                        | IDT     |
|             | SNORD10-R         | TAGTCTGCTCTCAGAGTACAAAGAC                                   | IDT     |
|             | U3 snoRNA-F3      | AGAGGTAGCGTTTTCTCCTGAGCG                                    | IDT     |

## Table S3 (Continued)

|           | U3 snoRNA-R3      | ACCACTCAGACCGCGTTCTC                     | IDT               |
|-----------|-------------------|------------------------------------------|-------------------|
|           | pre-U3 snoRNA-R1  | AAGGAAAAACCACTCAGA                       | IDT               |
|           | pre-U3 snoRNA -R2 | AAGGAAAAACCACTCA                         | IDT               |
|           | U8 snoRNA-F       | CGTCAGGTGGGATAATCCTT                     | IDT               |
|           | U8 snoRNA-R       | GGGTGTTGCAAGTCCTGATT                     | IDT               |
|           | U1-F              | CCATGATCACGAAGGTGGTTT                    | IDT               |
|           | U1-R              | ATGCAGTCGAGTTTCCCACAT                    | IDT               |
|           | CDK7-F            | AAGTCTCGGGCAAAGCG                        | Sigma-Aldrich     |
|           | CDK7-R            | AGCTTCTGATCTATGTCCAAGTT                  | Sigma-Aldrich     |
|           | CDK9-F            | AATACGAGAAGCTCGCCAAGA                    | Sigma-Aldrich     |
|           | CDK9-R            | CTCCCGCAAGGCTGTAATGG                     | Sigma-Aldrich     |
|           | PAF1-F            | CATCTTCCGAGAGGGTGACG                     | Sigma-Aldrich     |
|           | PAF1-R            | CCCGATGTTTGACCACAAGC                     | Sigma-Aldrich     |
|           | LEO1-F            | GGGCATTCGAGAGGAACGAG                     | Sigma-Aldrich     |
|           | LEO1-R            | TTCTCTTTCCGGAAGGTTCAC                    | Sigma-Aldrich     |
|           | CTR9-F            | CTCCATCGAGATTCCCCTCC                     | Sigma-Aldrich     |
|           | CTR9-R            | TTGCCATCTATACGTGCTGCT                    | Sigma-Aldrich     |
|           | CDC73-F           | CTGGCCCAAGAATGTGAAGAC                    | Sigma-Aldrich     |
|           | CDC73-R           | GCACGTCGGACATAAACAGGAT                   | Sigma-Aldrich     |
| Knockdown | Control           | CGUACGCGGAAUACUUCGAdTdT                  | Sigma-Aldrich     |
|           | SFPQ              | GCCAGCAGCAAGAAAGGCAUUUGAAdTdT            | Sigma-Aldrich     |
|           | SFPQ              | GACGACAGGAAGAAUUAAGdTdT                  | Sigma-Aldrich     |
|           | NONO              | GGAAGCCAGCUGCUCGGAAAGCUCUdTdT            | Sigma-Aldrich     |
|           | NEAT1-1           | GAGGAGUGAUGUGGAGUUAAG                    | IDT               |
|           | NEAT1-2           | GGGAUGAUGCAAACAAUUACU                    | IDT               |
|           | TAF15             | UGAUCAGCGCAACCGACCAdTdT                  | Sigma-Aldrich     |
|           | TAF15             | GCUCGAAGGAAUUCCTGCAAUdTdT                | Thermo Scientific |
|           | FUS               | CGGACAUGGCCUCAAACGAdTdT                  | Sigma-Aldrich     |
|           | SRSF2             | SMARTpool ON-TARGETplus L-019711-00-0005 | Horizon           |
|           | BRD4              | SMARTpool ON-TARGETplus L-004937-00-0005 | Horizon           |
|           | Nucleolin         | SMARTpool ON-TARGETplus L-003854-00-0005 | Horizon           |
|           | FBL               | SMARTpool ON-TARGETplus L-011269-00-0005 | Horizon           |
|           | UBF               | SMARTpool ON-TARGETplus L-020670-00-0005 | Horizon           |
|           | U3 (siRNA)        | CTGAACGTGTAGAGCACCGAAdTdT                | IDT               |
|           | SCR-ASO           | mUmCmAmCmCTTCACCCTCTmCmCmAmCmU           | IDT               |
|           | U3-ASO            | mUmUmCmGmGTGCTCTACACmGmUmUmCmA           | IDT               |
|           | U8-ASO            | mGmGmAmUmUATCCCACCTGmAmCmGmAmU           | IDT               |
|           |                   | (mN: 2'-O-methoxyethylribonucleotide)    |                   |
|           | CDK7              | SMARTpool ON-TARGETplus L-003241-00-0005 | Horizon           |
|           | CDK9              | SMARTpool ON-TARGETplus L-003243-00-0005 | Horizon           |
|           | PAF1              | AAGCAGCAGTTTACCGAGGAA                    | Sigma-Aldrich     |
|           | LEO1              | GCCGGUAGCUUCUGAUAAU                      | Sigma-Aldrich     |
|           | CTR9              | CCGUGUGGCUCCAAACUUUA                     | Sigma-Aldrich     |
|           | CDC73             | GGUACAUGGUAAAGCAUAA                      | Sigma-Aldrich     |
|           |                   |                                          |                   |

## Table S3 (Continued)

| RNA FISH | NEAT1            | Stellaris NEAT1 RNA FISH probes                         | LGC Biosearch   |
|----------|------------------|---------------------------------------------------------|-----------------|
|          | U3 snoRNA        | GCTCTACACGTTCAGAGAAACTTCTCTAGTAACACACTATAGAA<br>ATGATCC | IDT             |
| DNS FISH | ASXL1            | ASXL1-20-RE                                             | Empire Genomics |
|          | SLC32A1          | SLC32A1-20-RE                                           | Empire Genomics |
|          | LINC01370        | LINC01370-20-RE                                         | Empire Genomics |
|          | Chr20 CEN        | CHR20-10-GR                                             | Empire Genomics |
|          | PDAP1            | PDAP1-20-RE                                             | Empire Genomics |
|          | IMMP2L           | IMMP2L-20-RE                                            | Empire Genomics |
|          | RRM2             | RRM2-20-RE                                              | Empire Genomics |
|          | LINC00276        | LINC00276-20-RE                                         | Empire Genomics |
| RIP      | pre-rRNA Forward | TGTCAGGCGTTCTCGTCTC                                     | IDT             |
|          | pre-rRNA Reverse | AGCACGACGTCACCACATC                                     | IDT             |
|          | NEAT1-F          | TGACTCTCCATTTCCCCATC                                    | IDT             |
|          | NEAT1-R          | TCATTTACCCGCATTTCACA                                    | IDT             |
|          | GAPDH-F          | GGTCTCCTCTGACTTCAACA                                    | IDT             |
|          | GAPDH-R          | GTGAGGGTCTCTCTTCCT                                      | IDT             |