| MPM<br>Sample ID | ADU-S100<br>Response | TAK-676<br>Response | Age | Gender | Histology | Neoadjuvant | Figures                        |
|------------------|----------------------|---------------------|-----|--------|-----------|-------------|--------------------------------|
| 1                | NR                   | NT                  | 77  | М      | Е         | N           | 2C, 2D,<br>S5B, S5C            |
| 2                | NR                   | NT                  | 79  | F      | Е         | N           | 2C, 2D,<br>S5B, S5C            |
| 3                | NR                   | NT                  | 70  | М      | В         | N           | 2C, 2D,<br>S5C                 |
| 4                | NR                   | NT                  | 69  | М      | Е         | Y           | 2C, 2D,<br>S5B                 |
| 5                | NR                   | NT                  | U   | U      | U         | U           | 2C, 2D,<br>S5B, S5C            |
| 6                | NR                   | NT                  | 68  | М      | В         | Y           | 2C, 2D,<br>S5C                 |
| 7                | NR                   | NT                  | 38  | F      | Е         | N           | 2C, 2D,<br>S5B, S5C            |
| 8                | NR                   | NR                  | 66  | М      | Е         | Y           | 2C, 2D, 2F,<br>S5C, S5B        |
| 9                | NR                   | NR                  | 68  | М      | Е         | N           | 2C, 2D, 2F,<br>S5C             |
| 10               | NR                   | NR                  | 79  | М      | Е         | N           | 2C, 2D, 2F,<br>S5C             |
| 11               | NR                   | NT                  | 52  | М      | В         | N           | 2C, 2D,<br>S5B, S5C            |
| 12               | NR                   | NR                  | 74  | М      | F         | N           | 2C, 2D, 2F,<br>4A, S5C,<br>S9A |
| 12               |                      |                     | 14  | 101    | -         |             | 2C, 2D,                        |
| 13               | NR                   | NT                  | 71  | М      | E         | Y           | 2C, 2D,                        |
| 14               | NR                   | NT                  | 75  | F      | В         | N           | S5B, S5C                       |
| 15               | NR                   | NT                  | 71  | F      | В         | N           | 2C, 2D,<br>S5C                 |
| 16               | NR                   | NT                  | 77  | М      | Е         | N           | 2C, 2D,<br>S5C                 |
| 17               | NR                   | NR                  | 53  | М      | Е         | N           | 2C, 2D, 2F,<br>S5C             |
| 18               | NR                   | NT                  | 80  | М      | В         | N           | 2C, 2D,<br>S5C                 |
| 19               | NR                   | NT                  | 76  | М      | Е         | N           | 2C, 2D,<br>S5B, S5C            |
| 20               | NR                   | NT                  | 72  | М      | В         | N           | 2C, 2D,<br>S5B, S5C            |
| 21               | NR                   | NT                  | 79  | М      | В         | N           | 2C, 2D,<br>S5B, S5C            |
| 22               | NR                   | NR                  | 77  | М      | Е         | N           | 2C, 2D, 2F,<br>S5C             |

## Supplementary Table S1: Patient demographics for MPM PDOTs and TILs

| 23  | NR  | NR | 73  | М        | Е | N | 2C, 2D, 2F,<br>S5C                                |
|-----|-----|----|-----|----------|---|---|---------------------------------------------------|
| 24  | NR  | R  | 69  | М        | E | Y | 2C, 2D, 2F,<br>S5C                                |
| 25  | NR  | NT | 79  | F        | В | N | 2C, 2D,<br>S5C                                    |
| 26  | NR  | NR | 78  | F        | E | N | 2C, 2D, 2F,<br>2G, 3, S5C,<br>S6B, S6C,<br>S7, S8 |
| 27  | NR  | NT | 82  | F        | E | N | 2C, 2D,<br>S5B, S5C                               |
| 28  | NR  | NT | 68  | F        | Е | Y | 2C, 2D,<br>S5B, S5C                               |
| 29  | R   | NT | 67  | М        | Е | N | 2C, 2D,<br>S5C                                    |
| 30  | R   | NT | 79  | М        | Е | Y | 2C, 2D,<br>S5B, S5C                               |
| 31  | R   | NT | 58  | F        | Е | N | 2C, 2D,<br>S5B, S5C                               |
| 32  | R   | NT | 75  | М        | Е | N | 2C, 2D, 5C,<br>S5C, S10C                          |
| 33  | R   | R  | 60  | М        | Е | N | 2C, 2D, 2F,<br>S5A, S5C                           |
| 34  | R   | R  | 66  | М        | Е | N | 2C-E, 2F,<br>S5C, S6A,<br>S6E                     |
| 35  | R   | R  | 80  | M        | в | V | 2A-D, 2F,<br>S5A, S5C                             |
| 36  | ND  |    | 00  | N/       | E | 1 | 5A. S10A                                          |
| 27  |     |    | 20  |          | P |   | 5B                                                |
| .)( | INK |    | .50 | <b>-</b> | Б |   |                                                   |

37NRNT30FBU5BR = response to treatment with cell death >20% above control, T-test p<0.05; NR = non-responder; NT = Not<br/>tested. F = female, M = Male gender. E = epithelioid MPM, B = biphasic MPM, Y/N = yes/no neoadjuvant<br/>treatment. U = unknown.5B

| TIL Batch<br>Number                                              | Age | Gender | Diagnosis      | Figures  |  |  |
|------------------------------------------------------------------|-----|--------|----------------|----------|--|--|
| 1                                                                | 69  | F      | Stage II NSCLC | S9D      |  |  |
| 2                                                                | 77  | F      | Stage II NSCLC | S9E, S9F |  |  |
| 3                                                                | 66  | М      | Stage I NSCLC  | 4, S9C   |  |  |
| F = female, M = Male gender. NSCLC = non-small cell lung cancer. |     |        |                |          |  |  |

Supplementary Table S2: Summary of patient demographics for ex vivo STING agonist treatment of MPM tumors

|                     | ADU-S100  | Non-      |
|---------------------|-----------|-----------|
|                     | Responder | responder |
| Total Patients      | 7         | 30        |
| Median Age (years)  | 67        | 73        |
| Gender              |           |           |
| Male                | 6 (86%)   | 20 (67%)  |
| Female              | 1 (14%)   | 9 (30%)   |
| Not recorded        | 0         | 1 (3%)    |
| Histology           |           |           |
| Epithelioid         | 6 (86%)   | 19 (63%)  |
| Biphasic            | 1 (14%)   | 10 (33%)  |
| Sarcomatoid         | 0         | 0         |
| Not recorded        | 0         | 1 (4%)    |
| Neoadjuvant Therapy |           |           |
| Yes                 | 2 (29%)   | 6 (20%)   |
| No                  | 5 (71%)   | 21 (70%)  |
| Not recorded        | 0         | 3 (10%)   |

## Supplementary Table S3: Antibodies used in flow cytometry and western blot experiments

| Target     | Clone      | Manufacturer    | Cat. No.    |
|------------|------------|-----------------|-------------|
| CD69       | FN50       | BioLegend       | 310904      |
| CD16       | 3G8        | BioLegend       | 302006      |
| CD8        | RPA-T8     | Thermo Fisher   | BDB560662   |
| CCR2       | K036C2     | Biolegend       | 357203      |
| CD38       | HIT2       | BioLegend       | 303506      |
| CD11c      | 3.9        | BioLegend       | 301605      |
| CCR7       | 150503     | Thermo Fisher   | BDB62381    |
| CD56       | GDC56      | BioLegend       | 318348      |
| LAG-3      | 11C3C65    | BioLegend       | 369309      |
| CD103      | B-Ly7      | Thermo Fisher   | 25-1038-41  |
| TIM-3      | F38-2E2    | BioLegend       | 345012      |
| PD-L1      | 29E.2A3    | BioLegend       | 329708      |
| CD3        | UCHT1      | BioLegend       | 300424      |
| PD-1       | EH12.2H7   | BioLegend       | 329920      |
| HLA-DR     | G46-6      | Thermo Fisher   | BDB562804   |
| CD45RA     | HL100      | BioLegend       | 304142      |
| CD15       | SSEA-1     | BioLegend       | 323028      |
| CTLA-4     | BNI3       | BioLegend       | 369609      |
| CD19       | HIB19      | BioLegend       | 302243      |
| CD45       | H130       | BioLegend       | 304050      |
| CD4        | PRA-T4     | BioLegend       | 300554      |
| CD14       | M5E2       | BioLegend       | 301840      |
| Mesothelin | REA1057    | Miltenyi        | 130-118-168 |
| STING      | D2P2F      | Cell Signaling  | 13647       |
| pTBK1      | D52C2      | Cell Signaling  | 5483        |
| TBK1       | Polyclonal | Cell Signaling  | 3013        |
| pIRF3      | 4D4G       | Cell Signaling  | 4947        |
| IRF3       | D6I4C      | Cell Signaling  | 11904       |
| pSTAT1     | 58D6       | Cell Signaling  | 9167        |
| STAT1      | Polyclonal | Cell Signaling  | 9172        |
| IFNAR-1    | Polyclonal | Thermal Fischer | PA5-79441   |
| β-Actin    | C4         | Santa Cruz      | sc-47778    |

## Supplementary Table S4: Gene signatures for scRNAseq

| B-cell | Macrophage | Fibroblast | T-Cell | Tumor | NK Cell      | NK      | NK T-  | Other      | V-gene       |              |                 |
|--------|------------|------------|--------|-------|--------------|---------|--------|------------|--------------|--------------|-----------------|
|        | _          |            |        |       |              | Active  | cell   | T-cell     |              | -            |                 |
| CD79A  | CD14       | COL3A1     | TCF7   | MSLN  | SH2D1B       | PRF1    | CD3D   | SELL       | TRBV2        | TRBV12-<br>4 | TRAV8-3         |
| IGHM   | VSIG4      | COL4A1     | CD3G   | ANXA8 | TRDC         | KLRB1   | CD3E   | CCR7       | TRBV3-1      | TRBV14       | TRAV13-1        |
| CD79B  | C1QB       | COL4A2     | CD3D   | CALB2 | TYROBP       | TNFSF10 | CD2    | S1PR1      | TRBV4-1      | TRBV18       | TRAV12-2        |
| MS4A1  | C1QA       | COL4A5     | CD4    | INHBA | KLRD1        | CCL5    | CCL5   | SPOCK<br>2 | TRBV5-1      | TRBV19       | TRAV8-4         |
|        | APOE       | COL4A6     | CD28   | ITLN1 | TNFRSF1<br>8 | NKG7    | CST7   | GIMAP5     | TRBV6-1      | TRBV20-<br>1 | TRAV13-2        |
|        |            | COL5A1     | BCL11B | MGARP | NKG7         | KLRD1   | TRBC2  | GIMAP7     | TRBV4-2      | TRBV21-<br>1 | TRAV14DV4       |
|        |            | COL5A2     | CD8A   | HEG1  | KLRB1        | NCAM1   | CXCR4  | LTB        | TRBV6-2      | TRBV24-<br>1 | TRAV9-2         |
|        |            | COL6A1     | CD8B   |       | GNLY         | NCR1    | CD8A   | CXCR4      | TRBV7-2      | TRBV27       | TRAV12-3        |
|        |            | COL6A2     |        |       | IL2RB        | NCR2    | GZMK   | IL7R       | TRBV6-4      | TRBV28       | TRAV8-6         |
|        |            | COL8A1     |        |       | CTSW         | NCR3    | IL32   | YNE2       | TRBV7-3      | TRBV29-<br>1 | TRAV17          |
|        |            | COL12A1    |        |       | ALOX5AP      | FCER1G  | PLAAT4 | SARAF      | TRBV9        | TRBV30       | TRAV19          |
|        |            | COL17A1    |        |       | GZMB         | KIR2DL1 | GZMA   | IFITM1     | TRBV11-<br>2 | TRAV1-2      | TRAV21          |
|        |            | S100A16    |        |       |              | KIR2DL3 |        |            | TRBV6-5      | TRAV2        | TRAV22          |
|        |            | UGDH       |        |       |              | KIR2DL4 |        |            | TRBV7-4      | TRAV4        | TRAV23DV6       |
|        |            | LOXL1      |        |       |              | KLRC1   |        |            | TRBV5-4      | TRAV5        | TRAV24          |
|        |            | PCOLCE2    |        |       |              | KLRC4   |        |            | TRBV7-6      | TRAV6        | TRAV25          |
|        |            | ADAMTS2    |        |       |              | FCGR3A  |        |            | TRBV7-9      | TRAV8-1      | TRAV26-1        |
|        |            |            |        |       |              | KIR3DL1 |        |            | TRBV13       | TRAV10       | TRAV29DV5       |
|        |            |            |        |       |              | KIR3DL2 |        |            | TRBV10-<br>3 | TRAV12-<br>1 | TRAV26-2        |
|        |            |            |        |       |              |         |        |            | TRBV12-<br>3 | TRAV8-2      | TRAV35          |
|        |            |            |        |       |              |         |        |            |              |              | TRAV36DV7       |
|        |            |            |        |       |              |         |        |            |              |              | TRAV38-1        |
|        |            |            |        |       |              |         |        |            |              |              | TRAV38-<br>2DV8 |
|        |            |            |        |       |              |         |        |            |              |              | TRAV39          |
|        |            |            |        |       |              |         |        |            |              |              | TRAV41          |

## Supplementary Table S5: Expression changes with STING agonist treatment

| 40 Most Increased Genes with Treatment (10µM ADU-S100) |             |                |       |       |           |  |  |  |
|--------------------------------------------------------|-------------|----------------|-------|-------|-----------|--|--|--|
| Gene                                                   | p value     | avg log2FC     | pct.1 | pct.2 | p val adj |  |  |  |
| ISG15                                                  | 3.23E-39    | 5.19           | 1.00  | 0.71  | 7.54E-35  |  |  |  |
| IFI27                                                  | 4.01E-29    | 4.89           | 0.87  | 0.12  | 9.35E-25  |  |  |  |
| IFI6                                                   | 1.01E-38    | 4.76           | 1.00  | 0.57  | 2.35E-34  |  |  |  |
| RSAD2                                                  | 2.73E-37    | 4.43           | 0.97  | 0.02  | 6.37E-33  |  |  |  |
| IFIT3                                                  | 1.04E-36    | 4.01           | 0.98  | 0.56  | 2.43E-32  |  |  |  |
| IFIT2                                                  | 1.94E-30    | 3.99           | 0.92  | 0.39  | 4.53E-26  |  |  |  |
| IFIT1                                                  | 1.83E-36    | 3.89           | 0.97  | 0.26  | 4.28E-32  |  |  |  |
| ISG20                                                  | 4.04E-36    | 3.89           | 0.98  | 0.72  | 9.43E-32  |  |  |  |
| IL32                                                   | 1.86E-23    | 3.43           | 0.82  | 0.23  | 4.34E-19  |  |  |  |
| IFITM1                                                 | 3.04E-23    | 3.42           | 0.85  | 0.33  | 7.10E-19  |  |  |  |
| OAS1                                                   | 4.07E-38    | 3.40           | 0.99  | 0.13  | 9.51E-34  |  |  |  |
| WARS                                                   | 1.33E-27    | 3.24           | 0.94  | 0.80  | 3.11E-23  |  |  |  |
| LY6E                                                   | 1.61E-38    | 3.24           | 1.00  | 0.95  | 3.77E-34  |  |  |  |
| CXCL10                                                 | 2.50E-10    | 3.10           | 0.43  | 0.00  | 5.83E-06  |  |  |  |
| C15orf48                                               | 1.18E-25    | 3.02           | 0.91  | 0.54  | 2.76E-21  |  |  |  |
| OASL                                                   | 9.30E-35    | 3.01           | 0.94  | 0.05  | 2.17E-30  |  |  |  |
| TFPI2                                                  | 5.10E-12    | 2.88           | 0.60  | 0.16  | 1.19E-07  |  |  |  |
| BST2                                                   | 1.38E-16    | 2.86           | 0.61  | 0.02  | 3.22E-12  |  |  |  |
| MX1                                                    | 5.77E-36    | 2.84           | 0.96  | 0.10  | 1.35E-31  |  |  |  |
| LAP3                                                   | 1.26E-33    | 2.78           | 0.97  | 0.90  | 2.94F-29  |  |  |  |
| IFI35                                                  | 6.12E-34    | 2.69           | 0.97  | 0.84  | 1.43E-29  |  |  |  |
| PLSCR1                                                 | 1.58E-35    | 2.64           | 0.97  | 0.75  | 3.69E-31  |  |  |  |
| SAA1                                                   | 7.21E-12    | 2.46           | 0.63  | 0.15  | 1.68E-07  |  |  |  |
| CXCL11                                                 | 4.41E-12    | 2.45           | 0.48  | 0.00  | 1.03E-07  |  |  |  |
| IRF7                                                   | 5.88E-36    | 2.44           | 0.98  | 0.82  | 1.37E-31  |  |  |  |
| PLAAT4                                                 | 2.08E-25    | 2.38           | 0.90  | 0.49  | 4.86E-21  |  |  |  |
| IFI30                                                  | 3.79E-21    | 2.24           | 0.75  | 0.15  | 8.85E-17  |  |  |  |
| IL1B                                                   | 2.62E-07    | 2.23           | 0.55  | 0.30  | 0.0061082 |  |  |  |
| IL1RN                                                  | 1.12E-15    | 2.21           | 0.74  | 0.28  | 2.62E-11  |  |  |  |
| CXCL1                                                  | 3.53E-08    | 2.20           | 0.61  | 0.30  | 0.0008241 |  |  |  |
| CMPK2                                                  | 1.25E-31    | 2.19           | 0.89  | 0.03  | 2.91E-27  |  |  |  |
| CCL5                                                   | 1.26E-06    | 2.10           | 0.29  | 0.00  | 0.0294404 |  |  |  |
| HLA-B                                                  | 1.84E-36    | 2.09           | 1.00  | 1.00  | 4.29E-32  |  |  |  |
| STAT1                                                  | 8.11E-32    | 2.09           | 0.94  | 0.57  | 1.89E-27  |  |  |  |
| HLA-C                                                  | 1.34E-36    | 2.08           | 1.00  | 1.00  | 3.12E-32  |  |  |  |
| HES4                                                   | 2.74E-25    | 2.07           | 0.91  | 0.56  | 6.40E-21  |  |  |  |
| WFDC2                                                  | 3.52E-07    | 2.06           | 0.73  | 0.62  | 0.0082103 |  |  |  |
| TNFSF13B                                               | 5.30E-23    | 2.03           | 0.77  | 0.08  | 1.24E-18  |  |  |  |
| OAS3                                                   | 9.16E-33    | 2.02           | 0.93  | 0.28  | 2.14E-28  |  |  |  |
| MDK                                                    | 3.49E-16    | 2.01           | 0.72  | 0.28  | 8.15E-12  |  |  |  |
|                                                        |             | 141 <b>T</b>   |       |       |           |  |  |  |
| 20 MOSt Dec                                            | creased Gen | es with Treatm |       | mat 0 |           |  |  |  |
| Gene                                                   |             |                |       |       |           |  |  |  |
|                                                        | 4.05E-28    | -2.38          | 0.57  | 0.98  | 1.09E-23  |  |  |  |
| SERPINB3                                               | 2.15E-28    | -2.15          | 0.52  | 0.98  | 5.02E-24  |  |  |  |
| KKI19                                                  | 1.5/E-1/    | -1.01          | 0.83  | 1.00  | 3.002-13  |  |  |  |
| SERPINB/                                               | 1.885-19    | -1./3          | 0.58  | 0.95  | 4.40E-15  |  |  |  |
|                                                        | 3.002-23    | -1.3/          | 0.79  | 1.00  | 0.002-19  |  |  |  |
| ANGPIL4                                                | 9.132-13    | -1.48          | 0.33  | 0.72  | 2.13E-U8  |  |  |  |
| 196664                                                 | ວ.ວ໐⊏-  ໒   | -I.4Z          | 0.75  | 0.97  | I.30⊑-0ŏ  |  |  |  |

| GPI      | 4.12E-23 | -1.27 | 0.71 | 0.98 | 9.62E-19 |
|----------|----------|-------|------|------|----------|
| SERPINB4 | 2.22E-17 | -1.25 | 0.46 | 0.90 | 5.19E-13 |
| CEMIP    | 1.11E-33 | -1.20 | 0.14 | 0.71 | 2.59E-29 |
| LDHA     | 5.51E-25 | -1.16 | 0.98 | 1.00 | 1.29E-20 |
| PABPC1   | 8.78E-22 | -1.11 | 0.95 | 1.00 | 2.05E-17 |
| TPI1     | 5.70E-21 | -1.11 | 0.96 | 1.00 | 1.33E-16 |
| RPSA     | 1.71E-27 | -1.10 | 0.97 | 1.00 | 4.00E-23 |
| RPS29    | 1.97E-31 | -1.10 | 0.89 | 1.00 | 4.61E-27 |
| RPL41    | 1.57E-31 | -1.09 | 0.95 | 1.00 | 3.66E-27 |
| NDRG1    | 6.92E-13 | -1.07 | 0.48 | 0.90 | 1.62E-08 |
| ID1      | 1.11E-13 | -1.07 | 0.29 | 0.72 | 2.60E-09 |
| PGK1     | 2.74E-22 | -1.04 | 0.92 | 1.00 | 6.39E-18 |
| TUBA1A   | 6.65E-22 | -1.02 | 0.23 | 0.75 | 1.55E-17 |

#### Supplementary Figure S1: Flow cytometry dot plots and gating strategy



**A**, Gating strategy and example for viable CD45+ cells. **B**, Gating hierarchy for T cell lineage and phenotypic marker. **C**, Myeloid cell gating hierarchy. **D**, Gating for NK lineage and Tregs.

### Supplementary Figure S2: MSLN CAR Construct Design and Map



NK-cell isolation and transduction with anti-mesothelin (MSLN) CAR construct (see methods for details).





**A**, STING IHC in thoracic cancers and adjacent normal tissues quantified using QuPath software. Source of tissue indicated by color of dot (primary tumor, LN=lymph node, distant metastasis). MPM = malignant pleural mesothelioma; SCLC = small-cell lung carcinoma; NSCLC = non-small cell lung carcinoma. Kruskal Wallis p<0.0001 with Dunn's multiple comparisons test: \*\*\*\*p<0.0001. **B**, STING IHC in normal pleura (n=9 total samples with similar appearance). Scale bar = 100  $\mu$ m. **C**, Phospho-IRF3 (pIRF3) IHC optimization in H226 MPM cells after 24-hour treatment with 50  $\mu$ M ADU-S100. pIRF3 IHC in MPM tumor specimens (n=31 total samples stained). Scale bars = 100  $\mu$ m. **D** and **E**, Flow cytometry from freshly resected MPM specimens with number of samples specified either in the graph title or in parentheses on the x axis label. Flow cytometry antibody details provided in **Supplementary Table S3**. mMDSC = monocytic myeloid-derived suppressor cells; gMDSC = granulocytic myeloid-derived suppressor cells.

#### Supplementary Figure S4: STING expression and activation in MPM cell lines



**A**, ELISA for CXCL10 after 24-hour treatment with 50  $\mu$ M ADU-S100 or dH20 control in MPM cell lines. Western blot for STING and beta-actin load control using untreated lysates from each cell line. Publicly available characteristics for each cell line shown in the table below. **B**, mRNA expression data from the Cancer Cell Line Encyclopedia (CCLE) database comparing expression in malignant pleural mesothelioma (MPM), small-cell lung carcinoma (SCLC) and non-small cell lung carcinoma cell lines. Kruskal Wallis p<0.0001 for STING and IFIT1, p<0.01 for CXCL10 with Dunn's multiple comparisons tests as shown: \*p<0.05, \*\*p<0.01, \*\*\*\*p<0.001, \*\*\*\*p<0.0001. **C**, 2'3' cGAMP ELISA from MPM cell lines at 24 and 48-hours of culture with poly (dG:dC) treatment used as positive control (1  $\mu$ g). **D**, Western blot for STING, phospho-TBK1 (pTBK1), TBK1, and beta-actin load control in MPM cell lines treated for 6 hours with the indicated doses of ADU-S100 in duplicate. **E**, Western blot for STING pathway components and beta-actin load control in MPM cell lines. **F**, CellTiter-Glo viability assay in MPM cell lines treated with 50  $\mu$ M ADU-S100 or dH20 control for the indicated number of hours. T-test: \*p<0.05, \*\*\*p<0.001.



**A**, Hoechst/propidium iodide cell area and percent live/dead quantification from case #33 after 6-day treatment with 50  $\mu$ M ADU-S100 (ADU) or dH20 and 100ng/mL IFNb controls. T-test vs. dH20 control: \*p<0.05. MSD cytokine array performed on conditioned media from samples in the previous panel. ELISA for CXCL10 performed on conditioned media from tumor explants (S1 fragment) of case #35 with exceptional live/dead response. Three-day treatment with ADU-S100 or IFNb positive control. T-test vs. dH20 control: \*\*\*\*p<0.0001. **B**, CXCL10 ELISA from MPM explants treated for 3 days (S1) or PDOTS treated for 6 days (S2) with 50  $\mu$ M ADU-S100 (ADU) or dH20 control. Estimation plot for CXCL10 from MSD cytokine panel performed on 10 MPM PDOTS after 3 days of explant (S1) treatment with 50  $\mu$ M ADU-S100 or dH20 control. Live/dead response from IF stain designated by pink dot color. **C**, Summary of MPM PDOTS cell death after 6-day treatment with 50  $\mu$ M ADU-S100 or dH20 control, plotted from left to right with increasing cell death in the control condition. R = response to treatment with cell death >20% above control, T-test p<0.05; # = less cell death with ADU-S100 treatment, p<0.05. E = epithelioid MPM, B = biphasic MPM, Y/N = yes/no neoadjuvant treatment. F = female, M = Male gender. W = white/Caucasian, O = other race. U = unknown demographic.



**A**, Correlation between CD8 flow cytometry (S3, n = 11) or CD8 immunofluorescence (S2, n = 12) at the time of sample collection for MPM PDOTS and subsequent live/dead response (6 days 50  $\mu$ M ADU-S100 treatment cell death minus control cell death). CD8 cell count per PDOTS well/chamber. Linear regression analysis shown. Hoechst/propidium iodide cell area for sample #34 after 6 days of treatment with 50  $\mu$ M ADU-S100 or dH20 control and CD8 neutralizing antibody ( $\alpha$ CD8). T-test vs. dH20 control: \*\*\*p<0.001. **B**, Characterization of sample #26 where scRNA sequencing was performed. Hoechst/propidium iodide cell area and percent live/dead quantification after 6-day treatment with ADU-S100 +/- anti-CD8 neutralizing antibody, dH20 control or 100ng/mL IFNb. T-test vs. dH20 control. CXCL10 ELISA from S1 explant conditioned media after 18 hours of treatment with 10 or 50  $\mu$ M ADU-S100 or 100ng/mL IFNb. T-test vs. dH20 control: \*p<0.05, \*\*p<0.01, \*\*\*p<0.001. **C**, Flow cytometry from S3 of sample #26. **D**, MPM immune flow cytometry profiling example comparing different sample fractions. **E**, IRF3 immunofluorescence in PDOTS #34 after 3-hours of treatment with 50  $\mu$ M ADU-S100 or dH20 control. Scale bar = 20  $\mu$ m.

# Supplementary Figure S7: scRNA seq demonstrates STING activation in tumor cells and fibroblasts



**A**, Heat maps for cluster-defining genes. **B**, Violin plots for immune cell and fibroblast signatures in addition to mesothelin (MSLN), CD8, combined granzyme + perforin (GZM + PRF1), IFIT1, IL33 and CXCR3 ligands (CXCL9/10/11) shown by cluster. **C**, Volcano plot of differentially expressed genes after 24 hours of treatment with 10  $\mu$ M ADU-S100 or dH20 control. **D**, UMAP plots for specified transcripts and signatures focused on effector cell cluster 2.



**A**, Combined UMAP plot from broad clustering of scRNA sequencing of MPM specimen #26 after 24 hours of treatment with dH20 control, 10  $\mu$ M and 50  $\mu$ M ADU-S100, with the contribution of each treatment shown together and separately. **B**, Violin plots for select NK cell activating/inhibitory transcripts from combined broad clustering split by treatment condition/dose of ADU-S100. **C**, Fraction bar graph showing expression of Treg transcripts in cluster 2 for each treatment, normalized to number of cells per sample.



**A**, CD3/CD56 flow cytometry after 3- or 1-day treatment with 50  $\mu$ M ADU-S100, 100ng/mL IFNb, or dH20 control S1 explants from samples #12 and #17. **B**, CellTiter-Glo viability in primary T-cells, BCMA CAR T-cells, and batch 2 primary NK cells treated for 24-hours with 10 or 50  $\mu$ M ADU-S100 or dH20 control in the presence of 200 U/mL IL-2. T-test vs. dH20 control: \*\*p<0.01, \*\*\*\*p<0.0001. **C**, CD4/CD8 flow cytometry after 72-hour treatment with 50  $\mu$ M ADU-S100, 10  $\mu$ M TAK-676, or dH20 control in batch 3 TILs compared with flow for CD56 in batch 2 NK cells expanded from PBMCs +/- 200 U/mL IL-2. T-test vs. control: \*p<0.05, \*\*p<0.01, \*\*\*\*p<0.001. **D**, Time course of toxicity for CD4+ T-cells from batch 1 TILs co-cultured with batch 2 NK cells. T-test vs. control at that timepoint: \*p<0.05, \*\*p<0.01. Dose-dependent toxicity for CD4/CD8 T-cells from TILs. One-way ANOVA p<0.01 with corrected pairwise comparisons: \*p<0.05, \*\*p<0.01. **E**, Mean fluorescence intensity (MFI) plots from flow cytometry for autophagolysosome vacuoles after 24-hour treatment with 10  $\mu$ M chloroquine (CLQ) followed by 24-hour treatment with CLQ +/- 50  $\mu$ M ADU-S100 (ADU) in batch 6 NK cells or

batch 2 TILs. T-test: \*p<0.05. **F**, Western blot for STING, phospho-TBK1 (pTBK1), TBK1 and beta-actin load control after 6-hour treatment with 50  $\mu$ M ADU-S100 or dH20 control in batch 2 TILs compared with batch 3 NK cells in triplicate and batch 5 NK cells in duplicate. **G**, Western blot from batch 6 NK cells treated for 6 hours with 50  $\mu$ M ADU-S100 or dH20 and 10  $\mu$ M chloroquine or DMSO control in duplicate.



**A**, Hoechst/propidium iodide cell area quantification and live/dead immunofluorescence from sample #36 after 6-day treatment with 50  $\mu$ M ADU-S100 (ADU) or dH20 +/- untransduced primary NK cells (cNK) from three donors. T-test: \*p<0.05. Baseline immune flow cytometry from S3. Scale bars = 50  $\mu$ m. **B**, IF and Hoechst/propidium iodide live/dead quantification from S2 for sample #8 after 6-day treatment with 50  $\mu$ M ADU-S100 (ADU) or dH20 +/- untransduced primary NK cells (cNK) or anti-mesothelin (MSLN) CAR-NK cells, 100ng/mL IFNb control. Scale bars = 20  $\mu$ m. T-test vs. dH20 control: \*p<0.05, \*\*p<0.01. Baseline immune flow cytometry from S2 for sample #32 after 6- or 10-day treatment with 50  $\mu$ M ADU-S100 (ADU) or dH20 +/- untransduced primary NK cells (cNK) or anti-mesothelin (MSLN) CAR-NK cells, 100ng/mL IFNb control. Scale bars = 20  $\mu$ m. T-test vs. dH20 control: \*p<0.05, \*\*p<0.01. Baseline immune flow cytometry from S3. **C**, IF and live/dead cell area quantification from S2 for sample #32 after 6- or 10-day treatment with 50  $\mu$ M ADU-S100 (ADU) or dH20 +/- untransduced primary NK cells (cNK) or anti-mesothelin (MSLN) CAR-NK cells. Scale bars for Hoechst, Calcein, propidium iodide, CD45 = 20  $\mu$ m. Live/dead scale bars = 50  $\mu$ m. T-test vs. dH20 control: \*p<0.05. Baseline immune flow cytometry from S3.



**A**, CXCL10 ELISA on conditioned media from STING high and low MPM cell lines seeded in collagen in AIM chips and treated for 24-72 hours with 50  $\mu$ M ADU-S100 or dH20 control in the media side channels. T-test: \*p<0.05, \*\*p<0.01, \*\*\*\*p<0.0001. **B**, Granzyme B ELISA after 24 hours of treatment with 50  $\mu$ M ADU-S100 or dH20 control in primary NK cells -/+ target cell lines. One-sample t-test with expected percent control of 100: \*p<0.05. **C**, Flow cytometry for annexin V and live/dead with H2591 MPM cells in co-culture with NK cells. Quantification for three NK cell donors across E:T ratios, graphed as percent target cell death. T-test: \*p<0.05, \*\*p<0.01. **D**, Representative IF images of primary NK cells labeled with cell tracker migrating toward H2591 MPM cells after 4-day treatment with 50  $\mu$ M ADU-S100 or dH20 control. Scale bar = 200  $\mu$ m. Quantification of NK cell migration from experimental triplicate. One-way ANOVA p<0.05 with corrected pairwise comparisons: \*p<0.05. **E**, Representative IF images of NK cell migration towards H226 MPM tumor cells after 4-day treatment with 50  $\mu$ M ADU-S100 y( $\alpha$ CXCR3). Scale bar = 150  $\mu$ m. **F**, Schematic and IF for 3D migration assay with vessel co-culture and representative IF images of NK cell migration towards H226 MPM tumor cells after 24-hour treatment with 50  $\mu$ M ADU-S100, 1  $\mu$ M TAK-676, or dH20 control. Scale bar = 150  $\mu$ m.



**A**, Flow cytometry for annexin V and live/dead of H2591 MPM cells in co-culture with control NK (cNK) or MSLN CAR-NK cells (E:T 5:1) following 6-hour treatment with 50 μM ADU-S100 or dH20 control. **B**, Quantification of two NK cell donors targeting two additional STING-expressing MPM cell lines (H226, MS428), graphed as percent change with ADU-S100 vs. dH20 control treatment. One-sample t-test with expected difference of zero: \*p<0.05, \*\*p<0.01. Quantification of three NK cell donors with cNK and MSLN CAR NK targeting STING-negative H2461, graphed as percent change with ADU-S100 vs. dH20 vs. dH20 control treatment. MSLN flow cytometry in MPM cell lines.