

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Long-term and serious harms of medical cannabis and cannabinoids for chronic pain: A systematic review of nonrandomized studies

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-054282
Article Type:	Original research
Date Submitted by the Author:	09-Jun-2021
Complete List of Authors:	Zeraatkar, Dena; McMaster University, Health Research Methods, Evidence, and Impact; Harvard Medical School, Department of Biomedical Informatics Cooper, Matthew; McMaster University, Michael G. Degroote School of Medicine Agarwal, Arnav; University of Toronto, Department of Medicine Vernooij, Robin; Netherlands Comprehensive Cancer Organization Leung, Gareth; University of Cambridge, Department of Public Health and Primary Care Loniewski, Kevin; York University, Faculty of Health Dookie, Jared E ; Western University, Schulich School of Medicine and Dentistry Ahmed, Muhammad Muneeb; McMaster University, Michael G. Degroote School of Medicine Hong, Brian Y; University of Toronto, Division of Plastic and Reconstructive Surgery Hong, Christopher; University of Toronto, Department of Anesthesiology and Pain Medicine Couban, Rachel; McMaster University, Michael G. DeGroote Institute for Pain Research and Care Agoritsas, Thomas; McMaster University, Department of Clinical Epidemiology and Biostatistics; University Hospitals of Geneva, Division of General Internal Medicine & Division of Epidemiology Busse, Jason; McMaster University, Anesthesia
Keywords:	Pain management < ANAESTHETICS, PAIN MANAGEMENT, PRIMARY CARE

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1		
2		
3	1	Long-term and serious harms of medical cannabis and cannabinoids for chronic pain: A
4	T	Long-term and serious names of medical cannabis and cannabinoids for chronic pain. A
5	2	systematic review and meta-analysis of non-randomized studies
6	2	systematic review and meta analysis of non-randomized statics
7		
8	3	
9	0	
10		
11	4	Dena Zeraatkar, methodologist
	5	Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON
12	6	Department of Biomedical Informatics, Harvard Medical School, Boston, MA
13	7	Matthew Adam Cooper, medical student
14	8	Michael G. Degroote School of Medicine
15	9	McMaster University, Hamilton, ON
16	10	Arnav Agarwal, resident physician
17	11	Department of Medicine
18	12	University of Toronto, Toronto, ON
19	13	Robin W. M. Vernooij, <i>methodologist</i>
20	14	Netherlands Comprehensive Cancer Organization (IKNL)
21	15	Utrecht, the Netherlands
22	16	Gareth Leung, methodologist
23	17	Department of Public Health and Primary Care,
24	18	University of Cambridge, Cambridge, UK
25		
26	19	Kevin Loniewski, nursing student
27	20 21	Faculty of Health, Seneca College, King City, ON.
28		York University, Toronto, ON
29	22	Jared E. Dookie, medical student
30	23	Schulich School of Medicine and Dentistry
31	24	Western University, London, ON
32	25	Muhammad Muneeb Ahmed, medical student
33	26	Michael G. Degroote School of Medicine
34	27	McMaster University, Hamilton, ON
35	28	Brian Younho Hong, resident physician
36	29	Division of Plastic and Reconstructive Surgery
	30	University of Toronto, Toronto, ON
37	31	Chris J. Hong, resident physician
38	32	Department of Otolaryngology-Head & Neck Surgery
39	33	Department of Otolaryngology-Head & Neck Surgery University of Toronto, Toronto, ON Patrick Jiho Hong, resident physician Department of Anesthesiology and Pain Medicine University of Toronto, Toronto, ON
40	34	Patrick Jiho Hong, <i>resident physician</i>
41	35	Department of Anesthesiology and Pain Medicine
42	36	University of Toronto, Toronto, ON
43	37	Rachel Couban, <i>medical librarian</i>
44	38	Department of Anesthesia
45	39	Department of Health Research Methods, Evidence, and Impact
46	40	McMaster University, Hamilton, ON
47	41	Thomas Agoritsas, assistant professor
48	42	Department Medicine, University Hospitals of Geneva, Geneva, Switzerland
49	43	Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON
50	44	Jason W. Busse, associate professor*
51	45	Department of Anesthesia
52	46	Department of Health Research Methods, Evidence, and Impact
53	47	McMaster University, Hamilton, ON
54	48	bussejw@mcmaster.ca
55	49	
56		
57		
58		
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 3 of 121

BMJ Open

1		
2 3	50	*Corresponding author
4		
5 6	51	Running head: Harms of medical cannabis
7 8	52	Abbreviations: Cochrane Central Register of Controlled Trials (CENTRAL), Palmitoylethanolamide (PEA),
9	53	tetrahydrocannabinol (THC)
10 11	54	Keywords: Medical cannabis, chronic pain, adverse events, harms, non-randomized studies,
12	55	observational, systematic review, met <u>a</u> -analysis
13 14	56	Disclaimers: None.
15 16	57	Funding: DZ is supported by a Banting Postdoctoral Fellowship.
17	58	Ethics approval: The systematic review is exempt from ethics approval.
18 19	59	Data: Data will be made available upon publication: https://osf.io/ut36z/
20 21	60	Acknowledgements: We thank the members of the Rapid Recommendations panel for critical feedback
22	61	on the selection of the adverse events of interest. We thank James MacKillop, PhD, for his help with the
23 24	62	interpretation of problematic cannabis use, abuse, dependance and withdrawal syndrome within studies.
25	63	Authors' Contributions: JWB and TA conceived the idea. RC designed and conducted the search. DZ, MAC,
26 27	64	AA, GL, KL, JD, BYH, CH, and PJH screened search records, extracted data, and assessed the risk of bias of
28 29	65	the eligible studies. DZ conducted analyses. DZ, JWB, and TA interpreted the data. DZ wrote the first draft
30	66	of the manuscript. JWB and TA critically revised the manuscript. All authors reviewed and approved the
31 32	67	final version. DZ and JWB are the guarantors.
33 34	68	
35	69	* I, the Submitting Author, have the right to grant and does grant on behalf of all authors of the Work (as
36 37	70	defined in the author licence), an exclusive licence and/or a non-exclusive licence for contributions from
38 39	71	authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii)
40	72	in accordance with the terms applicable for US Federal Government officers or employees acting as part
41 42	73	of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group
43 44	74	Ltd ("BMJ") its licensees.
45	75	
46 47	76	Word count: 5,170
48		
49 50		
51 52		
53		
54 55		
56		

77 Abstract

Objective: To establish the risk and prevalence of long-term and serious harms of medical cannabis and
 cannabinoids for chronic pain.

Design: Systematic review and meta-analysis.

Data sources: MEDLINE, EMBASE, PsycInfo, and the Cochrane Central Register of Controlled Trials
(CENTRAL) from inception to April 1, 2020.

Study selection: Non-randomized studies reporting on harms of medical cannabis or cannabinoids in
adults or children living with chronic pain with ≥4 weeks of follow-up.

Data extraction and synthesis: A parallel guideline panel provided input on the design and interpretation
 of the systematic review, including selection of adverse events for consideration. Two reviewers, working
 independently and in duplicate, screened the search results, extracted data, and assessed risk of bias. We
 used random-effects models for all meta-analyses and the GRADE approach to evaluate the certainty of
 evidence.

Results: We identified 39 eligible studies that enrolled 12,143 adult patients with chronic pain. Very low certainty evidence suggests that adverse events are common (prevalence: 26.0%; 95% CI 13.2 to 41.2) among users of medical cannabis or cannabinoids for chronic pain, particularly any psychiatric adverse events (prevalence: 13.5%; 95% Cl 2.6 to 30.6). Very low certainty evidence, however, indicates serious adverse events, adverse events leading to discontinuation, cognitive adverse events, accidents and injuries, and dependence and withdrawal syndrome are uncommon and each typically occur in fewer than one in 20 patients. We compared studies with <24 weeks and ≥24 weeks of cannabis use and found more adverse events reported among studies with longer follow-up (test for interaction p < 0.01). Palmitoylethanolamide was usually associated with few to no adverse events. We found insufficient evidence addressing the harms of medical cannabis compared to other pain management options, such as opioids.

Conclusions: There is very low certainty evidence that adverse events are common among people living
 with chronic pain who use medical cannabis or cannabinoids, but that few patients experience serious
 adverse events. Future research should compare long-term and serious harms of medical cannabis with
 other management options for chronic pain, including opioids.

1		
2 3	105	Systematic review registration https://osf.io/25bxf
4 5		
6		
7 8		
9		
10		
11 12		
13		
14 15		
16		
17 18		
19		
20 21		
21		
23		
24 25		
26		
27 28		
29		
30 31		
32		
33 34		
35		
36 37		
38		
39 40		
41		
42 43		
44		
45 46		
47		
48 49		
50		
51 52		
53		
54 55		
56		
57 58		
58 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1

2 3 4	106	What is already known on this topic
5 6	107	• Medical cannabis and cannabinoids are increasingly used for the management of chronic pain.
7 8	108	• Clinicians and patients considering medical cannabis or cannabinoids as a treatment option for
9	109	chronic pain require evidence on benefits and harms, including long-term and serious adverse
10 11	110	events to make informed decisions.
12 13 14 15	111	What this study adds
16	112	• Very low certainty evidence suggests that adverse events are common among people living with
17 18	113	chronic pain who use medical cannabis or cannabinoids, including psychiatric adverse events,
19 20	114	though serious adverse events, adverse events leading to discontinuation, cognitive adverse
21 22	115	events, accidents and injuries, and dependence and withdrawal syndrome are uncommon.
23 24	116	• There is insufficient evidence comparing the harms of medical cannabis or cannabinoids to other
25	117	pain management options, such as opioids.
26 27	118	
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52	119	pain management options, soch as options.
53 54 55 56 57 58		5
59		

BMJ Open

Background

Chronic pain is the primary cause of health care resource use and disability among working adults in North America and Western Europe¹² The use of cannabis for the management of chronic pain is becoming increasingly common due to pressure to reduce opioid use, increased availability and changing legislation, shift in public attitudes and decreased stigma, and aggressive marketing.^{3 4} The two most-studied cannabinoids in medical cannabis are delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD).⁵ THC binds to cannabinoid receptors type 1 and 2, is an analog to the endogenous cannabinoid, anandamide, and has shown psychoactive, analgesic, anti-inflammatory, antioxidant, antipruritic, anti-spasmodic, and muscle-relaxant activities. CBD directly interacts with various ion channels to produce analgesic, anti-inflammatory, anti-convulsant and anxiolytic activities, without the psychoactive effect of THC.⁵ Use of cannabis for therapeutic purposes, however, remains contentious due to the social and legal context and its known and suspected harms.⁶⁻⁹

Though common adverse events caused by medical cannabis, including nausea, vomiting, headache, drowsiness, and dizziness, have been well documented in randomized controlled trials and reviews of randomized controlled trials,^{10 11} less is known about potentially uncommon but serious adverse events, particularly events that may occur with longer durations of medical cannabis use, such as dependence, withdrawal symptoms, and psychosis.⁴ ¹²⁻¹⁷ Such adverse events are usually observed in large non-randomized studies that recruit larger numbers of patients and typically follow them for longer durations of time. Further, evidence from non-randomized studies may be more generalizable, since randomized controlled trials typically use strict eligibility criteria. There have been no reviews of systematic reviews and existing systematic reviews have not consistently meta-analyzed the risks or prevalence of adverse events from non-randomized studies nor have they addressed adverse events that may be particularly important to patients such as serious and potentially fatal adverse events.

The objective of this systematic review and meta-analysis is to summarize the evidence on the risks and, when evidence on risk is not available, the prevalence of adverse events related to medical cannabis and cannabinoids from non-randomized studies for a new BMJ Rapid Recommendation guideline addressing medical cannabis for chronic pain.¹⁸ This evidence synthesis is part of the BMJ Rapid Recommendations project, a collaborative effort from the MAGIC Evidence Ecosystem Foundation (www.magicevidence.org) and the BMJ.¹⁹ A guideline panel helped define the study question and selected adverse events for review. The adverse events of interest include psychiatric and cognitive adverse events, injuries and accidents,

and dependence and withdrawal. It is one of four systematic reviews that together informed a parallel

151 guideline.^{11 18 20 21} A parallel systematic review addressed evidence from randomized trials.¹¹

153 Methods

We report our systematic review in accordance with the PRISMA Harms Checklist.²² We registered the protocol for our review at OSF (<u>https://osf.io/25bxf</u>) and followed this protocol unless otherwise reported in this manuscript.²²

157 Guideline panel involvement

A guideline panel helped define the study question and selected the adverse events for review. The panel included nine content experts (two general internists, two family physicians, a pediatrician, a physiatrist, a pediatric anesthesiologist, a clinical pharmacologist, and a rheumatologist), nine methodologists (five of whom are also front-line clinicians), and three people living with chronic pain (one of whom used cannabinoids for medical purposes).

Patient and public involvement

Three patient partners were included as part of the guideline panel and contributed to the selection and
prioritization of outcomes, protocol, and interpretation of review findings, and provided insight on values
and preferences.

Search

A medical librarian searched MEDLINE, EMBASE, PsychInfo, and Cochrane Central Register of Controlled Trials (CENTRAL) from inception to April 1, 2020, with no restrictions on language, for non-randomized studies reporting on harms or adverse events of medical cannabis or cannabinoids for chronic pain (Appendix 1). We scanned reference lists of relevant reviews to identify any eligible studies not retrieved by our electronic search and solicited content experts from our panel for unpublished studies. Search records, and later full-texts of studies, not reported in English were translated by a native speaker of the language.

Study selection

Reviewers (DZ, MAC, AA, RWMV, GL, KL, JED, MMA, BYH, CJH, PJH), working independently and in duplicate, reviewed titles and abstracts of search records and subsequently full texts of records found potentially eligible at the title and abstract screening stage. Reviewers resolved disagreements by discussion or by adjudication by a third reviewer (DZ).

We included all non-randomized studies that reported on any patient-important harm or adverse event associated with the use of any formulation of medical cannabis or cannabinoids in adults or children, living with chronic pain (pain lasting for \geq 3 months) or a medical condition associated with chronic pain (i.e., fibromyalgia, arthritis, multiple sclerosis, neuropathy, inflammatory bowel disease, stroke, or advanced cancer) or that compared adverse events associated with medical cannabis or cannabinoids with another pharmacologic or non-pharmacologic intervention. We considered herbal cannabis consumed for medical reasons as medical cannabis. Based on input from the guideline panel, we excluded studies in which patients used cannabis for less than 4 weeks because we anticipated that four weeks would be the minimum amount of time after which we would reasonably expect to observe potential serious or long term harms associated with medical cannabis.²³ We looked for explicit statements or evidence that patients were experiencing chronic pain. We excluded studies in which: (1) fewer than 25 patients used medical cannabis or cannabinoids (to exclude studies that would not appreciably contribute to pooled estimates and studies that may be too small to reliably estimate the prevalence of adverse events), (2) patients did not suffer from chronic pain or a condition that commonly causes chronic pain or more than 20% of patients reported using medical cannabis or cannabinoids for a condition other than chronic pain (to exclude studies in which patients did not predominantly suffer from chronic pain), (3) patients were using medical cannabis for recreational reasons, (4) only surrogate measures of patient-important harms and adverse effects (e.g., performance on cognitive tests, lab values) were reported, and (5) systematic reviews and other types of studies that did not describe primary data. We also excluded studies that reported on the same data for the same participants.

Data extraction and risk of bias

Reviewers (DZ, MAC, AA, RWMV, GL, KL, JED, MMA, BYH, CJH, PJH), working independently and in duplicate and using a standardized and pilot-tested data collection form, extracted the following information from each eligible study: (1) study design, (2) patient characteristics (age, sex, condition/diagnosis), (3) characteristics of medical cannabis or cannabinoids (name of product, dose, and

duration), and (4) number of patients that experienced adverse events, including all adverse events, serious adverse events, and withdrawal due to adverse events. Reviewers resolved disagreements by discussion or by adjudication with a third party (DZ). We classified adverse events as serious based on the classification used in primary studies. For comparative studies, we collected results from models adjusted for confounders, when reported, and unadjusted models when results for adjusted models were not reported.

When studies reported the number of events rather than the number of patients experiencing adverse events, we only extracted the number of events if they were infrequent (the number of events accounted for less than 10% of the total number of study participants). For studies that reported on adverse events at multiple timepoints, we extracted data for the longest point of follow-up that included, at minimum, 80% of the patients recruited into the study. Reviewers resolved disagreements by discussion or by adjudication with a third reviewer (DZ).

Reviewers (DZ, MAC, AA, RWMV, GL, KL, JED, MMA, BYH, CJH, PJH), working independently and in duplicate, used the Cochrane-endorsed ROBINS-I tool to rate the risk of bias of studies as low, moderate, serious, or critical across seven domains: (1) bias due to confounding, (2) selection of patients into the study, (3) classification of the intervention, (4) bias due to deviations from the intended intervention, (5) missing data, (6) measurement of outcomes, and (7) selection of reported results.²⁴ Reviewers resolved discrepancies by discussion or by adjudication by a third party (DZ). Appendix 2 presents additional details on the assessment of risk of bias. Studies were considered to adequately adjust for confounders if they adjusted, at minimum, for pain intensity, concomitant pain medication, disability status, alcohol use, past cannabis use. Studies were rated at low risk of bias overall when all domains were at low risk of bias; moderate risk of bias if all domains were rated at low or moderate risk of bias; at serious risk of bias when all domains were rated either at low, moderate, or serious risk of bias; and at critical risk of bias when one or more domains were rated as critical.

Data synthesis

In this review, we synthesized data on serious adverse events and adverse events that may emerge with longer duration of medical cannabis use for which data is typically not reported in randomized trials. Identified by a parallel BMJ Rapid Recommendations guideline panel as important, these patient-important outcomes included psychiatric and cognitive adverse events, injuries and accidents, and dependence and withdrawal. Data on all other adverse events reported in primary studies are available

in an open-access database (https://osf.io/ut36z/). We classified adverse events as serious based on the
classification used in primary studies.

Adverse events are reported as binary outcomes. For comparative studies, when possible, we present risk differences and associated 95% confidence intervals (95% CIs). Since there were only two eligible comparative studies, each with different comparators, we did not perform meta-analysis. For single-arm studies, we pooled the proportion of patients experiencing adverse events of interest by first applying a Freeman-Tukey type arcsine square root transformation to stabilize the variance. Without this transformation, very high or very low prevalence estimates can produce confidence intervals that contain values lower than 0% or higher than 100%. All meta-analyses used DerSimonian-Laird random-effects models, which are conservative as they consider both within- and between-study variability.²⁵⁻²⁷ We evaluated heterogeneity for all pooled estimates through visual inspection of forest plots and calculation of tau-squared (τ^2), because some statistical tests of heterogeneity (I² and Cochrane's Q) can be misleading when sample sizes are large and CIs are therefore narrow.²⁸ Higher values of τ^2 , I², and Cochrane's Q indicate higher statistical heterogeneity. For studies that reported estimates for all-cause adverse events and those deemed to be potentially related to cannabis use, we preferentially synthesized results for all adverse events.

² 251 For analyses for which we observed high clinical heterogeneity (i.e., substantial differences in the ³ 252 estimates of individual studies and minimal overlap in the confidence intervals), we presented results ⁵ 253 narratively.

In consultation with the parallel BMJ Rapid Recommendations guideline panel, we also prespecified six subgroup hypotheses to explain heterogeneity between studies: (1) study design (longitudinal vs. cross-sectional), (2) type of medical cannabis, (3) cancer vs. non-cancer pain, (4) children vs. adults, (5) duration of medical cannabis use (shorter or longer than the median duration of follow-up across studies), and (6) risk of bias (low/moderate vs. serious/critical). We also performed two post-hoc subgroup analyses: (1) duration of follow-up (shorter or longer than the median duration of follow-up across studies) and (2) selection bias (studies at moderate, serious, or critical risk of selection bias vs. studies at low risk of selection bias). We anticipated that studies reporting on shorter use of medical cannabis, as well as cross-sectional studies, studies on cancer patients, studies including adults, studies with active comparators, studies at high risk of bias would report fewer adverse events. We anticipated that studies at moderate, serious, or critical risk of selection bias that included prevalent cannabis users (i.e., people who were using

265 medical cannabis before the inception of the study) or were preceded by a run-in period or clinical trial 266 during which patients that experienced adverse events or found medical cannabis intolerable could 267 discontinue would report fewer adverse events because prevalent of medical cannabis are likely to 268 represent populations that have self-selected for tolerance to cannabis. We performed tests for 269 interaction to establish whether subgroups differed significantly from one another. We assessed the 270 credibility of significant subgroup effects (test for interaction p < .05) using published criteria.^{29 30}

We performed all analyses using the 'meta' package in R (version 3.5.1, R Foundation for Statistical
Computing).³¹

273 Certainty of evidence

We used the GRADE approach to rate the certainty of evidence.^{32 33} Based on GRADE guidance for using the ROBINS-I tool, evidence starts at high certainty and is downgraded by one level when the majority of the evidence comes from studies at moderate risk of bias, two levels when the majority of the evidence comes from studies at high risk of bias, and three levels when the majority of the evidence comes from studies rated at critical risk of bias.³² We additionally considered potential limitations due to indirectness if the population, intervention, or adverse events assessed in studies did not reflect the populations, interventions, or adverse events of interest, inconsistency if there was important unexplained differences in the results of studies, and imprecision if the upper and lower bounds of confidence intervals indicated appreciably different rates of adverse events. For assessing inconsistency and imprecision for the outcome all adverse events, based on feedback from the guideline panel, we deemed a 20% difference in the prevalence of all adverse evidence to be patient-important; a 10% difference for adverse events leading to discontinuation, serious adverse events, and psychiatric, cognitive, withdrawal and dependence, injuries; and a 3% difference for potentially fatal adverse events, such as suicides and motor vehicle accidents. We followed GRADE guidance for communicating our findings.³⁴ Guideline panel members interpreted the magnitude of adverse events and decided whether the observed prevalence of adverse events was sufficient to affect patients' decisions to use medical cannabis or cannabinoids for chronic pain.

Results

291 Study selection

Our search yielded 17,178 unique records of which 434 were reviewed in full. We excluded more than
half of references because they did not describe a non-randomized study, a quarter because they did not

Page 13 of 121

1

BMJ Open

2	
3	
4	
5	
3 4 5 6 7 8	
7	
/	
8	
9	
9 10	
11	
11	
12	
13	
14	
15	
16	
10	
17	
18	
12 13 14 15 16 17 18 19	
20	
20	
 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 	
22	
23	
24	
25	
25	
26	
27	
28	
29	
30	
20	
31	
32	
33	
34	
25	
33 34 35 36 37	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
.17	

60

include patients with chronic pain, and a small minority because they did not report on adverse events.
 Of these records, 39 non-randomized studies were eligible for review (Appendix 3).³⁵⁻⁷³ Figure 1 presents
 additional details related to study selection. Appendix 4 presents studies excluded at the full-text
 screening stage and accompanying reasons for exclusion.

298 Description of studies

One study was published in German and the remainder in English. Studies included 12,143 adults living with chronic pain and included a median of 100 (IQR 34 to 361) participants (Table 1). Most studies (30/39; 76.9%) were longitudinal in design. Eighteen studies (46.2%) were conducted in Western Europe, fourteen (35.9%) in North America, six (15.4%) in Israel, and two (5.1%) in the United Kingdom. Ten studies (25.6%) were funded by industry alone or industry in combination with government and institutional funds; the remainder were funded either by governments, institutions, or not-for-profit organizations (n=9; 23.1%), did not receive funds (n=3; 7.7%), or did not report funding information (n=17; 43.6%).

306 Thirty studies (76.9%) reported on people living with chronic non-cancer pain, eight (n=20.5%) with mixed 307 cancer and non-cancer chronic pain, and one (2.6%) with chronic cancer pain. All studies reported on 308 adults. Sixteen studies reported on mixed types of herbal cannabis (e.g., buds for smoking, vaporizing, and 309 ingesting, hashish, oils, extracts, edibles), nine on palmitoylethanolamide (PEA), four each on nabiximols 310 and dronabinol, two on nabilone, one each on Trokie lozenges and extracts, and four did not report the 311 type of medical cannabis used. One study reported on three types of medical cannabis (dronabinol, 312 nabiximols, and mixed herbal) separately. The median duration of medical cannabis use was 24 weeks 313 (IQR 12.0 to 33.8 weeks). Two studies were comparative: one study compared nabilone with gabapentin and another compared herbal cannabis with standard care.^{39 48} Studies reported a total of 525 unique 314 315 adverse events.

316 Risk of bias

Appendix 5 presents the risk of bias of included studies. We rated all results at critical risk of bias except for the comparative results from two studies,^{39 48} which were rated at serious and moderate risk of bias. The primary limitation across studies was inadequate control for potential confounding either due to the absence of a control group or inadequate adjustment for confounders. A third of studies were rated at serious risk of bias for selection bias, primarily because they included prevalent users of medical cannabis. Such studies may underestimate the incidence of adverse events since patients that experience adverse

events are more likely to discontinue medical cannabis early. Such studies may also include adverse events
that may have been present at inception and that are unrelated to medical cannabis use.

325 All adverse events

Twenty longitudinal and two cross-sectional studies, including 4,108 patients, reported the number of patients experiencing one or more adverse events.^{36-43 46 47 54 56-60 62 64 65 69 70 73} Seven studies reported on PEA, five on mixed herbal cannabis, three each on nabilone and nabiximols, two on dronabinol, and one each on extracts and Trokie lozenges. The median duration of medical cannabis use was 24 weeks [IQR 12 to 32]. We observed substantial unexplained heterogeneity and so summarize the results descriptively (Appendices 6 to 9). The prevalence of any adverse event ranged between 0% to 92.1%. Studies with less than 24 weeks of cannabis use (the median duration of cannabis) typically reported fewer adverse events than those with more than 24 weeks. Patients using PEA experienced no adverse events. The evidence was overall very uncertain due to risk of bias and inconsistency.

26 335 One study suggested that nabilone may reduce the risk of adverse events compared to gabapentin (27 336 13.1%; 95% CI -26.2 to 0), but the certainty of evidence was very low due to risk of bias and imprecision
 29 337 (Table 2).

32 338 Adverse events leading to discontinuation

Twenty longitudinal studies, including 6,509 patients, reported on the number of patients that discontinued medical cannabis or cannabinoids due to adverse events.^{37 39 41-44 46-49 52 54 56 57 59 62 63 65 70 73} Eight studies reported on PEA, four studies on mixed herbal cannabis, three on nabiximols, two on nabilone, and one each on dronabinol and extracts, and one study did not report the type of medical cannabis used by patients. The median duration of cannabis use was 24 weeks [IQR 8.6 to 32]. We observed substantial unexplained heterogeneity and so summarize the results descriptively (Appendices 10 to 12). The prevalence of discontinuations due to adverse events ranged between 0% to 27.0%. Studies with less than 24 weeks of cannabis use typically reported fewer discontinuations than those with more than 24 weeks. Patients using PEA experienced no adverse events. The evidence was overall very uncertain due to risk of bias and inconsistency.

52 349 One study suggested herbal cannabis may increase the risk of adverse events leading to discontinuation 53 350 compared to standard care without cannabis (4.7%; 95% CI 1.8 to 7.5). Another study suggested that 55 351 nabilone may reduce the risk of adverse events leading to discontinuation compared to gabapentin (-

BMJ Open

2
3
4
5
6
7
, 8
-
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
51
52
53
54
55
56
57
58

59

60

9.4%; 95% CI -18.5 to -0.2). The certainty of evidence was low to very low due to risk of bias and
imprecision.

354 Serious adverse events

355 Twenty-two longitudinal and two cross-sectional studies, including 4,273 patients, reported on the number of patients experiencing one or more serious adverse events.^{35-37 39-43 46 48 49 52 54-60 62 65 70 71 73} Eight 356 357 studies reported on mixed herbal cannabis, eight on PEA, two each on nabilone and nabiximols each, and 358 one study each on dronabinol, extracts, and Trokie lozenges, and one study did not report the type of 359 cannabis used. The median duration of medical cannabis or cannabinoid use was 24 weeks (IQR 12 to 32), 360 and few patients experienced serious adverse events (1.2%; 95% Cl 0.1 to 3.1; l²=91%) (Figure 2) 361 (Appendices 13 to 15). There was a statistically significant subgroup effect across different types of 362 medical cannabis though serious adverse events appeared consistently uncommon among different types 363 (low credibility). The certainty of evidence was very low overall due to serious risk of bias.

364 One study suggested herbal cannabis increased the risk of serious adverse events compared to standard
 365 care without cannabis (1.5%; 95% CI -8.3 to 20.2). Another study found use of nabilone vs. gabapentin
 366 showed no difference in the risk of serious adverse events. The certainty of evidence was low to very low
 367 for both studies due to risk of bias and imprecision.

³ 368 *Psychiatric adverse events*

Eleven longitudinal and two cross-sectional studies, including 6,600 patients, reported on any psychiatric 369 370 adverse events, including psychiatric disorders, suicide, suicidal thoughts, depression, mania, hallucinations, delusions, paranoia, anxiety, and euphoria (Appendices 16 to 25).^{35-37 43 47 48 60 63 67 68 70} Five 371 372 studies reported on mixed herbal cannabis, four on nabiximols, one each on dronabinol, nabilone, and 373 mixed types and one study did not specify the type of medical cannabis. The median duration of cannabis 374 use across studies was 52 weeks (IQR 20 to 52). Approximately one in seven medical cannabis users 375 experienced one or more psychiatric disorders or adverse events (13.5%; 95% CI 2.6 to 30.6; I²=98%). The 376 most frequently occurring psychiatric adverse events were paranoia (5.6%; 9% Cl 0 to 19.2; l^2 =85%) and 377 anxiety (7.4%; 95% CI 0 to 26.9; I²=99%). The certainty of evidence was very low due to risk of bias, 378 inconsistency (for psychiatric disorders and paranoia), and imprecision (for psychiatric disorder, paranoia, 379 and anxiety).

380 One study suggested that herbal cannabis may result in a trivial to moderate increase in the risk for 381 psychiatric disorders, mania, hallucinations, depression, paranoia, anxiety, and euphoria and a reduction 382 in the risk for suicides and delusions, compared with standard care without cannabis, though the certainty 383 of evidence was low to very low due to risk of bias and imprecision.

1011384Cognitive and attentional adverse events

Eleven longitudinal studies, including 6,257 patients, reported on cognitive adverse events, including memory impairment, confusion, disorientation, and impaired attention (Appendices 26 to 29).35-37 43 47 48 ^{60 63 67 68 70} Five studies reported on herbal cannabis, three on nabiximols, three on mixed types of cannabis, and one each on dronabinol and nabilone. The median duration of cannabis use was 52 weeks (IQR 24 to 52). The prevalence of cognitive adverse events ranged from 1.6% (95% Cl 0.6 to 3.0; l^2 =88%) to 5.3% (95% Cl 2.1 to 9.6; l^2 =96%) for disorientation and memory impairment, respectively. The certainty of evidence was very low due to risk of bias.

392 One study suggests herbal cannabis may slightly increase the risk for memory impairment and
 393 disturbances in attention compared to standard care without cannabis, but reduce the risk for confusion,
 394 though the certainty of evidence was low to very low due to risk of bias and imprecision.

395 Accidents and injuries

One longitudinal study, including 431 patients, reported on accidents and injuries in patients using mixed
 herbal cannabis for 52 weeks (Appendices 30 & 31).⁴⁸ This study suggests herbal cannabis used for medical
 purposes may slightly increase the risk of motor vehicle accidents (0.5%; 95% CI -0.4 to 1.4) but may not
 increase the risk of falls (0%; 95% CI -2.8 to 2.9). The certainty of evidence was low due to risk of bias.

41 400 **Dependence and withdrawal**

Four longitudinal and one cross-sectional study, including 2,248 patients, reported on dependence-related adverse events, including dependence (one study reported on 'abuse' based on unspecified criteria, one study reported on 'problematic use' using the Alcohol Use Disorder and Associated Disabilities Interview Schedule–Diagnostic and Statistical Manual of Mental Disorders–Fourth Edition (AUDADIS-IV)⁷⁴, and one study reported on 'dependence' using the Alcohol, Smoking, and Substance Involvement Screening Test⁷⁵), withdrawal symptoms (defined as one or moderate or severe withdrawal symptoms including sleep difficulties, anxiety, irritability, and appetite disturbance), and withdrawal syndrome (two studies that used unspecified criteria) (Appendices 32 to 34).48 53 56 67 70 Two studies

Page 17 of 121

BMJ Open

reported on herbal cannabis, one each on nabiximols and nabilone, and one did not specify type of
medical cannabis used by patients. Follow-up ranged from 12 to 52 weeks. Though dependence and
withdrawal syndrome were uncommon with a prevalence of 4.4% (95% Cl 0.0 to 19.9; l²=99%) and 2.1%
(95% Cl 0 to 8.2; l²=89%), respectively, withdrawal symptoms were common (67.8%; 95% Cl 64.1 to 71.4).
The certainty of evidence was very low due to risk of bias, inconsistency, imprecision (for dependence),
and indirectness due to definitions of outcomes in studies were too vague to confidently distinguish
between dependence, addiction, withdrawal symptoms, and withdrawal syndrome.

416 One study suggested that herbal cannabis compared to standard care may slightly increase the risk of 417 withdrawal syndrome (0.5%; 95% CI -0.4 to 1.4) but the certainty of evidence was low due to risk of bias.

418 Discussion

419 Main findings

Our systematic review and meta-analysis provides evidence that adverse events are common among people living with chronic pain who use medical cannabis or cannabinoids, with approximately one in four experiencing at least one adverse event-though the certainty of evidence is very low and the true prevalence of adverse events may be substantially different. In contrast, serious adverse events, adverse events leading to discontinuation, cognitive adverse events, accidents and injuries, and dependence and withdrawal syndrome are uncommon. We compared studies with <24 weeks and \geq 24 weeks cannabis use and found more adverse events reported among studies with longer follow-up. This may be explained by increased tolerance (tachyphylaxis) with prolonged exposure, necessitating increases in dosage with consequent increased risk of harms. PEA, compared to other formulations of medical cannabis, may result in the fewest adverse events. Though adverse events appear to be common, few patients discontinued medical cannabis due to adverse events suggesting that most adverse events are transient and/or outweighed by perceived benefits.

Our review represents the most comprehensive review of evidence from non-randomized studies addressing adverse events of medical cannabis or cannabinoid use in people living with chronic pain. While several previous reviews have summarized the evidence on short-term and common adverse events of medical cannabis reported in randomized trials, such as oral discomfort, dizziness, and headaches, our review focuses on serious and rare adverse events—the choice of which was informed by a panel including patients, clinicians, and methodologists—and non-randomized studies, which can follow larger numbers of patients for longer periods of time and thus may detect adverse events that are infrequent or that are

associated with longer durations of cannabis use.^{10 76-80} A parallel systematic review of evidence from randomized controlled trials found no evidence to inform long-term harms of medical cannabis as no eligible trial followed patients for more than 5.5 months.¹¹ One previously published review that included non-randomized studies searched the literature until 2007, included studies exploring medical cannabis for any indication (excluding synthetic cannabinoids) of which only two enrolled people living with chronic pain.¹² The review also did not synthesize adverse event data from non-randomized studies.¹² Unlike previous reviews, we focused exclusively on medical cannabis for chronic pain and excluded recreational cannabis, because cannabis used for recreational purposes often contains higher concentrations of tetrahydrocannabinol (THC) than medical cannabis. We also focused on chronic pain because this patient population may be susceptible to different adverse events. Depression and anxiety, for example, are commonly occurring comorbidities of chronic pain, which may be exacerbated by cannabis.¹⁵⁻¹⁷

450 Strengths and limitations

451 Strengths of this systematic review and meta-analysis include a comprehensive search for non-452 randomized studies, explicit eligibility criteria, screening of studies and collection of data in duplicate to 453 increase reliability, and use of the GRADE approach to evaluate the certainty of evidence.

Our review is limited by the non-comparative design of most studies, which precludes confident inferences regarding the proportion of adverse events that can be attributed to medical cannabis or cannabinoids and the magnitude by which medical cannabis may increase or decrease the risk of adverse events compared to other pain management options. Though adverse events appear common among medical cannabis users, it is possible that other management options for chronic pain, particularly opioids, may be associated with more (and more severe) adverse events.⁸¹ Partly due to the non-comparative design of most studies, nearly all results included in our review were at serious or critical risk of bias for confounding and Simpson's paradox,⁸² either due to the absence of a control group or due to insufficient adjustment for important confounders. Further, a third of studies were at high risk of selection bias, primarily because they included prevalent cannabis users. In such studies, the prevalence of adverse events may be underestimated. Our review provides limited evidence on the harms of medical cannabis beyond one year of use since most studies reported adverse events for less than one year of follow-up.

466 We observed some inconsistency for many adverse events of interest and substantial inconsistency for all
 467 adverse events and adverse events leading to discontinuation. We downgraded the certainty of evidence
 468 when we observed important inconsistency and we did not present estimates from meta-analyses for all

BMJ Open

2
3
-
4
5
6
7
<i>'</i>
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
20 29
70
2)
30
30
30 31
30 31 32
30 31 32 33
30 31 32 33
30 31 32 33 34
30 31 32 33 34 35
30 31 32 33 34 35 36
30 31 32 33 34 35
30 31 32 33 34 35 36 37
30 31 32 33 34 35 36 37 38
30 31 32 33 34 35 36 37 38 39
30 31 32 33 34 35 36 37 38 39 40
30 31 32 33 34 35 36 37 38 39
30 31 32 33 34 35 36 37 38 39 40 41
30 31 32 33 34 35 36 37 38 39 40 41 42
 30 31 32 33 34 35 36 37 38 39 40 41 42 43
30 31 32 33 34 35 36 37 38 39 40 41 42
 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
30 31 32 33 34 35 36 37 38 40 41 42 43 44 45 46 47 48 49 50 51
30 31 32 33 34 35 36 37 38 40 41 42 43 44 45 46 47 48 49 50 51
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 90 50 51 52
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 50 51 52 53
30 31 32 33 34 35 36 37 38 40 41 42 43 44 45 46 47 48 90 51 52 53
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 50 51 52 53
30 31 32 33 34 35 36 37 38 40 41 42 43 44 45 46 47 48 50 51 52 53 54
30 31 32 33 34 35 36 37 38 40 41 42 43 44 45 46 47 48 90 51 52 53

58

59

60

adverse events and adverse events leading to discontinuation due to substantial inconsistency. Further,some analyses included too few studies or participants, due to which estimates were imprecise.

471 Sixteen of 39 studies reported on herbal medical cannabis, some of which were consumed by smoking or
472 vaporizing, and may be associated with different adverse events (e.g. respiratory) than other formulations
473 of medical cannabis. We attempted to perform subgroup analyses based on the type of medical cannabis.
474 Results for subgroups, however, lacked credibility due to inconsistency and/or imprecision.

475 Clinicians and patients may be more inclined to use medical cannabis or cannabinoids for pain relief if 476 adverse events are mild; however, the evidence on whether adverse events are transient, life threatening, 477 or the extent to which they impact quality of life is limited. While more than half of studies reported on 478 the proportion of adverse events that were serious, criteria for ascertaining severity were rarely reported. 479 None of the included studies reported the duration for which patients experienced adverse events. 480 Further, most primary studies did not report adequate details on methods for the ascertainment of 481 adverse events, including definitions or diagnostic criteria. The two studies that reported on withdrawal 482 syndrome, for example, did not provide diagnostic criteria.^{48 56} However, the DSM-5 requires ≥3 of 7 483 withdrawal symptoms to be present within a week of stopping cannabis use to meet a diagnosis of cannabis withdrawal syndrome.⁸³ It is therefore reasonable that people living with chronic pain that use 484 485 medical cannabis would be more likely to experience withdrawal symptoms vs. withdrawal syndrome.

486 While children and youth account for approximately 15% of all chronic pain patients, we did not identify any evidence addressing the harms of medical cannabis in this population.⁸⁴ As such, the extent to which 487 488 our findings are generalizable to pediatric populations is uncertain. Although there is evidence that 489 cannabis use during youth is associated with increased risk of acute psychotic disorders, particularly acute 490 psychosis,⁸⁵ such studies have explored use of recreational cannabis that contains greater amounts of THC 491 than is typically seen in medical preparations. Further, the population of patients with chronic pain on 492 which the studies report may not be representative of all patients with chronic pain—particularly rare 493 conditions that cause chronic pain.

⁹ 494 We used the DerSimonian and Laird method for meta-analysis.²⁶ A growing body of evidence, however,
 495 suggests that this model has important limitations that may be addressed by alternative models⁸⁶—
 496 though there is limited evidence on the performance of these models for meta-analyses of proportions
 497 and prevalence.

Finally, we excluded studies from meta-analyses when they did not explicitly report the adverse events of interest to our panel members. This may have overestimated the prevalence of adverse events if the adverse events of interest were not observed in the studies in which they were not reported. This was, however, not possible to confirm because methods for the collection and reporting of adverse event data across studies were variable (e.g., active monitoring vs. passive surveillance; collecting data on specific adverse events vs. all adverse events) and poorly described in study reports.

Implications

505 Our systematic review and meta-analysis shows that evidence regarding long-term and serious harms of 506 medical cannabis or cannabinoids is insufficient—an issue with important implications for patients and 507 clinicians considering this management option for chronic pain. While the evidence suggests that adverse 508 events are common in patients using medical cannabis for chronic pain, serious adverse events appear 509 uncommon, which suggests that the potential benefits of medical cannabis or cannabinoids (although 510 very modest) may outweigh potential harms for some patients.^{11 18}

Clinicians and patients considering medical cannabis should be aware that more adverse events were reported among studies with longer follow-up, necessitating long term follow-up of patients and reevaluation of pain treatment options. Our findings also have implications for the choice of medical cannabis. We found PEA, for example, to consistently be associated with few or no adverse events across studies, though the evidence on the efficacy of PEA is limited.¹¹

We found very limited evidence comparing medical cannabis or cannabinoids with other pain management options. Other pharmacological treatments for chronic pain, such as gabapentinoids, antidepressants, and opioids, may be associated with more (and more serious) adverse events.⁸⁷⁻⁸⁹ To guide patients' and clinicians' decisions on medical cannabis for chronic pain, future research should compare the harms of medical cannabis and cannabinoids with other pain management options, including opioids, ideally beyond one year of use, and adjust results for confounders. Comparative studies may be synthesized by way of network meta-analysis, which would allow indirect comparisons across formulations of medical cannabis. Future research could also explore whether the harms of medical cannabis vary depending on the type of chronic pain.

525 Our review highlights the need for standardization of reporting of adverse events in non-randomized 526 studies since such studies represent a critical source of data on long-term and infrequently occurring

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 20
20
21
22
23
24
25
26
27
28
29
30
31
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

56 57 58

59

60

harms. To enhance the interpretability of adverse event data, future studies should also report the
duration and severity of adverse events, since these factors are important to patients' decisions.

529 A valuable output of our systematic review is an open-source database of over 500 unique adverse events 530 reported to date in non-randomized studies of medical cannabis or cannabinoids for chronic pain with 531 corresponding assessments of risk of bias. This database was compiled in duplicate by trained and 532 calibrated data extractors and is freely available to those interested in further analyzing the prevalence of 533 different types of adverse events or to those interested in expanding the database to include adverse 534 events in patients using medical cannabis or cannabinoids for other indications.

535 Conclusion

536 Our systematic review and meta-analysis found very low certainty evidence that suggests that adverse 537 events are common among people living with chronic pain using medical cannabis or cannabinoids, but 538 that serious adverse events, adverse events causing discontinuation, cognitive adverse events, motor 539 vehicle accidents, falls, and dependence and withdrawal syndrome are uncommon. We also found very 540 low certainty evidence that longer duration of use was associated more adverse events and that PEA, 541 compared with other types of medical cannabis, may result in few or no adverse events. Future research should compare the risks of adverse events of medical cannabis and cannabinoids with alternative pain 542 543 management options, including opioids, and adjust for potential confounders.

Tables

Table 1: Study characteristics

9	Table 1: Study cha	racteristics						
10 11 12	Study	Design	Country	Condition	Cannabis/ comparator	Dose	# of participants	Duration of cannabis use (weeks)
13 14 15 16	Ware, 2003 ³⁵	cross-sectional*	Canada	mixed non-cancer pain	mixed herbal	frequency: rarely (n=9), weekly (n=8), daily (n=5), >once daily (n=7) dose: 1-2 puffs (n=4), 3-4 puffs (n=13), whole joint (n=8), more than one joint (n=4)	32	NR
17 18	Lynch, 2006 ³⁶	longitudinal*	Canada	mixed non-cancer pain	mixed herbal	mean: 2.5 g/day	30	mean: 94.4
19	Rog, 2007 ³⁷	longitudinal*	UK	multiple sclerosis	nabiximols	mean: 7.5 sprays/day	63	66.1
20	Weber, 2009 38	longitudinal*†	Germany	mixed non-cancer pain	dronabinol	median: 7.5 mg/day	172	mean: 31
21 22	Bestard, 2011 ³⁹	longitudinal*	Canada	peripheral neuropathic pain	nabilone	mean: 3.0 mg/day	104	24
22					gabapentin	mean: 2.3 g/day	107	
24 25 26	Fiz, 2011 40	cross-sectional*	Spain	fibromyalgia	mixed herbal	~1 to 2 cigarettes or spoonful daily (n=12) once every 2 to 4 days (n=5), less than twice a week (n=3), or occasionally (n=8)	28	<52 (n=11), 52 to 156 (n=9), >156 weeks (n=8)
27 28	Dominguez, 2012 ⁴¹	longitudinal*	Spain	lumbosciatica	PEA	300 mg bid	64	4
28 29	Gatti, 2012 42	longitudinal++	Italy	mixed cancer and non-cancer pain	PEA	600 mg bid three weeks; 600 mg/day for four weeks	564	7
30 31	Toth, 2012 ⁴³	longitudinal*†	Canada	diabetic peripheral neuropathy	nabilone	mean: 2.85 mg/day	37	4
32	Schifilliti, 2014 44	longitudinal++	Italy	diabetic neuropathy	PEA	300 mg bid	30	8.6
33 34 35	Storr, 2014 45	cross-sectional*	Canada	Crohn's disease (n=42), ulcerative colitis (n=10), indeterminate colitis (n=4)	mixed herbal	NR	56	<4 (n=3), 4 to 24 (n=9), 24 to 52 (n=5), >52 (n=32)
36	Del Giorno, 2015 46	longitudinal++	Italy	fibromyalgia	PEA	600 mg bid first month; 300 mg bid in the next 2 months	35	12
37 38 39	Hoggart, 2015 47	longitudinal††	UK, Czech Republic, Romania, Belgium, Canada	diabetic neuropathy	nabiximols	median: 6 to 8 sprays/day	380	median: 35.6
40	Ware, 2015 48	longitudinal*†	Canada	mixed non-cancer pain	mixed herbal	median: 2.5 g/day	215	52
41								

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 23 of 121

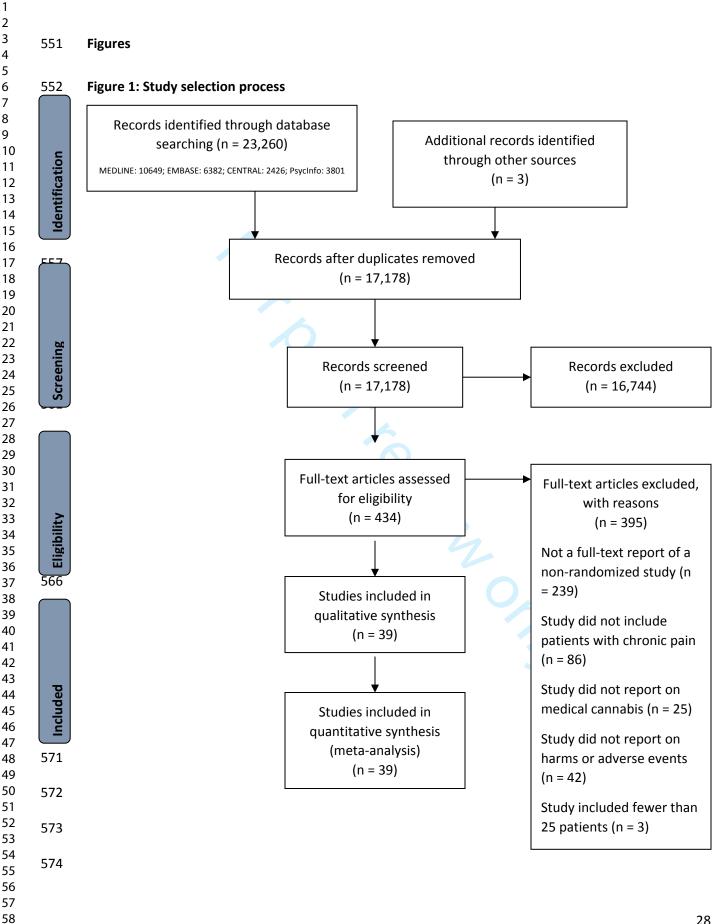
 BMJ Open

				standard care		216	
Haroutounian, 20	016 49 longitudinal*	Israel	mixed cancer and non-cancer pain	mixed herbal	mean: 43.2 g/month	206	30
	longitudinal*				Capsule: 10 mg /8 to 10 hours		
Bellnier, 2017)	50	US	mixed cancer and non-cancer pain	mixed herbal	Vapor pen inhaler for breakthrough pain: 2 mg THC, 0.1 mg CBD; 1 to 5 puffs every 15 minutes until pain relief; could be used every 4 to 6 hours	29	12
Cranford, 2017		US	mixed non-cancer pain	NR	0 (n=69), <1/8 oz/week (n=130), 1/8 to 1/4 oz/week (n=156), 1/4 to 1/2 oz/week (n=179), 1/2 to 1 oz/week (n=122), 1 or more oz/week (n=115)	775	NR
Fanelli, 2017 ⁵	s2 longitudinal ⁺⁺	Italy	mixed cancer and non-cancer pain	mixed herbal	mean: 69.5 mg/day bediol; 67.0 mg/day bedrocan	341	mean: 14.01
Feingold, 2017	53 cross-sectional*	Israel	mixed cancer and non-cancer pain	mixed herbal	NR	406	NR
Paladini, 2017	54 longitudinal††	Italy	failed back surgery syndrome	PEA	600 mg bid for one month; 600 mg/day for one month	35	8
Passavanti, 201	7 55 longitudinal++	Italy	lower back pain	PEA	600 mg bid	30	24
Schimrigk, 2017	7 ⁵⁶ longitudinal*†	Germany, Austria	multiple sclerosis	dronabinol	range: 7.5 to 15 mg/day	209	32
Chirchiglia, 2018	8 57 longitudinal++	Italy	lower back pain	PEA	1.2 g/day	100	4
Crowley, 2018	58 longitudinal*	US	mixed non-cancer pain	Trokie lozenges	NR	35	4 to 60
Habib, 2018 5	Iongitudinal*	Israel	fibromyalgia	mixed herbal	mean: 26 g/month	26	mean: 41.6
Anderson, 2019	9 ∞ longitudinal*	US	cancer pain	mixed herbal	NR	1120	16
Bonar, 2019 ⁶	cross- sectional††	US	mixed non-cancer pain	NR	0 (n=95), <1/8 oz/week (n=126), 1/8 to 1/4 oz/week (n=158), 1/4 to 1/2 oz/week (n=174), 1/2 to 1 oz/week (n=119), 1 or more oz/week (n=119)	790	NR
Cervigni, 2019	62 longitudinal†	Italy	interstitial cystitis/bladder pain syndrome	PEA	400 mg m-PEA plus 40 mg polydatin bid for 3 months, od for 3 months	32	24
Cremer-Schaeffer, 63	, 2019 longitudinal ⁺⁺	Germany	mixed cancer and non-cancer pain	dronabinol	NR	2017	52
63				mixed herbal	NR	656	
				nabiximols	NR	393	
Lejczak, 2019	64 longitudinal†	France	mixed cancer and non-cancer pain	dronabinol	range: 2.5 to 30 mg/day	148	range: 4 to 24 weeks
Loi, 2019 ⁶⁵	longitudinal*	Italy	endometriosis	PEA	600 mg/bid for 10 days; 400 mg m-PEA plus 40 mg polydatin bid	28	12.9
)							

Page 24 of 121

BMJ Open

Naftali, 2019 66	longitudinal*	Israel	inflammatory bowel disease	mixed herbal	mean: 31 g/month mean: 21 g/day THC; 170 g/day CBD	127	median: 176
Perron, 2019 67	cross-sectional*	US	mixed non-cancer pain	NR	daily (n=580), weekly (n=85)	618	≥12
Sagy, 2019 ⁶⁸	longitudinal ⁺⁺	Israel	mixed cancer and non-cancer pain	mixed herbal	median: 1000 mg/day cannabis median: 140 mg/day THC; 39 mg/day CBD	239	24
Sinclair, 2019 ⁶⁹	cross-sectional*	Australia	endometriosis	mixed herbal	less than once per week (n=12), once per week (n=6), two to six times per week (n=9), daily or multiple times per day (n=21)	48	NR
Ueberall, 2019 ⁷⁰	longitudinal*	Germany	low back pain (n=234), failed back surgery syndrome (n=148), shoulder/neck pain (n=91), post-herpetic neuralgia (n=72), peripheral diabetic neuropathy (n=56), brachial plexus injury (n=48), lumbar spinal stenosis (n=38), cancer (n=31), fibromyalgia (n=26), peripheral/focal nerve lesions (n=22), phantom pain (n=19), osteoarthritis (n=15)	nabiximols	mean: 7.1 sprays/day	800	12
Vigil, 2017 71	longitudinal*	US	mixed non-cancer pain	NR	NR	37	mean: 82.4
Yassin, 2019 72	longitudinal++	Israel	fibromyalgia	mixed herbal	20 to 30 g/month	31	24
Giorgi, 2020 73	longitudinal++	Italy	fibromyalgia	extracts	10 to 30 drops/day; no more than 120 drops/day	102	24
NR=not reported *Patient-report †Clinician-report ††NR					0,		
546							
547							
548							
		For peer	r review only - http://bmjop	en.bmj.com/site	e/about/guidelines.xhtml		23


59

Studies participants up (weeks) % (95% CI) (*) All adverse events Image: Comparison of the prevalence of adverse events ranged between 0% to 92.1%. Studies with less than 24 weeks, of cannabis use typically reported fewer adverse events than those events. The evidence was overall very uncertain due to risk of bias and inconsistency. very low risk of bias (3 levels), incor Adverse events causing discontinuation 20 6,509 4 to 66 The prevalence of discontinuations due to adverse events ranged between 0% to 70.0%. very low risk of bias (3 levels), incor Serious adverse events causing discontinuations 20 6,509 4 to 66 The prevalence of discontinuations due to adverse events ranged between 0% to 70.0%. very low risk of bias (3 levels), incor Serious adverse events discontinuations 20 6,509 4 to 66 The prevalence of discontinuations due to adverse events repically reported fewer discontinuations than those events. The evidence was overall very uncertain due to risk of bias (3 levels), incor discontinuations Serious disordin 24 4,273 4 to 94 1.2 (0.1 to 3.1) 0.11 very low risk of bias (3 levels), incor imprecision Sudderse events between 0% to 7.0%. 1.3 5 (5.6 to 3.0,6) 0.0436 very low risk of bias (3 levels), incor i				Duration				
All adverse events 22 4,108 4 to 94 The prevalence of adverse events than 124 weeks of cannabis ture typically reported fewer adverse events than 124 weeks. ture typically reported fewer adverse events than 124 weeks. ture typically reported fewer adverse events. The evidence was overall very uncertain due to risk of bias and inconsistency. very low risk of bias (3 levels), incore adverse events. The evidence was overall very uncertain due to risk of bias and inconsistency. Adverse events 20 6,509 4 to 64 135 (2,6 to anabis use typically reported fewer discontinuations than those weeks. Studies with less than 24 weeks. Studies with using PEA experience of adverse events inge PEA experience of adverse events than 24 weeks. Studies with more than 24 weeks. Studies with sing PEA experience of 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	Outcome	of		follow- up			Certainty	Reasons for downgradir
Adverse events causing discontinuation206,5094 to 66discontinuation adverse events ranged between 0% to 27.0%. Studies with less than 24 weeks of cannabis use Pytically reported fewer discontinuations than those with more than 24 weeks. Patients using PEA experienced no adverse events. The evidence was overall very uncertain due to risk of bias (3 levels), incorrvery lowrisk of bias (3 levels), incorrSerious adverse events244.2734 to 941.2 (0.1 to 3.1)91 (0.01273)very lowrisk of bias (3 levels)Psychiatric disorder41.2 to 6613.5 (2.6 to 30.6)98 (0.0436)very lowrisk of bias (3 levels)Psychiatric disorder41.2 to 6613.5 (2.6 to 30.6)98 (0.0436)very lowrisk of bias (3 levels), incorr imprecisionSuicidal thoughts13.066520.1 (0 to 0.5)44 (0.0003)very lowrisk of bias (3 levels)Depression64.14412 to 661.7 (0.9 to 2.7)71 (0.0012)very lowrisk of bias (3 levels)Mania12.15520.5 (0 to 2)NAvery lowrisk of bias (3 levels)Mania12.15520.5 (0 to 2)NAvery lowrisk of bias (3 levels)Hallucinations63.5832.4 to 660.5 (0.1 to 1.3)69 (0.0012)very lowrisk of bias (3 levels)Delusions43.20752 to 94; sectional52 (0.026)0 (0)very lowrisk of bias (3 levels)		22	4,108		events ranged b to 92.1%. Studie than 24 weeks o use typically repu- adverse events with more than Patients usi experienced no events. The evid overall very unc to risk of bi	etween 0% as with less of cannabis orted fewer than those 24 weeks. ng PEA o adverse dence was ertain due as and	very low	risk of bias (3 levels), inconsistency
adverse events244,2734 to 941.2 (0.1 to 3.1) (0.01273)very lowrisk of bias (3 levels)Psychiatric adverse eventsPsychiatric adverse events12 to 6613.5 (2.6 to 30.6) (0.0436)98 (0.0436)very lowrisk of bias (3 levels), incor imprecisionSuicide1215520 (0 to 0.8)NAvery lowrisk of bias (3 levels)Suicidal thoughts13,066520.1 (0 to 0.5)44 (0.0003)very lowrisk of bias (3 levels)Depression64,14412 to 661.7 (0.9 to 2.7)71 (0.0011)very lowrisk of bias (3 levels)Mania1215520.5 (0 to 2.7)71 (0.0011)very lowrisk of bias (3 levels)Hallucinations63,58324 to 660.5 (0.1 to 1.3)69 (0.0012)very lowrisk of bias (3 levels)Delusions43,281520.4 (0.2 to 0.6)0 (0)very lowrisk of bias (3 levels)Paranoia3277 52 to 94; one cross- sectional study5.6 (0 to 19.2)85 (0.0266)very lowrisk of bias (3 levels), incor imprecision	causing discontinuation	20	6,509	4 to 66	discontinuatio adverse event between 0% t Studies with let weeks of can typically repor discontinuations with more than Patients usi experienced ne events. The evin overall very unc to risk of bi	ns due to s ranged o 27.0%. ss than 24 habis use ted fewer than those 24 weeks. ng PEA o adverse dence was ertain due as and ency.	very low	risk of bias (3 levels), inconsistency
Psychiatric disorder41,45812 to 6613.5 (2.6 to 30.6)98 (0.0436)very lowrisk of bias (3 levels), incor imprecisionSuicide1215520 (0 to 0.8)NAvery lowrisk of bias (3 levels)Suicidal thoughts13,066520.1 (0 to 0.5)44 (0.0003)very lowrisk of bias (3 levels)Depression64,14412 to 661.7 (0.9 to 2.7)71 (0.0011)very lowrisk of bias (3 levels)Mania1215520.5 (0 to 2)NAvery lowrisk of bias (3 levels)Hallucinations63,58324 to 660.5 (0.1 to 1.3)69 (0.0012)very lowrisk of bias (3 levels)Delusions43,281520.4 (0.2 to 0.6)0 (0)very lowrisk of bias (3 levels)Paranoia3277 $\frac{52 to 94;}{one cross-sectional study}$ 5.6 (0 to 19.2) $\frac{85}{(0.0266)}$ very lowrisk of bias (3 levels), incor imprecision		24	4,273	4 to 94	1.2 (0.1 to 3.1)		very low	risk of bias (3 levels)
disorder41,45812 to 6630.6)(0.0436)Very lowimprecisionSuicide1215520 (0 to 0.8)NAvery lowrisk of bias (3 levels)Suicidal thoughts13,066520.1 (0 to 0.5)44 (0.0003)very lowrisk of bias (3 levels)Depression64,14412 to 661.7 (0.9 to 2.7)71 (0.0011)very lowrisk of bias (3 levels)Mania1215520.5 (0 to 2)NAvery lowrisk of bias (3 levels)Hallucinations63,58324 to 660.5 (0.1 to 1.3)69 (0.0012)very lowrisk of bias (3 levels)Delusions43,281520.4 (0.2 to 0.6)0 (0)very lowrisk of bias (3 levels)Paranoia3277 52 to 94; one cross- sectional study5.6 (0 to 19.2) 85 (0.0266)very lowrisk of bias (3 levels), incor imprecision	Psychiatric adver	se events						
Suicidal thoughts13,06652 $0.1 (0 \text{ to } 0.5)$ $\frac{44}{(0.0003)}$ very lowrisk of bias (3 levels)Depression64,14412 to 66 $1.7 (0.9 \text{ to } 2.7)$ $71 \\ (0.0011)$ very lowrisk of bias (3 levels)Mania121552 $0.5 (0 \text{ to } 2)$ NAvery lowrisk of bias (3 levels)Hallucinations63,58324 to 66 $0.5 (0.1 \text{ to } 1.3)$ $69 \\ (0.0012)$ very lowrisk of bias (3 levels)Delusions43,28152 $0.4 (0.2 \text{ to } 0.6)$ $0 (0)$ very lowrisk of bias (3 levels)Paranoia3277 $52 \text{ to } 94;$ one cross- sectional study $5.6 (0 \text{ to } 19.2)$ $85 \\ (0.0266)$ very lowrisk of bias (3 levels), incore	,	4	1,458	12 to 66	•		very low	risk of bias (3 levels), inconsistency, imprecision
thoughts13,06652 $0.1 (0 \text{ to } 0.5)$ (0.0003)very lowrisk of bias (3 levels)Depression64,14412 to 66 $1.7 (0.9 \text{ to } 2.7)$ $71 \\ (0.0011)$ very lowrisk of bias (3 levels)Mania121552 $0.5 (0 \text{ to } 2)$ NAvery lowrisk of bias (3 levels)Hallucinations63,58324 to 66 $0.5 (0.1 \text{ to } 1.3)$ $69 \\ (0.0012)$ very lowrisk of bias (3 levels)Delusions43,28152 $0.4 (0.2 \text{ to } 0.6)$ $0 (0)$ very lowrisk of bias (3 levels)Paranoia3277 $52 \text{ to } 94;$ one cross- sectional study $5.6 (0 \text{ to } 19.2)$ $85 \\ (0.0266)$ very lowrisk of bias (3 levels), incor imprecision	Suicide	1	215	52	0 (0 to 0.8)	NA	very low	risk of bias (3 levels)
Depression64,14412 to 661.7 (0.9 to 2.7) $71 \\ (0.0011)$ very lowrisk of bias (3 levels)Mania1215520.5 (0 to 2)NAvery lowrisk of bias (3 levels)Hallucinations63,58324 to 660.5 (0.1 to 1.3) $69 \\ (0.0012)$ very lowrisk of bias (3 levels)Delusions43,281520.4 (0.2 to 0.6)0 (0)very lowrisk of bias (3 levels)Paranoia3277 $52 to 94;$ one cross- sectional study $5.6 (0 to 19.2)$ $85 \\ (0.0266)$ very lowrisk of bias (3 levels), incor imprecision		1	3,066	52	0.1 (0 to 0.5)		very low	risk of bias (3 levels)
Mania1215520.5 (0 to 2)NAvery lowrisk of bias (3 levels)Hallucinations63,58324 to 660.5 (0.1 to 1.3)69 (0.0012)very lowrisk of bias (3 levels)Delusions43,281520.4 (0.2 to 0.6)0 (0)very lowrisk of bias (3 levels)Paranoia327752 to 94; one cross- sectional study5.6 (0 to 19.2)85 (0.0266)very lowrisk of bias (3 levels), incor imprecision		6	4,144	12 to 66	1.7 (0.9 to 2.7)	71	very low	risk of bias (3 levels)
Hallucinations63,58324 to 660.5 (0.1 to 1.3) (0.0012)very lowrisk of bias (3 levels)Delusions43,281520.4 (0.2 to 0.6)0 (0)very lowrisk of bias (3 levels)Paranoia327752 to 94; one cross- sectional study5.6 (0 to 19.2)85 (0.0266)very lowrisk of bias (3 levels), incor imprecision	Mania	1	215	52	0.5 (0 to 2)		very low	risk of bias (3 levels)
Delusions43,281520.4 (0.2 to 0.6)0 (0)very lowrisk of bias (3 levels)Paranoia327752 to 94; one cross- sectional study5.6 (0 to 19.2)85 (0.0266)very lowrisk of bias (3 levels), incompression	Hallucinations	6	3,583	24 to 66	0.5 (0.1 to 1.3)		very low	risk of bias (3 levels)
Paranoia 3 277 one cross- sectional study 5.6 (0 to 19.2) 85 very low risk of bias (3 levels), incor imprecision	Delusions	4	3,281	52	0.4 (0.2 to 0.6)		very low	risk of bias (3 levels)
	Paranoia	3	277	one cross- sectional study	5.6 (0 to 19.2)		very low	risk of bias (3 levels), inconsistency, imprecision
two cross- 99	Anxiety	5	1,695	sectional	7.4 (0 to 26.9)		very low	risk of bias (3 levels), imprecision
Euphoria 7 4,501 4 to 66 2.1 (0.9 to 3.8) 96 very low risk of bias (3 levels)	Euphoria	7	4,501	4 to 66	2.1 (0.9 to 3.8)		very low	risk of bias (3 levels)

Memory							
impairment	6	4,484	4 to 176	5.3 (2.1 to 9.6)	96 (0.0126)	very low	risk of bias (3 levels)
Confusion	7	1,654	4 to 176	1.8 (0.3 to 4.2)	81 (0.0056)	very low	risk of bias (3 levels)
Disorientation	6	4,485	12 to 52	1.6 (0.6 to 3.0)	88 (0.0028)	very low	risk of bias (3 levels)
Attention disorder or deficit	8	5,477	12 to 82	3.4 (1.3 to 6.3)	95 (0.0082)	very low	risk of bias (3 levels)
Accidents and inju	ries						
Falls	1	215	52	2.3 (0.7 to 4.9)	NA	very low	risk of bias (3 levels)
Motor vehicle accidents	1	215	52	0.5 (0 to 2.0)	NA	very low	risk of bias (3 levels)
Dependence and w	withdrawal						
Dependence	3	1,824	12; one cross- sectional study	4.4 (0.0 to 19.9)	99 (0.0488)	very low	risk of bias (3 levels), inconsistenc imprecision, indirectness
Withdrawal syndrome	2	424	32 to 52	2.1 (0 to 8.2)	89 (0.0091)	very low	risk of bias (3 levels), indirectness
Withdrawal symptoms	1	618	NA; cross- sectional	67.8 (64.1 to 71.4)	NA	very low	risk of bias (3 levels), indirectness

					Risk				
Outcome	Exposure	Number of studies	Number of participants	IIIn	with cannabis (/1000)	Risk with comparator (/1000)	Risk difference (95% Cl)	Certainty	Reasons for downgrading
All adverse events	Nabilone vs. gabapentin	1	220	24	404	534	-13.1% (-26.2 to 0)	Very low	Risk of bias (2 levels), imprecision
Adverse events causing discontinuation	Herbal cannabis vs. standard care	1	431	52	47	0	4.7% (1.8 to 7.5)	Low	Risk of bias (2 levels),
	Nabilone vs. gabapentin	1	220	24	96	190	-9.4% (-18.5 to -0.2)	Very low	Risk of bias (2 levels), imprecision
Serious	Herbal cannabis vs. standard care	1	431	52	130	194	1.5% (-8.3 to 20.2) *	Low	Risk of bias, imprecision
	Nabilone vs. gabapentin	1	220	24	0	0	0% (0 to 0)	Very low	Risk of bias (2 levels), imprecision
Psychiatric disorder	Herbal cannabis vs. standard care	1	431	52	219	97	16.9% (5.8 to 40.5) †	Very low	Risk of bias (2 levels), imprecision
Suicide	Herbal cannabis vs. standard care	1	431	52	0	5	-0.5% (-1.4 to 0.4)	Low	Risk of bias (2 levels)
Mania	Herbal cannabis vs. standard care	1	431	52	5	0	0.5% (-0.4 to 1.4)	Low	Risk of bias (2 levels)
Hallucinations	Herbal cannabis vs. standard care	1	431	52	5	0	0.5% (-0.4 to 1.4)	Low	Risk of bias (2 levels)
Delusions	Herbal cannabis vs. standard care	1	431	52	0	5	-0.5% (-1.4 to 0.4)	Low	Risk of bias (2 levels)
Depression	Herbal cannabis vs. standard care	1	431	52	47	46	0.1% (-4 to 4)	Low	Risk of bias (2 levels)
Paranoia	Herbal cannabis vs. standard care	1	431	52	9	0	0.9% (-0.4 to 2.2)	Low	Risk of bias (2 levels)
Anxiety	Herbal cannabis vs. standard care	1	431	52	47	9	3.8% (0.6 to 6.8)	Low	Risk of bias (2 levels)
Euphoria	Herbal cannabis vs. standard care	1	431	52	42	0	4.2% (1.5 to 6.9)	Low	Risk of bias (2 levels)
									26

1 2									
3 4 Memory impairment	Herbal cannabis vs. standard care	1	431	52	19	0	1.9% (0.1 to 3.7)	Low	Risk of bias (2 levels)
6 Confusion 7	Herbal cannabis vs. standard care	1	431	52	14	19	-0.5% (-2.8 to 1.9)	Low	Risk of bias (2 levels)
8 9 Disturbance in attention 10	Herbal cannabis vs. standard care	1	431	52	23	9	1.4% (-1 to 3.8)	Low	Risk of bias (2 levels)
11 Falls 12	Herbal cannabis vs. standard care	1	431	52	23	23	0% (-2.8 to 2.9)	Low	Risk of bias (2 levels)
13 Motor vehicle 14 accidents 15	Herbal cannabis vs. standard care	1	431	52	5	0	0.5% (-0.4 to 1.4)	Low	Risk of bias (2 levels)
15 16 Withdrawal 17 syndrome	Herbal cannabis vs. standard care	1	431	52	5	0	0.5% (-0.4 to 1.4)	Very low	Risk of bias (2 levels),
18 * Risk difference of	alculated from adjus	ted incident	rate ratio report	ed in study.					
19 20 ^{† Risk} difference o	alculated from unad	justed incide	ent rate ratio rep	orted in study.			erien o		
2021									
22									
23									
24 25									
26									
27									
28									
29									
30 31									
32									
33									
34									
35									
36 37									
38									
39									
40									
41									
42									
43									27
44 45				For peer rev	iew only - htt	tp://bmjop	en.bmj.com/site/about/guidel	ines.xhtml	
45				1.000.000			,		
47									

575 Figure 2: Forest plot of the meta-analysis for all adverse events stratified by type of medical cannabis

	Study	Cases	Total Preva	alence (%)	95% C					
	cannabis = herbal, mix	ed								
	Ware , 2003	0		0.0	[0.0; 5.	3]				
	Lynch, 2006	0			[0.0; 5.					
	Fiz, 2011	0			[0.0; 6.		-			
	Ware, 2015		215		[8.8; 17.					
	Haroutounian, 2016		206		[0.0; 2.					
	Fanelli, 2017 Habib, 2018	0	341 26		[0.0; 0. [0.0; 6.					
	Anderson, 2019		1120		[1.2; 2.					
	Random effects model		1120		[0.0; 3.					
	Heterogeneity: $l^2 = 89\%$, τ^2		$\chi_7^2 = 65.58 \ (p$		1 2.01 2.	-1				
	cannabis = nabiximols									
	Rog, 2007		63		[38.4; 63.					
	Ueberall, 2019		800		[0.1; 1.					
	Random effects model Heterogeneity: $l^2 = 99\%$, τ^2		$\gamma_1^2 = 121.42$ ([0.0; 82.	5]			7.3	
	cannabis = nabilone									
	Bestard, 2011	0	49	0.0	[0.0; 3.	51				
	Bestard, 2011	0			[0.0; 3.					
	Toth , 2012	2	37		[0.1; 15.					
	Random effects model		5 2253	0.7	[0.0; 4.	64 G				
	Heterogeneity: $l^2 = 50\%$, τ^2	= 0.0052	$\chi^2_2 = 3.96 \ (p =$	= 0.14)						
	cannabis = PEA					_				
	Dominguez, 2012		64		[0.0; 2.					
	Gatti, 2012		564		[0.0; 0.					
	Del Giorno, 2015	0			[0.0; 4.					
	Paladini, 2017	0			[0.0; 4.					
	Passavanti, 2017 Chirchiglia, 2019	0	30 100		[0.0; 5.					
	Chirchiglia, 2018 Cervigni, 2019	0	32		[0.0; 1. [0.0; 5.					
	Loi, 2019	0	28		[0.0; 6.					
	Random effects model	-	20		[0.0; 0.					
	Heterogeneity: $I^2 = 0.96$, $\tau^2 =$		45 (p = 0.93)		N. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.					
	cannabis = dronabinol						_			
	Schimrigk, 2017		209		[9.5; 18.					
	Random effects model Heterogeneity: not applicat		*C	15.9	[9.5; 18.	al				
	cannabis = Trokie loze Crowley, 2018	nges 0	35	0.0	[0.0; 4.	01				
	Random effects model				[0.0; 4.					
	Heterogeneity: not applicat		12	0.0	10:01 4	-1				
	cannabis = NR									
	Vigil, 2017	0	37		[0.0; 4.					
	Random effects model Heterogeneity: not applicat		10	0.0	[0.0; 4.	6] •				
	cannabis = extracts Giorgi, 2020	0	102	0.0	[0.0; 1.	71				
	Random effects model		102		[0.0; 1.					
	Heterogeneity: not applicat		10		A	-				
	Random effects model			1.2	[0.1; 3.	1] +				
	Heterogeneity: $l^2 = 91\%$, τ^2	= 0.0173,	$\gamma_{24}^2 = 280.38$	(p < 0.01)	51 BA				1	į.
	Residual heterogeneity: 12 =	= 91%, 717	= 193.41 (p <	0.01)		0		40 60	80	10
76	Test for subgroup difference	es: χ ₇ ² = 83	.49, df = 7 (p	< 0.01)			Pre	valence (%)	
77										

2		
3	F70	Deference
4	579	References
5	F90	1 Mills SEE Nicology KD Smith DLL Chronic pains a review of its enidemiology and associated factors in
6	580	1. Mills SEE, Nicolson KP, Smith BH. Chronic pain: a review of its epidemiology and associated factors in
7	581	population-based studies. <i>Br J Anaesth</i> 2019;123(2):e273-e83. doi: 10.1016/j.bja.2019.03.023
8	582	[published Online First: 2019/05/14]
9	583	2. Mills SEE, van Hecke O, Smith BH. Handbook of Pain and Palliative Care: Biopsychosocial and
10	584	Environmental Approaches for the Life Course. 2019.
11	585	3. Keyhani S, Steigerwald S, Ishida J, et al. Risks and Benefits of Marijuana Use: A National Survey of U.S.
12	586	Adults. Ann Intern Med 2018;169(5):282-90. doi: 10.7326/m18-0810 [published Online First:
13 14	587	2018/07/25]
15	588	4. Dai H, Richter KP. A National Survey of Marijuana Use Among US Adults With Medical Conditions,
16	589	2016-2017. <i>JAMA Netw Open</i> 2019;2(9):e1911936. doi: 10.1001/jamanetworkopen.2019.11936
17	590	[published Online First: 2019/09/21]
18	591	5. National Academies of Sciences E, Medicine, Health, et al. The National Academies Collection: Reports
19	592	funded by National Institutes of Health. The Health Effects of Cannabis and Cannabinoids: The
20	593	Current State of Evidence and Recommendations for Research. Washington (DC): National
21	594	Academies Press (US) 2017.
22	595	6. Carr D, Schatman M. Cannabis for Chronic Pain: Not Ready for Prime Time. American Journal of Public
23	596	Health 2019;109(1):50-51. doi: 10.2105/AJPH.2018.304593 [published Online First: 2019/01/]
24	597	7. Ziemianski D, Capler R, Tekanoff R, et al. Cannabis in medicine: a national educational needs
25 26	598	assessment among Canadian physicians. BMC Med Educ 2015;15:52. doi: 10.1186/s12909-015-
20	599	0335-0 [published Online First: 2015/04/19]
28	600	8. Kahan M, Srivastava A. Is there a role for marijuana in medical practice? No. <i>Can Fam Physician</i>
29	601	2007;53(1):22-5. [published Online First: 2007/09/18]
30	602	9. Ware MA. Is there a role for marijuana in medical practice? Yes. <i>Can Fam Physician</i> 2007;53(1):22-5.
31	603	[published Online First: 2007/09/18]
32	604	10. Deshpande A, Mailis-Gagnon A, Zoheiry N, et al. Efficacy and adverse effects of medical marijuana
33	605	for chronic noncancer pain: Systematic review of randomized controlled trials. <i>Can Fam</i>
34	606	Physician 2015;61(8):e372-81. [published Online First: 2015/10/28]
35	607	11. Wang L, Hong P, May C, et al. Medical cannabis for chronic pain: a systematic review and meta-
36 37	608	analysis of randomized clinical trials. <i>BMJ</i> 2020;Accepted
37	609	12. Wang T, Collet JP, Shapiro S, et al. Adverse effects of medical cannabinoids: a systematic review.
39	610	<i>Cmaj</i> 2008;178(13):1669-78. doi: 10.1503/cmaj.071178 [published Online First: 2008/06/19]
40	611	13. Whiting PF, Wolff RF, Deshpande S, et al. Cannabinoids for Medical Use: A Systematic Review and
41	612	Meta-analysis. Jama 2015;313(24):2456-73. doi: 10.1001/jama.2015.6358 [published Online
42	613	First: 2015/06/24]
43	614	14. Hill KP, Hurley-Welljams-Dorof WM. Low to moderate quality evidence demonstrates the potential
44	615	benefits and adverse events of cannabinoids for certain medical indications. <i>Evid Based Med</i>
45	616	2016;21(1):17. doi: 10.1136/ebmed-2015-110264 [published Online First: 2015/10/23]
46	617	15. Bair MJ, Robinson RL, Katon W, et al. Depression and pain comorbidity: a literature review. Arch
47 48		
40 49	618 619	Intern Med 2003;163(20):2433-45. doi: 10.1001/archinte.163.20.2433 [published Online First:
50		2003/11/12]
51	620	16. Magni G, Marchetti M, Moreschi C, et al. Chronic musculoskeletal pain and depressive symptoms in
52	621	the National Health and Nutrition Examination. I. Epidemiologic follow-up study. <i>Pain</i>
53	622	1993;53(2):163-8. doi: 10.1016/0304-3959(93)90076-2 [published Online First: 1993/05/01]
54	623	17. Wilson KG, Eriksson MY, D'Eon JL, et al. Major depression and insomnia in chronic pain. <i>Clin J Pain</i>
55	624	2002;18(2):77-83. doi: 10.1097/00002508-200203000-00002 [published Online First:
56	625	2002/03/08]
57		
58 59		30
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3	626	18. Busse J, Vankrunkelsven P, Zeng L, et al. Medical cannabis for chronic pain: a clinical practice
4 5	627	guideline. <i>BMJ</i> 2020;Submitted.
6	628	19. Siemieniuk RA, Agoritsas T, Macdonald H, et al. Introduction to BMJ Rapid Recommendations. Bmj
7	629	2016;354:i5191. doi: 10.1136/bmj.i5191 [published Online First: 2016/09/30]
8	630	20. Zeng L, Lytvyn L, Wang X, et al. Values and preferences towards medical cannabis among patients
9	631	with chronic pain: A mixed methods systematic review. BMJ 2020;Submitted
10	632	21. Noori A, Miroshnychenko A, Shergill Y, et al. Opioid-Sparing effects of medical cannabis for chronic
11	633	pain: A systematic review and meta-analysis of randomized and observational studies. BMJ
12	634	2020;Submitted
13 14	635	22. Zorzela L, Loke YK, Ioannidis JP, et al. PRISMA harms checklist: improving harms reporting in
14	636	systematic reviews. <i>Bmj</i> 2016;352:i157. doi: 10.1136/bmj.i157 [published Online First:
16	637	2016/02/03]
17	638	23. Busse JW, Bartlett SJ, Dougados M, et al. Optimal Strategies for Reporting Pain in Clinical Trials and
18	639	Systematic Reviews: Recommendations from an OMERACT 12 Workshop. <i>J Rheumatol</i>
19	640	2015;42(10):1962-70. doi: 10.3899/jrheum.141440 [published Online First: 2015/05/17]
20	641	24. Sterne JA, Hernán MA, Reeves BC, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised
21	642	studies of interventions. <i>Bmj</i> 2016;355:i4919. doi: 10.1136/bmj.i4919 [published Online First:
22	643	2016/10/14]
23 24	644	25. Freeman MF, Tukey JW. Transformations related to the angular and the square root. The Annals of
25	645	Mathematical Statistics 1950:607-11.
26	646	26. DerSimonian R, Laird N. Meta-analysis in clinical trials. Controlled clinical trials 1986;7(3):177-88.
27	647	27. Murad M, Montori V, Ioannidis J, et al. Fixed-effects and random-effects models. Users' guide to the
28	648	medical literature A manual for evidence-based clinical practice McGraw-Hill, 3rd ed New York,
29	649	America 2015
30	650	28. Rücker G, Schwarzer G, Carpenter JR, et al. Undue reliance on I(2) in assessing heterogeneity may
31	651	mislead. BMC Med Res Methodol 2008;8:79. doi: 10.1186/1471-2288-8-79 [published Online
32 33	652	First: 2008/11/28]
33 34	653	29. Sun X, Briel M, Walter SD, et al. Is a subgroup effect believable? Updating criteria to evaluate the
35	654	credibility of subgroup analyses. <i>Bmj</i> 2010;340:c117. doi: 10.1136/bmj.c117 [published Online
36	655	First: 2010/04/01]
37	656	30. Schandelmaier S, Briel M, Varadhan R, et al. Development of the Instrument to assess the Credibility
38	657	of Effect Modification Analyses (ICEMAN) in randomized controlled trials and meta-analyses.
39	658	Cmaj 2020;192(32):E901-e06. doi: 10.1503/cmaj.200077 [published Online First: 2020/08/12]
40	659	31. Schwarzer G. meta: An R package for meta-analysis. <i>R news</i> 2007;7(3):40-45.
41 42	660	32. Schünemann HJ, Cuello C, Akl EA, et al. GRADE guidelines: 18. How ROBINS-I and other tools to
42 43	661	assess risk of bias in nonrandomized studies should be used to rate the certainty of a body of
44	662	evidence. <i>J Clin Epidemiol</i> 2019;111:105-14. doi: 10.1016/j.jclinepi.2018.01.012 [published
45	663	Online First: 2018/02/13]
46	664	33. Guyatt GH, Oxman AD, Vist GE, et al. GRADE: an emerging consensus on rating quality of evidence
47	665	and strength of recommendations. <i>Bmj</i> 2008;336(7650):924-6. doi:
48	666	10.1136/bmj.39489.470347.AD [published Online First: 2008/04/26]
49	667	34. Santesso N, Glenton C, Dahm P, et al. GRADE guidelines 26: informative statements to communicate
50	668	the findings of systematic reviews of interventions. J Clin Epidemiol 2020;119:126-35. doi:
51 52	669	10.1016/j.jclinepi.2019.10.014 [published Online First: 2019/11/13]
52 53	670	35. Ware MA, Doyle CR, Woods R, et al. Cannabis use for chronic non-cancer pain: results of a
55 54	671	prospective survey. <i>Pain</i> 2003;102(1-2):211-6.
55		
56		
57		
58		31
59		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
60		i or peer review only - nttp://binjopen.binj.com/site/about/guidennes.xntml

BMJ Open

2		
3	672	36. Lynch ME, Young J, Clark AJ. A case series of patients using medicinal marihuana for management of
4 5	673	chronic pain under the Canadian Marihuana Medical Access Regulations. Journal of Pain &
6	674	<i>Symptom Management</i> 2006;32(5):497-501.
7	675	37. Rog DJ, Nurmikko TJ, Young CA. Oromucosal delta9-tetrahydrocannabinol/cannabidiol for
8	676	neuropathic pain associated with multiple sclerosis: an uncontrolled, open-label, 2-year
9	677	extension trial. Clinical Therapeutics 2007;29(9):2068-79.
10	678	38. Weber J, Schley M, Casutt M, et al. Tetrahydrocannabinol (Delta 9-THC) treatment in chronic central
11	679	neuropathic pain and fibromyalgia patients: Results of a multicenter survey. Anesthesiology
12	680	Research and Practice 2009;2009 (no pagination)(827290) doi:
13	681	http://dx.doi.org/10.1155/2009/827290
14 15	682	39. Bestard JA, Toth CC. An open-label comparison of nabilone and gabapentin as adjuvant therapy or
16	683	monotherapy in the management of neuropathic pain in patients with peripheral neuropathy.
17	684	Pain Practice 2011;11(4):353-68. doi: <u>https://dx.doi.org/10.1111/j.1533-2500.2010.00427.x</u>
18	685	40. Fiz J, Duran M, Capella D, et al. Cannabis use in patients with Fibromyalgia: Effect on symptoms relief
19	686	and health-related quality of life. <i>PLoS ONE</i> 2011;6 (4) (no pagination)(e18440) doi:
20	687	http://dx.doi.org/10.1371/journal.pone.0018440
21	688	41. Domínguez CM, Martín AD, Ferrer FG, et al. N-palmitoylethanolamide in the treatment of
22	689	neuropathic pain associated with lumbosciatica. Pain Manag 2012;2(2):119-24. doi:
23	690	10.2217/pmt.12.5 [published Online First: 2012/03/01]
24 25	691	42. Gatti A, Lazzari M, Gianfelice V, et al. Palmitoylethanolamide in the treatment of chronic pain caused
25 26	692	by different etiopathogenesis. Pain Medicine 2012;13(9):1121-30. doi:
27	693	https://dx.doi.org/10.1111/j.1526-4637.2012.01432.x
28	694	43. Toth C, Mawani S, Brady S, et al. An enriched-enrolment, randomized withdrawal, flexible-dose,
29	695	double-blind, placebo-controlled, parallel assignment efficacy study of nabilone as adjuvant in
30	696	the treatment of diabetic peripheral neuropathic pain. Pain 2012;153(10):2073-82. doi:
31	697	http://dx.doi.org/10.1016/j.pain.2012.06.024
32	698	44. Schifilliti C, Cucinotta L, Fedele V, et al. Micronized palmitoylethanolamide reduces the symptoms of
33	699	neuropathic pain in diabetic patients. Pain Res Treat 2014;2014:849623. doi:
34 35	700	10.1155/2014/849623 [published Online First: 2014/05/08]
35 36	701	45. Storr M, Devlin S, Kaplan GG, et al. Cannabis use provides symptom relief in patients with
37	702	inflammatory bowel disease but is associated with worse disease prognosis in patients with
38	703	Crohn's disease. Inflammatory Bowel Diseases 2014;20(3):472-80. doi:
39	704	https://dx.doi.org/10.1097/01.MIB.0000440982.79036.d6
40	705	46. Del Giorno R, Skaper S, Paladini A, et al. Palmitoylethanolamide in Fibromyalgia: Results from
41	706	Prospective and Retrospective Observational Studies. Pain and Therapy 2015;4(2):169-78. doi:
42	707	http://dx.doi.org/10.1007/s40122-015-0038-6
43 44	708	47. Hoggart B, Ratcliffe S, Ehler E, et al. A multicentre, open-label, follow-on study to assess the long-
44 45	709	term maintenance of effect, tolerance and safety of THC/CBD oromucosal spray in the
46	710	management of neuropathic pain. Journal of Neurology 2015;262(1):27-40. doi:
47	711	https://dx.doi.org/10.1007/s00415-014-7502-9
48	712	48. Ware MA, Wang T, Shapiro S, et al. Cannabis for the Management of Pain: Assessment of Safety
49	713	Study (COMPASS). Journal of Pain 2015;16(12):1233-42. doi:
50	714	https://dx.doi.org/10.1016/j.jpain.2015.07.014
51	715	49. Haroutounian S, Ratz Y, Ginosar Y, et al. The Effect of Medicinal Cannabis on Pain and Quality-of-Life
52	716	Outcomes in Chronic Pain: A Prospective Open-label Study. <i>Clinical Journal of Pain</i>
53	717	2016;32(12):1036-43.
54 55		
55 56		
57		
58		32
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3	718	50. Bellnier T, Brown G, Ortega T, et al. A preliminary evaluation of the effcacy, safety, and costs
4	719	associated with the treatment of chronic pain with medical marijuana in the elderly. <i>Consultant</i>
5	720	<i>Pharmacist</i> 2017;32 (10):597. doi: <u>http://dx.doi.org/10.4140/TCPn.2017.577</u>
6	721	51. Cranford JA, Arnedt JT, Conroy DA, et al. Prevalence and correlates of sleep-related problems in
7 8	722	adults receiving medical cannabis for chronic pain. Drug & Alcohol Dependence 2017;180:227-
9	723	33. doi: <u>https://dx.doi.org/10.1016/j.drugalcdep.2017.08.017</u>
10	724	52. Fanelli G, De Carolis G, Leonardi C, et al. Cannabis and intractable chronic pain: an explorative
11	725	retrospective analysis of Italian cohort of 614 patients. <i>Journal of pain research</i> 2017;10:1217-
12	726	24. doi: https://dx.doi.org/10.2147/JPR.S132814
13	727	53. Feingold D, Goor-Aryeh I, Bril S, et al. Problematic Use of Prescription Opioids and Medicinal
14	728	Cannabis Among Patients Suffering from Chronic Pain. <i>Pain Medicine</i> 2017;18(2):294-306. doi:
15	729	https://dx.doi.org/10.1093/pm/pnw134
16	730	54. Paladini A, Varrassi G, Bentivegna G, et al. Palmitoylethanolamide in the Treatment of Failed Back
17	731	Surgery Syndrome. <i>Pain Res Treat</i> 2017;2017:1486010. doi: 10.1155/2017/1486010 [published
18 19	732	Online First: 2017/09/07]
20	733	
20		55. Passavanti MB, Fiore M, Sansone P, et al. The beneficial use of ultramicronized
22	734	palmitoylethanolamide as add-on therapy to Tapentadol in the treatment of low back pain: a
23	735	pilot study comparing prospective and retrospective observational arms. BMC Anesthesiology
24	736	2017;17(1):171. doi: <u>https://dx.doi.org/10.1186/s12871-017-0461-9</u>
25	737	56. Schimrigk S, Marziniak M, Neubauer C, et al. Dronabinol Is a Safe Long-Term Treatment Option for
26	738	Neuropathic Pain Patients. <i>European Neurology</i> 2017;78(5-6):320-29. doi:
27	739	https://dx.doi.org/10.1159/000481089
28	740	57. Chirchiglia D, Chirchiglia P, Signorelli F. Nonsurgical lumbar radiculopathies treated with
29	741	ultramicronized palmitoylethanolamide (umPEA): A series of 100 cases. Neurologia i
30	742	Neurochirurgia Polska 2018;52(1):44-47. doi: https://dx.doi.org/10.1016/j.pjnns.2017.11.002
31 22	743	58. Crowley K, de Vries ST, Moreno-Sanz G. Self-Reported Effectiveness and Safety of Trokie R Lozenges:
32 33	744	A Standardized Formulation for the Buccal Delivery of Cannabis Extracts. Frontiers in
34	745	Neuroscience 2018;12:564. doi: <u>https://dx.doi.org/10.3389/fnins.2018.00564</u>
35	746	59. Habib G, Artul S. Medical Cannabis for the Treatment of Fibromyalgia. JCR: Journal of Clinical
36	747	Rheumatology 2018;24(5):255-58. doi: <u>https://dx.doi.org/10.1097/RHU.00000000000000702</u>
37	748	60. Anderson SP, Zylla DM, McGriff DM, et al. Impact of medical cannabis on patient-reported symptoms
38	749	for patients with cancer enrolled in Minnesota's medical cannabis program. Journal of Oncology
39	750	<i>Practice</i> 2019;15(6):E338-E45. doi: <u>http://dx.doi.org/10.1200/JOP.18.00619</u>
40	751	61. Bonar EE, Cranford JA, Arterberry BJ, et al. Driving under the influence of cannabis among medical
41	752	cannabis patients with chronic pain. Drug & Alcohol Dependence 2019;195:193-97. doi:
42	753	https://dx.doi.org/10.1016/j.drugalcdep.2018.11.016
43 44	754	62. Cervigni M, Nasta L, Schievano C, et al. Micronized Palmitoylethanolamide-Polydatin Reduces the
44 45	755	Painful Symptomatology in Patients with Interstitial Cystitis/Bladder Pain Syndrome. BioMed
46	756	Research International 2019;2019 (no pagination)(9828397) doi:
47	757	http://dx.doi.org/10.1155/2019/9828397
48	758	63. Cremer-Schaeffer P, Schmidt-Wolf G, Broich K. [Cannabis medicines in pain management : Interim
49	759	analysis of the survey accompanying the prescription of cannabis-based medicines in Germany
50	760	with regard to pain as primarily treated symptom]. <i>Der Schmerz</i> 2019;33(5):415-23. doi:
51	761	https://dx.doi.org/10.1007/s00482-019-00399-z
52	762	64. Lejczak S, Rousselot H, Di Patrizio P, et al. Dronabinol use in France between 2004 and 2017. Revue
53	763	Neurologique 2019;175(5):298-304. doi: <u>https://dx.doi.org/10.1016/j.neurol.2018.07.011</u>
54	764	65. Loi ES, Pontis A, Cofelice V, et al. Effect of ultramicronized-palmitoylethanolamide and co-
55 56	765	micronizedpalmitoylethanolamide/polydatin on chronic pelvic pain and quality of life in
50 57	, 05	meren zeupanneo yrethanolannae, polyadan on einome pelvie pair ana quanty of me m
58		33
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 ว		
2 3	766	
4	766	endometriosis patients: An open-label pilot study. International Journal of Women's Health
5	767	2019;11:443-49. doi: <u>http://dx.doi.org/10.2147/IJWH.S204275</u>
6	768	66. Naftali T, Bar-Lev Schleider L, Sklerovsky Benjaminov F, et al. Medical cannabis for inflammatory
7	769	bowel disease: real-life experience of mode of consumption and assessment of side-effects.
8	770	European Journal of Gastroenterology & Hepatology 2019;31(11):1376-81. doi:
9	771	https://dx.doi.org/10.1097/MEG.00000000001565
10	772	67. Perron BE, Holt KR, Yeagley E, et al. Mental health functioning and severity of cannabis withdrawal
11 12	773	among medical cannabis users with chronic pain. <i>Drug & Alcohol Dependence</i> 2019;194:401-09.
12	774	doi: <u>https://dx.doi.org/10.1016/j.drugalcdep.2018.09.029</u>
14	775	68. Sagy I, Bar-Lev Schleider L, Abu-Shakra M, et al. Safety and Efficacy of Medical Cannabis in
15	776	Fibromyalgia. Journal of Clinical Medicine 2019;8(6):05. doi:
16	777	https://dx.doi.org/10.3390/jcm8060807
17	778	69. Sinclair J, Smith CA, Abbott J, et al. Cannabis Use, a Self-Management Strategy Among Australian
18	779	Women With Endometriosis: Results From a National Online Survey. <i>Journal of Obstetrics</i> &
19	780	Gynaecology Canada: JOGC 2020;42(3):256-61. doi:
20	781	https://dx.doi.org/10.1016/j.jogc.2019.08.033
21	782	70. Ueberall MA, Essner U, Mueller-Schwefe GHH. Effectiveness and tolerability of THC:CBD oromucosal
22	783	spray as add-on measure in patients with severe chronic pain: Analysis of 12-week open-label
23 24	784	real-world data provided by the German pain e-registry. Journal of Pain Research 2019;12:1577-
24 25	785	604. doi: http://dx.doi.org/10.2147/JPR.S192174
26	786	71. Vigil JM, Stith SS, Adams IM, et al. Associations between medical cannabis and prescription opioid
27	787	use in chronic pain patients: A preliminary cohort study. PLoS ONE [Electronic Resource]
28	788	2017;12(11):e0187795. doi: <u>https://dx.doi.org/10.1371/journal.pone.0187795</u>
29	789	72. Yassin M, Oron A, Robinson D. Effect of adding medical cannabis to analgesic treatment in patients
30	790	with low back pain related to fibromyalgia: an observational cross-over single centre study.
31	791	Clinical & Experimental Rheumatology 2019;37 Suppl 116(1):13-20.
32	792	73. Giorgi V, Bongiovanni S, Atzeni F, et al. Adding medical cannabis to standard analgesic treatment for
33	793	fibromyalgia: a prospective observational study. <i>Clinical & Experimental Rheumatology</i> 2020;38
34 25	794	Suppl 123(1):53-59.
35 36	795	74. Grant BF, Dawson DA, Stinson FS, et al. The Alcohol Use Disorder and Associated Disabilities
37	796	Interview Schedule-IV (AUDADIS-IV): reliability of alcohol consumption, tobacco use, family
38	797	history of depression and psychiatric diagnostic modules in a general population sample. Drug
39	798	Alcohol Depend 2003;71(1):7-16. doi: 10.1016/s0376-8716(03)00070-x [published Online First:
40	799	2003/06/25]
41	800	75. Humeniuk R, Ali R. Validation of the Alcohol, Smoking and Substance Involvement Screening Test
42	801	(ASSIST) and pilot brief intervention: a technical report of phase II findings of the WHO ASSIST
43	802	Project. Validation of the alcohol, smoking and substance involvement screening test (ASSIST)
44	803	and pilot brief intervention: a technical report of phase II findings of the WHO ASSIST
45	803 804	Project2006.
46 47	804 805	76. Stockings E, Campbell G, Hall WD, et al. Cannabis and cannabinoids for the treatment of people with
47 48	805	chronic noncancer pain conditions: a systematic review and meta-analysis of controlled and
40 49	806 807	observational studies. Pain 2018;159(10):1932-54. doi: 10.1097/j.pain.000000000001293
50	808	[published Online First: 2018/05/31]
51		
52	809 810	77. Allan GM, Finley CR, Ton J, et al. Systematic review of systematic reviews for medical cannabinoids:
53		Pain, nausea and vomiting, spasticity, and harms. <i>Can Fam Physician</i> 2018;64(2):e78-e94.
54	811	[published Online First: 2018/02/17]
55		
56		
57 58		
58 59		34
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1		
2		
3	812	78. Campeny E, López-Pelayo H, Nutt D, et al. The blind men and the elephant: Systematic review of
4	813	systematic reviews of cannabis use related health harms. Eur Neuropsychopharmacol 2020;33:1-
5	814	35. doi: 10.1016/j.euroneuro.2020.02.003 [published Online First: 2020/03/14]
6	815	79. Memedovich KA, Dowsett LE, Spackman E, et al. The adverse health effects and harms related to
7	816	marijuana use: an overview review. <i>CMAJ Open</i> 2018;6(3):E339-e46. doi:
8		
9	817	10.9778/cmajo.20180023 [published Online First: 2018/08/18]
10	818	80. Nugent SM, Morasco BJ, O'Neil ME, et al. The Effects of Cannabis Among Adults With Chronic Pain
11 12	819 820	and an Overview of General Harms: A Systematic Review. <i>Ann Intern Med</i> 2017;167(5):319-31. doi: 10.7326/m17-0155 [published Online First: 2017/08/15]
13	821	81. Els C, Jackson TD, Kunyk D, et al. Adverse events associated with medium- and long-term use of
14	822	
15		opioids for chronic non-cancer pain: an overview of Cochrane Reviews. <i>Cochrane Database Syst</i>
16	823	Rev 2017;10(10):Cd012509. doi: 10.1002/14651858.CD012509.pub2 [published Online First:
17	824	2017/10/31]
18	825	82. Rücker G, Schumacher M. Simpson's paradox visualized: the example of the rosiglitazone meta-
19	826	analysis. BMC Med Res Methodol 2008;8:34. doi: 10.1186/1471-2288-8-34 [published Online
20	827	First: 2008/06/03]
21	828	83. Diagnostic and statistical manual of mental disorders : DSM-5. Arlington, VA: American Psychiatric
22	829	Association 2013.
23	830	84. Goodman JE, McGrath PJ. The epidemiology of pain in children and adolescents: a review. <i>Pain</i>
24	831	1991;46(3):247-64. doi: 10.1016/0304-3959(91)90108-a [published Online First: 1991/09/01]
25	832	85. Myles H, Myles N, Large M. Cannabis use in first episode psychosis: Meta-analysis of prevalence, and
26		
27	833	the time course of initiation and continued use. <i>Aust N Z J Psychiatry</i> 2016;50(3):208-19. doi:
28	834	10.1177/0004867415599846 [published Online First: 2015/08/20]
29	835	86. Veroniki AA, Jackson D, Bender R, et al. Methods to calculate uncertainty in the estimated overall
30	836	effect size from a random-effects meta-analysis. Res Synth Methods 2019;10(1):23-43. doi:
31	837	10.1002/jrsm.1319 [published Online First: 2018/08/22]
32	838	87. Shanthanna H, Gilron I, Rajarathinam M, et al. Benefits and safety of gabapentinoids in chronic low
33	839	back pain: A systematic review and meta-analysis of randomized controlled trials. PLoS Med
34	840	2017;14(8):e1002369. doi: 10.1371/journal.pmed.1002369 [published Online First: 2017/08/16]
35 36	841	88. Ferraro MC, Bagg MK, Wewege MA, et al. Efficacy, acceptability, and safety of antidepressants for
30 37	842	low back pain: a systematic review and meta-analysis. Syst Rev 2021;10(1):62. doi:
	843	10.1186/s13643-021-01599-4 [published Online First: 2021/02/26]
38 39		
40	844	89. Busse JW, Craigie S, Juurlink DN, et al. Guideline for opioid therapy and chronic noncancer pain.
40	845	Cmaj 2017;189(18):E659-e66. doi: 10.1503/cmaj.170363 [published Online First: 2017/05/10]
42	846	
43	040	
44		
45		
46		
47		
48		
49		
50		
51		
52		
53		
54		
55		
56		
57		
58		35
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Figure 2: Forest plot of the meta-analysis for all adverse events stratified by type of medical cannabis

Study	cases	Total	Prevalence (%)	907	6 C.I.	
cannabis = herbal, mixe	d					
Ware, 2003	0	32	0.0	[0.0;	5 31	_
Lynch, 2006	0	30		[0.0;		
Fiz, 2011	0	28	0.0	[0.0;	6.1]	-
Ware, 2015	28	215	13.0	[8.8;	17.9]	-
Haroutounian, 2016	2	206	1.0	[0.0;	2.91	
Fanelli, 2017	ō			[0.0;		
Habib, 2018	0	26		[0.0;		
Anderson, 2019	21	1120		[1.2;		
Random effects model			1.0	[0.0;	3.9]	•
Heterogeneity: $I^2 = 89\%$, $\tau^2 =$	0.0115	$\chi_7^2 = 6$	5.58 (p. < 0.01)			
cannabis = nabiximols						
Rog, 2007	32	63	50.8	[38.4:	83 11	
Ueberall, 2019	4	800		[0.1;		
Random effects model			17.2	[0.0; 8	32.5]	
Heterogeneity: $l^2 = 99\%$, $\tau^2 =$	0.2559	$\chi_1^2 = 1$	21.42 (p < 0.01)			
cannabis = nabilone						
Bestard, 2011	0	49	0.0	[0.0;	3.51	-7
Bestard, 2011	o	55		[0.0;		
	2					
Toth , 2012	2	37		[0.1;		
Random effects model				[0.0;	4.8]	
Heterogeneity: $I^2 = 50\%$, $\tau^2 =$	0.0052	$\chi_2^2 = 3$	96 (p = 0.14)			
cannabis = PEA					_	
Dominguez, 2012	0	64	0.0	[0.0]	2.71	
Gatti, 2012	ő					
				[0.0;		
Del Giorno, 2015	0	35		[0.0;		
Paladini, 2017	0	35	0.0	[0.0;	4.9]	-
Passavanti, 2017	0	30	0.0	[0.0;	5.7]	-
Chirchiglia, 2018	0	100		[0.0;		
Cervigni, 2019	0	32		[0.0;		
	o	28				
Loi, 2019	0	20		[0.0;		
Random effects model	2	•		[0.0;	0.01	
Heterogeneity: $I^2 = 0\%$, $\tau^2 = 1$	$0, \chi_7^- = 2$.45 (p =	= 0.93)			
cannabis = dronabinol						
Schimrigk, 2017	29	209	13.9	[9.5;	18.9]	
Random effects model				[9.5;		+
Heterogeneity: not applicabl	e	5	1010	Lovel	0101	
cannabis = Trokie lozen	ges 0	25	0.0	0.01	4 01	_
Crowley, 2018	0	35		[0.0;		
Random effects model			0.0	[0.0;	4.9]	•
Heterogeneity: not applicabl	e					
cannabis = NR	-			100		
Vigil, 2017	0	37		[0.0;		
Random effects model			0.0	[0.0;	4.6]	•
Heterogeneity: not applicabl	e					
cannabis = extracts						
Giorgi, 2020	0	102	0.0	[0.0;	1 71	
	0	102				
Random effects model		*	0.0	[0.0;	P.1	
Heterogeneity: not applicabl	e					
Random effects model			1.2	[0.1;	3.1]	
Heterogeneity: $I^2 = 91\%$, $\tau^2 =$	0.0173	1/24 = 2	280.38 (p < 0.01)	53	- F	
Residual heterogeneity: $l^2 =$	91% 2	= 193	41 (p < 0.01)		0	20 40 60 80 1
Test for subgroup differences	2 - 03	49 44	= 7 (n < 0.01)		5	Prevalence (%)
rescion subgroup amerences	$x_{7} = 63$.+o, df	- (p < 0.01)			Flevalence (%)

Long-term and serious harms of medical cannabis and cannabinoids for chronic pain: A systematic review and meta-analysis of nonrandomized studies

Appendix

Appendix	
Dr. Jason Busse bussejw@mcmaster.ca Contents Appendix 1: Search strategy	
bussejw@mcmaster.ca	
Contonto	
Contents Appendix 1: Search strategy	2
Appendix 1. Search Strategy	
Appendix 2: Detailed methods for the assessment of risk of bias	
Appendix 3: List of included studies	
Appendix 4: Studies excluded at the full-text screening stage	23
Appendix 5: Risk of bias ratings	52
Appendix 6: Results for all adverse events (subgroup by design)	53
Appendix 7: Results for all adverse events (subgroup by duration)	54
Appendix 8: Results for all adverse events (subgroup by cannabis)	55
Appendix 9: Results for all adverse events (subgroup by selection bias)	56
Appendix 10: Results for adverse events leading to discontinuation (subgroup by duration)	57
Appendix 11: Results for adverse events leading to discontinuation (subgroup by cannabis)	58
Appendix 12: Results for adverse events leading to discontinuation (subgroup by selection bias).	59
Appendix 13: Results for serious adverse events (subgroup by design)	60
Appendix 14: Results for serious adverse events (subgroup by duration)	61
Appendix 15: Results for serious adverse events (subgroup by selection bias)	62
Appendix 16: Results for psychiatric adverse events	63
Appendix 17: Results for suicide	64
Appendix 18: Results for suicidal thoughts	65

BMJ Open

2
2
3
4
5
5
6
7
8
0
9
10
11
10
12
13
14
15
15
16
17
18
10
19
20
21
22
22
23
24
25
25
26
27
28
20
29
30
30 31
30 31
30 31 32
30 31 32 33
30 31 32 33 34
30 31 32 33 34 25
30 31 32 33 34 35
30 31 32 33 34 35 36
30 31 32 33 34 35 36 37
2 3 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 24 25 6 27 28 9 30 12 33 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 24 25 26 27 28 9 20 21 22 23 24 25 26 27 28 9 31 2 23 24 25 26 27 28 9 31 2 23 24 25 26 27 28 9 31 2 23 24 25 26 27 28 29 31 22 23 24 25 26 27 28 29 31 22 23 24 25 26 27 28 29 31 22 33 32 33 34 35 37 37 37 37 37 37 37 37 37 37 37 37 37
38
30 31 32 33 34 35 36 37 38 39
38
38 39 40
38 39 40 41
38 39 40 41 42
38 39 40 41
38 39 40 41 42 43
38 39 40 41 42 43 44
 38 39 40 41 42 43 44 45
 38 39 40 41 42 43 44 45 46
 38 39 40 41 42 43 44 45 46
 38 39 40 41 42 43 44 45 46 47
 38 39 40 41 42 43 44 45 46 47 48
 38 39 40 41 42 43 44 45 46 47 48 49
 38 39 40 41 42 43 44 45 46 47 48 49 50
 38 39 40 41 42 43 44 45 46 47 48 49 50
 38 39 40 41 42 43 44 45 46 47 48 49 50 51
 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

Appendix 19: Results for depression	66
Appendix 20: Results for mania	67
Appendix 21: Results for hallucinations	68
Appendix 22: Results for delusions	69
Appendix 23: Results for paranoia	70
Appendix 24: Results for anxiety	71
Appendix 25: Results for euphoria	72
Appendix 26: Results for memory impairment	73
Appendix 27: Results for confusion	74
Appendix 28: Results for disorientation	75
Appendix 29: Results for impaired attention	76
Appendix 30: Results for falls	77
Appendix 31: Results for motor vehicle accidents	78
Appendix 32: Results for dependence	79
Appendix 33: Results for withdrawal symptoms	80
Appendix 34: Results for withdrawal syndrome	81

Appendix 1: Search strategy

MEDLINE	10649
EMBASE	6382
Central	2426
PsycInfo	3801
Subtotal	23260
-dupes	-6085
Total	17175
April 1, 2020	

Daily and Ovid MEDLINE(R) 1940 ...

Search Strategy:

1

Epidemiologic Studies/ (8256) Database: OVID Medline Epub Ahead of Print, In-Process & Other Non-Indexed Citations, Ovid MEDLINE(R)

exp Cohort Studies/ (1974212)

- Case control.tw. (123081)
- (cohort adj (study or studies)).tw. (199133)

- Cohort analy\$.tw. (7799)
- (Follow up adj (study or studies)).tw. (48708)
- (observational adj (study or studies)).tw. (103255)
- Longitudinal.tw. (239715)
- Retrospective.tw. (515751)
- Cross sectional.tw. (342224)
- Cross-sectional studies/ (322752)
- or/1-12 (2953281)
- exp animals/ not humans.sh. (4685189)
- 13 not 14 (2889789)
- Annotation: SIGN observational studies filter
- randomized controlled trial.pt. (503041)
- controlled clinical trial.pt. (93591)
- randomized.ab. (474985)
- placebo.ab. (206552)

1 2 3		
4 5 6 7	20	drug therapy.fs. (2191450)
8 9 10	21	randomly.ab. (330409)
11 12 13 14	22	trial.ab. (500400)
15 16 17 18	23	groups.ab. (2028909)
19 20 21	24	or/16-23 (4670111)
22 23 24 25	25	exp animals/ not humans.sh. (4685189)
26 27 28 29	26	24 not 25 (4048339)
30 31 32 33	Anr	notation: Cochrane HSSS RCT filter
34 35 36	27	15 or 26 (6033576)
37 38 39 40	Anr	notation: study design filter broad
41 42 43 44	28	Cannabis/ (8968)
45 46 47	29	exp cannabinoids/ or cannabidiol/ or cannabinol/ or dronabinol/ (13810)
48 49 50 51	30	Endocannabinoids/ (5630)
52 53 54 55	31	exp Receptors, Cannabinoid/ (9240)
56 57 58		

60

32 (Cannabis or cannabinol or cannabinoid* or cannabidiol or bhang or cannador or charas or ganja or ganjah or hashish or hemp or marihuana or marijuana or nabilone or cesamet or cesametic or ajulemic acid or cannabichromene or cannabielsoin or cannabigerol or tetrahydrocannabinol or dronabinol or levonantradol or nabiximols or palmidrol or tetrahydrocannabinolic acid or tetrahydro cannabinol or marinol or tetranabinex or sativex or endocannabinoid*).mp. (54925)

33 or/28-32 (54925)

Annotation: strategy from 2020 cannabis review

34 27 and 33 (16307)

Annotation: cannabis AND study design filter

35 exp "Drug-Related Side Effects and Adverse Reactions"/ (114376)

36 (ae or to or po or co).fs. (3890270)

37 (safe or safety).ti,ab. (758301)

38 side effect\$.ti,ab. (243706)

39 ((adverse or undesirable or harms\$ or serious or toxic) adj3 (effect\$ or reaction\$ or event\$ or outcome\$)).ti,ab. (501888)

elez on

40 exp Product Surveillance, Postmarketing/ (15237)

41 adverse drug reaction reporting systems/ (7463)

42 clinical trials, phase iv/ (295)

(toxicity or complication\$ or noxious or tolerability).ti,ab. (1298802)

2	
3 4	
5	43 exp Poisoning/ (156177)
6	
7	
8 9	44 exp Substance-Related Disorders/ (274845)
9 10	
11	
12	
13	45 Abnormalities, Drug-Induced/ (14514)
14	
15	
16 17	46 Drug Monitoring/ (20599)
17	
19	
20	47 exp Drug Hypersensitivity/ (45642)
21	
22	
23	
24 25	48 (toxicity or complication\$ or noxious or tolerability).ti,ab. (129)
25 26	
27	
28	49 or/35-48 (5596308)
29	
30	
31	Annotation: OVID AE filter
32	
33 34	
35	50 34 and 49 (10649)
36	50 54 and 45 (10045)
37	
38	
39	Annotation: Study design filter AND Cannabis AND AE Filter (broad)
40	
41 42	
43	Database: Embase <1974 to 2020 March 31>
44	
45	
46	Search Strategy:
47	Search StrateBy:
48	
49 50	
50 51	
52	
53	
54	1 cannabis/ (33859)
55	
56	
57 58	
58 59	
J7	

60

Elen

3 medical cannabis/ (2104)

4 exp cannabinoid receptor/ (14557)

5 exp endocannabinoid/ (8589)

6 (Cannabis or cannabinol or cannabinoid* or cannabidiol or bhang or cannador or charas or ganja or ganjah or hashish or hemp or marihuana or marijuana or nabilone or cesamet or cesametic or ajulemic acid or cannabichromene or cannabielsoin or cannabigerol or tetrahydrocannabinol or dronabinol or levonantradol or nabiximols or palmidrol or tetrahydrocannabinolic acid or tetrahydro cannabinol or marinol or tetranabinex or sativex or endocannabinoid*).mp. [mp=title, abstract, heading word, drug trade name, original title, device manufacturer, drug manufacturer, device trade name, keyword, floating subheading word, candidate term word] (86550)

7 or/1-6 (87843)

Annotation: cannabis

- 8 clinical study/ (154879)
- 9 case control study/ (153658)
- 10 family study/ (26012)
- 11 longitudinal study/ (137463)
- 12 retrospective study/ (897628)

13 prospective study/ (590879)

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
10
17
18
19
20
21
22
22
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
42 43
44
45
46
47
48
49
49 50
50
51
52
53
54
55
56
57
58
59

60

14 randomized controlled trials/ (176633)

15 13 not 14 (584662)

16 cohort analysis/ (564001)

17 (Cohort adj (study or studies)).mp. [mp=title, abstract, heading word, drug trade name, original title, device manufacturer, drug manufacturer, device trade name, keyword, floating subheading word, candidate term word] (296961)

18 (Case control adj (study or studies)).mp. [mp=title, abstract, heading word, drug trade name, original title, device manufacturer, drug manufacturer, device trade name, keyword, floating subheading word, candidate term word] (211490)

19 (follow up adj (study or studies)).mp. [mp=title, abstract, heading word, drug trade name, original title, device manufacturer, drug manufacturer, device trade name, keyword, floating subheading word, candidate term word] (65948)

20 (observational adj (study or studies)).mp. [mp=title, abstract, heading word, drug trade name, original title, device manufacturer, drug manufacturer, device trade name, keyword, floating subheading word, candidate term word] (242526)

21 (epidemiologic\$ adj (study or studies)).mp. [mp=title, abstract, heading word, drug trade name, original title, device manufacturer, drug manufacturer, device trade name, keyword, floating subheading word, candidate term word] (109669)

22 (cross sectional adj (study or studies)).mp. [mp=title, abstract, heading word, drug trade name, original title, device manufacturer, drug manufacturer, device trade name, keyword, floating subheading word, candidate term word] (385983)

23 or/8-12,15-22 (2808984)

Annotation: SIGN observational studies filter

7 and 23 (9720)

Annotation: cannabis AND observational studies

- randomized controlled trial/ (597702)
- Controlled clinical study/ (463832)
- random\$.ti,ab. (1518977)
- randomization/ (86491)
- intermethod comparison/ (258334)
- placebo.ti,ab. (303428)
- (compare or compared or comparison).ti. (504683)
- 32 ((evaluated or evaluate or evaluating or assessed or assess) and (compare or compared or comparing or comparison)).ab. (2082229)

(open adj label).ti,ab. (78190)

- ((double or single or doubly or singly) adj (blind or blinded or blindly)).ti,ab. (229917)
- double blind procedure/ (171048)

י ר	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49 50	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

parallel group\$1.ti,ab. (25201) 36

37 (crossover or cross over).ti,ab. (104010)

((assign\$ or match or matched or allocation) adj5 (alternate or group\$1 or intervention\$1 or 38 patient\$1 or subject\$1 or participant\$1)).ti,ab. (325625)

- 39 (assigned or allocated).ti,ab. (383429)
- 40 (controlled adj7 (study or design or trial)).ti,ab. (343515)
- 41 (volunteer or volunteers).ti,ab. (244577)
- 42 human experiment/ (490389)
- 43 trial.ti. (295850)
- 44 or/25-43 (4952112)

Annotation: Cochrane RCT filter

45 7 and 44 (14036)

Annotation: cannabis AND RCTs

46 24 or 45 (21357)

Annotation: cannabis AND (Obs studies OR RCTs)

47 7 and (23 or 44) (21357)

Annotation: logic check

48 (ae or si or to or co).fs. (3204803)

49 (safe or safety).ti,ab. (1154971)

50 side effect\$.ti,ab. (358075)

51 ((adverse or undesirable or harm\$ or serious or toxic) adj3 (effect\$ or reaction\$ or event\$ or outcome\$)).ti,ab. (787739)

52 exp adverse drug reaction/ (522775)

53 exp drug toxicity/ (125051)

54 exp intoxication/ (366563)

55 exp drug safety/ (393912)

56 exp drug monitoring/ (53058)

57 exp drug hypersensitivity/ (56248)

58 exp postmarketing surveillance/ (35831)

59 exp drug surveillance program/ (26017)

1		
2		
3	60	exp phase iv clinical trial/ (3822)
4		
5		
6		
7	61	(toxicity or complication\$ or noxious or tolerability).ti,ab. (1868476)
8		
9		
10		
11	62	or/48-61 (6002309)
12		
13		
14		
15	Anno	otation: OVID AE filter 1-14
16		
17		
18	63	47 and 62 (6382)
19		
20		
21		
22		
23		
24	Cann	abis AEs
25		
26		
27		
28	Searc	ch Name: cannabis AEs
29		
30		
31		
32	Date	Run: 01/04/2020 18:42:40
33		
34		
	~	
35	Com	ment:
36		
37		
38		
39		
40		
41		2
42	п	Search Hits
43	ID	Search Hits
44		
45		
46	#1	MeSH descriptor: [Cannabis] explode all trees 298
47	#1	ואובשה מבשטווףנטו. נכמווומטושן פגאוטמפ מוו נופפש 200
48		
49		
50	#2	MeSH descriptor: [Cannabinoids] explode all trees 790
51		
52		
53		
54	#3	MeSH descriptor: [Endocannabinoids] explode all trees 48
55		
56 57		
57		
58		
59		

BMJ Open

#4 MeSH descriptor: [Endocannabinoids] explode all trees 48

#5 (Cannabis or cannabinol or cannabinoid* or cannabidiol or bhang or cannador or charas or ganja or ganjah or hashish or hemp or marihuana or marijuana or nabilone or cesamet or cesametic or ajulemic acid or cannabichromene or cannabielsoin or cannabigerol or tetrahydrocannabinol or dronabinol or levonantradol or nabiximols or palmidrol or tetrahydrocannabinolic acid or tetrahydro cannabinol or marinol or tetranabinex or sativex or endocannabinoid*):ti,ab,kw (Word variations have been searched)

#6 #1 or #2 or #3 or #4 or #5 4370

#7 MeSH descriptor: [Drug-Related Side Effects and Adverse Reactions] explode all trees 3463

#8 MeSH descriptor: [] explode all trees and with qualifier(s): [adverse effects - AE, toxicity - TO, poisoning - PO, complications - CO]169278

#9 (safe or safety):ti,ab,kw (Word variations have been searched) 258304

#10 (side effect*):ti,ab,kw (Word variations have been searched) 149400

#11 ((adverse or undesirable or harms* or serious or toxic) near/3 (effect* or reaction* or event* or outcome*)):ti,ab,kw (Word variations have been searched) 279577

#12 MeSH descriptor: [Product Surveillance, Postmarketing] explode all trees 191

#13 MeSH descriptor: [Adverse Drug Reaction Reporting Systems] explode all trees 82

- #14 MeSH descriptor: [Clinical Trial, Phase IV] explode all trees 0
- #15 MeSH descriptor: [Poisoning] explode all trees 2101

BMJ Open

2 3 4 5	#16	MeSH descriptor: [Substance-Related Disorders] explode all trees 14586		
6 7 8	#17	MeSH descriptor: [Abnormalities, Drug-Induced] explode all trees 47		
9 10 11 12	#18	MeSH descriptor: [Drug Monitoring] explode all trees 1725		
13 14 15 16	#19	MeSH descriptor: [Drug Hypersensitivity] explode all trees 965		
17 18 19 20	#20 searche	(toxicity or complication* or noxious or tolerability):ti,ab,kw (Word variations have been ed) 332240		
21 22 23 24 25	#21	#7 or #8 or #9 or #10 or #11 or #12 or #13 or #14 or #15 or #16 or #17 or #18 or #19 or #20 626064		
26 27 28 29	#22	#6 and #21 in Trials 2426		
30 31 32 33	PsycInfo	o		
34 35 36 37	Database: APA PsycInfo <1806 to March Week 4 2020>			
38 39 40 41	Search	Strategy:		
42 43 44 45				
46 47 48 49	1 exp	cannabis/ or exp cannabinoids/ or tetrahydrocannabinol/ (12819)		

(Cannabis or cannabinol or cannabinoid* or cannabidiol or bhang or cannador or charas or ganja or ganjah or hashish or hemp or marihuana or marijuana or nabilone or cesamet or cesametic or ajulemic acid or cannabichromene or cannabielsoin or cannabigerol or tetrahydrocannabinol or dronabinol or levonantradol or nabiximols or palmidrol or tetrahydrocannabinolic acid or tetrahydro cannabinol or

marinol or tetranabinex or sativex or endocannabinoid*).mp. [mp=title, abstract, heading word, table of contents, key concepts, original title, tests & measures, mesh] (26466)

3 1 or 2 (26466)

4 exp "side effects (drug)"/ (57604)

5 (safe or safety).ti,ab. (84148)

6 side effect\$.ti,ab. (31950)

7 ((adverse or undesirable or harms\$ or serious or toxic) adj3 (effect\$ or reaction\$ or event\$ or outcome\$)).ti,ab. (44183)

8 toxic disorders/ (1433)

9 exp "substance use disorder"/ (127742)

10 (toxicity or complication\$ or noxious or tolerability).ti,ab. (42844)

11 or/4-10 (310848)

12 3 and 11 (10984)

13 epidemiology/ (49562)

14 ((case* adj5 control*) or (case adj3 comparison*) or case-comparison or control group*).ti,ab,id. not "Literature Review".md. (95810)

15 ((cohort or longitudinal or prospective or retrospective).ti,ab,id. or longitudinal study.md. or prospective study.md.) not "Literature Review".md. (286455)

16 (cross section* or "prevalence study").ti,ab,id. (80384)

17 clinical trials/ or "treatment outcome clinical trial".md. or ((randomi?ed adj7 trial*) or ((single or doubl* or tripl* or treb*) and (blind* or mask*)) or (controlled adj3 trial*) or (clinical adj2 trial*)).ti,ab,id. (101001)

18 Case control.mp. (10736)

19 (cohort adj (study or studies)).mp. [mp=title, abstract, heading word, table of contents, key concepts, original title, tests & measures, mesh] (21026)

20 Cohort analy\$.mp. (2099)

21 (Follow up adj (study or studies)).mp. [mp=title, abstract, heading word, table of contents, key concepts, original title, tests & measures, mesh] (12876)

22 (Longitudinal or Retrospective or Cross sectional).mp. [mp=title, abstract, heading word, table of contents, key concepts, original title, tests & measures, mesh] (218589)

23 or/13-22 (561443)

24 12 and 23 (3801)

Appendix 2: Detailed methods for the assessment of risk of bias

We rated studies at serious risk of <u>confounding bias</u> when they when they did not adjust for important predictors of adverse events and cannabis use, including, at minimum, pain intensity, concomitant pain medication, disability status, alcohol use, past cannabis use and at critical risk if they did not include a control group. We rated studies at serious risk of <u>selection bias</u> when studies included prevalent medical cannabis users (i.e., patients who experience serious or debilitating adverse events are more likely to discontinue cannabis and hence less likely to be included in studies of prevalent users). We rated studies at serious risk of <u>misclassification of the intervention</u> if there was evidence that medical cannabis users were not appropriately classified. We rated studies at serious risk of bias due to <u>departure from the intervention</u> if the intervention was not delivered as intended or more than 20% of patients discontinued the intervention for reasons unrelated to adverse effects (e.g., costs). We rated studies at serious risk of <u>missing data</u> when 20% or more of the original patients did not have adverse event data. Finally, we rated studies at moderate risk of <u>selective reporting</u> when the study did not differentiate between minor and serious adverse events or when there were indications that adverse events were selectively, and not comprehensively, reported.

Appendix 3: List of included studies

1. Anderson SP, Zylla DM, McGriff DM, Arneson TJ. Impact of medical cannabis on patient-reported symptoms for patients with cancer enrolled in Minnesota's medical cannabis program. Journal of Oncology Practice. 2019;15(6):E338-E45.

2. Bellnier T, Brown GW, Ortega TR. Preliminary evaluation of the efficacy, safety, and costs associated with the treatment of chronic pain with medical cannabis. The Mental Health Clinician. 2018;8(3):110-5.

3. Bestard JA, Toth CC. An open-label comparison of nabilone and gabapentin as adjuvant therapy or monotherapy in the management of neuropathic pain in patients with peripheral neuropathy. Pain Practice. 2011;11(4):353-68.

4. Bonar EE, Cranford JA, Arterberry BJ, Walton MA, Bohnert KM, Ilgen MA. Driving under the influence of cannabis among medical cannabis patients with chronic pain. Drug & Alcohol Dependence. 2019;195:193-7.

5. Cervigni M, Nasta L, Schievano C, Lampropoulou N, Ostardo E. Micronized Palmitoylethanolamide-Polydatin Reduces the Painful Symptomatology in Patients with Interstitial Cystitis/Bladder Pain Syndrome. BioMed Research International. 2019;2019 (no pagination)(9828397).

6. Chirchiglia D, Chirchiglia P, Signorelli F. Nonsurgical lumbar radiculopathies treated with ultramicronized palmitoylethanolamide (umPEA): A series of 100 cases. Neurologia i Neurochirurgia Polska. 2018;52(1):44-7.

7. Cranford JA, Arnedt JT, Conroy DA, Bohnert KM, Bourque C, Blow FC, et al. Prevalence and correlates of sleep-related problems in adults receiving medical cannabis for chronic pain. Drug & Alcohol Dependence. 2017;180:227-33.

8. Cremer-Schaeffer P, Schmidt-Wolf G, Broich K. [Cannabis medicines in pain management : Interim analysis of the survey accompanying the prescription of cannabis-based medicines in Germany with regard to pain as primarily treated symptom]. Der Schmerz. 2019;33(5):415-23.

9. Crowley K, de Vries ST, Moreno-Sanz G. Self-Reported Effectiveness and Safety of Trokie R Lozenges: A Standardized Formulation for the Buccal Delivery of Cannabis Extracts. Frontiers in Neuroscience. 2018;12:564.

10. Del Giorno R, Skaper S, Paladini A, Varrassi G, Coaccioli S. Palmitoylethanolamide in Fibromyalgia: Results from Prospective and Retrospective Observational Studies. Pain and Therapy. 2015;4(2):169-78.

11. Domínguez CM, Martín AD, Ferrer FG, Puertas MI, Muro AL, González JM, et al. N-palmitoylethanolamide in the treatment of neuropathic pain associated with lumbosciatica. Pain Manag. 2012;2(2):119-24.

12. Fanelli G, De Carolis G, Leonardi C, Longobardi A, Sarli E, Allegri M, et al. Cannabis and intractable chronic pain: an explorative retrospective analysis of Italian cohort of 614 patients. Journal of pain research. 2017;10:1217-24.

13. Feingold D, Goor-Aryeh I, Bril S, Delayahu Y, Lev-Ran S. Problematic Use of Prescription Opioids and Medicinal Cannabis Among Patients Suffering from Chronic Pain. Pain Medicine. 2017;18(2):294-306.

14. Fiz J, Duran M, Capella D, Carbonell J, Farre M. Cannabis use in patients with Fibromyalgia: Effect on symptoms relief and health-related quality of life. PLoS ONE. 2011;6 (4) (no pagination)(e18440).

15. Gatti A, Lazzari M, Gianfelice V, Di Paolo A, Sabato E, Sabato AF. Palmitoylethanolamide in the treatment of chronic pain caused by different etiopathogenesis. Pain Medicine. 2012;13(9):1121-30.

16. Giorgi V, Bongiovanni S, Atzeni F, Marotto D, Salaffi F, Sarzi-Puttini P. Adding medical cannabis to standard analgesic treatment for fibromyalgia: a prospective observational study. Clinical & Experimental Rheumatology. 2020;38 Suppl 123(1):53-9.

17. Habib G, Artul S. Medical Cannabis for the Treatment of Fibromyalgia. JCR: Journal of Clinical Rheumatology. 2018;24(5):255-8.

18. Haroutounian S, Ratz Y, Ginosar Y, Furmanov K, Saifi F, Meidan R, et al. The Effect of Medicinal Cannabis on Pain and Quality-of-Life Outcomes in Chronic Pain: A Prospective Open-label Study. Clinical Journal of Pain. 2016;32(12):1036-43.

19. Hoggart B, Ratcliffe S, Ehler E, Simpson KH, Hovorka J, Lejcko J, et al. A multicentre, open-label, follow-on study to assess the long-term maintenance of effect, tolerance and safety of THC/CBD oromucosal spray in the management of neuropathic pain. Journal of Neurology. 2015;262(1):27-40.

20. Lejczak S, Rousselot H, Di Patrizio P, Debouverie M. Dronabinol use in France between 2004 and 2017. Revue Neurologique. 2019;175(5):298-304.

21. Loi ES, Pontis A, Cofelice V, Pirarba S, Fais MF, Daniilidis A, et al. Effect of ultramicronizedpalmitoylethanolamide and co-micronizedpalmitoylethanolamide/polydatin on chronic pelvic pain and quality of life in endometriosis patients: An open-label pilot study. International Journal of Women's Health. 2019;11:443-9.

22. Lynch ME, Young J, Clark AJ. A case series of patients using medicinal marihuana for management of chronic pain under the Canadian Marihuana Medical Access Regulations. Journal of Pain & Symptom Management. 2006;32(5):497-501.

23. Naftali T, Bar-Lev Schleider L, Sklerovsky Benjaminov F, Lish I, Konikoff FM, Ringel Y. Medical cannabis for inflammatory bowel disease: real-life experience of mode of consumption and assessment of side-effects. European Journal of Gastroenterology & Hepatology. 2019;31(11):1376-81.

24. Paladini A, Varrassi G, Bentivegna G, Carletti S, Piroli A, Coaccioli S. Palmitoylethanolamide in the Treatment of Failed Back Surgery Syndrome. Pain Res Treat. 2017;2017:1486010.

25. Passavanti MB, Fiore M, Sansone P, Aurilio C, Pota V, Barbarisi M, et al. The beneficial use of ultramicronized palmitoylethanolamide as add-on therapy to Tapentadol in the treatment of low back pain: a pilot study comparing prospective and retrospective observational arms. BMC Anesthesiology. 2017;17(1):171.

BMJ Open

26. Perron BE, Holt KR, Yeagley E, Ilgen M. Mental health functioning and severity of cannabis withdrawal among medical cannabis users with chronic pain. Drug & Alcohol Dependence. 2019;194:401-9.

27. Rog DJ, Nurmikko TJ, Young CA. Oromucosal delta9-tetrahydrocannabinol/cannabidiol for neuropathic pain associated with multiple sclerosis: an uncontrolled, open-label, 2-year extension trial. Clinical Therapeutics. 2007;29(9):2068-79.

28. Sagy I, Bar-Lev Schleider L, Abu-Shakra M, Novack V. Safety and Efficacy of Medical Cannabis in Fibromyalgia. Journal of Clinical Medicine. 2019;8(6):05.

29. Schifilliti C, Cucinotta L, Fedele V, Ingegnosi C, Luca S, Leotta C. Micronized palmitoylethanolamide reduces the symptoms of neuropathic pain in diabetic patients. Pain Res Treat. 2014;2014:849623.

30. Schimrigk S, Marziniak M, Neubauer C, Kugler EM, Werner G, Abramov-Sommariva D. Dronabinol Is a Safe Long-Term Treatment Option for Neuropathic Pain Patients. European Neurology. 2017;78(5-6):320-9.

31. Sinclair J, Smith CA, Abbott J, Chalmers KJ, Pate DW, Armour M. Cannabis Use, a Self-Management Strategy Among Australian Women With Endometriosis: Results From a National Online Survey. Journal of Obstetrics & Gynaecology Canada: JOGC. 2020;42(3):256-61.

32. Storr M, Devlin S, Kaplan GG, Panaccione R, Andrews CN. Cannabis use provides symptom relief in patients with inflammatory bowel disease but is associated with worse disease prognosis in patients with Crohn's disease. Inflammatory Bowel Diseases. 2014;20(3):472-80.

33. Toth C, Mawani S, Brady S, Chan C, Liu C, Mehina E, et al. An enriched-enrolment, randomized withdrawal, flexible-dose, double-blind, placebo-controlled, parallel assignment efficacy study of nabilone as adjuvant in the treatment of diabetic peripheral neuropathic pain. Pain. 2012;153(10):2073-82.

34. Ueberall MA, Essner U, Mueller-Schwefe GHH. Effectiveness and tolerability of THC:CBD oromucosal spray as add-on measure in patients with severe chronic pain: Analysis of 12-week open-label real-world data provided by the German pain e-registry. Journal of Pain Research. 2019;12:1577-604.

35. Vigil JM, Stith SS, Adams IM, Reeve AP. Associations between medical cannabis and prescription opioid use in chronic pain patients: A preliminary cohort study. PLoS ONE [Electronic Resource]. 2017;12(11):e0187795.

36. Ware MA, Doyle CR, Woods R, Lynch ME, Clark AJ. Cannabis use for chronic non-cancer pain: results of a prospective survey. Pain. 2003;102(1-2):211-6.

37. Ware MA, Wang T, Shapiro S, Collet JP, team Cs. Cannabis for the Management of Pain: Assessment of Safety Study (COMPASS). Journal of Pain. 2015;16(12):1233-42.

38. Weber J, Schley M, Casutt M, Gerber H, Schuepfer G, Rukwied R, et al. Tetrahydrocannabinol (Delta 9-THC) treatment in chronic central neuropathic pain and fibromyalgia patients: Results of a multicenter survey. Anesthesiology Research and Practice. 2009;2009 (no pagination)(827290).

BMJ Open

with low back pain related to fibromyalgia: an observational cross-over single centre study. Clinical &

Experimental Rheumatology. 2019;37 Suppl 116(1):13-20.

Yassin M, Oron A, Robinson D. Effect of adding medical cannabis to analgesic treatment in patients

39.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

torpeer terren ont

Appendix 4: Studies excluded at the full-text screening stage

Not a full-text report of a non-randomized study

1. Aapro MS. Prevention of chemotherapy-induced nausea and vomiting in patients with cancer. Arizona Medicine. 1981;38(11):843-5.

2. Abrams DI, Guzman M. Cannabis in cancer care. Clinical Pharmacology & Therapeutics. 2015;97(6):575-86.

3. Actrn. Cannabis-Based Medicine (Sativex) in the Treatment of Pain in Kidney Failure. http://www.hoint/trialsearch/Trial2aspx?TrialID=ACTRN12610000783022. 2010.

4. Actrn. The CANBACK trial, to determine the efficacy of oral cannabidiol, when compared to placebo, as an adjunct for the treatment of acute non-traumatic low back pain. http://www.hoint/trialsearch/Trial2aspx?TrialID=ACTRN12618000487213. 2018.

5. Adhiyaman V, Arshad S. Cannabis for intractable nausea after bilateral cerebellar stroke. Journal of the American Geriatrics Society. 2014;62(6):1199.

6. Ahmed A, van der Marck MA, van den Elsen G, Olde Rikkert M. Cannabinoids in late-onset Alzheimer's disease. Clinical Pharmacology & Therapeutics. 2015;97(6):597-606.

7. Ahmed AI, van den Elsen GA, van der Marck MA, Olde Rikkert MG. Cannabinoids for pain in dementia: the good, the bad, and the ugly. Journal of the American Geriatrics Society. 2014;62(5):1001-2.

8. Anonymous. Latest trial suggests cannabis does not relieve spasticity of multiple sclerosis. Pharmaceutical Journal. 2002;268(7198):675.

9. Anonymous. Cannabis derivatives and pain. A small role for delta9-tetrahydrocannabinol (THC) in some forms of multiple sclerosis. Prescrire International. 2009;18(103):226.

10. Anonymous. Association between cannabis use and complications related to ulcerative colitis in hospitalized patients: A propensity matched retrospective cohort study: Erratum. Medicine. 2019;98(35):e17046.

11. Arboleda MF, Dam V, Prosk E, Dworkind M, Vigano A. Cannabis-Based Medications: The Future Co-analgesics of Choice for Cancer Patients? Journal of Pain and Symptom Management. 2018;56 (6):e68.

12. Arboleda MF, Dam V, Prosk E, Dworkind M, Vigano A. Tranforming symptom management in cancer patients: Is medical cannabis a new paradigm? Supportive Care in Cancer. 2018;26 (2 Supplement 1):S53.

13. Ashton CH. Adverse effects of cannabis and cannabinoids. British Journal of Anaesthesia. 1999;83(4):637-49.

14. Ballas SK. Use of marijuana in patients with sickle cell disease increased the frequency of hospitalization for acute painful vaso-occlusive crises. Blood Conference: 58th Annual Meeting of the American Society of Hematology, ASH. 2016;128(22).

15. Bergamaschi V, Konrad G, Battaglia MA, Brichetto G. Efficacy and discontinuation of nabiximols in patients with multiple sclerosis: A real-life study. Multiple Sclerosis Journal. 2018;24 (2 Supplement):959.

16. Bertsche T, Schulz M. Cannabis can relieve spasticity associated with multiple sclerosis. [German]. Pharmazeutische Zeitung. 2003;148(8):32-3.

17. Bialas P, Drescher B, Gottschling S, Juckenhofel S, Konietzke D, Kuntz W, et al. [Cannabis-based medicines for chronic pain: indications, selection of drugs, effectiveness and safety : Experiences of pain physicians in Saarland]. Der Schmerz. 2019;33(5):399-406.

18. Blondin N. The evolving role of complementary cannabis therapy in glioblastoma treatment. Neuro-Oncology. 2018;20 (Supplement 6):vi214-vi5.

19. Bronstein K, Dhaliwal J, Leider H. Rates of inappropriate drug use in the chronic pain population: An update. Journal of Pain. 2011;1):P5.

20. Brusberg M, Kang D, Larsson H, Lindstrom E, Martinez V. Inhibition of fatty acid amide hydrolase (FAAH) activity enhances the analgesic action of the endocannabinoid anandamide on visceral pain. Gastroenterology. 2009;1):A141.

21. Bulbul A, Mino EA, Khorsand-Sahbaie M, Lentkowski L. Opioid dose reduction and pain control with medical cannabis. Journal of Clinical Oncology Conference. 2018;36(34 Supplement).

22. Caulley L, Caplan B, Ross E. Medical Marijuana for Chronic Pain. New England Journal of Medicine. 2018;379(16):1575-7.

23. Clements-Nolle K, Lensch T, Larson S, Yang W. Prevalence and correlates of any and frequent synthetic cannabinoid use in a representative sample of high school students. Substance Use & Misuse. 2016;51(9):1139-46.

24. Costales B, Van Boemmel-Wegmann S, Segal R. A descriptive analysis of Florida medical marijuana registry patients from 2016-2017. Pharmacoepidemiology and Drug Safety. 2019;28 (Supplement 2):268.

25. Cuestas E. [Cannabis for chronic neuropathic pain.]. Revista de la Facultad de Ciencias Medicas de Cordoba. 2019;76(1):1-2.

26. De Trane S, Buchanan K, Keenan L, Valentine C, Liddicut M, Stevenson V, et al. Nabiximols has a beneficial effect on self report of MS related spasticity. Multiple Sclerosis. 2016;22 (Supplement 3):684.

27. De Trane S, Buchanan K, Keenan L, Valentine C, Liddicut M, Stevenson V, et al. Thc:cbd (nabiximols) has a beneficial effect on multiple sclerosis (MS) related spasticity and delays or negates the need for intrathecal baclofen pump implantation. Neurology Conference: 69th American Academy of Neurology Annual Meeting, AAN. 2017;88(16 Supplement 1).

28. Degenhardt L, Hall WD. The adverse effects of cannabinoids: implications for use of medical marijuana. CMAJ Canadian Medical Association Journal. 2008;178(13):1685-6.

29. Di Francesco A, Pizzigallo D. Use of micronized palmitoylethanolamide and trans-polydatin in chronic pelvic pain associated with endometriosis. An open-label study. Giornale Italiano di Ostetricia e Ginecologia. 2014;36(2):353-8.

30. Dimou T, Spanomanoli A, Michelis S. The use of palmitoylethinolamide (PEA) in FBSS for chronic pain management. Regional Anesthesia and Pain Medicine. 2019;44 (10 Supplement 1):A168.

31. Donato F, Turri M, Zanette G, Tugnoli V, Deotto L, Teatini F, et al. A study of cortical and spinal excitability in patients affected by multiple sclerosis and spasticity after oromucosal cannabinoid spray (THC/CBD). Clinical Neurophysiology. 2016;127 (4):e147.

32. Donovan KA. Age-related differences in cannabis use by cancer patients referred for supportive care. Diane Portman. Journal of Clinical Oncology Conference. 2019;37(31 Supplement 1).

33. Dow GJ, Meyers FH, Stanton W, Devine ML. Serious reactions to oral delta-9-tetrahydrocannabinol in cancer chemotherapy patients. Clinical Pharmacy. 1984;3(1):14.

34. Dusi V, Attili SVS, Singaraju M. Observational study on role of crude cannabis in pain control and quality of life in terminally ill cancer patients: An Indian perspective. Annals of Oncology. 2019;30 (Supplement 9):ix119.

35. Eltayb A, Etges T, Wright S. An observational post-approval registry study of patients prescribed Sativex. Results from clinical practice. Multiple Sclerosis. 2013;1):480.

36. Erbe B. [Cannabis - medicinal use]. Deutsche Medizinische Wochenschrift. 2014;139(3):74-5.

37. Euctr AT. SATIVEX[®] AS ADD-ON THERAPY VS. FURTHER OPTIMIZED FIRST-LINE ANTISPASTICS. http://www.hoint/trialsearch/Trial2aspx?TrialID=EUCTR2015-004451-40-AT. 2016.

38. Euctr BE. An investigational study to assess the effect of GS-5745 on adult patients with Cystic Fibrosis. http://www.hoint/trialsearch/Trial2aspx?TrialID=EUCTR2015-002192-23-BE. 2016.

39.EuctrDE.Acannabispreparationforneuropathicpain.http://wwwwhoint/trialsearch/Trial2aspx?TrialID=EUCTR2014-005344-17-DE. 2015.

40. Euctr DK. Effect of Sativex on pain and spasticity following spinal cord injury. http://wwwwhoint/trialsearch/Trial2aspx?TrialID=EUCTR2012-005328-14-DK. 2013.

41. Euctr DK. The effect of cannabis products on nerve pain and muscle stiffness in patients with multiple sclerosis and in patients with spinal cord injury. http://www.hoint/trialsearch/Trial2aspx?TrialID=EUCTR2018-002315-98-DK. 2018.

42. Euctr GB. Study of Sativex for the Treatment of Cancer Related Pain. http://www.hoint/trialsearch/Trial2aspx?TrialID=EUCTR2009-016065-29-GB. 2010.

43. Euctr IT. CLINICAL STUDY TO EVALUATE THE EFFECTIVENESS OF Sativex in relieving pain PEOPLE AFFECTED BY MULTIPLE SCLEROSIS. http://www.hoint/trialsearch/Trial2aspx?TrialID=EUCTR2011-002258-30-IT. 2012.

44. Euctr NL. ?9-THC (Namisol[®]) in persistent postsurgical pain. http://www.hoint/trialsearch/Trial2aspx?TrialID=EUCTR2012-000812-27-NL. 2012.

45. Euctr NL. Perioperative ?9-THC for postsurgical pain. http://www.hoint/trialsearch/Trial2aspx?TrialID=EUCTR2012-005808-17-NL. 2013.

46. Euctr NL. Interaction between opioids and cannabinoids in the treatment of fibromyalgia pain. http://www.hoint/trialsearch/Trial2aspx?TrialID=EUCTR2019-001861-33-NL. 2019.

47. Fernandez O. Advances in the management of multiple sclerosis spasticity: Recent clinical trials. European Neurology. 2014;72:9-11.

48. Ferrante F, Polito G, Ferraro M. DELTA-9-tetrahydrocannabinol (Sativex) for the treatment of multiple sclerosis spasticity: Evaluation of effectiveness and safety. European Journal of Hospital Pharmacy. 2019;26 (Supplement 1):A239.

49. Ferre L, Nuara A, Pavan G, Radaelli M, Moiola L, Rodegher M, et al. Medium and long term efficacy of nabiximols for the treatment of multiple sclerosis related spasticity: An Italian monocentric study. Multiple Sclerosis. 2015;1):728-9.

50. Ferre L, Pavan G, Nuara A, Radaelli M, Liberatore G, Guaschino C, et al. Efficacy, safety and response rate to Nabiximol for the treatment of MS-related spasticity in an Italian monocentric cohort. Multiple Sclerosis. 2015;21 (4):501-2.

51. Ferre L, Sorosina M, Santoro S, Moiola L, Rodegher M, Colombo B, et al. Efficacy, safety and response rate of nabiximols assessed in an Italian monocentric cohort. Multiple Sclerosis. 2014;1):469-70.

52. Fitzcharles MA, McDougall J, Ste-Marie PA, Padjen I. Clinical implications for cannabinoid use in the rheumatic diseases: potential for help or harm? Arthritis & Rheumatism. 2012;64(8):2417-25.

53. Flachenecker P, Zettl U, Henze T. THC:CBD oromucosal spray (nabiximols) in the long term treatment of multiple sclerosis spasticity. The MOVE 2 long-term study. Multiple Sclerosis. 2013;1):527.

54. Flank J, Lavoratore S, Vol H, Taylor T, Zelunka E, Nathan P, et al. Chemotherapy-induced nausea and vomiting in children receiving high dose methotrexate with or without vincristine: Preliminary results. Canadian Journal of Hospital Pharmacy. 2014;67 (1):61.

55. Freidel M, Tiel-Wilck K, Schreiber H, Lang M. Resistant multiple sclerosis spasticity (MSS) treatment with THC:CBD spray and effects on driving ability. Multiple Sclerosis. 2013;1):522-3.

56. Friedman D, Devinsky O. Cannabinoids in the Treatment of Epilepsy. New England Journal of Medicine. 2015;373(11):1048-58.

57. Funke A, Spittel S, Kettemann D, Maier A, Munch C, Meyer T. Delta-9-Tetrahydrocannabinolcannabidiol (THC/CBD) oromucosal spray for the treatment of spasticity in ALS - Assessment of patient reported outcomes. Clinical Neurophysiology. 2018;129 (8):e83.

58. Gallo E, Maggini V, Comite M, Sofi F, Baccetti S, Vannacci A, et al. SENeCA Study: Observational study on the effect of medicinal cannabis on quality of life and nutritional outcomes. BMC Complementary and Alternative Medicine Conference: World Congress Integrative Medicine and Health. 2017;17(Supplement 1).

59. Galvin D, Mulkerrin O. Cannabis-based medications: A comparison of patients' knowledge and awareness in pain, neurology and prescription out-patient settings. Pain Practice. 2018;18 (Supplement 1):60.

BMJ Open

60. Gamaoun R, Kasvis P, Patronidis F, Arboleda MF, Vigano A. Potential impact of medical cannabis treatment on pain control among cancer patients in Quebec-Canada: A pilot study. Supportive Care in Cancer. 2019;27 (1 Supplement):S54-S5.

61. Gaston T, Szaflarski M, Hansen B, Grayson L, Bebin EM, Szaflarski J. Improvement in quality of life ratings after one year of treatment with pharmaceutical formulation of cannabidiol (CBD). Epilepsia. 2017;58 (Supplement 5):S159.

62. Gauter B, Rukwied R, Konrad C. [Use and effectiveness of dronabinol (delta9-tetrahydrocannabinol) in chronic pain]. Der Schmerz. 2004;18 Suppl 2:S11-4.

63. Gerardi MC, Batticciotto A, Talotta R, Ditto MC, Atzeni F, Sarzi-Puttini P. Efficacy of cannabis flos in patients with fibromyalgia: A monocentric observational study. Arthritis and Rheumatology. 2016;68 (Supplement 10):72-4.

64. Gilmore D, Hooper C, Nemastil CJ, Dell ML, McCoy K, Kirkby SE. Effects of self-reported marijuana use on adherence and mental health disease in cystic fibrosis. Pediatric Pulmonology. 2018;53 (Supplement 2):424.

65. Gubbiotti M, Illiano E, Costantini E, Giannantoni A. Palmitoylethanolamide/polydatin as add-on therapy in pain resistant patients with interstitial cystitis/bladder painful syndrome. European Urology, Supplements. 2019;18 (1):e1970.

66. Guerrero LJ, Maclas IC, Del Castillo SSF, Izquierdo MM, Rengifo CD, Nunez MN. Effectiveness and safety of d-9-tetrahydrocannabinol (sativex) in patients with multiple sclerosis spasticity. European Journal of Hospital Pharmacy. 2017;24 (Supplement 1):A113.

67. Guindon J. Nabilone in inflammatory pain: to be or not to be. Clinical & Experimental Pharmacology & Physiology. 2012;39(4):327-8.

68. Gurevich T, Bar Lev Chleider L, Rosenberg A, Knaani J, Baruch Y, Djaldetti R. Effect of medical cannabis in Parkinson's disease: Survey of patient experiences. Movement Disorders. 2015;1):S88-S9.

69. Gutierrez T, Hohmann AG. Cannabinoids for the treatment of neuropathic pain: Are they safe and effective? Future Neurology. 2011;6(2):129-33.

70. Guttenthaler V, Wittmann M. Replacement of benzodiacepines by cannabinoids for the preoperative medication-a feasibility trial (Beach-Trial). Medical Cannabis and Cannabinoids. 2019;2 (2):78.

71. Gyang T, Hyland M, Samkoff L, Goodman A. "Real world" experience of medical marijuana in symptomatic management of multiple sclerosis and transverse myelitis. Neurology Conference: 70th Annual Meeting of the American Academy of Neurology, AAN. 2018;90(15 Supplement 1).

72. Hansra D, Granada H. Evaluation of safety, efficacy, and clinical endpoints of delta-9tetrahydrocannabinol in patients age 60 or older with hematologic and oncologic malignancies. Blood Conference: 59th Annual Meeting of the American Society of Hematology, ASH. 2017;130(Supplement 1).

73. Hansra DM. Evaluation of safety, efficacy, and other clinical endpoints of delta-9-tetrahydrocannabinol in older patients with hem/onc malignancies. Journal of Clinical Oncology Conference. 2017;35(15 Supplement 1).

74. Haupts M, Jonas A, Witte K, Alvarez-Ossorio L. Influence of optimized anti-spastic pre-treatment on the efficacy and tolerability of THC: CBD oromucosal spray in multiple sclerosis spasticity patients. A post-hoc RCT data analyses. Multiple Sclerosis. 2015;1):708-9.

75. Hicks K, Snyder C. Impact of high-dose cannabis use in patients with advanced pancreatic cancer undergoing treatment in a phase i clinical trial: Lessons learned and impact on future clinical research design. Journal of Oncology Pharmacy Practice. 2018;24 (2 Supplement 1):8.

76. Higgins P, Ginsburg D, Gilder K, Walsh B, English B, Turner S, et al. Safety and efficacy of olorinab, a peripherally restricted, highly-selective, cannabinoid receptor 2 agonist in a phase 2A study in chronic abdominal pain associated with Crohn's disease. Journal of Crohn's and Colitis. 2019;13 (Supplement 1):S318.

77. Hill KP, Hurley-Welljams-Dorof WM. Low to moderate quality evidence demonstrates the potential benefits and adverse events of cannabinoids for certain medical indications. Evidence Based Medicine. 2016;21(1):17.

78. Hobart JC, Zajicek JP. Cannabis as a symptomatic treatment for MS: Clinically meaningful MUSEC to the stiffness and walking problems of people with MS. Multiple Sclerosis. 2012;1):247.

79. Hoffenberg E, Murphy B, Mikulich-Gilbertson S, McWilliams S, Hoffenberg A, Hopfer C. Why and how adolescents and young adults with inflammatory bowel disease use cannabis. Journal of Pediatric Gastroenterology and Nutrition. 2017;65 (Supplement 2):S147-S8.

80. Honarmand K, Tierney MC, O'Connor P, Feinstein A. Effects of cannabis on cognitive function in patients with multiple sclerosis. Neurology. 2011;76(13):1153-60.

81. Huestis MA, Elsohly M, Nebro W, Barnes A, Gustafson RA, Smith ML. Estimating time of last oral ingestion of cannabis from plasma THC and THCCOOH concentrations. Therapeutic Drug Monitoring. 2006;28(4):540-4.

82. Hulgan T, Kingsley P, Koethe J, Sterling T, Patel S. Associations between circulating endocannabinoids and cardio-metabolic factors in HIV-infected persons on antiretroviral therapy: A pilot study. Antiviral Therapy. 2014;2):A8.

83. Irving P, Iqbal T, Nwokolo C, Subramanian S, Bloom S, Prasad N, et al. Trial to assess cannabidiol in the symptomatic treatment of ulcerative colitis. Gut. 2015;1):A430.

84. Isrctn. A one year open label assessment of the use of nabilone in the treatment of chronic neuropathic pain. http://www.hoint/trialsearch/Trial2aspx?TrialID=ISRCTN38408594. 2007.

85. Jamal N, Korman J, Musing M, Malavade A, Coleman BL, Siddiqui N, et al. The effect of preoperative cannabis use on opioid consumption following surgery: A cohort analysis. Canadian Journal of Hospital Pharmacy. 2018;71 (1):73.

BMJ Open

86. Kalu N, O'Neal PA, Nwokolo C, Diaz S, Owoyemi O. The use of marijuana and hydroxyurea among sickle cell patients. Blood Conference: 58th Annual Meeting of the American Society of Hematology, ASH. 2016;128(22).

87. Kanaan AS, Muller-Vahl KR. Cannabinoid-based medicines for the treatment of Gilles de la Tourette syndrome. Handbook of cannabis and related pathologies: Biology, pharmacology, diagnosis, and treatment. San Diego, CA: Elsevier Academic Press; US; 2017. p. 883-92.

88. Keating GM. Delta-9-Tetrahydrocannabinol/Cannabidiol Oromucosal Spray (Sativex R): A Review in Multiple Sclerosis-Related Spasticity. Drugs. 2017;77(5):563-74.

89. Khalid L, Starrels JL, Sohler N, Arnsten JH, Jost J, Cunningham C. Marijuana use is associated with low prescription opioid analgesic (POA) use among hiv-infected patients with chronic pain. Journal of General Internal Medicine. 2016;1):S297.

90. Kiszko K, Patel K, Chudasama B, Samodulski J, Nienaber C, Martins-Welch D, et al. Older adults' perspectives on medical marijuana (MM) use. Journal of the American Geriatrics Society. 2017;65 (Supplement 1):S70.

91. Klooker T, Leliefeld K, Van Den Wijngaard RM, Boeckxstaens GE. The cannabinoid receptor agonist delta-9-tetrahydrocannabinol increases rectal sensitivity in IBS patients and healthy volunteers. Gastroenterology. 2009;1):A726-A7.

92. Koehler J, Feneberg W, Gorodetzky H, Meier M, Pollmann W. Clinical experiences with on-label nabiximols therapy in multiple sclerosis-induced spasticity. Multiple Sclerosis. 2013;1):281-2.

93. Koehler J, Gorodetzky H, Pollmann W, Meier M, Feneberg W. Monotherapy with nabiximols in multiple sclerosisinduced spasticity. Multiple Sclerosis. 2013;1):282.

94. Laux L, Devinsky O, Miller I, Nabbout R, Zolnowska M, Wright S, et al. Maintenance of long-term safety and efficacy of cannabidiol (CBD) treatment in dravet syndrome (DS): Results of the open-label extension (OLE) trial (GWPCARE5). Annals of Neurology. 2018;84 (Supplement 22):S344.

95. Leehey M, Liu Y, Epstein C, Hart F, Bainbridge J, Cook M, et al. Open label study of cannabidiol in Parkinson's disease. Movement Disorders. 2017;32 (Supplement 2):913.

96. Leehey MA, Liu Y, Hart F, Klawitter J, Sempio C, Fischer S, et al. Preliminary findings of the use of cannabis in Parkinson disease. Movement Disorders. 2019;34 (Supplement 1):S18-S9.

97. Libzon S, Schleider LB, Saban N, Levit L, Tamari Y, Linder I, et al. Medical Cannabis for Pediatric Moderate to Severe Complex Motor Disorders. Journal of Child Neurology. 2018;33(9):565-71.

98. Lindley EM, Razavi-Shearer D, Patel VV, Henry SE, McBeth Z, Burger EL, et al. Medical marijuana use characteristics in patients with chronic spine pain disorders. Spine Journal. 2013;1):84S.

99. Lissoni P, Porro G, Messina G, Porta E, Rovelli F, Roselli MG, et al. Morphine, melatonin, Marijuana, Magnolia and MYRRH as the "five m" schedule in the treatment of cancer pain and the possible dose-dependency of the antitumor and analgesic effects of the pineal hormone melatonin. Anticancer Research. 2014;34 (10):6033-4.

100. Lothe C. The painful truth. Nursing Standard. 1999;13(52):25.

BMJ Open

101. Luckett T, Agar M, Chye R, Lintzeris N, McGregor I, Allsop D, et al. Medicinal cannabis use and preferred mode of administration: Preliminary results from an anonymous patient survey to inform medicinal cannabis phase II and III trials for cancer-related anorexia-cachexia. Palliative Medicine. 2016;30 (6):NP88.

102. Macari D, Gbadamosi B, Ezekwudo D, Khoury J, Jaiyesimi IA, Gaikazian SS. Medical cannabis in cancer patients: Prevalence, efficacy, and safety. Journal of Clinical Oncology Conference. 2019;37(Supplement 15).

103. Maggioli C, Giannone FA, Baldassarre M, Fanelli F, Mezzullo M, Belluomo I, et al.
Endocannabinoids in advanced cirrhosis: Have we picked the right one? Digestive and Liver Disease.
2012;1):S40.

104. Malfitano AM, Laezza C, D'Alessandro A, Procaccini C, Saccomanni G, Tuccinardi T, et al. Effects on immune cells of a new 1,8-naphthyridin-2-one derivative and its analogues as selective CB2 agonists: implications in multiple sclerosis. PLoS ONE [Electronic Resource]. 2013;8(5):e62511.

105. Martellucci I, Laera L, Lippi S, Marsili S, Petrioli R, Francini G. Impact of cannabinoids on the quality of life in oncology: Prospective observational study. Annals of Oncology Conference: 17th National Congress of Medical Oncology Rome Italy Conference Publication:. 2015;26(SUPPL. 6).

106. Mbachi C, Wang Y, Barkin JA, Demetria MV, Barkin JS, Kroner PT, et al. Does cannabis consumption impact chronic pancreatitis related complications? American Journal of Gastroenterology. 2019;114 (Supplement):S21-S2.

107. Mc Vige J, Bargnes VH, Shukri S, Mechtler L. Cannabis, concussion, and chronic pain: An ongoing retrospective analysis at Dent Neurologic Institute in Buffalo, NY. Neurology. 2018;91 (23 Supplement 1):S18-S9.

108. McLeod SA, Lemay JF. Medical cannabinoids. CMAJ Canadian Medical Association Journal. 2017;189(30):E995.

109. McQuay HJ. More evidence cannabis can help in neuropathic pain. CMAJ Canadian Medical Association Journal. 2010;182(14):1494-5.

110. McVige J, Kaur D, Hart P, Lillis M, Mechtler L, Bargnes V, et al. Medical cannabis in the treatment of post-traumatic concussion. Neurology Conference: 71st Annual Meeting of the American Academy of Neurology, AAN. 2019;92(15 Supplement 1).

111. Mechtler L, Bargnes V, Hart P, McVige J, Saikali N. Medical cannabis for chronic migraine: A retrospective review. Neurology Conference: 71st Annual Meeting of the American Academy of Neurology, AAN. 2019;92(15 Supplement 1).

112. Mechtler L, Hart P, Bargnes V, Saikali N. Medical cannabis treatment in patients with trigeminal neuralgia. Neurology Conference: 71st Annual Meeting of the American Academy of Neurology, AAN. 2019;92(15 Supplement 1).

113. Melen CM, Merrien M, Wasik A, Sonnevi K, Junlen HR, Christersson B, et al. A clinical trial of cannabis as targeted therapy for indolent leukemic lymphoma. Blood Conference: 61st Annual Meeting of the American Society of Hematology, ASH. 2019;134(Supplement 1).

BMJ Open

114. Melen CM, Merrien M, Wasik AM, Sonnevi K, Junlen H, Christensson B, et al. The cannabinoid study-01: Investigating the effects of cannabinoids in indolent leukemic B-cell lymphoma. Hematological Oncology. 2019;37 (Supplement 2):572.

115. Mesquita B, Ferreira G, Corral LL, Riviera D, Pita A, Carrillo J, et al. Cannabinoids in the management of chronic GVHD - Experience of a center. Bone Marrow Transplantation. 2017;52 (Supplement 1):233.

116. Messenheimer JA, O'Brien T, Berkovic S, French J, Bonn-Miller M, Gutterman D. Transdermal cannabidiol (CBD) gel for the treatment of focal epilepsy in adults. Neurology. 2018;90 (24):e2188.

117. Milstein SL, MacCannell K, Karr G, Clark S. Marijuana-produced changes in pain tolerance. Experienced and non-experienced subjects. International pharmacopsychiatry. 1975;10(3):177-82.

118. Miodownik H, Bradford C, Starrels JL, Ogu UO, Thomas M, Cunningham CO, et al. Clinical characteristics and health care utilization patterns of sickle cell disease patients using marijuana. Blood Conference: 60th Annual Meeting of the American Society of Hematology, ASH. 2018;132(Suppl. 1).

119. Mirman J. Why we need to legalize medical marijuana. One more potential therapy. Minnesota Medicine. 2014;97(4):38.

120. Moreno M, Vaillancourt R, Pouliot A, Sell E, Hevenor B, Viracoumarane K. A survey of the use of cannabis in children at a tertiary teaching hospital. Canadian Journal of Hospital Pharmacy. 2018;71 (1):72.

121. Morera C. Palmitoylethanolamide (PEA) for sciatic pain associated to usual treatment. Pain Practice. 2012;1):88-9.

122. Morrison G, Sardu ML, Rasmussen CH, Sommerville K, Roberts C, Blakey GE. Exposure-response analysis of cannabidiol for the treatment of lennox-gastaut syndrome. Epilepsia. 2018;59 (Supplement 3):S11-S2.

123. Morrison G, Sardu ML, Rasmussen CH, Sommerville K, Roberts C, Blakey GE. Exposure-Response Analysis of Cannabidiol (CBD) oral solution for the treatment of lennox-gastaut syndrome. Neurology Conference: 70th Annual Meeting of the American Academy of Neurology, AAN. 2018;90(15 Supplement 1).

124. Mousa A, Petrovic M, Laszlo S, Fleshner N. Is there a therapeutic role for cannabis in advanced prostate cancer? Exploring the patterns and predictors of use among men receiving androgendeprivation therapy. Canadian Urological Association Journal. 2018;12 (6 Supplement 2):S126.

125. Mupamombe CT, Nathan RA, Case AA, Walter M, Hansen E. Efficacy of medical cannabis for cancer-related pain in the elderly: A single-center retrospective analysis. Journal of Clinical Oncology Conference. 2019;37(31 Supplement 1).

126. Myers B, Geist T, Hart P, Aladeen T, Begley A, Westphal ES, et al. Medical cannabis in the treatment of parkinson's disease. Neurology Conference: 71st Annual Meeting of the American Academy of Neurology, AAN. 2019;92(15 Supplement 1).

127. Nadal X, Del Rio C, Casano S, Palomares B, Ferreiro-Vera C, Navarrete C, et al. Tetrahydrocannabinolic acid is a potent PPARgamma agonist with neuroprotective activity. British Journal of Pharmacology. 2017;174(23):4263-76.

128. Naftali T, Bar Lev Schlieder L, Hirsch J, Lish I, Benjaminov F, Konikoff F. Cannabis use patterns in patients with IBD. Journal of Crohn's and Colitis. 2016;10 (Supplement 1):S375-S6.

129. Naftali T, Bar Lev Schlieder L, Sklerovsky Benjaminov F, Lish I, Hirsch J, Konikoff FM. Cannabis induces clinical and endoscopic improvement in moderately active ulcerative colitis (UC). Journal of Crohn's and Colitis. 2018;12 (Supplement 1):S306.

130. Naftali T, Bar-Lev L, Gabay G, Chowers Y, Dotan I, Bronshtein M, et al. Tetrahydrocannabinol (THC) rich medical cannabis induces clinical and biochemical improvement with a steroid sparing effect in active crohn's disease. Gastroenterology. 2012;1):S780.

131. Naftali T, Barlev L, Gabay G, Chowers Y, Dotan I, Stein A, et al. Tetrahydrocannabinol (THC) induces clinical and biochemical improvement with a steroid sparing effect in active inflammatory bowel disease. Journal of Crohn's and Colitis. 2013;7 (SUPPL.1):S153.

132. Nathan RA, Tonderai C, Mupamombe, Walter M, Case AA, Hansen E. Use of medical cannabis in treating anorexia and nausea in elderly cancer patients. Journal of Clinical Oncology Conference. 2019;37(31 Supplement 1).

133. Nauck F, Klaschik E. [Dronabinol (delta9-tetrahydrocannabinol) in long-term treatment. Symptom control in patients with multiple sclerosis and spasticity, neuropathic pain, loss of appetite and cachexia]. Der Schmerz. 2004;18 Suppl 2:S26-30.

134. Nct. Study to Evaluate the Efficacy of Dronabinol (Marinol) as Add-On Therapy for Patients on Opioids for Chronic Pain. https://clinicaltrialsgov/show/NCT00153192. 2005.

135. Nct. Medicinal Cannabis for Painful HIV Neuropathy. https://clinicaltrialsgov/show/NCT00255580. 2005.

136. Nct. Supporting Effect of Dronabinol on Behavioral Therapy in Fibromyalgia and Chronic Back Pain. https://clinicaltrialsgov/show/NCT00176163. 2005.

137. Nct. Nabilone Versus Amitriptyline in Improving Quality of Sleep in Patients With Fibromyalgia. https://clinicaltrialsgov/show/NCT00381199. 2006.

138. Nct. MUltiple Sclerosis and Extract of Cannabis (MUSEC) Study. https://clinicaltrialsgov/show/NCT00552604. 2007.

139. Nct. Efficacy and Safety Evaluation of Nabilone as Adjunctive Therapy to Gabapentin for the Management of Neuropathic Pain in Multiple Sclerosis. Clinicaltrials gov, national institutes of health [http://www clinicaltrials gov]. 2007.

140. Nct. A Study to Determine the Maintenance of Effect After Long-term Treatment of Sativex[®] in Subjects With Neuropathic Pain. https://clinicaltrialsgov/show/NCT00713817. 2008.

141. Nct. Prevention of Postoperative Nausea and Vomiting (PONV) in Surgical Patients. https://clinicaltrialsgov/show/NCT00757822. 2008.

2	
3	
4	
5	
6	
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 22 33 34 35 36 37 8 37 8 9	
, o	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
20	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
20	
20	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
41	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52 53	
54	
55	
56	
57	
58	
59	
60	
00	

142. Nct. Sativex for Treatment of Chemotherapy Induced Neuropathic Pain. https://clinicaltrialsgov/show/NCT00872144. 2009.

143. Nct. Efficacy and Safety of the Pain Relieving Effect of Dronabinol in Central Neuropathic Pain Related to Multiple Sclerosis. Clinicaltrials gov, national institutes of health [http://www clinicaltrials gov]. 2009.

144. Nct. A Study of the Safety and Effectiveness of SativexÂ[®], for the Relief of Symptoms of Spasticity in Subjects With Multiple Sclerosis (MS). Clinicaltrials gov, national institutes of health [http://www clinicaltrials gov]. 2010.

145. Nct. Palmitoylethanolamide for Post-operative Pain Prevention. https://clinicaltrialsgov/show/NCT01491191. 2011.

146. Nct. Efficacy Study of Δ9-THC to Treat Chronic Abdominal Pain. https://clinicaltrialsgov/show/NCT01318369. 2011.

147. Nct. Vaporized Cannabis and Spinal Cord Injury Pain. https://clinicaltrialsgov/show/NCT01555983. 2012.

148. Nct. Δ9-THC (Namisol[®]) in Chronic Pancreatitis Patients Suffering From Persistent Abdominal Pain. https://clinicaltrialsgov/show/NCT01551511. 2012.

149. Nct. A Study of Cannabis Based Medicine Extracts and Placebo in Patients With Pain Due to Spinal Cord Injury. https://clinicaltrialsgov/show/NCT01606202. 2012.

150. Nct. Safety and Efficacy Study of Dronabinol to Treat Obstructive Sleep Apnea. https://clinicaltrialsgov/show/NCT01755091. 2012.

151. Nct. Vaporized Cannabis for Chronic Pain Associated With Sickle Cell Disease. https://clinicaltrialsgov/show/NCT01771731. 2013.

152. Nct. Combined THC and CBD Drops for Treatment of Crohn's Disease. https://clinicaltrialsgov/show/NCT01826188. 2013.

153. Nct. Phase 1 Study to Study the Efficacy and Safety of Cannabis in the Treatment of Tinnitus. Clinicaltrialsgov [wwwclinicaltrialsgov]. 2013.

154. Nct. Safety and Efficacy of Nabilone in Alzheimer's Disease. http0s://clinicaltrialsgov/show/NCT02351882. 2014.

155. Nct. Cannabidiol Oral Solution as an Adjunctive Therapy for Treatment of Participants With Inadequately Controlled Dravet Syndrome. https://clinicaltrialsgov/show/NCT02318563. 2014.

156. Nct. Cannabidiol Oral Solution as an Adjunctive Therapy for Treatment of Participants With Inadequately Controlled Lennox-Gastaut Syndrome. https://clinicaltrialsgov/show/NCT02318537. 2014.

157. Nct. Cannabinoid Profile Investigation of Vapourized Cannabis in Patients With Osteoarthritis of the Knee. https://clinicaltrialsgov/show/NCT02324777. 2014.

158. Nct. Investigation of Cannabinoid Receptor Agonist Dronabinol in Patients With Functional Chest Pain. https://clinicaltrialsgov/show/NCT02569073. 2015.

159. Nct. The Safety, Tolerability and Efficacy of Dronabinol, for the Treatment of Nausea and Vomiting in Familial Dysautonomia. https://clinicaltrialsgov/show/NCT02608931. 2015.

160. Nct. Trial of Dronabinol and Vaporized Cannabis in Neuropathic Low Back Pain. https://clinicaltrialsgov/show/NCT02460692. 2015.

161. Nct. The Effects of Cannabis on Dystonia and Spasticity on Pediatric Patients. https://clinicaltrialsgov/show/NCT02470325. 2015.

162. Nct. Evaluating Safety and Efficacy of Cannabis in Participants With Chronic Posttraumatic Stress Disorder. https://clinicaltrialsgov/show/NCT02517424. 2015.

163. Nct. Nabilone Effect on the Attenuation of Anorexia, Nutritional Status and Quality of Life in Lung Cancer Patients. https://clinicaltrialsgov/show/NCT02802540. 2016.

164. Nct. Cannabidiol Oral Solution for the Treatment of Subjects With Prader-Willi Syndrome. https://clinicaltrialsgov/show/NCT02844933. 2016.

165. Nct. Investigation of Cannabis for Chronic Pain and Palliative Care. https://clinicaltrialsgov/show/NCT02683018. 2016.

166. Nct. Effect of Cannabis and Endocannabinoids on HIV Neuropathic Pain. https://clinicaltrialsgov/show/NCT03099005. 2017.

167. Nct. Cannabis Oil for Pain in Parkinson's Disease. https://clinicaltrialsgov/show/NCT03639064.2018.

168. Nct. A Study to Assess the Efficacy, Safety, and Tolerability of Cannabidiol Oral Solution With Vigabatrin as Initial Therapy in Participants With Infantile Spasms. https://clinicaltrialsgov/show/NCT03421496. 2018.

169. Nct. A Study to Examine the Efficacy of a Therapeutic THX-110 for Tourette Syndrome. https://clinicaltrialsgov/show/NCT03651726. 2018.

Nct. Cannabis For Cancer-Related Symptoms. https://clinicaltrialsgov/show/NCT03948074.
 2019.

171. Nct. A Phase 2a Study to Evaluate the Safety, Tolerability and Efficacy of Cannabidiol as a Steroid-sparing Therapy in Steroid-dependent Crohn's Disease Patients. https://clinicaltrialsgov/show/NCT04056442. 2019.

172. Nct. Cannabinoids and an Anti-inflammatory Diet for the Treatment of Neuropathic Pain After Spinal Cord Injury. https://clinicaltrialsgov/show/NCT04057456. 2019.

173. Nct. Efficacy and Safety of Dronabinol in the Improvement of Chemotherapy-induced and
Tumor-related Symptoms in Advanced Pancreatic Cancer. https://clinicaltrialsgov/show/NCT03984214.
2019.

174. Nct. Study to Investigate the Efficacy and Safety of Cannabis Oil for the Treatment of Subjects With Hidradenitis Suppurativa. https://clinicaltrialsgov/show/NCT03929835. 2019.

175. Nct. Pain Response to Cannabidiol in Induced Acute Nociceptive Pain, Allodynia and Hyperalgesia By Using a Model Mimicking Acute Pain in Healthy Adults. https://clinicaltrialsgov/show/NCT03985995. 2019.

176. Nct. Efficacy and Safety of Cannabidiol for Gastroparesis and Functional Dyspepsia. https://clinicaltrialsgov/show/NCT03941288. 2019.

177. Ngan TYT, Litt M, Eguzo K, Thiel JA. Patient Outcomes Following Initiation of Medical Cannabis in Women with Chronic Pelvic Pain. Journal of Minimally Invasive Gynecology. 2019;26 (7 Supplement):S89-S90.

178. Nickels K. Cannabidiol in patients with intractable epilepsy due to TSC: A possible medication but not a miracle. Epilepsy Currents. 2017;17(2):91-2.

179. Nicolodi M, Pinnaro MS, Sandoval V. Selected cannabinoids and cutaneous allodynia in chronic refractory migraine. Journal of Headache and Pain Conference: 12th European Headache Federation Congress and the 32nd National Congress of the Italian Society for the Study of Headaches Italy. 2018;19(Supplement 1).

180. Nicolodi M, Pinnaro MS, Sandoval V, Torrini A. Possible effects, side-effects and adverse events of a selective cannabinoid (6% THC/7.5% CBD) in refractory chronic migraine. 2013-2018 pilot data. Journal of Headache and Pain Conference: 12th European Headache Federation Congress and the 32nd National Congress of the Italian Society for the Study of Headaches Italy. 2018;19(Supplement 1).

181. Nicolodi M, Sandoval V, Torrini A. Therapeutic use of cannabinoids-dose finding, effects and pilot data of effects in chronic migraine and cluster headache. European Journal of Neurology. 2017;24 (Supplement 1):287.

182. Nikles CJ, Yelland M, Glasziou PP, Del Mar C. Do individualized medication effectiveness tests (nof-1 trials) change clinical decisions about which drugs to use for osteoarthritis and chronic pain? American Journal of Therapeutics. 2005;12(1):92-7.

183. Notcutt W, Phillips C, Hughes J, Lacoux P, Vijayakulasingam V, Baldock L. A retrospective description of the use of nabilone in UK clinical practice. Multiple Sclerosis. 2014;1):468.

184. Patel A, Gil-Nagel A, Chin R, Mitchell W, Perry MS, Weinstock A, et al. Long-term safety and efficacy of add-on cannabidiol (CBD) treatment in patients with lennox gastaut syndrome in an openlabel extension trial (GWPCARE5). Neurology Conference: 71st Annual Meeting of the American Academy of Neurology, AAN. 2019;92(15 Supplement 1).

185. Patel A, Gil-Nagel A, Chin R, Mitchell W, Perry MS, Weinstock A, et al. Long-term safety and efficacy of add-on cannabidiol treatment in patients with Lennox Gastaut syndrome in an open-label extension trial (GWPCARE5). Developmental Medicine and Child Neurology. 2019;61 (Supplement 1):13.

186. Patti F, Chisari C, D'Amico E, Solaro C, Arena S, Annunziata P, et al. Long-term effectiveness of 9delta-tetrahydrocannabinol:Cannabidiol oromucosal spray in clinical practice: Results from a 18-months multicenter Italian study. Neurology Conference: 71st Annual Meeting of the American Academy of Neurology, AAN. 2019;92(15 Supplement 1).

187. Patti F, Messina S, Amato MP, Benedetti MD, Bergamaschi R, Bertolotto A, et al. Multicenter, prospective, observational study aimed at evaluating SAtivex efFEcts (effectiveness and tolerability) in a large population of Italian multiple sclerosis patients: SA.FE. Study. Multiple Sclerosis. 2015;1):613-5.

188. Perello Alonso M, Ivanov P. [Pain, cannabis, psychosis. A logical sequence?]. Revista Espanola de Geriatria y Gerontologia. 2017;52(6):350-1.

189. Pires C, Lachiewicz M. A pilot survey of marijuana use and self-reported benefit in women with chronic pelvic pain. Pain Medicine (United States). 2018;19 (4):890.

190. Plummer R, Anthoney A, Evans J, Haris N, D'Archangelo M, Slater S, et al. A phase I dose escalation study to assess the safety tolerability and pharmacokinetics of ETS2101 in patients (pts) with advanced solid tumours. European Journal of Cancer. 2015;3):S58-S9.

191. Poli P, Salvadori C, Sannino C. Effects of cannabis based drugs on chronic neuropathic pain:
Comparison between italian and dutch medical cannabis variety. Pain Practice. 2018;18 (Supplement 1):101.

192. Quintans JS, Antoniolli AR, Almeida JR, Santana-Filho VJ, Quintans-Junior LJ. Natural products evaluated in neuropathic pain models - a systematic review. Basic & Clinical Pharmacology & Toxicology. 2014;114(6):442-50.

193. Reisfield GM. Medical cannabis and chronic opioid therapy. Journal of Pain & Palliative Care Pharmacotherapy. 2010;24(4):356-61.

194. Reznik I. Post-traumatic stress disorder and medical cannabis use: A naturalistic observational study. European Neuropsychopharmacology. 2012;2):S363-S4.

195. Reznik I. Medical marijuana/cannabis treatment of Tourette's syndrome: Focus on the quality of life. European Neuropsychopharmacology. 2014;2):S645-S6.

196. Robinson D, Garti A, Yassin M. Cannabis treatment of diabetic neuropathy: Treatment effect and change in health over a 6 month period. Foot and Ankle Surgery. 2016;1):58.

197. Ron A, Abuhasira R, Novack V. Establishment of a specialized geriatric clinic providing medical cannabis. Journal of the American Geriatrics Society. 2019;67 (Supplement 1):S299.

198. Roy A, Konda M, Goel A, Sasapu A. Characteristics of marijuana usage in sickle cell patients. Journal of Investigative Medicine. 2020;68 (2):646.

199. Roy AM, Konda M, Goel A, Sasapu A. Characteristics of marijuana usage in sickle cell patients: A nationwide analysis. Blood Conference: 61st Annual Meeting of the American Society of Hematology, ASH. 2019;134(Supplement 1).

200. Russo EB, Killestein J, Uitdehaag BMJ, Polman CH. Safety, tolerability, and efficacy of orally administered cannabinoids in MS (multiple letters). Neurology. 2003;60(4):729-30.

201. Sacca F, Pane C, Carotenuto A, Massarelli M, Lanzillo R, Florio EB, et al. The use of medical-grade Cannabis (Bedrocan[®]) in patients non-responders to nabiximols (sativex[®]). Multiple sclerosis (houndmills, basingstoke, england). 2016;22:686-.

202. Sallan S, Zinberg N, Frei E. Oral delta 9 tetrahydrocannabinol (THC) in the prevention of vomiting (V) associated with cancer chemotherapy (CC). Proceedings of the American Association for Cancer Research. 1975;16(66):No. 575.

203. Sastre-Garriga J, Vila C, Clissold S, Montalban X. THC and CBD oromucosal spray (Sativex) in the management of spasticity associated with multiple sclerosis. Expert Review of Neurotherapeutics. 2011;11(5):627-37.

204. Saxon AJ, Browne KW. Marijuana not ready for prime time as an analgesic. General Hospital Psychiatry. 2014;36(1):4-6.

205. Scheffer IE, Halford J, Nabbout R, Sanchez-Carpintero R, Shiloh Malawsky Y, Wong M, et al. Long-term safety and efficacy of add-on cannabidiol (CBD) treatment in patients with Dravet syndrome (DS) in an open-label extension (OLE) trial. Developmental Medicine and Child Neurology. 2019;61 (Supplement 1):63.

206. Schimpfossl M, Berweck S, Betzler C, Dotzler E, Herberhold T, Pringsheim M, et al. Retrospective analysis of tetrahydrocannabinol based on 31 neurologically critically ill children. Neuropediatrics Conference: 41st Annual Meeting of the Society of Neuropediatrics Switzerland. 2015;46(Supplement 1).

207. Schorn M, Krashin D, Mannava A, Belaskova S, Murinova N. Marijuana use in headache in a university-based headache clinic. Neurology Conference: 71st Annual Meeting of the American Academy of Neurology, AAN. 2019;92(15 Supplement 1).

208. Seibert SM, Kumar P, Gomez PL, Gomez CN, Miller LM, Logsdon M. Cannabis in cancer patients [CP] to improve quality of life [QOL] and cancer related symptoms [CRS]: Illinois cancer care cannabis education and clinical analysis. Journal of Clinical Oncology Conference. 2018;36(15 Supplement 1).

209. Shipton EA, Shipton EE. Should doctors be allowed to prescribe cannabinoids for pain in Australia and New Zealand? Australian & New Zealand Journal of Psychiatry. 2014;48(4):310-3.

210. Slaven M, Levine M, Parpia S, Shaw E. An approach to dosing: The cannabis oil in pain effectiveness (COPE) trial. Medical Cannabis and Cannabinoids. 2019;2 (2):2.

211. Spittel S, Funke A, Kettemann D, Maier A, Gajewski N, Baldes T, et al. Patients' satisfaction and usability for tetrahydrocannabinol/cannabidiol (THC:CBD) in the treatment of spasticity in patients with amyotrophic lateral sclerosis (ALS). Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration. 2018;19 (Supplement 1):376.

212. Stern P, Roberts L. The future of pain research. Science. 2016;354(6312):564-5.

213. Sutton IR, Daeninck P. Cannabinoids in the management of intractable chemotherapy-induced nausea and vomiting and cancer-related pain. The Journal of Supportive Oncology. 2006;4(10):531-5.

214. Szaflarski JP, Bebin EM, Gaston T, Grayson L, Liu Y, Cutter G, et al. Improvements in seizure frequency parallel improvements in seizure severity in an open label study of cannabidiol. Epilepsia. 2017;58 (Supplement 5):S158.

215. Taha T, Meiri D, Talhamy S, Wollner M, Peer A, Bar-Sela G. Cannabis Impacts Tumor Response Rate to Nivolumab in Patients with Advanced Malignancies. Oncologist. 2019;24(4):549-54.

216. Thirlwell C, Rainville K, Miri D, Donath A, Shulman H. New frontiers in treating chronic insomnia in Canadian veterans with PTSD: Retrospective analysis reveals an innovative role for medical cannabis in optimizing sleep/wake health. Medical Cannabis and Cannabinoids. 2018;1 (2):126.

217. Tripp D, Nickel JC, Laura K, Ginting JV, Mark W, Santor D. Cannabis (marijuana) use in men with chronic prostatitis / chronic pelvic pain syndrome. Journal of Urology. 2012;1):e439-e40.

218. Trojano M. THC:CBD Observational Study Data: Evolution of Resistant MS Spasticity and Associated Symptoms. European Neurology. 2016;75 Suppl 1:4-8.

219. Vermersch P, Trojano M. Tetrahydrocannabinol + cannabidiol oromucosal spray for multiple sclerosis resistant spasticity on daily practice, new data. Multiple Sclerosis. 2016;22 (Supplement 3):377.

220. Vezyroglou K, Eltze C, Varadkar S, Carr L, O'Sullivan C, Ninnis E, et al. Efficacy and safety of cannabidiol as add-on therapy in drugresistant epilepsy, a single center experience. European Journal of Paediatric Neurology. 2017;21 (Supplement 1):e87.

221. Vezyroglou K, Eltze C, Varadkar S, Carr L, Sullivan CO, Ninnis E, et al. Cannabidiol as add on therapy in children with complex epilepsy. Developmental Medicine and Child Neurology. 2017;59 (Supplement 1):17.

222. Voelker R. States Move to Substitute Opioids With Medical Marijuana to Quell Epidemic. JAMA. 2018;320(23):2408-10.

223. Vorobeichik L, Bhatia A, Buzon-Tan A, Walker S, Kirkham K, Ilangomaran D, et al. Risk factors for failure of Patient-Controlled Oral Analgesia after total hip and knee arthroplasty. Regional Anesthesia and Pain Medicine Conference: 42nd Annual Regional Anesthesiology and Acute Pain Medicine Meeting, ASRA. 2017;42(6).

224. Webb CW, Webb SM. Therapeutic benefits of cannabis: a patient survey. Hawai'i Journal of Medicine & Public Health : A Journal of Asia Pacific Medicine & Public Health. 2014;73(4):109-11.

225. Werth VP, Hejazi E, Pena S, Haber J, Feng R, Patel B, et al. Study of safety and efficacy of lenabasum, a cannabinoid receptor type 2 agonist, in refractory skin-predominant dermatomyositis. Journal of Investigative Dermatology. 2018;138 (5 Supplement 1):S103.

226. Wilsey B, Marcotte T, Deutsch R, Gouaux B, Sakai S, Donaghe H. Low-dose vaporized cannabis significantly improves neuropathic pain. Journal of Pain. 2013;14(2):136-48.

227. Wilsey B, Marcotte T, Tsodikov A, Millman J, Bentley H, Gouaux B, et al. A randomized, placebocontrolled, crossover trial of cannabis cigarettes in neuropathic pain. Journal of Pain. 2008;9(6):506-21.

228. Wilson M, Masterson E, Broglio K. Cannabis Use Among Patients Prescribed Opioids in a Palliative Care Clinic (S875). Journal of Pain and Symptom Management. 2019;57 (2):522.

229. Wilson MM, Masterson E, Broglio K. Cannabis Use among Patients in a Rural Academic Palliative Care Clinic. Journal of Palliative Medicine. 2019;22(10):1224-6.

230. Wirrell E, Privitera M, Bhathal H, Wong M, Cross J, Sommerville K. Cannabidiol (CBD) treatment effect and adverse events (AES) by time in patients with lennox-gastaut syndrome (LGS): Pooled results from 2 trials. Annals of Neurology. 2018;84 (Supplement 22):S341.

231. Wright S, Etges T. An observational post approval registry study of patients prescribed Sativex. Results from clinical practice. (#14). Multiple Sclerosis. 2012;18 (5):S30.

232. Xu JJ, Diaz P, Astruc-Diaz F, Craig S, Munoz E, Naguib M. Pharmacological characterization of a novel cannabinoid ligand, MDA19, for treatment of neuropathic pain. Anesthesia & Analgesia. 2010;111(1):99-109.

233. Zajicek J. Cannabinoids on trial for multiple sclerosis. Lancet Neurology. 2002;1(3):147.

Zajicek JP, Hobart JC, Slade A, Barnes D, Mattison PG, Group MR. Multiple sclerosis and extract of cannabis: results of the MUSEC trial. Journal of Neurology, Neurosurgery & Psychiatry.
2012;83(11):1125-32.

235. Zajicek JP, Sanders HP, Wright DE, Vickery PJ, Ingram WM, Reilly SM, et al. Cannabinoids in multiple sclerosis (CAMS) study: safety and efficacy data for 12 months follow up. Journal of Neurology, Neurosurgery & Psychiatry. 2005;76(12):1664-9.

236. Zettl U, Henze T, Pfiffner C, Vila Silvan C, Flachenecker P. Effectiveness of Sativex in multiple sclerosis spasticity. First data from a large observational study in Germany. Multiple Sclerosis. 2012;1):246.

237. Zettl UK, Rommer P, Hipp P, Patejdl R. Evidence for the efficacy and effectiveness of THC-CBD oromucosal spray in symptom management of patients with spasticity due to multiple sclerosis. Therapeutic Advances in Neurological Disorders. 2016;9(1):9-30.

238. Zhou R, Jacobson C, Weng J, Cheng E, Lay J, Hung P, et al. Potential efficacy of cannabidiol for treatment of refractory infantile spasms and lennox gastaut syndrome. Epilepsy Currents. 2015;1):360-1.

239. Ziemssen T. Tetrahydrocannabinol: Cannabidiol oromucosal spray for treating symptoms of multiple sclerosis spasticity: Newest evidence. Neurodegenerative Disease Management. 2019;9(2s):1-2.

Study did not include patients with chronic pain

1. Abuhasira R, Ron A, Sikorin I, Novack V. Medical cannabis for older patients-treatment protocol and initial results. Journal of Clinical Medicine. 2019;8 (11) (no pagination)(1819).

2. Adejumo AC, Adegbala OM, Adejumo KL, Bukong TN. Reduced Incidence and Better Liver Disease Outcomes among Chronic HCV Infected Patients Who Consume Cannabis. Canadian Journal of Gastroenterology and Hepatology. 2018;2018 (no pagination)(9430953).

3. Allen D. Dronabinol Therapy: Central Nervous System Adverse Events in Adults With Primary Brain Tumors. Clinical Journal of Oncology Nursing. 2019;23(1):23-6.

4. Balash Y, Bar-Lev Schleider L, Korczyn AD, Shabtai H, Knaani J, Rosenberg A, et al. Medical Cannabis in Parkinson Disease: Real-Life Patients' Experience. Clinical Neuropharmacology. 2017;40(6):268-72.

5. Bar-Lev Schleider L, Mechoulam R, Lederman V, Hilou M, Lencovsky O, Betzalel O, et al. Prospective analysis of safety and efficacy of medical cannabis in large unselected population of patients with cancer. European Journal of Internal Medicine. 2018;49:37-43.

6. Bar-Sela G, Vorobeichik M, Drawsheh S, Omer A, Goldberg V, Muller E. The medical necessity for medicinal cannabis: prospective, observational study evaluating the treatment in cancer patients on supportive or palliative care. Evidence-Based Complementary & Alternative Medicine: eCAM. 2013;2013:510392.

7. Beal JE, Olson R, Lefkowitz L, Laubenstein L, Bellman P, Yangco B, et al. Long-term efficacy and safety of dronabinol for acquired immunodeficiency syndrome-associated anorexia. Journal of Pain & Symptom Management. 1997;14(1):7-14.

8. Bobitt J, Qualls SH, Schuchman M, Wickersham R, Lum HD, Arora K, et al. Qualitative Analysis of Cannabis Use Among Older Adults in Colorado. Drugs & Aging. 2019;36(7):655-66.

9. Bouso JC, Jimenez-Garrido D, Ona G, Woznica D, Dos Santos RG, Hallak JEC, et al. Quality of Life, Mental Health, Personality and Patterns of Use in Self-Medicated Cannabis Users with Chronic Diseases: A 12-Month Longitudinal Study. Phytotherapy Research. 2020;21:21.

10. Boyd CJ, Veliz PT, McCabe SE. Adolescents' Use of Medical Marijuana: A Secondary Analysis of Monitoring the Future Data. Journal of Adolescent Health. 2015;57(2):241-4.

11. Bruce D, Brady JP, Foster E, Shattell M. Preferences for Medical Marijuana over Prescription Medications Among Persons Living with Chronic Conditions: Alternative, Complementary, and Tapering Uses. Journal of Alternative & Complementary Medicine. 2018;24(2):146-53.

12. Cameron C, Watson D, Robinson J. Use of a synthetic cannabinoid in a correctional population for posttraumatic stress disorder-related insomnia and nightmares, chronic pain, harm reduction, and other indications: a retrospective evaluation. Journal of Clinical Psychopharmacology. 2014;34(5):559-64.

13. Carlini BH, Garrett SB, Carter GT. Medicinal Cannabis: A Survey Among Health Care Providers in Washington State. The American journal of hospice & palliative care. 2017;34(1):85-91.

14. Chen KA, Farrar M, Cardamone M, Gill D, Smith R, Cowell CT, et al. Cannabidiol for treating drugresistant epilepsy in children: the New South Wales experience. Medical Journal of Australia. 2018;209(5):217-21.

15. Choi NG, DiNitto DM, Marti CN. Nonmedical versus medical marijuana use among three age groups of adults: Associations with mental and physical health status. American Journal on Addictions. 2017;26(7):697-706.

16. Clark AJ, Ware MA, Yazer E, Murray TJ, Lynch ME. Patterns of cannabis use among patients with multiple sclerosis. Neurology. 2004;62(11):2098-100.

BMJ Open

17. Darke S, Duflou J, Farrell M, Peacock A, Lappin J. Characteristics and circumstances of synthetic cannabinoid-related death. Clinical Toxicology: The Official Journal of the American Academy of Clinical Toxicology & European Association of Poisons Centres & Clinical Toxicologists. 2019:1-7.

18. Davies BH, Weatherstone RM, Graham JDP, Griffiths RD. A pilot study of orally administered DELTA trans tetrahydrocannabinol in the management of patients undergoing radiotherapy for carcinoma of the bronchus. BritJClinPharmacol. 1974;1(4):301-6.

19. Devinsky O, Marsh E, Friedman D, Thiele E, Laux L, Sullivan J, et al. Cannabidiol in patients with treatment-resistant epilepsy: an open-label interventional trial. Lancet Neurology. 2016;15(3):270-8.

20. Devinsky O, Marsh E, Friedman D, Thiele E, Laux L, Sullivan J, et al. "Cannabidiol in patients with treatment-resistant epilepsy: An open-label interventional trial": Corrections. The Lancet Neurology. 2016;15(4):352.

21. Ebrahimi-Fakhari D, Agricola KD, Tudor C, Krueger D, Franz DN. Cannabidiol Elevates Mechanistic Target of Rapamycin Inhibitor Levels in Patients With Tuberous Sclerosis Complex. Pediatric Neurology. 2020;105:59-61.

22. Etges T, Karolia K, Grint T, Taylor A, Lauder H, Daka B, et al. An observational postmarketing safety registry of patients in the UK, Germany, and Switzerland who have been prescribed Sativex (THC: CBD, nabiximols) oromucosal spray. Therapeutics and Clinical Risk Management. 2016;12:1667-75.

23. Felix-Ukwu F, Reichert K, Bernhardt MB, Schafer ES, Berger A. Evaluation of aprepitant for acute chemotherapy-induced nausea and vomiting in children and adolescents with acute lymphoblastic leukemia receiving high-dose methotrexate. Pediatric Blood and Cancer. 2018;65 (2) (no pagination)(e26857).

24. Ferre L, Nuara A, Pavan G, Radaelli M, Moiola L, Rodegher M, et al. Efficacy and safety of nabiximols (Sativex) on multiple sclerosis spasticity in a real-life Italian monocentric study. Neurological Sciences. 2016;37(2):235-42.

25. Flachenecker P, Henze T, Zettl UK. Nabiximols (THC/CBD Oromucosal Spray, Sativex) in clinical practice - results of a multicenter, non-interventional study (MOVE 2) in patients with multiple sclerosis spasticity. European Neurology. 2014;71(5-6):271-9.

26. Freeman JL. Safety of cannabidiol prescribed for children with refractory epilepsy. Medical Journal of Australia. 2018;209(5):228-9.

27. Gazibara T, Prpic M, Maric G, Pekmezovic T, Kisic-Tepavcevic D. Medical Cannabis in Serbia: The Survey of Knowledge and Attitudes in an Urban Adult Population. Journal of Psychoactive Drugs. 2017;49(3):217-24.

28. Gorter RW, Butorac M, Cobian EP, van der Sluis W. Medical use of cannabis in the Netherlands. Neurology. 2005;64(5):917-9.

29. Goulet-Stock S, Rueda S, Vafaei A, Ialomiteanu A, Manthey J, Rehm J, et al. Comparing Medical and Recreational Cannabis Users on Socio-Demographic, Substance and Medication Use, and Health and Disability Characteristics. European Addiction Research. 2017;23(3):129-35.

30. Grella CE, Rodriguez L, Kim T. Patterns of medical marijuana use among individuals sampled from medical marijuana dispensaries in los angeles. Journal of Psychoactive Drugs. 2014;46(4):267-75.

31. Gulbransen G, Xu W, Arroll B. Cannabidiol prescription in clinical practice: an audit on the first 400 patients in New Zealand. Bjgp Open. 2020;04:04.

32. Hausman-Kedem M, Menascu S, Kramer U. Efficacy of CBD-enriched medical cannabis for treatment of refractory epilepsy in children and adolescents - An observational, longitudinal study. Brain & Development. 2018;40(7):544-51.

33. Hermanns-Clausen M, Kneisel S, Szabo B, Auwarter V. Acute toxicity due to the confirmed consumption of synthetic cannabinoids: clinical and laboratory findings. Addiction. 2013;108(3):534-44.

34. Highet BH, Lesser ER, Johnson PW, Kaur JS. Tetrahydrocannabinol and Cannabidiol Use in an
Outpatient Palliative Medicine Population. American Journal of Hospice & Palliative Medicine.
2020:1049909119900378.

35. Hussain SA, Zhou R, Jacobson C, Weng J, Cheng E, Lay J, et al. Perceived efficacy of cannabidiolenriched cannabis extracts for treatment of pediatric epilepsy: A potential role for infantile spasms and Lennox-Gastaut syndrome. Epilepsy & Behavior. 2015;47:138-41.

36. Johnson-Sasso CP, Tompkins C, Kao DP, Walker LA. Marijuana use and short-term outcomes in patients hospitalized for acute myocardial infarction. PLoS ONE. 2018;13 (7) (no pagination)(e0199705).

37. Khelemsky Y, Goldberg AT, Hurd YL, Winkel G, Ninh A, Qian L, et al. Perioperative Patient Beliefs Regarding Potential Effectiveness of Marijuana (Cannabinoids) for Treatment of Pain: A Prospective Population Survey. Regional Anesthesia & Pain Medicine. 2017;42(5):652-9.

38. Klotz KA, Grob D, Hirsch M, Metternich B, Schulze-Bonhage A, Jacobs J. Efficacy and Tolerance of Synthetic Cannabidiol for Treatment of Drug Resistant Epilepsy. Frontiers in Neurology. 2019;10 (no pagination)(1313).

39. Koehler J, Feneberg W, Meier M, Pollmann W. Clinical experience with THC:CBD oromucosal spray in patients with multiple sclerosis-related spasticity. International Journal of Neuroscience. 2014;124(9):652-6.

40. Kolansky H, Moore WT. Toxic effects of chronic marihuana use. JAMA. 1972;222(1):35-41.

41. Krcevski-Skvarc N, Wells C, Hauser W. Availability and approval of cannabis-based medicines for chronic pain management and palliative/supportive care in Europe: A survey of the status in the chapters of the European Pain Federation. European Journal of Pain. 2018;22(3):440-54.

42. Lagae L, Schoonjans AS, Gammaitoni AR, Galer BS, Ceulemans B. A pilot, open-label study of the effectiveness and tolerability of low-dose ZX008 (fenfluramine HCl) in Lennox-Gastaut syndrome. Epilepsia. 2018;59(10):1881-8.

43. Laux LC, Bebin EM, Checketts D, Chez M, Flamini R, Marsh ED, et al. Long-term safety and efficacy of cannabidiol in children and adults with treatmentresistant Lennox-Gastaut syndrome or Dravet syndrome: Expanded access program results. Epilepsy Research. 2019;154:13-20.

BMJ Open

44. Leconte M, Nicco C, Ngo C, Arkwright S, Chereau C, Guibourdenche J, et al. Antiproliferative effects of cannabinoid agonists on deep infiltrating endometriosis. American Journal of Pathology. 2010;177(6):2963-70.

45. Liebregts N, Benschop A, van der Pol P, Van Laar M, De Graaf R, Van den Brink W, et al. Cannabis dependence and peer selection in social networks of frequent users. Contemporary Drug Problems: An Interdisciplinary Quarterly. 2011;38(1):93-120.

46. Lim M, Kirchhof MG. Dermatology-Related Uses of Medical Cannabis Promoted by Dispensaries in Canada, Europe, and the United States. Journal of Cutaneous Medicine & Surgery. 2019;23(2):178-84.

47. Lorente Fernandez L, Monte Boquet E, Perez-Miralles F, Gil Gomez I, Escutia Roig M, Bosca Blasco I, et al. Clinical experiences with cannabinoids in spasticity management in multiple sclerosis. [Spanish]. Neurologia. 2014;29(5):257-60.

48. Luckett T, Phillips J, Lintzeris N, Allsop D, Lee J, Solowij N, et al. Clinical trials of medicinal cannabis for appetite-related symptoms from advanced cancer: a survey of preferences, attitudes and beliefs among patients willing to consider participation. Internal Medicine Journal. 2016;46(11):1269-75.

49. Marcellin F, Lions C, Rosenthal E, Roux P, Sogni P, Wittkop L, et al. No significant effect of cannabis use on the count and percentage of circulating CD4 T-cells in HIV-HCV co-infected patients (ANRS CO13-HEPAVIH French cohort). Drug & Alcohol Review. 2017;36(2):227-38.

50. McCabe SE, West BT, Veliz P, Frank KA, Boyd CJ. Social contexts of substance use among U.S. high school seniors: A multicohort national study. Journal of Adolescent Health. 2014;55(6):842-4.

51. Michalski CW, Laukert T, Sauliunaite D, Pacher P, Bergmann F, Agarwal N, et al. Cannabinoids ameliorate pain and reduce disease pathology in cerulein-induced acute pancreatitis. Gastroenterology. 2007;132(5):1968-78.

52. Milloy MJ, Marshall B, Kerr T, Richardson L, Hogg R, Guillemi S, et al. High-intensity cannabis use associated with lower plasma human immunodeficiency virus-1 RNA viral load among recently infected people who use injection drugs. Drug & Alcohol Review. 2015;34(2):135-40.

53. Mitelpunkt A, Kramer U, Hausman Kedem M, Zilbershot Fink E, Orbach R, Chernuha V, et al. The safety, tolerability, and effectiveness of PTL-101, an oral cannabidiol formulation, in pediatric intractable epilepsy: A phase II, open-label, single-center study. Epilepsy and Behavior. 2019;Part A. 98:233-7.

54. Mousa A, Petrovic M, Fleshner NE. Prevalence and predictors of cannabis use among men receiving androgen-deprivation therapy for advanced prostate cancer. Canadian Urological Association Journal. 2020;14(1):E20-E6.

55. Nordmann S, Vilotitch A, Roux P, Esterle L, Spire B, Marcellin F, et al. Daily cannabis and reduced risk of steatosis in human immunodeficiency virus and hepatitis C virus-co-infected patients (ANRS CO13-HEPAVIH). Journal of Viral Hepatitis. 2018;25(2):171-9.

56. Notcutt WG. A questionnaire survey of patients and carers of patients prescribed Sativex as an unlicensed medicine. Primary Health Care Research & Development. 2013;14(2):192-9.

57. Novotna A, Mares J, Ratcliffe S, Novakova I, Vachova M, Zapletalova O, et al. A randomized, double-blind, placebo-controlled, parallel-group, enriched-design study of nabiximols (Sativex(R)), as add-on therapy, in subjects with refractory spasticity caused by multiple sclerosis. European Journal of Neurology. 2011;18(9):1122-31.

58. Ofir R, Bar-Sela G, Weyl Ben-Arush M, Postovsky S. Medical marijuana use for pediatric oncology patients: single institution experience. Pediatric Hematology & Oncology. 2019;36(5):255-66.

59. Palmieri B, Laurino C, Vadala M. A therapeutic effect of cbd-enriched ointment in inflammatory skin diseases and cutaneous scars. Clinica Terapeutica. 2019;170(2):e93-e9.

60. Paolicelli D, Direnzo V, Manni A, D'Onghia M, Tortorella C, Zoccolella S, et al. Long-Term Data of Efficacy, Safety, and Tolerability in a Real-Life Setting of THC/CBD Oromucosal Spray-Treated Multiple Sclerosis Patients. Journal of Clinical Pharmacology. 2016;56(7):845-51.

61. Patel VP, Feinstein A. Cannabis and cognitive functioning in multiple sclerosis: The role of gender. Multiple Sclerosis Journal Experimental Translational & Clinical. 2017;3(2):2055217317713027.

62. Patti F. Health Authorities Data Collection of THC:CBD Oromucosal Spray (L'Agenzia Italiana del Farmaco Web Registry): Figures after 1.5 Years. European Neurology. 2016;75 Suppl 1:9-12.

63. Patti F, Messina S, Solaro C, Amato MP, Bergamaschi R, Bonavita S, et al. Efficacy and safety of cannabinoid oromucosal spray for multiple sclerosis spasticity. Journal of Neurology, Neurosurgery & Psychiatry. 2016;87(9):944-51.

64. Pavisian B, MacIntosh BJ, Szilagyi G, Staines RW, O'Connor P, Feinstein A. Effects of cannabis on cognition in patients with MS: a psychometric and MRI study. Neurology. 2014;82(21):1879-87.

65. Punzo F, Tortora C, Di Pinto D, Pota E, Argenziano M, Di Paola A, et al. Bortezomib and endocannabinoid/endovanilloid system: a synergism in osteosarcoma. Pharmacological Research. 2018;137:25-33.

66. Purcell C, Davis A, Moolman N, Taylor SM. Reduction of Benzodiazepine Use in Patients Prescribed Medical Cannabis. Cannabis and Cannabinoid Research. 2019;4(3):214-8.

67. Radke PM, Mokhtarzadeh A, Lee MS, Harrison AR. Medical Cannabis, a Beneficial High in Treatment of Blepharospasm? An Early Observation. Neuro-Ophthalmology. 2017;41(5):253-8.

68. Romero K, Pavisian B, Staines WR, Feinstein A. Multiple sclerosis, cannabis, and cognition: A structural MRI study. NeuroImage Clinical. 2015;8:140-7.

69. Russo M, Calabro RS, Naro A, Sessa E, Rifici C, D'Aleo G, et al. Sativex in the Management of Multiple Sclerosis-Related Spasticity: Role of the Corticospinal Modulation. Neural Plasticity. 2015;2015 (no pagination)(656582).

70. Sarnelli G, D'Alessandro A, Iuvone T, Capoccia E, Gigli S, Pesce M, et al. Palmitoylethanolamide Modulates Inflammation-Associated Vascular Endothelial Growth Factor (VEGF) Signaling via the Akt/mTOR Pathway in a Selective Peroxisome Proliferator-Activated Receptor Alpha (PPAR-alpha)-Dependent Manner. PLoS ONE [Electronic Resource]. 2016;11(5):e0156198.

BMJ Open

71. Savage TE, Sourbron J, Bruno PL, Skirvin LA, Wolper ES, Anagnos CJ, et al. Efficacy of cannabidiol in subjects with refractory epilepsy relative to concomitant use of clobazam. Epilepsy Research. 2020;160 (no pagination)(106263).

72. Schabas AJ, Vukojevic V, Taylor C, Thu Z, Badyal A, Chan JK, et al. Cannabis-based product use in a multiple sclerosis cohort. Multiple Sclerosis Journal Experimental Translational & Clinical. 2019;5(3):2055217319869360.

73. Stillman M, Capron M, Mallow M, Ransom T, Gustafson K, Bell A, et al. Utilization of medicinal cannabis for pain by individuals with spinal cord injury. Spinal Cord Series and Cases. 2019;5:66.

74. Swift W, Gates P, Dillon P. Survey of Australians using cannabis for medical purposes. Harm Reduction Journal. 2005;2:18.

75. Sylvestre DL, Clements BJ, Malibu Y. Cannabis use improves retention and virological outcomes in patients treated for hepatitis C. European Journal of Gastroenterology & Hepatology. 2006;18(10):1057-63.

76. Tyree GA, Sarkar R, Bellows BK, Ellis RJ, Atkinson JH, Marcotte TD, et al. A Cost-Effectiveness Model for Adjunctive Smoked Cannabis in the Treatment of Chronic Neuropathic Pain. Cannabis and Cannabinoid Research. 2019;4(1):62-72.

77. Vermersch P, Trojano M. Tetrahydrocannabinol:Cannabidiol Oromucosal Spray for Multiple Sclerosis-Related Resistant Spasticity in Daily Practice. European Neurology. 2016;76(5-6):216-26.

78. Vidot DC, Lerner B, Gonzalez R. Cannabis Use, Medication Management and Adherence Among Persons Living with HIV. AIDS & Behavior. 2017;21(7):2005-13.

79. Voon P, Hayashi K, Milloy MJ, Nguyen P, Wood E, Montaner J, et al. Pain Among High-Risk Patients on Methadone Maintenance Treatment. Journal of Pain. 2015;16(9):887-94.

80. Wade DT, Makela PM, House H, Bateman C, Robson P. Long-term use of a cannabis-based medicine in the treatment of spasticity and other symptoms in multiple sclerosis. Multiple Sclerosis. 2006;12(5):639-45.

81. Waissengrin B, Urban D, Leshem Y, Garty M, Wolf I. Patterns of use of medical cannabis among Israeli cancer patients: a single institution experience. Journal of Pain & Symptom Management. 2015;49(2):223-30.

82. Walsh Z, Callaway R, Belle-Isle L, Capler R, Kay R, Lucas P, et al. Cannabis for therapeutic purposes: patient characteristics, access, and reasons for use. International Journal of Drug Policy. 2013;24(6):511-6.

83. Ware MA, Rueda S, Singer J, Kilby D. Cannabis use by persons living with HIV/AIDS: Patterns and prevalence of use. Journal of Cannabis Therapeutics. 2003;3(2):3-15.

84. Witt CM, Berling NEJ, Rinpoche NT, Cuomo M, Willich SN. Evaluation of medicinal plants as part of Tibetan medicine prospective observational study in Sikkim and Nepal. Journal of Alternative and Complementary Medicine. 2009;15(1):59-65.

85. Woolridge E, Barton S, Samuel J, Osorio J, Dougherty A, Holdcroft A. Cannabis use in HIV for pain and other medical symptoms. Journal of Pain & Symptom Management. 2005;29(4):358-67.

86. Zhang H, Xie M, Levin M, Archibald SD, Jackson BS, Young JEM, et al. Survival outcomes of marijuana users in p16 positive oropharynx cancer patients. Journal of Otolaryngology: Head and Neck Surgery. 2019;48(1):43.

Study did not report on medical cannabis

1. Brenton JN, Schreiner T, Karoscik K, Richter M, Ferrante S, Waldman A, et al. Attitudes, perceptions, and use of marijuana in youth with multiple sclerosis. Journal of Neurology. 2018;265(2):417-23.

2. Chirchiglia D, Paventi S, Seminara P, Cione E, Gallelli L. N-Palmitoyl Ethanol Amide Pharmacological Treatment in Patients With Nonsurgical Lumbar Radiculopathy. Journal of Clinical Pharmacology. 2018;58(6):733-9.

3. Coates MD, Soriano C, Dalessio S, Stuart A, Walter V, Koltun W, et al. Gastrointestinal hypoalgesia in inflammatory bowel disease. Annals of Gastroenterology. 2020;33(1):45-52.

4. Cooke AC, Knight KR, Miaskowski C. Patients' and clinicians' perspectives of co-use of cannabis and opioids for chronic non-cancer pain management in primary care. International Journal of Drug Policy. 2019;63:23-8.

5. Costiniuk CT, Saneei Z, Salahuddin S, Cox J, Routy JP, Rueda S, et al. Cannabis Consumption in People Living with HIV: Reasons for Use, Secondary Effects, and Opportunities for Health Education. Cannabis and Cannabinoid Research. 2019;4(3):204-13.

6. Cuomo A, Russo G, Esposito G, Forte CA, Connola M, Marcassa C. Efficacy and gastrointestinal tolerability of oral oxycodone/naloxone combination for chronic pain in outpatients with cancer: An observational study. American Journal of Hospice & Palliative Medicine. 2014;31(8):867-76.

 Finnerup NB, Norrbrink C, Trok K, Piehl F, Johannesen IL, Sorensen JC, et al. Phenotypes and predictors of pain following traumatic spinal cord injury: A prospective study. Journal of Pain. 2014;15(1):40-8.

8. Gallagher R, Best JA, Fyles G, Hawley P, Yeomans W. Attitudes and beliefs about the use of Cannabis for symptom control in a palliative population. Journal of Cannabis Therapeutics. 2003;3(2):41-50.

9. Gill A, Williams AC. Preliminary study of chronic pain patients' concerns about cannabinoids as analgesics. Clinical Journal of Pain. 2001;17(3):245-8.

10. Habib G, Avisar I. The Consumption of Cannabis by Fibromyalgia Patients in Israel. Pain Research and Treatment. 2018;2018:7829427.

11. Harder S, Groenvold M, Isaksen J, Sigaard J, Frandsen KB, Neergaard MA, et al. Antiemetic use of olanzapine in patients with advanced cancer: results from an open-label multicenter study. Supportive Care in Cancer. 2019;27(8):2849-56.

12. Hefner K, Sofuoglu M, Rosenheck R. Concomitant cannabis abuse/dependence in patients treated with opioids for non-cancer pain. American Journal on Addictions. 2015;24(6):538-45.

13. Johnson JR, Lossignol D, Burnell-Nugent M, Fallon MT. An open-label extension study to investigate the long-term safety and tolerability of THC/CBD oromucosal spray and oromucosal THC spray in patients with terminal cancer-related pain refractory to strong opioid analgesics. Journal of Pain & Symptom Management. 2013;46(2):207-18.

Lal S, Prasad N, Ryan M, Tangri S, Silverberg MS, Gordon A, et al. Cannabis use amongst patients with inflammatory bowel disease. European Journal of Gastroenterology & Hepatology.
2011;23(10):891-6.

15. Mai LM, Clark AJ, Gordon AS, Lynch ME, Morley-Forster PK, Nathan H, et al. Long-Term Outcomes in the Management of Painful Diabetic Neuropathy. Canadian Journal of Neurological Sciences. 2017;44(4):337-42.

16. Noyes R, Jr., Brunk SF, Avery DA, Canter AC. The analgesic properties of delta-9tetrahydrocannabinol and codeine. Clinical Pharmacology & Therapeutics. 1975;18(1):84-9.

17. Pezzilli R, Ciuffreda P, Ottria R, Ravelli A, Melzi d'Eril G, Barassi A. Serum endocannabinoids in assessing pain in patients with chronic pancreatitis and in those with pancreatic ductal adenocarcinoma. Scandinavian Journal of Gastroenterology. 2017;52(10):1133-9.

18. Rogers AH, Shepherd JM, Paulus DJ, Orr MF, Ditre JW, Bakhshaie J, et al. The Interaction of Alcohol Use and Cannabis Use Problems in Relation to Opioid Misuse Among Adults with Chronic Pain. International Journal of Behavioral Medicine. 2019;26(5):569-75.

19. Shiplo S, Asbridge M, Leatherdale ST, Hammond D. Medical cannabis use in Canada: Vapourization and modes of delivery. Harm Reduction Journal. 2016;13 (1) (no pagination)(30).

20. Ste-Marie PA, Shir Y, Rampakakis E, Sampalis JS, Karellis A, Cohen M, et al. Survey of herbal cannabis (marijuana) use in rheumatology clinic attenders with a rheumatologist confirmed diagnosis. Pain. 2016;157(12):2792-7.

21. Stein MD, Herman DS, Bailey GL, Straus J, Anderson BJ, Uebelacker LA, et al. Chronic pain and depression among primary care patients treated with buprenorphine. Journal of General Internal Medicine. 2015;30(7):935-41.

22. Stillman M, Mallow M, Ransom T, Gustafson K, Bell A, Graves D. Attitudes toward and knowledge of medical cannabis among individuals with spinal cord injury. Spinal Cord Series and Cases. 2019;5:6.

23. Tripp DA, Nickel JC, Katz L, Krsmanovic A, Ware MA, Santor D. A survey of cannabis (marijuana) use and self-reported benefit in men with chronic prostatitis/chronic pelvic pain syndrome. Canadian Urological Association Journal. 2014;8(11-12):E901-5.

24. Weinkle L, Domen CH, Shelton I, Sillau S, Nair K, Alvarez E. Exploring cannabis use by patients with multiple sclerosis in a state where cannabis is legal. Multiple Sclerosis and Related Disorders. 2019;27:383-90.

25. Weinrieb RM, Barnett R, Lynch KG, DePiano M, Atanda A, Olthoff KM. A matched comparison study of medical and psychiatric complications and anesthesia and analgesia requirements in methadone-maintained liver transplant recipients. Liver Transplantation. 2004;10(1):97-106.

Study did not report on harms or adverse events

1. Aggarwal S, Carter G, Sullivan M, Zumbrunnen C, Morrill R, Mayer J. Prospectively surveying health-related quality of life and symptom relief in a lot-based sample of medical cannabis-using patients in urban Washington State reveals managed chronic illness and debility. American Journal of Hospice & Palliative Medicine. 2013;30(6):523-31.

2. Ashrafioun L, Bohnert KM, Jannausch M, Ilgen MA. Characteristics of substance use disorder treatment patients using medical cannabis for pain. Addictive Behaviors. 2015;42:185-8.

3. Bigand T, Anderson CL, Roberts ML, Shaw MR, Wilson M. Benefits and adverse effects of cannabis use among adults with persistent pain. Nursing Outlook. 2019;67(3):223-31.

4. Boehnke KF, Litinas E, Clauw DJ. Medical Cannabis Use Is Associated With Decreased Opiate Medication Use in a Retrospective Cross-Sectional Survey of Patients With Chronic Pain. Journal of Pain. 2016;17(6):739-44.

5. Boehnke KF, Scott JR, Litinas E, Sisley S, Williams DA, Clauw DJ. Pills to Pot: Observational Analyses of Cannabis Substitution Among Medical Cannabis Users With Chronic Pain. Journal of Pain. 2019;20(7):830-41.

6. Capano A, Weaver R, Burkman E. Evaluation of the effects of CBD hemp extract on opioid use and quality of life indicators in chronic pain patients: a prospective cohort study. Postgraduate Medicine. 2020;132(1):56-61.

7. Consroe P, Musty R, Rein J, Tillery W, Pertwee R. The perceived effects of smoked cannabis on patients with multiple sclerosis. European Neurology. 1997;38(1):44-8.

8. Cranford JA, Bohnert KM, Perron BE, Bourque C, Ilgen M. Prevalence and correlates of "Vaping" as a route of cannabis administration in medical cannabis patients. Drug and Alcohol Dependence. 2016;169:41-7.

9. Curtis SA, Spodick J, Lew D, Roberts JD. Medical marijuana certification for patients with sickle cell disease: A survey study of patient's use and preferences. Blood Conference: 60th Annual Meeting of the American Society of Hematology, ASH. 2018;132(Suppl. 1).

10. Davis AK, Walton MA, Bohnert KM, Bourque C, Ilgen MA. Factors associated with alcohol consumption among medical cannabis patients with chronic pain. Addictive Behaviors. 2018;77:166-71.

11. Donovan KA, Oberoi-Jassal R, Chang YD, Rajasekhara S, Haas MF, Randich AL, et al. Cannabis Use in Young Adult Cancer Patients. Journal of Adolescent & Young Adult Oncology. 2020;9(1):30-5.

12. Drossel C, Forchheimer M, Meade MA. Characteristics of Individuals with Spinal Cord Injury Who Use Cannabis for Therapeutic Purposes. Topics in Spinal Cord Injury Rehabilitation. 2016;22(1):3-12.

13. Ehde DM, Alschuler KN, Osborne TL, Hanley MA, Jensen MP, Kraft GH. Utilization and patients' perceptions of the effectiveness of pain treatments in multiple sclerosis: A cross-sectional survey. Disability & Health Journal. 2015;8(3):452-6.

14. Gras A, Broughton J. A cost-effectiveness model for the use of a cannabis-derived oromucosal spray for the treatment of spasticity in multiple sclerosis. Expert Review of Pharmacoeconomics and Outcomes Research. 2016;16(6):771-9.

15. Jehangir A, Parkman HP. Cannabinoid Use in Patients With Gastroparesis and Related Disorders: Prevalence and Benefit. American Journal of Gastroenterology. 2019;114(6):945-53.

16. Kindred JH, Li K, Ketelhut NB, Proessl F, Fling BW, Honce JM, et al. Cannabis use in people with Parkinson's disease and Multiple Sclerosis: A web-based investigation. Complementary Therapies in Medicine. 2017;33:99-104.

17. Lake S, Walsh Z, Kerr T, Cooper ZD, Buxton J, Wood E, et al. Frequency of cannabis and illicit opioid use among people who use drugs and report chronic pain: A longitudinal analysis. PLoS Medicine / Public Library of Science. 2019;16(11):e1002967.

18. Li X, Vigil JM, Stith SS, Brockelman F, Keeling K, Hall B. The effectiveness of self-directed medical cannabis treatment for pain. Complementary Therapies in Medicine. 2019;46:123-30.

19. Lucas P, Baron EP, Jikomes N. Medical cannabis patterns of use and substitution for opioids & other pharmaceutical drugs, alcohol, tobacco, and illicit substances; Results from a cross-sectional survey of authorized patients. Harm Reduction Journal Vol 16 2019, ArtID 9. 2019;16.

20. Mallada Frechin J. Effect of tetrahydrocannabinol:cannabidiol oromucosal spray on activities of daily living in multiple sclerosis patients with resistant spasticity: a retrospective, observational study. Neurodegenerative Disease Management. 2018;8(3):151-9.

21. Marinelli L, Mori L, Canneva S, Colombano F, Curra A, Fattapposta F, et al. The effect of cannabinoids on the stretch reflex in multiple sclerosis spasticity. International Clinical Psychopharmacology. 2016;31(4):232-9.

22. Mbachi C, Attar B, Oyenubi O, Yuchen W, Efesomwan A, Paintsil I, et al. Association between cannabis use and complications related to ulcerative colitis in hospitalized patients: A propensity matched retrospective cohort study. Medicine. 2019;98(32):e16551.

23. Mbachi C, Attar B, Wang Y, Paintsil I, Mba B, Fugar S, et al. Association Between Cannabis Use and Complications Related to Crohn's Disease: A Retrospective Cohort Study. Digestive Diseases & Sciences. 2019;64(10):2939-44.

24. Mercurio A, Aston ER, Claborn KR, Waye K, Rosen RK. Marijuana as a substitute for prescription medications: A qualitative study. Substance Use & Misuse. 2019;54(11):1894-902.

25. Merker AM, Riaz M, Friedman S, Allegretti JR, Korzenik J. Legalization of Medicinal Marijuana Has Minimal Impact on Use Patterns in Patients With Inflammatory Bowel Disease. Inflammatory Bowel Diseases. 2018;24(11):2309-14. 26. Messina S, Solaro C, Righini I, Bergamaschi R, Bonavita S, Bossio RB, et al. Sativex in resistant multiple sclerosis spasticity: Discontinuation study in a large population of Italian patients (SA.FE. study). PLoS ONE [Electronic Resource]. 2017;12(8):e0180651.

27. Meyer T, Funke A, Munch C, Kettemann D, Maier A, Walter B, et al. Real world experience of patients with amyotrophic lateral sclerosis (ALS) in the treatment of spasticity using tetrahydrocannabinol:cannabidiol (THC:CBD). BMC Neurology. 2019;19(1):222.

28. Michalski CW, Oti FE, Erkan M, Sauliunaite D, Bergmann F, Pacher P, et al. Cannabinoids in pancreatic cancer: Correlation with survival and pain. International Journal of Cancer. 2008;122(4):742-50.

29. Naftali T, Lev LB, Yablecovitch D, Half E, Konikoff FM. Treatment of Crohn's disease with cannabis: an observational study. Israel Medical Association Journal: Imaj. 2011;13(8):455-8.

30. Page SA, Verhoef MJ, Stebbins RA, Metz LM, Levy JC. Cannabis use as described by people with multiple sclerosis. Canadian Journal of Neurological Sciences. 2003;30(3):201-5.

31. Perron BE, Bohnert K, Perone AK, Bonn-Miller MO, Ilgen M. Use of prescription pain medications among medical cannabis patients: comparisons of pain levels, functioning, and patterns of alcohol and other drug use. Journal of Studies on Alcohol & Drugs. 2015;76(3):406-13.

32. Piper BJ, Dekeuster RM, Beals ML, Cobb CM, Burchman CA, Perkinson L, et al. Substitution of medical cannabis for pharmaceutical agents for pain, anxiety, and sleep. Journal of Psychopharmacology. 2017;31(5):569-75.

33. Reiman A, Welty M, Solomon P. Cannabis as a Substitute for Opioid-Based Pain Medication: Patient Self-Report. Cannabis and Cannabinoid Research. 2017;2(1):160-6.

34. Rochford C, Edgeworth D, Hashim M, Harmon D. Attitudes of Irish patients with chronic pain towards medicinal cannabis. Irish Journal of Medical Science. 2019;188(1):267-72.

35. Russo M, De Luca R, Torrisi M, Rifici C, Sessa E, Bramanti P, et al. Should we care about sativexinduced neurobehavioral effects? A 6-month follow-up study. European Review for Medical & Pharmacological Sciences. 2016;20(14):3127-33.

36. Saadeh CE, Rustem DR. Medical Marijuana Use in a Community Cancer Center. Journal of oncology practice/American Society of Clinical Oncology. 2018;14(9):e566-e78.

37. Spencer N, Shaw E, Slaven M. Medical cannabis use in an outpatient palliative care clinic: A retrospective chart review. Journal of Pain Management. 2016;9(4):507-13.

38. Ste-Marie PA, Fitzcharles MA, Gamsa A, Ware MA, Shir Y. Association of herbal cannabis use with negative psychosocial parameters in patients with fibromyalgia. Arthritis care & research. 2012;64(8):1202-8.

39. Sznitman SR, Goldberg V, Sheinman-Yuffe H, Flechter E, Bar-Sela G. Storage and disposal of medical cannabis among patients with cancer: Assessing the risk of diversion and unintentional digestion. Cancer. 2016;122(21):3363-70.

40. Victorson D, McMahon M, Horowitz B, Glickson S, Parker B, Mendoza-Temple L. Exploring cancer survivors' attitudes, perceptions, and concerns about using medical cannabis for symptom and side effect management: A qualitative focus group study. Complementary Therapies in Medicine. 2019;47:102204.

41. Ware MA, Adams H, Guy GW. The medicinal use of cannabis in the UK: results of a nationwide survey. International Journal of Clinical Practice. 2005;59(3):291-5.

42. Ware MA, Martel MO, Jovey R, Lynch ME, Singer J. A prospective observational study of problematic oral cannabinoid use. Psychopharmacology. 2018;235(2):409-17.

Study included <25 patients

1. Apel A, Greim B, Zettl UK. How frequently do patients with multiple sclerosis use complementary and alternative medicine? Complementary Therapies in Medicine. 2005;13(4):258-63.

2. Mondello E, Quattrone D, Cardia L, Bova G, Mallamace R, Barbagallo AA, et al. Cannabinoids and spinal cord stimulation for the treatment of failed back surgery syndrome refractory pain. Journal of Pain Research. 2018;11:1761-7.

3. Toth C, Au S. A prospective identification of neuropathic pain in specific chronic polyneuropathy syndromes and response to pharmacological therapy. Pain. 2008;138(3):657-66.

rezien onz

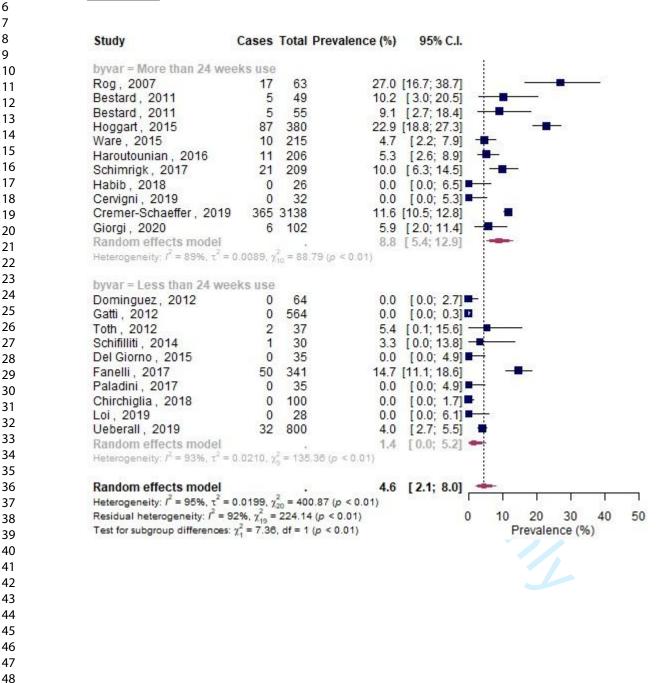
Appendix 5: Risk of bias ratings

	Confounding	Selection of participants into the study	Classification of the intervention	Departures from the intended intervention	Missing data	Measurement of outocmes	Selection of the reported Results	
Study	Ŭ	ii. Š	<u> </u>	<u> </u>	Σ	Σŏ	Se	J
Ware, 2003	_							
Lynch, 2006	_							
Rog, 2007								
Weber, 2009								
Bestard, 2011*								
Fiz, 2011								
Dominguez, 2012 Gatti, 2012								
Toth, 2012 Schifilliti, 2014								
Storr, 2014								
Del Giorno, 2015								
Hoggart, 2015								
Ware, 2015 ⁺								
Haroutounian, 2016								
Bellnier, 2017								
Cranford, 2017								
Fanelli, 2017								
Feingold, 2017								
Paladini, 2017	- ă		ŏ			ă		
Passavanti, 2017	ŏ	ŏ	ŏ	ŏ			ŏ	
Schimrigk, 2017	- ă	ŏ	ŏ	ŏ		Ĭ	ŏ	
Chirchiglia, 2018	ă	ŏ	ŏ	ŏ		Ň	ŏ	
Crowley, 2018	ă	ŏ	ŏ	ŏ	ŏ	Ĭ	ŏ	
Habib, 2018	ŏ	ŏ	ŏ	ŏ	ŏ		ŏ	
Anderson, 2019	ŏ	ŏ	ŏ	ŏ	Ŏ	Ŏ		1
Bonar, 2019	ŏ	Ŏ	ŏ	ŏ	Ŏ	Ŏ	Ŏ	1
Cervigni, 2019	ŏ	Ŏ	ŏ	ŏ	ŏ	ŏ	Ŏ	1
Cremer-Schaeffer, 2019 ‡	ŏ	ŏ	ŏ	Ŏ	Ŏ	ŏ	Ŏ	
Lejczak, 2019	ŏ	ŏ	ŏ	Ŏ	ŏ	ŏ	ŏ	
Loi, 2019	ŏ	Ŏ	Ŏ	Ŏ	Ŏ	Ŏ	Ŏ	
Naftali, 2019	Ó	Ó	Ő	Ő	Ō	Õ		
Perron, 2019	Ŏ	Ŏ	Ŏ	Ŏ	Ŏ	Ŏ		1
Sagy, 2019	0			0				
Sinclair, 2019								
Ueberall, 2019								
Vigil, 2019								
Yassin, 2019								
Giorgi, 2020								l
 * Risk of bias for confoun † Risk of bias for confoun serious. Adjusted compare ‡ The study reported on content herbal cannabis were at some 	ding for u rative resu Ironabino	nadjusted Ilts were ra I, nabiximo	comparativ ated as mo ols, and he	ve compara derate. rbal canna	ative resul ^a bis separa	tely. The re	sults for	
particpants.								

Low risk of bias	
Moderate risk of bias	0
Serious risk of bias	
Critical risk of bias	

Bestard, 2011 21 49 42.9 [29.2; 57.0] Bestard, 2011 21 55 38.2 [25.7; 51.5] Dominguez, 2012 0 64 0.0 [0.0; 0.3] Gatti, 2012 13 37 35.1 [20.4; 51.3] Del Giorno, 2015 0 35 0.0 [0.0; 4.9] Hoggart, 2015 295 380 77.6 [73.3; 81.7] Paladini, 2017 0 35 0.0 [0.0; 4.9] Schimrigk, 2017 174 209 83.3 [77.9; 88.0] Chirchiglia, 2018 16 35 45.7 [29.4; 62.5] Habib, 2018 8 26 30.8 [14.3; 50.1] Anderson, 2019 118 1120 10.5 [8.8; 12.4] Cervigni, 2019 0 32 0.0 [0.0; 6.1] Lejczak, 2019 26 148 17.6 [11.8; 24.2] Lejczak, 2019 26 148 17.6 [11.8; 24.2] Lejczak, 2019 19 19 800 14.9 [12.5; 17.4] Giorgi, 2020 40 102 39.2 [29.9; 48.9] Random effects model Fiz, 2011 27 28 96.4 [85.3; 100.0] Sinclair, 2019 5 48 10.4 [3.1; 20.9] Random effects model Heterogeneity: $l^2 = 99\%$, $r^2 = 0.1463$, $r^2_{20} = 702.67$ (p < 0.01) Random effects model Heterogeneity: $l^2 = 99\%$, $r^2 = 0.1463$, $r^2_{20} = 707.69$ (p = 0)		Study	Cases	Total Prevale	ence (%)	95% C.I.		
Lynch, 2006 27 30 90.0 [76.2; 98.7] Nog, 2007 58 63 92.1 [83.9; 97.7] Weber, 2009 12 120 100 [5.2; 16.1] \bullet Bestard, 2011 21 49 42.9 [29.2; 57.0] Bestard, 2011 21 55 38.2 [25.7; 51.5] Dominguez, 2012 0 64 0.0 [10.0; 2.7] Gatti, 2012 13 37 35.1 [20.4; 51.3] Del Giomo, 2015 0 35 0.0 [10.0; 4.9] Hoggart, 2015 295 380 77.6 [73.3; 81.7] Paladini, 2017 0 35 0.0 [10.0; 4.9] Schimrigk, 2017 174 209 83.3 [77.9; 88.0] Chirchiglia, 2018 16 35 45.7 [29.4; 62.5] Habib, 2018 8 26 30.8 [14.3; 50.1] Anderson, 2019 118 1120 10.5 [8.8; 12.4] \bullet Cervigni, 2019 0 32 0.0 [10.0; 5.3] Lejczak, 2019 26 148 17.6 [11.8; 24.2] \bullet Loi, 2019 0 228 0.0 [0.0; 6.1] Lejczak, 2019 119 119 8000 14.9 [12.5; 17.4] \bullet Random effects model Heterogeneity: $l^2 = 99\%$, $l^2 = 0.1434$, $l^2_{29} = 1995.88 (p = 0)$ Random effects model Heterogeneity: $l^2 = 99\%$, $l^2 = 0.1434$, $l^2_{29} = 2079.69 (p = 0)$ Random effects model Heterogeneity: $l^2 = 99\%$, $l^2 = 0.1434$, $l^2_{29} = 2079.69 (p = 0)$ Random effects model Heterogeneity: $l^2 = 99\%$, $l^2 = 0.272.7 (p < 0.01)$ Random effects model Heterogeneity: $l^2 = 99\%$, $l^2 = 0.1434$, $l^2_{29} = 2079.69 (p = 0)$ Residual heterogeneity: $l^2 = 99\%$, $l^2 = 0.272.7 (p < 0.01)$ Random effects model Heterogeneity: $l^2 = 99\%$, $l^2 = 0.297.95 (p (p = 0))$ Residual heterogeneity: $l^2 = 99\%$, $l^2 = 0.232.5 (10.9; 39.0]$ Heterogeneity: $l^2 = 99\%$, $l^2 = 0.272.7 (p < 0.01)$ Random effects model Heterogeneity: $l^2 = 99\%$, $l^2 = 0.232.5 (10.9; 39.0]$ Heterogeneity: $l^2 = 99\%$, $l^2 = 0.297.95 (p (p = 0))$ Random effects model Heterogeneity: $l^2 = 99\%$, $l^2 = 0.201.92$ Pievalence (%)								
\hat{Pog} , 2007 58 63 92.1 $\hat{Pa3}$, $\hat{97.7}$ Weber, 2009 12 120 100 $\hat{P25}$, $\hat{710}$ Bestard, 2011 21 24 92.2 $\hat{P25}$, $\hat{710}$ Bestard, 2011 21 49 42.9 $22.57.0$ Bestard, 2011 21 55 38.2 $\hat{25.7}$, $\hat{51.5}$ Dominguez, 2012 0 64 00 $[00, 3]$ Gatti, 2012 13 37 35.1 $[20.4, 51.3]$ Del Giomo, 2015 0 35 00 $[00, 4.9]$ Hoggart, 2017 0 35 0.0 $[00, 4.9]$ Hoggart, 2017 174 209 83.3 $(77.6, 73.3, 81.7]$ Paladini, 2017 0 35 0.0 $[00, 1.7]$ $(0, 0.1, 1.7)$ Crowley, 2018 16 35 45.7 $[29.4, 62.5]$ $(24.2, 62.5)$ Habib, 2018 8.26 30.6 $[14.3, 50.1]$ $(24.2, 62.5)$ $(25.7, 61.6)$ Cervigni, 2019 0 32 0.0 $[10.0, 6.1]$ $(25.7, 71.6)$ $(25.7, 72.2)$								
Weber, 2009 12 120 100 [5.2; 16.1] - Bestard, 2011 21 49 42.9 [29.2; 57.0] Bestard, 2011 21 55 382 [25.7; 51.5] Dominguez, 2012 0 64 00 [0.0, 2.7] Gatti, 2012 13 37 35.1 [20.4; 51.3] Del Giomo, 2015 0 35 0.0 [0.0, 4.9] Hoggart, 2015 295 380 77.6 [73.3; 81.7] Paladini, 2017 0 35 0.0 [0.0, 4.9] Schimrigk, 2017 174 209 83.3 [77.9; 88.0] Chirchiglia, 2018 16 35 45.7 [29.4; 62.5] Habib, 2018 8 26 30.8 [14.3; 50.1] Anderson, 2019 118 1120 105 [8.8; 12.4] Cervigni, 2019 0 32 0.0 [0.0; 5.3] Lejczak, 2019 26 148 17.6 [11.8; 24.2] Cervigni, 2019 119 102 232 [29.9; 48.9] Chirchiglia, 2020 40 102 392 [29.9; 48.9] Random effects model Heterogenety: $l^2 = 9\%$, $r^2 = 0.1434$, $r^2_{29} = 1995.88 (p = 0)$ Random effects model Heterogenety: $l^2 = 9\%$, $r^2 = 0.4963$, $r^2_{2} = 72.27 (p < 0.01)$ Random effects model Heterogenety: $l^2 = 9\%$, $r^2 = 0.4963$, $r^2_{2} = 72.27 (p < 0.01)$ Random effects model Heterogenety: $l^2 = 9\%$, $r^2 = 0.42$, $df = 1 (p = 0.52)$								
Bestard, 2011 21 49 42.9 $(29.2, 57.0)$ Bestard, 2011 21 55 32.2 $(25.7, 51.5)$ Dominguez, 2012 0 64 0.0 $(0.0, 0.2.7)$ Gati, 2012 13 37 35.1 $(20.4, 51.3)$ Del Giorno, 2015 0 35 0.0 $(0.0, 4.9)$ Hoggart, 2015 295 380 77.6 $(73.3, 81.7)$ Paladini, 2017 0 35 0.0 $(0.0, 4.9)$ Schimrigk, 2017 174 209 83.3 $(77.9, 88.0)$ Chirchiglia, 2018 0 100 0.0 $(10.0, 1.7)$ Crowley, 2018 16 35 45.7 $(29.4, 62.5)$ Habib, 2018 8 26 30.8 $(14.3, 50.1)$ Anderson, 2019 118 1120 10.5 $[8.8, 12.4]$ Cervigni, 2019 0 32 0.0 $[0.0, 6.3]$ Lejczak, 2019 26 148 17.6 $(11.8, 24.2)$ Lejczak, 2019 26 148 17.6 $(11.8, 24.2)$ Lejczak, 2019 26 148 17.6 $(11.8, 24.2)$ Lejczak, 2019 26 148 17.6 $(11.8, 24.2)$ Heterogeneity: $l^2 = 996$, $l^2 = 0.1434$, $l^2_{20} = 1985.88 (p = 0)$ Random effects model Heterogeneity: $l^2 = 996$, $l^2_{20} = 2079.69 (p = 0)$ Residual heterogeneity: $l^2 = 996$, $l^2_{20} = 2029.69 (5 = 0)$ Test for subgroup differences: $l^2_1 = 0.42$, $df = 1 (p = 0.52)$		Rog, 2007	58	63	92.1	[83.9; 97.7]		
Bestard, 2011 21 55 38.2 [25.7; 51.5] Dominguez, 2012 0 64 0.0 [0.0; 2.7] Gatti, 2012 13 37 35.1 [20.4; 51.3] Del Giorno, 2015 0 35 0.0 [0.0; 4.9] Hoggart, 2015 295 380 77.6 [73.3; 81.7] Paladini, 2017 174 209 83.3 [77.9; 88.0] Chirchiglia, 2018 0 100 0.0 [0.0; 1.7] Crowley, 2018 16 35 45.7 [29.4; 62.5] Habib, 2018 8 26 30.8 [14.3; 50.1] Anderson, 2019 118 1120 10.5 [8.8; 12.4] Cervigni, 2019 0 32 0.0 [0.0; 6.3] Lejczak, 2019 26 148 17.6 [11.8; 24.2] Loi, 2019 0 28 0.0 [0.0; 6.1] Ueberall, 2019 119 800 14.9 [12.5; 17.4] Giorgi, 2020 40 102 39.2 [29.9; 48.9] Random effects model Heterogeneity: $l^2 = 99\%$, $l^2 = 0.493$, $l^2_2 = 2079.69$ ($\rho = 0$) Residual heterogeneity: $l^2 = 99\%$, $l^2 = 0.493$, $l^2_2 = 2079.69$ ($\rho = 0$) Residual heterogeneity: $l^2 = 99\%$, $l^2 = 0.42$, df = 1 ($\rho = 0.52$) Test for subgroup differences: $l^2_1 = 0.42$, df = 1 ($\rho = 0.52$))	Weber, 2009	12	120	10.0	[5.2; 16.1]	F i	
Bestard, 2011 21 55 38.2 [25.7; 51.5] Dominguez, 2012 0 64 0.0 [0.0; 2.7] Gatti, 2012 13 37 35.1 [20.4; 51.3] Del Giorno, 2015 0 35 0.0 [0.0; 4.9] Hoggart, 2015 295 380 77.6 [73.3; 81.7] Paladini, 2017 174 209 83.3 [77.9; 88.0] Chirchiglia, 2018 0 100 0.0 [0.0; 1.7] Crowley, 2018 16 35 45.7 [29.4; 62.5] Habib, 2018 8 26 30.8 [14.3; 50.1] Anderson, 2019 118 1120 10.5 [8.8; 12.4] Cervigni, 2019 0 32 0.0 [0.0; 6.3] Lejczak, 2019 26 148 17.6 [11.8; 24.2] Loi, 2019 0 28 0.0 [0.0; 6.1] Ueberall, 2019 119 800 14.9 [12.5; 17.4] Giorgi, 2020 40 102 39.2 [29.9; 48.9] Random effects model Heterogeneity: $l^2 = 99\%$, $l^2 = 0.493$, $l^2_2 = 2079.69$ ($\rho = 0$) Residual heterogeneity: $l^2 = 99\%$, $l^2 = 0.493$, $l^2_2 = 2079.69$ ($\rho = 0$) Residual heterogeneity: $l^2 = 99\%$, $l^2 = 0.42$, df = 1 ($\rho = 0.52$) Test for subgroup differences: $l^2_1 = 0.42$, df = 1 ($\rho = 0.52$)		Bestard, 2011	21	49	42.9	[29.2; 57.0]		<u></u>
Dominguez, 2012 0 64 0.0 $[0.0; 2.7]^{\bullet}$ Gati, 2012 13 37 35.1 $[20.4; 51.3]$ Del Giorro, 2015 0 35 0.0 $[0.0; 4.9]^{\bullet}$ Hoggart, 2015 295 380 77.6 $[73.3; 81.7]$ Paladini, 2017 0 35 0.0 $[0.0; 4.9]^{\bullet}$ Schimrigk, 2017 174 209 83.3 $[77.9; 88.0]$ Chirchiglia, 2018 0 100 0.0 $[0.0; 0.17]^{\bullet}$ Growley, 2018 16 35 45.7 $[29.4; 62.5]$ Habib, 2018 8 26 30.8 $[14.3; 50.1]^{\bullet}$ Cervigni, 2019 0 32 0.0 $[0.0; 5.3]^{\bullet}$ Lejczak, 2019 26 148 17.6 $[11.8; 24.2]^{\bullet}$ Lejczak, 2019 26 148 17.6 $[11.8; 24.2]^{\bullet}$ Leberall, 2019 0 28 0.0 $[0.0; 5.3]^{\bullet}$ Lejczak, 2019 26 148 17.6 $[11.8; 24.2]^{\bullet}$ Heterogeneity: $r^2 = 99\%$, $r^2 = 0.4434$, $r^2_{20} = 1985.88 (p = 0)$ Heterogeneity: $r^2 = 99\%$, $r^2 = 0.4434$, $r^2_{20} = 1985.88 (p = 0)$ Heterogeneity: $r^2 = 99\%$, $r^2 = 0.443$, $r^2_{21} = 72.27 (p < 0.01)$ Random effects model Heterogeneity: $r^2 = 99\%$, $r^2_{21} = 0.42$, df = 1 $(p = 0.52)$ Heterogeneity: $r^2 = 99\%$, $r^2_{21} = 0.42$, df = 1 $(p = 0.52)$			21	55			-	
Gatti, 2012 0 564 0.0 $[0.0; 0.3]$ Toth, 2012 13 37 35.1 $[20.4; 51.3]$ Del Giorno, 2015 0 35 0.0 $[0.0; 4.9]$ Hoggart, 2015 295 380 77.6 $[73.3; 81.7]$ Paladini, 2017 0 35 0.0 $[0.0; 4.9]$ Schimrigk, 2017 174 209 833 $[77.9; 88.0]$ Chirchiglia, 2018 0 100 0.0 $[0.0; 1.7]$ Crowley, 2018 16 35 45.7 $[29.4; 62.5]$ Habib, 2018 8 26 30.8 $[14.3; 50.1]$ Anderson, 2019 118 1120 10.5 $[8.8; 12.4]$ Cervigni, 2019 0 32 0.0 $[0.0; 5.3]$ Lejczak, 2019 26 148 17.6 $[11.8; 24.2]$ Loi, 2019 0 28 0.0 $[0.0; 6.1]$ Ueberall, 2019 119 800 14.9 $[12.5; 17.4]$ Giorgi, 2020 40 102 39.2 $[29.9; 48.9]$ Random effects model Fiz, 2011 27 28 96.4 $[85.3; 100.0]$ Heterogeneity: $l^2 = 99\%$, $r_z^2 = 0.4933$, $r_{z_z}^2 = 279.69$ $(\rho = 0)$ Residual heterogeneity: $l^2 = 99\%$, $r_z^2 = 0.4933$, $r_{z_z}^2 = 72.27$ $(\rho < 0.01)$ Random effects model Heterogeneity: $l^2 = 99\%$, $r_z^2 = 0.423$, $df = 1$ $(\rho = 0.52)$ Color $[13.2; 41.2]$ (13.2; 41.2] (13.2; 41.2]			0					
Toth, 2012 13 37 35.1 [20.4; 51.3] Del Giorno, 2015 0 35 0.0 [0.0; 4.9] Hoggari, 2015 295 380 77.6 [7.3; 81.7] Paladini, 2017 0 35 0.0 [0.0; 4.9] Schimrigk, 2017 174 209 83.3 [77.9; 88.0] Chirchiglia, 2018 16 35 45.7 [29.4; 62.5] Habib, 2018 8 26 30.8 [14.3; 50.1] Anderson, 2019 118 1120 10.5 [8.8; 12.4] Cervigni, 2019 0 32 0.0 [0.0; 5.3] Lejczak, 2019 26 148 17.6 [11.8; 24.2] Lejczak, 2019 26 148 17.6 [11.8; 24.2] Leio, 2019 0 28 0.0 [0.0; 6.3] Leberall, 2019 10 32 0.0 [0.0; 5.3] Leberall, 2019 10 32 0.0 [0.0; 5.3] Leiorgeneity: $l^2 = 99\%$, $t^2 = 0.1434$, $t^2_{20} = 1965.88 (p = 0)$ design = cross-sectional Fiz, 2011 27 28 96.4 [85.3; 100.0] Sinclair, 2019 5 48 10.4 [3.1; 20.9] Heterogeneity: $l^2 = 99\%$, $t^2 = 0.4963$, $t^2_{21} = 72.27 (p < 0.01)$ Random effects model Heterogeneity: $l^2 = 99\%$, $t^2 = 0.4963$, $t^2_{22} = 2079.69 (p = 0)$ Residual heterogeneity: $l^2 = 99\%$, $t^2 = 0.42$, df = 1 (p = 0.52)			0					
Del Giorno, 2015 0 35 0.0 $[0.0, 4.9]$ Hoggart, 2015 295 380 77.6 $[73.3, 81.7]$ Paladini, 2017 0 35 0.0 $[0.0, 4.9]$ Schimrigk, 2017 174 209 83.3 $[77.9, 88.0]$ Chirchiglia, 2018 0 100 0.0 $[0.0, 1.7]$ Crowley, 2018 16 35 45.7 $[29.4, 62.5]$ Habib, 2018 8 26 30.8 $[14.3, 50.1]$ Anderson, 2019 118 1120 10.5 $[8.8, 12.4]$ Cervigni, 2019 26 148 17.6 $[11.8, 24.2]$ Lejczak, 2019 26 148 17.6 $[11.8, 24.2]$ Lejczak, 2019 0 28 0.0 $[0.0, 6.1]$ Ueberall, 2019 119 800 14.9 $[12.5, 17.4]$ Giorgi, 2020 40 102 39.2 $[29.9, 48.9]$ Random effects model Heterogeneity: $l^2 = 99\%$, $r^2 = 0.1434$, $r^2_{20} = 1985.88 (p = 0)$ Random effects model Heterogeneity: $l^2 = 99\%$, $r^2 = 0.4963$, $r^2_{2} = 2079.69 (p = 0)$ Residual heterogeneity: $l^2 = 99\%$, $r^2_{21} = 2058.15 (p = 0)$ Test for subgroup differences: $r^2_{4} = 0.42$, df = 1 (p = 0.52)								
Hoggart, 2015 295 380 77.6 [$\vec{r}3.3$; $\vec{8}1.7$] Paladini, 2017 0 35 0.0 [0.0; 4.9] Schimrigk, 2017 174 209 83.3 [77.9 ; 88.0] Chirchiglia, 2018 0 100 0.0 [0.0; 1.7] Crowley, 2018 16 35 45.7 [29.4; 62.5] Habib, 2018 8 26 30.8 [14.3; 50.1] Anderson, 2019 118 1120 10.5 [8.8 ; 12.4] Cervigni, 2019 0 32 0.0 [$0.0; 5.3$] Lejczak, 2019 26 148 17.6 [$11.8; 24.2$] Lejczak, 2019 26 148 17.6 [$11.8; 24.2$] Lejczak, 2019 19 0 28 0.0 [$0.0; 5.3$] Lejczak, 2019 26 148 17.6 [$11.8; 24.2$] Heterogeneity: $l^2 = 99\%$, $r^2 = 0.1434$, $r^2_{20} = 1985.88 (p = 0)$ design = cross-sectional Fiz, 2011 27 28 96.4 [$85.3; 100.0$] Sinclair, 2019 5 48 10.4 [$3.1; 20.9$] Heterogeneity: $l^2 = 99\%$, $r^2 = 0.4963$, $r^2_{\pi} = 72.27 (p < 0.01)$ Random effects model Heterogeneity: $l^2 = 99\%$, $r^2 = 0.4963$, $r^2_{\pi} = 72.77 (p < 0.01)$ Random effects model Heterogeneity: $l^2 = 99\%$, $r^2 = 0.42$, df = 1 ($p = 0.52$) Co 20 40 60 80 10 Prevalence (%)								
Paladini, 2017 0 35 0.0 $[0.0, 4.9]$ - Schimrigk, 2017 174 209 833 [77.9, 88.0] Chirchiglia, 2018 0 100 0.0 $[0.0, 1.7]$ Crowley, 2018 16 35 45.7 [29.4, 62.5] Habib, 2018 8 26 30.8 [14.3; 50.1] Anderson, 2019 118 1120 10.5 [8.8, 12.4] = Cervigni, 2019 0 32 0.0 $[0.0; 5.3]$ - Lejczak, 2019 26 148 17.6 [11.8; 24.2] - Loi, 2019 0 28 0.0 $[0.0; 6.1]$ - Ueberall, 2019 119 800 14.9 [12.5; 17.4] Giorgi, 2020 40 102 392 [29.9; 48.9] Random effects model Heterogeneity: $l^2 = 99\%$, $r^2 = 0.1434$, $r^2_{20} = 1985.88 (p = 0)$ design = cross-sectional Fiz, 2011 27 28 96.4 [85.3; 100.0] Heterogeneity: $l^2 = 99\%$, $r^2 = 0.4963$, $r^2_{4} = 72.27 (p < 0.01)$ Random effects model Heterogeneity: $l^2 = 99\%$, $r^2 = 0.4963$, $r^2_{4} = 72.27 (p < 0.01)$ Random effects model Heterogeneity: $l^2 = 99\%$, $r^2 = 0.42$, df = 1 (p = 0.52) 26.0 [13.2; 41.2] - 17. Start for subgroup differences: $r^2_{4} = 0.42$, df = 1 (p = 0.52)								-
Schimrigk, 2017 174 209 83.3 [77.9; 88.0] Chirchiglia, 2018 0 100 0.0 [0.0; 1.7] Crowley, 2018 16 35 45.7 [29.4; 62.5] Habib, 2018 8 26 30.8 [14.3; 50.1] Anderson, 2019 118 1120 10.5 [8.8; 12.4] Cervigni, 2019 0 32 0.0 [0.0; 5.3] Lejczak, 2019 26 148 17.6 [11.8; 24.2] Loi, 2019 0 28 0.0 [0.0; 6.1] Ueberall, 2019 119 800 14.9 [12.5; 17.4] Giorgi, 2020 40 102 39.2 [29.9; 48.9] Random effects model Fiz, 2011 27 28 96.4 [85.3; 100.0] Heterogeneity: $l^2 = 99\%$, $t^2 = 0.1434$, $\chi^2_{20} = 1985.88 (p = 0)$ Random effects model Heterogeneity: $l^2 = 99\%$, $t^2 = 0.423$, $\chi^2_{12} = 72.27 (p < 0.01)$ Random effects model Heterogeneity: $l^2 = 99\%$, $t^2 = 0.423$, $df = 1 (p = 0.52)$ Chirchiglia, 2019 Constant of the subgroup differences: $\chi^2_1 = 0.42$, $df = 1 (p = 0.52)$								
Chirchiglia, 2018 0 100 0.0 [0.0; 1.7] Growley, 2018 16 35 45.7 [294; 62.5] Habib, 2018 8 26 30.8 [14.3; 50.1] Anderson, 2019 118 1120 10.5 [8.8; 12.4] Cervigni, 2019 0 32 0.0 [0.0; 5.3] Lejczak, 2019 26 148 17.6 [11.8; 24.2] Loi, 2019 0 28 0.0 [0.0; 6.1] Ueberall, 2019 119 800 14.9 [12.5; 17.4] Giorgi, 2020 40 102 39.2 [29.9; 48.9] Random effects model Fiz, 2011 27 28 96.4 [85.3; 100.0] Heterogeneity: $l^2 = 99\%$, $\tau^2 = 0.1434$, $\chi^2_{20} = 1985.88 (p = 0)$ Random effects model Heterogeneity: $l^2 = 99\%$, $\tau^2 = 0.4963$, $\chi^2_1 = 72.27 (p < 0.01)$ Random effects model Heterogeneity: $l^2 = 99\%$, $\tau^2 = 0.4463$, $\chi^2_{22} = 2079.69 (p = 0)$ Residual heterogeneity: $l^2 = 99\%$, $\chi^2_{21} = 2058.15 (p = 0)$ Test for subgroup differences: $\chi^2_1 = 0.42$, df = 1 (p = 0.52)								
Crowley, 2018 16 35 45.7 [29.4, 62.5] Habib, 2018 8 26 30.8 [14.3; 50.1] Anderson, 2019 118 1120 10.5 [8.8, 12.4] Cervigni, 2019 0 32 0.0 [0.0; 5.3] Lejczak, 2019 26 148 17.6 [11.8, 24.2] Loi, 2019 0 28 0.0 [0.0; 6.1] Ueberall, 2019 119 800 14.9 [12.5; 17.4] Giorgi, 2020 40 102 39.2 [29.9; 48.9] Random effects model Heterogeneity: $l^2 = 99\%$, $\tau^2 = 0.1434$, $\chi^2_{20} = 1985.88 (p = 0)$ design = cross-sectional Fiz, 2011 27 28 96.4 [85.3; 100.0] Sinclair, 2019 5 48 10.4 [3.1; 20.9] Random effects model Heterogeneity: $l^2 = 99\%$, $\tau^2 = 0.4963$, $\chi^2_{22} = 2079.69 (p = 0)$ Residual heterogeneity: $l^2 = 99\%$, $\tau^2 = 0.42$, $df = 1 (p = 0.52)$ Test for subgroup differences: $\chi^2_1 = 0.42$, $df = 1 (p = 0.52)$								1.000
Habib, 2018 8 26 30.8 $[14.3; 50.1]$ Anderson, 2019 118 1120 10.5 $[8.8; 12.4]$ Cervigni, 2019 0 32 00 $[0.0; 5.3]$ Lejczak, 2019 0 28 0.0 $[0.0; 6.1]$ Ueberall, 2019 119 800 14.9 $[12.5; 17.4]$ Giorgi, 2020 40 102 39.2 $[29.9; 48.9]$ Random effects model Heterogeneity: $l^2 = 99\%$, $t^2 = 0.1434$, $\chi^2_{20} = 1985.88 (p = 0)$ design = cross-sectional Fiz, 2011 27 28 96.4 $[85.3; 100.0]$ Sinclair, 2019 5 48 10.4 $[3.1; 20.9]$ Random effects model Heterogeneity: $l^2 = 99\%$, $t^2 = 0.1463$, $\chi^2_{21} = 72.27 (p < 0.01)$ Random effects model Heterogeneity: $l^2 = 99\%$, $t^2 = 0.1463$, $\chi^2_{21} = 2058.15 (p = 0)$ Residual heterogeneity: $l^2 = 99\%$, $\chi^2_{21} = 2058.15 (p = 0)$ Test for subgroup differences: $\chi^2_1 = 0.42$, df = 1 $(p = 0.52)$								
Anderson, 2019 118 1120 10.5 $[8.8; 12.4]$ Cervigni, 2019 0 32 0.0 $[0.0; 5.3]$ Lejczak, 2019 26 148 17.6 $[11.8; 24.2]$ Loi, 2019 0 28 0.0 $[0.0; 6.1]$ Ueberall, 2019 119 800 14.9 $[12.5; 17.4]$ Giorgi, 2020 40 102 39.2 $[29.9; 48.9]$ Random effects model . Heterogeneity: $l^2 = 99\%$, $t^2 = 0.1434$, $\chi^2_{20} = 1985.88 (p = 0)$ design = cross-sectional Fiz, 2011 27 28 96.4 $[85.3; 100.0]$ Sinclair, 2019 5 48 10.4 $[3.1; 20.9]$ Random effects model . Heterogeneity: $l^2 = 99\%$, $t^2 = 0.4963$, $\chi^2_1 = 72.27 (p < 0.01)$ Random effects model . Heterogeneity: $l^2 = 99\%$, $t^2 = 0.1463$, $\chi^2_{22} = 2079.69 (p = 0)$ Residual heterogeneity: $l^2 = 99\%$, $t^2 = 0.496.3$, $\xi^2_1 = 2058.15 (p = 0)$ Test for subgroup differences: $\chi^2_1 = 0.42$, df = 1 $(p = 0.52)$							<u> </u>	- 12
Cervigni, 2019 0 32 0.0 $[0.0; 5.3]$ Lejczak, 2019 26 148 17.6 $[11.8; 24.2]$ Loi, 2019 0 28 0.0 $[0.0; 6.1]$ Ueberall, 2019 119 800 14.9 $[12.5; 17.4]$ Giorgi, 2020 40 102 39.2 $[29.9; 48.9]$ Random effects model 23.5 $[10.9; 39.0]$ Heterogeneity: $l^2 = 99\%$, $z^2 = 0.1434$, $\chi^2_{20} = 1985.88 (p = 0)$ design = cross-sectional Fiz, 2011 27 28 96.4 $[85.3; 100.0]$ Sinclair, 2019 5 48 10.4 $[3.1; 20.9]$ Random effects model 55.7 $[0.0; 100.0]$ Heterogeneity: $l^2 = 99\%$, $z^2 = 0.4963$, $z^2_1 = 72.27 (p < 0.01)$ Random effects model 56.7 $[0.0; 100.0]$ Heterogeneity: $l^2 = 99\%$, $z^2 = 0.4463$, $z^2_{22} = 2079.69 (p = 0)$ Residual heterogeneity: $l^2 = 99\%$, $z^2_1 = 0.42$, df = 1 $(p = 0.52)$ Test for subgroup differences: $z^2_1 = 0.42$, df = 1 $(p = 0.52)$	2						2 B	
Lejczak, 2019 26 148 17.6 [11.8; 24.2] Loi, 2019 0 28 0.0 [0.0; 6.1] Ueberall, 2019 119 800 14.9 [12.5; 17.4] Giorgi, 2020 40 102 39.2 [29.9; 48.9] Random effects model Fiz, 2011 27 28 99.6, $\tau^2 = 0.1434$, $\chi^2_{20} = 1985.88 (p = 0)$ design = cross-sectional Fiz, 2011 27 28 96.4 [85.3; 100.0] Sinclair, 2019 5 48 10.4 [3.1; 20.9] Random effects model Heterogeneity: $l^2 = 99\%$, $\tau^2 = 0.4963$, $\chi^2_{12} = 72.27 (p < 0.01)$ Random effects model Heterogeneity: $l^2 = 99\%$, $\tau^2 = 0.4963$, $\chi^2_{12} = 2058.15 (p = 0)$ Residual heterogeneity: $l^2 = 99\%$, $\chi^2_{21} = 2058.15 (p = 0)$ Test for subgroup differences: $\chi^2_1 = 0.42$, df = 1 (p = 0.52) D = 0.52								
Loi, 2019 0 28 0.0 $[0.0; 6.1]$ - Ueberall, 2019 119 800 14.9 $[12.5; 17.4]$ Giorgi, 2020 40 102 39.2 $[29.9; 48.9]$ Random effects model 23.5 $[10.9; 39.0]$ Heterogeneity: $l^2 = 99\%$, $\tau^2 = 0.1434$, $\chi^2_{20} = 1985.88 (p = 0)$ design = cross-sectional Fiz, 2011 27 28 96.4 $[85.3; 100.0]$ Sinclair, 2019 5 48 10.4 $[3.1; 20.9]$ - Random effects model . Heterogeneity: $l^2 = 99\%$, $\tau^2 = 0.4963$, $\chi^2_{12} = 72.27 (p < 0.01)$ Random effects model . Heterogeneity: $l^2 = 99\%$, $\tau^2 = 0.1463$, $\chi^2_{22} = 2079.69 (p = 0)$ Residual heterogeneity: $l^2 = 99\%$, $\tau^2_{21} = 2058.15 (p = 0)$ Test for subgroup differences: $\chi^2_1 = 0.42$, df = 1 (p = 0.52) 0 20 40 60 80 10 Prevalence (%)							10-00	
Ueberall, 2019 119 800 14.9 [12.5; 17.4] Giorgi, 2020 40 102 39.2 [29.9; 48.9] Random effects model Heterogeneity: $l^2 = 99\%$, $t^2 = 0.1434$, $t^2_{20} = 1985.88 (p = 0)$ design = cross-sectional Fiz, 2011 27 28 96.4 [85.3; 100.0] Sinclair, 2019 5 48 10.4 [3.1; 20.9] Random effects model Heterogeneity: $l^2 = 99\%$, $t^2 = 0.4963$, $t^2_1 = 72.27 (p < 0.01)$ Random effects model Heterogeneity: $l^2 = 99\%$, $t^2 = 0.1463$, $t^2_{22} = 2079.69 (p = 0)$ Residual heterogeneity: $l^2 = 99\%$, $t^2 = 0.42$, df = 1 (p = 0.52) Test for subgroup differences: $t^2_1 = 0.42$, df = 1 (p = 0.52)		Lejczak, 2019	26	148	17.6	[11.8; 24.2]		
Giorgi, 2020 40 102 39.2 [29.9; 48.9] Random effects model . Heterogeneity: $l^2 = 99\%$, $\tau^2 = 0.1434$, $\chi^2_{20} = 1985.88 (p = 0)$ design = cross-sectional Fiz, 2011 27 28 96.4 [85.3; 100.0] Sinclair, 2019 5 48 10.4 [3.1; 20.9] Random effects model . Heterogeneity: $l^2 = 99\%$, $\tau^2 = 0.4963$, $\chi^2_1 = 72.27 (p < 0.01)$ Random effects model . Heterogeneity: $l^2 = 99\%$, $\tau^2 = 0.1463$, $\chi^2_{22} = 2079.69 (p = 0)$ Residual heterogeneity: $l^2 = 99\%$, $\tau^2 = 0.1463$, $\chi^2_{21} = 2058.15 (p = 0)$ Test for subgroup differences: $\chi^2_1 = 0.42$, df = 1 (p = 0.52) 0 20 40 60 80 10 Prevalence (%)		Loi, 2019	0	28	0.0	[0.0; 6.1]		
Giorgi, 2020 40 102 39.2 [29.9; 48.9] Random effects model . Heterogeneity: $l^2 = 99\%$, $\tau^2 = 0.1434$, $\chi^2_{20} = 1985.88 (p = 0)$ design = cross-sectional Fiz, 2011 27 28 96.4 [85.3; 100.0] Sinclair, 2019 5 48 10.4 [3.1; 20.9] Random effects model . Heterogeneity: $l^2 = 99\%$, $\tau^2 = 0.4963$, $\chi^2_1 = 72.27 (p < 0.01)$ Random effects model . Heterogeneity: $l^2 = 99\%$, $\tau^2 = 0.1463$, $\chi^2_{22} = 2079.69 (p = 0)$ Residual heterogeneity: $l^2 = 99\%$, $\tau^2 = 0.1463$, $\chi^2_{21} = 2058.15 (p = 0)$ Test for subgroup differences: $\chi^2_1 = 0.42$, df = 1 (p = 0.52) 0 20 40 60 80 10 Prevalence (%)	,	Ueberall, 2019	119	800	14.9	[12.5; 17.4]	•	
Random effects model 23.5 [10.9; 39.0] Heterogeneity: $l^2 = 99\%$, $t^2 = 0.1434$, $\chi^2_{20} = 1985.88 (p = 0)$ 96.4 [85.3; 100.0] Gesign = cross-sectional 96.4 [85.3; 100.0] Fiz, 2011 27 28 96.4 [85.3; 100.0] Sinclair, 2019 5 48 10.4 [3.1; 20.9] Random effects model 55.7 [0.0; 100.0] Heterogeneity: $l^2 = 99\%$, $t^2 = 0.4963$, $\chi^2_{12} = 72.27 (p < 0.01)$ Random effects model . Heterogeneity: $l^2 = 99\%$, $t^2 = 0.1463$, $\chi^2_{22} = 2079.69 (p = 0)$ Residual heterogeneity: $l^2 = 99\%$, $t^2 = 0.42$, df = 1 (p = 0.52) 26.0 [13.2; 41.2] Description Residual heterogeneity: $l^2 = 99\%$, $t^2 = 0.42$, df = 1 (p = 0.52)	}		40	102				
Heterogeneity: $l^2 = 99\%$, $\tau^2 = 0.1434$, $\gamma_{20}^2 = 1985.88 (p = 0)$ design = cross-sectional Fiz, 2011 27 28 96.4 [85.3; 100.0] Sinclair, 2019 5 48 10.4 [3.1; 20.9] Random effects model Heterogeneity: $l^2 = 99\%$, $\tau^2 = 0.4963$, $\gamma_1^2 = 72.27 (p < 0.01)$ Random effects model Heterogeneity: $l^2 = 99\%$, $\tau^2 = 0.1463$, $\gamma_{22}^2 = 2079.69 (p = 0)$ Residual heterogeneity: $l^2 = 99\%$, $\tau_2^2 = 0.1463$, $\tau_{22}^2 = 2079.69 (p = 0)$ Test for subgroup differences: $\gamma_1^2 = 0.42$, df = 1 (p = 0.52) Description: $\tau_1^2 = 0.42$, df = 1 (p = 0.52))		el					
design = cross-sectional Fiz, 2011 27 28 96.4 [85.3; 100.0] Sinclair, 2019 5 48 10.4 [3.1; 20.9] Random effects model . 55.7 [0.0; 100.0] Heterogeneity: $l^2 = 99\%$, $\tau^2 = 0.4963$, $\chi^2_{12} = 2079.69 (p = 0)$ 26.0 [13.2; 41.2] Residual heterogeneity: $l^2 = 99\%$, $\tau^2 = 0.42$, df = 1 (p = 0.52) 0 20 40 60 80 10)			= 1985.88 (p =		L		
design = cross-sectional Fiz, 2011 27 28 Sinclair, 2019 5 48 Random effects model . Heterogeneity: $l^2 = 99\%$, $\tau^2 = 0.4963$, $\chi_1^2 = 72.27$ ($p < 0.01$) Random effects model . Heterogeneity: $l^2 = 99\%$, $\tau^2 = 0.1463$, $\chi_{22}^2 = 2079.69$ ($p = 0$) Residual heterogeneity: $l^2 = 99\%$, $\tau_{21}^2 = 2058.15$ ($p = 0$) Test for subgroup differences: $\chi_1^2 = 0.42$, df = 1 ($p = 0.52$)		2 B (1)	- 1-2	20 M				
Fiz, 2011 27 28 96.4 [85.3; 100.0] Sinclair, 2019 5 48 10.4 [3.1; 20.9] Random effects model Heterogeneity: $l^2 = 99\%$, $\tau^2 = 0.4963$, $\chi_1^2 = 72.27$ ($p < 0.01$) Random effects model Heterogeneity: $l^2 = 99\%$, $\tau^2 = 0.1463$, $\chi_{22}^2 = 2079.69$ ($p = 0$) Residual heterogeneity: $l^2 = 99\%$, $\chi_{21}^2 = 2058.15$ ($p = 0$) Test for subgroup differences: $\chi_1^2 = 0.42$, df = 1 ($p = 0.52$) Prevalence (%)		design = cross-section	onal					
Sinclair, 2019 5 48 Random effects model Heterogeneity: $l^2 = 99\%$, $\tau^2 = 0.4963$, $\chi_1^2 = 72.27$ ($p < 0.01$) Random effects model Heterogeneity: $l^2 = 99\%$, $\tau^2 = 0.1463$, $\chi_{22}^2 = 2079.69$ ($p = 0$) Residual heterogeneity: $l^2 = 99\%$, $\chi_{21}^2 = 2058.15$ ($p = 0$) Test for subgroup differences: $\chi_1^2 = 0.42$, df = 1 ($p = 0.52$) 0 20 40 60 80 10 Prevalence (%)		-		28	06.4	[85.3: 100.0]		
Random effects model Heterogeneity: $l^2 = 99\%$, $\tau^2 = 0.4963$, $\chi_1^2 = 72.27$ ($p < 0.01$) Random effects model Heterogeneity: $l^2 = 99\%$, $\tau^2 = 0.1463$, $\chi_{22}^2 = 2079.69$ ($p = 0$) Residual heterogeneity: $l^2 = 99\%$, $\chi_{21}^2 = 2058.15$ ($p = 0$) Test for subgroup differences: $\chi_1^2 = 0.42$, df = 1 ($p = 0.52$) 55.7 [0.0; 100.0] 56.7 [0.0; 1								100
Heterogeneity: $l^2 = 99\%$, $\tau^2 = 0.4963$, $\chi_1^2 = 72.27$ ($p < 0.01$) Random effects model Heterogeneity: $l^2 = 99\%$, $\tau^2 = 0.1463$, $\chi_{22}^2 = 2079.69$ ($p = 0$) Residual heterogeneity: $l^2 = 99\%$, $\chi_{21}^2 = 2058.15$ ($p = 0$) Test for subgroup differences: $\chi_1^2 = 0.42$, df = 1 ($p = 0.52$) 26.0 [13.2; 41.2] 0 20 40 60 80 10 Prevalence (%)				40				
Random effects model Heterogeneity: $l^2 = 99\%$, $\tau^2 = 0.1463$, $\chi^2_{22} = 2079.69$ ($p = 0$) Residual heterogeneity: $l^2 = 99\%$, $\chi^2_{21} = 2058.15$ ($p = 0$) Test for subgroup differences: $\chi^2_1 = 0.42$, df = 1 ($p = 0.52$) 26.0 [13.2; 41.2] 0 20 40 60 80 10 Prevalence (%)						[0.0; 100.0]		
Random effects model 26.0 [13.2; 41.2] Heterogeneity: $l^2 = 99\%$, $\tau^2 = 0.1463$, $\chi^2_{22} = 2079.69$ ($\rho = 0$) 0 20 40 60 80 10 Residual heterogeneity: $l^2 = 99\%$, $\chi^2_{21} = 2058.15$ ($\rho = 0$) 0 20 40 60 80 10 Test for subgroup differences: $\chi^2_1 = 0.42$, df = 1 ($\rho = 0.52$) 0 20 40 60 80 10		Heterogeneity: $T = 99\%$, τ	= 0.4963, χ ₁	= 12.21 (p < 0.0	1)			
Heterogeneity: $l^2 = 99\%$, $\tau^2 = 0.1463$, $\chi^2_{22} = 2079.69$ ($p = 0$) Residual heterogeneity: $l^2 = 99\%$, $\chi^2_{21} = 2058.15$ ($p = 0$) Test for subgroup differences: $\chi^2_1 = 0.42$, df = 1 ($p = 0.52$) O 20 40 60 80 10 Prevalence (%)					1202020			
Residual heterogeneity: $l^2 = 99\%$, $\chi^2_{21} = 2058.15$ ($p = 0$) Test for subgroup differences: $\chi^2_1 = 0.42$, df = 1 ($p = 0.52$)				•		[13.2; 41.2]		
Test for subgroup differences: $\chi_1^2 = 0.42$, df = 1 ($p = 0.52$) Prevalence (%)	1				0)	717.511		
						0		
		Test for subgroup difference	es: $\chi_1^2 = 0.42$,	df = 1 (p = 0.52)			Prevaler	nce (%)
								101110-04X0

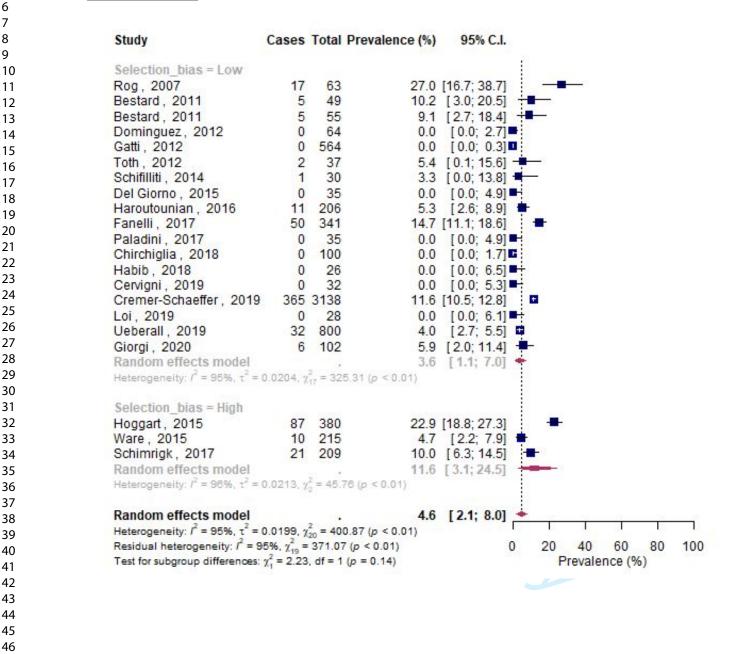
Study	Cases	Total	Prevalence (%)	95% C.I.	
byvar = More than 24	vooke ue				Ĩ
			00.0	176 0:00 71	
Lynch, 2006	27	30		[76.2; 98.7]	
Rog, 2007	58			[83.9; 97.7]	
Weber, 2009	12			[5.2; 16.1]	- -
Bestard, 2011	21	49	42.9	[29.2; 57.0]	
Bestard, 2011	21	55	38.2	[25.7; 51.5]	
Hoggart, 2015	295	380	77.6	[73.3; 81.7]	-
Schimrigk, 2017		209		[77.9; 88.0]	
Crowley, 2018	16	35		[29.4; 62.5]	
Habib , 2018	8	26		[14.3; 50.1]	
	0	32			_
Cervigni, 2019				[0.0; 5.3]	
Giorgi, 2020	40	102		[29.9; 48.9]	
Random effects mode			49.3	[28.7; 70.1]	
Heterogeneity: $l^2 = 98\%$, $\tau^2 =$	= 0.1204, χ	io = 443	1.87 (p < 0.01)		
byvar = Less than 24 v	weeks us	е			
Dominguez, 2012	0	64	0.0	[0.0; 2.7]	
Gatti, 2012	0	564		•	
Toth, 2012	13	37		[20.4; 51.3]	
Del Giorno, 2015	0				
Paladini, 2017	0	35			
Chirchiglia, 2018	0				
Anderson, 2019		1120			■_
Lejczak, 2019	26	148		[11.8; 24.2]	
Loi, 2019	0	28			-
Ueberall, 2019	119	800		[12.5; 17.4]	
Random effects mode				[0.5; 10.5]	
Heterogeneity: $l^2 = 97\%$, $\tau^2 =$	= 0.0322, χ ₃	2 9 = 288.	38 (p < 0.01)		
Random effects mode	4		23.5	[10.9; 39.0]	
Heterogeneity: $l^2 = 99\% \tau^2$:	$= 0.1434 \sqrt{3}$	= 198	5.88 (p = 0)	L,, L	
Heterogeneity: $l^2 = 99\%$, $\tau^2 = Residual heterogeneity: l^2 = r^2$	97% 2 =	732 25	$(n \le 0.01)$	0	20 40 60 80
Test for subgroup differences	$x^2 = 20.72$	df = 1	(p < 0.01)	0	Prevalence (%)
rescion subgroup differences	$\lambda_1 = 20.12$., ui – 1	(p < 0.01)		Frevalence (70)


(مرمنا مرسوله م 1-- 5 н L

Study	Cases	Total Preval	ence (%)	95% C.I.		
cannabis = herbal, mix	ed				1	
Lynch, 2006	27	30		[76.2; 98.7]		
Fiz, 2011	27	28		[85.3; 100.0]		
Habib, 2018	8	26		[14.3; 50.1]		
Anderson, 2019		1120		[8.8; 12.4]	<u> </u>	
Sinclair, 2019	5	48		[3.1; 20.9]		
Random effects model Heterogeneity: $l^2 = 98\%$, $\tau^2 =$	0.2060, χ ² ₄	= 209.87 (p < 0	47.8	[11.5; 85.5]		
cannabis = nabiximols						
Rog, 2007	58	63	92.1	[83.9; 97.7]		
Hoggart, 2015	295	380		[73.3; 81.7]		
Ueberall, 2019		800		[12.5; 17.4]		
Random effects model			62.8	[12.2; 99.2]		
Heterogeneity: $l^2 = 100\%$, τ^2	= 0.2378, γ	² ₂ = 582.31 (p <	0.01)			
cannabis = dronabinol						
Weber , 2009		120		[5.2; 16.1]	-	
Schimrigk, 2017		209		[77.9; 88.0]		
Lejczak, 2019		148		[11.8; 24.2]	-	
Random effects model Heterogeneity: $l^2 = 99\%$, $\tau^2 =$	0.0000 2	- 075 27 / 0	35.3	[0.8; 85.0]	_	
Heterogeneity: $I = 99\%$, $\tau =$	0.2202, χ ₂	= 215.31 (p < 0	1.01)			
cannabis = nabilone						
Bestard, 2011	21	49	429	[29.2; 57.0]		
Bestard, 2011	21	55		[25.7; 51.5]	-	- 62
Toth, 2012	13	37		[20.4; 51.3]		
Random effects model				[31.0; 47.3]		
Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$	$\chi_2^2 = 0.53$	(p = 0.77)				
cannabis = PEA						
Dominguez, 2012	0	64	0.0			
Gatti, 2012	0	564	0.0			
Del Giorno, 2015 Paladini, 2017	0	35 35	0.0			
Chirchiglia, 2018	0	100	0.0	•		
Cervigni, 2019	0	32	0.0			
Loi, 2019	0	28	0.0	[0.0; 6.1]		
Random effects model				[0.0; 0.0]		
Heterogeneity: $l^2 = 0\%$, $\tau^2 = 0$	$\chi_6^2 = 2.12$? (p = 0.91)				
cannabis = Trokie loze	nges					
Crowley, 2018	16	35	45.7	[29.4; 62.5]	—	
Random effects model				[29.4; 62.5]		
Heterogeneity: not applicable						
cannabis = extracts						
Giorgi, 2020	40	102		[29.9; 48.9]		<u></u>
Random effects model		-		[29.9; 48.9]		-
Heterogeneity: not applicable						
Random effects model		•	26.0	[13.2; 41.2]		8
Heterogeneity: $l^2 = 99\%$, $\tau^2 =$	0.1463, y2	₂ = 2079.69 (p =	= 0)			
Residual heterogeneity: $I^2 = 9$	99%, $\chi^2_{16} =$	1070.20 (p < 0.0	01)	0		
Test for subgroup differences:	$\chi_6^2 = 372.4$	5, df = 6 ($p < 0$.	01)		Preva	alence (%

Appendix 9: Results for all adverse events (subgroup by selection bias)

Study	Cases	Total	Prevalence (%)	95% C.I.		
Selection_bias = Low						2000
Lynch , 2006	27	30	90.0	[76.2; 98.7]		
Rog, 2007	58	63		[83.9; 97.7]		
Weber, 2009	12	120		[5.2; 16.1]	-	
Bestard, 2011	21	49		[29.2; 57.0]		
Bestard, 2011	21	55		[25.7; 51.5]		
Dominguez, 2012	0	64		[0.0; 2.7]		
Gatti, 2012	0	564				
Toth , 2012	13	37		[20.4; 51.3]	-	
Del Giorno, 2015	0	35	0.0		-	5 - C
Paladini, 2017	õ	35				
Chirchiglia, 2018	0	100		•		
Habib, 2018	8	26		[14.3; 50.1]		
Anderson, 2019		1120		[8.8; 12.4]		
Cervigni, 2019	0	32		[0.0; 5.3]		
Lejczak, 2019	26	148		[11.8; 24.2]	-	-
Loi, 2019	0	28		[0.0; 6.1]	-	
Ueberall, 2019	119			[12.5; 17.4]	-	
Giorgi, 2020	40	102		[29.9; 48.9]		
Random effects mode				[8.3; 27.3]	-	
Heterogeneity: $l^2 = 98\%$, τ		$\chi^2_{17} = 1$	768.46 (p < 0.01)			
Selection_bias = High						
Fiz, 2011	27	28	96.4	[85.3; 100.0]		
Hoggart, 2015	295			[73.3; 81.7]		-
Schimrigk, 2017	174			[77.9; 88.0]		
Crowley, 2018	16	35		[29.4; 62.5]		
Sinclair, 2019	5	48		[3.1; 20.9]	-	
Random effects mode				[40.1; 85.9]		
Heterogeneity: $l^2 = 97\%$, τ		$\chi_{\pm}^{\mathbb{Z}} = 1$	29.47 (p < 0.01)	201		
Random effects mode	1		26.0	[13.2; 41.2]	_	
Heterogeneity: Ι ² = 99%, τ	² = 0.1463	$\chi^2_{20} = 2$	(p = 0)			
Residual heterogeneity: I ²	= 98%, 2	= 897	.92 (p < 0.01)		0 20	40 60 80 100
Test for subgroup difference	xes: $\chi_1^2 = 12$.88, df	= 1 (p < 0.01)			Prevalence (%)


Appendix 10: Results for adverse events leading to discontinuation (subgroup by duration)

Appendix 11: Results for adverse events leading to discontinuation (subgroup by cannabis)

Study	Cases	Total	Prevalence (%)	95% C.I.	
cannabis = nabiximols					
Rog, 2007	17	63	27.0	[16.7; 38.7]	· · · · · · · · · · · · · · · · · · ·
Hoggart, 2015	87			[18.8; 27.3]	
Ueberall, 2019	32	800		[2.7; 5.5]	
Random effects model Heterogeneity: $l^2 = 98\%$, $\tau^2 =$	0.0427 -	2 - 100		[2.8; 36.7]	
Heterogeneity. 7 = 56%, t =	0.0427.3	2 - 100	0.20 (p ≤ 0.01)		
cannabis = nabilone					The second se
Bestard, 2011	5	49	10.2	[3.0; 20.5]	
Bestard, 2011	5	55		[2.7; 18.4]	
Toth, 2012	2			[0.1; 15.6] -	
Random effects model	~	0.		[4.1; 13.8]	
Heterogeneity: $l^2 = 0\%$, $\tau^2 = 0$	$\chi^2_2 = 0.5$	7 (p = 0	0.4	[4,1,15,0]	
cannabis = PEA	0	64	0.0	■ 17 C 0.01	
Dominguez, 2012	0				
Gatti, 2012	0			[0.0; 0.3]	
Schifilliti, 2014	1			[0.0; 13.8] -	
Del Giorno, 2015	0	35	0.0	[0.0; 4.9]	1
Paladini, 2017	0	35	0.0	[0.0; 4.9]	+
Chirchiglia, 2018	0	100		[0.0; 1.7]	
Cervigni, 2019	0			[0.0; 5.3]	
Loi, 2019	õ				<u>.</u>
	č	20	0.0		
Random effects model	2	· · · · · ·		[0.0, 0.0]	
Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, g ₇ = 0.8	o (p - i	1.04)		
cannabis = herbal, mixed					
Ware, 2015	10	215	4.7	[2.2; 7.9] -	—
Haroutounian, 2016	11	206	5.3	[2.6; 8.9]	-
Fanelli , 2017	50	341	14.7	[11.1; 18.6]	
Habib, 2018	0	1000		- File and Cold States and All	1
Random effects model		20		[1.5; 12.4]	
Heterogeneity: $l^2 = 88\%$, $\tau^2 =$	0.0104, 🤈	² ₀ = 24.		[1,3,12,4]	
oonnohio - dronohinol					
cannabis = dronabinol	0.4	000	40.0	100.4451	
Schimrigk, 2017	21	209		[6.3; 14.5]	
Random effects model			10.0	[6.3; 14.5]	
Heterogeneity: not applicable					
cannabis = mixed					
Cremer-Schaeffer, 2019	365	3138	11.6	[10.5; 12.8]	
Random effects model				[10.5; 12.8]	+
Heterogeneity: not applicable					
cannabis = extracts					
	e	102	50	[20:114] -	
Giorgi, 2020	6	102		[2.0; 11.4] -	
Random effects model		1	5.9	[2.0; 11.4] -	
Heterogeneity: not applicable					
Random effects model			4.6	[2.1; 8.0]	<u> </u>
Heterogeneity: $I^2 = 95\%$, $\tau^2 =$	0.0199,)	2 ₂₀ = 40	0.87 (p < 0.01)	1/32 32	
Residual heterogeneity: $l^2 = 9$	0%, 7 ² . =	137.7	2 (p < 0.01)	0	10 20 30 4
	14	11331.81.60	= 6 (p < 0.01)	•	

Appendix 12: Results for adverse events leading to discontinuation (subgroup by selection bias)

Appendix 13: Results for serious adverse events (subgroup by design)

design = cross-sectional Ware, 2003 0 32 0.0 [0.0; 5.3] Fiz, 2011 0 28 0.0 [0.0; 5.3] Heterogeneity: $f^2 = 0.56$, $t^2 = 0.56$; 0 0.0 [0.0; 5.7] Rog, 2007 32 63 50.8 [38.4; 63.1] Bestard, 2011 0 49 0.0 [0.0; 3.1] Bestard, 2011 0 55 0.0 [0.0; 3.1] Gatti, 2012 0 64 0.0 [0.0; 3.1] Gatti, 2012 0 564 0.0 [0.0; 4.9] Haroutounian, 2015 2.37 5.4 [0.1; 15.6] Yare, 2015 2.8 215 13.0 [8.8; 17.9] Haroutounian, 2016 2.06 1.0 [0.0; 2.9] Paladini, 2017 0 35 0.0 [0.0; 6.5] Paladini, 2017 0.30 0.0 [0.0; 5.7] Paladini, 2017 0.30 0.0 [0.0; 5.7] Paladini, 2017 0.30 0.0 [0.0; 4.9] Paladini, 2018 0.26 0.0 [0.0; 4.9]	Study	Cases	Total	Prevalence (%)	95% C.I.			
Fiz, 2011 0 28 0.0 $[0.0; 6.1]$ Random effects model 0 $[0.0; 6.1]$ Heterogeneity: $r^2 = 0.96$, $r^2 = 0.71^2 = 0 (p = 0.96)$ design = longitudinal Lynch, 2006 0 30 0.0 $[0.0; 5.7]$ Rog, 2007 32 63 50.8 $[38.4; 63.1]$ Bestard, 2011 0 49 0.0 $[0.0; 3.5]$ Bestard, 2011 0 55 0.0 $[0.0; 3.1]$ Dominguez, 2012 0 64 0.0 $[0.0; 0.3]$ Toth, 2012 2 37 5.4 $[0.1; 15.6]$ Del Giorno, 2015 0 35 0.0 $[0.0; 4.9]$ Haroutounian, 2016 2 206 1.0 $[0.0; 0.5]$ Fanelli, 2017 0 341 0.0 $[0.0; 5.7]$ Paladini, 2017 0 35 0.0 $[0.0; 4.9]$ Passavanti, 2017 0 35 0.0 $[0.0; 4.9]$ Passavanti, 2017 0 35 0.0 $[0.0; 5.7]$ Crowley, 2018 0 100 0.0 $[0.0; 5.7]$ Habib, 2018 0 26 0.0 $[0.0; 5.7]$ Habib, 2018 0 26 0.0 $[0.0; 5.3]$ Habib, 2018 0 26 0.0 $[0.0; 5.3]$ Habib, 2019 0 32 0.0 $[0.0; 5.3]$ Habib, 2019 0 32 0.0 $[0.0; 5.3]$ Habib, 2019 1 1120 1.9 $[1.2; 2.8]$ Cervigni, 2019 0 32 0.0 $[0.0; 5.3]$ Habib, 2019 1 120 1.9 $[1.2; 2.8]$ Cervigni, 2019 0 32 0.0 $[0.0; 5.3]$ Habib, 2018 0 100 0.0 $[0.0; 5.3]$ Habib, 2019 0 28 0.0 $[0.0; 6.5]$ Habib, 2019 1 21 1120 1.9 $[1.2; 2.8]$ Cervigni, 2019 0 28 0.0 $[0.0; 6.5]$ Habib, 2018 0 26 0.0 $[0.0; 5.3]$ Habib, 2018 0 26 0.0 $[0.0; 5.3]$ Habib, 2019 0 28 0.0 $[0.0; 5.1]$ Habib, 2019 0 20 0 0 $[0.0; 1.7]$ Habib, 2019 0 20 0 0 $[0.0; 1.7]$ Habib, 2019 0 20 0 0 $[0.0; 1.7]$ Habib, 2019 0 20 0 0 $[0.0; 0.1]$ Habib, 2019 0 20 0 0 $[0.0; 0.1]$ Habib, 2019 0 20 0 0 $[0.0; 0.1]$ Habib, 2019	design = cross-sectio	nal						
Random effects model Heterogeneity: $l^2 = 0.95$, $t^2 = 0.2^2_1 = 0$ ($p = 0.96$) design = longitudinal Lynch, 2006 0 30 0.0 $[0.0; 3.2]$ Rog, 2007 32 63 50.8 $[38.4; 63.1]$ Bestard, 2011 0 49 0.0 $[0.0; 3.5]$ Bestard, 2011 0 55 0.0 $[0.0; 3.5]$ Bestard, 2011 0 564 0.0 $[0.0; 2.7]$ Gatti, 2012 0 64 0.0 $[0.0; 2.7]$ Gatti, 2012 2 37 5.4 $[0.1; 15.6]$ Del Giorno, 2015 0 35 0.0 $[0.0; 2.9]$ Ware, 2015 28 215 13.0 $[8.8; 17.9]$ Haroutounian, 2016 2 206 1.0 $[0.0; 2.9]$ Paladini, 2017 0 35 0.0 $[0.0; 6.5]$ Pasavanti, 2017 0 30 0.0 $[0.0; 6.5]$ Anderson, 2018 0 32 0.0 $[0.0; 6.5]$ Anderson, 2019 21 1120 1.9 $[1.2; 2.8]$ $[1.4; 2.8]$ Loi, 2019 <td>Ware, 2003</td> <td>0</td> <td>32</td> <td>0.0</td> <td>[0.0; 5.3]</td> <td></td> <td></td> <td></td>	Ware, 2003	0	32	0.0	[0.0; 5.3]			
Heterogeneity: $l^2 = 0.96$, $\tau^2 = 0.97$, $z^2 = 0.96$) design = longitudinal Lynch, 2006 0 30 0.0 [0.0; 5.7] Rog, 2007 32 63 50.8 [38.4; 63.1] Bestard, 2011 0 49 0.0 [0.0; 3.5] Bestard, 2011 0 55 0.0 [0.0; 3.1] Dominguez, 2012 0 64 0.0 [0.0; 0.3] Gatti, 2012 2 37 5.4 [0.1; 15.6] Del Giorno, 2015 0 35 0.0 [0.0; 4.9] Ware, 2015 28 215 13.0 [8.8; 17.9] Haroutounian, 2016 2 206 1.0 [0.0; 2.9] Fanelli, 2017 0 341 0.0 [0.0; 0.5] Paladini, 2017 0 35 0.0 [0.0; 4.9] Passavanti, 2017 0 35 0.0 [0.0; 5.7] Schimrigk, 2017 29 209 13.9 [9.5; 18.9] Crowley, 2018 0 100 0.0 [0.0; 5.7] Habib, 2018 0 26 0.0 [0.0; 6.5] Anderson, 2019 21 1120 1.9 [1.2; 2.8] Cervigni, 2019 0 32 0.0 [0.0; 5.3] Cervigni, 2019 0 32 0.0 [0.0; 5.3] Loi, 2019 0 28 0.0 [0.0; 6.1] Ueberall, 2017 0 37 0.0 [0.0; 1.7] Random effects model 1.3 [0.1; 3.1] Heterogeneity: $l^2 = 92\%$, $t^2 = 280.38 (p < 0.01)$ Residual heterogeneity: $l^2 = 92\%$, $t^2_a = 280.38 (p < 0.01)$	Fiz, 2011	0	28	0.0	[0.0; 6.1]			
Heterogeneity: $l^2 = 0.96$, $\tau^2 = 0.97$, $= 0.96$) design = longitudinal Lynch, 2006 0 30 0.0 [0.0; 5.7] Rog, 2007 32 63 50.8 [38.4; 63.1] Bestard, 2011 0 49 0.0 [0.0; 3.5] Bestard, 2011 0 55 0.0 [0.0; 3.1] Dominguez, 2012 0 64 0.0 [0.0; 0.3] Gatti, 2012 2 37 5.4 [0.1; 15.6] Del Giorno, 2015 0 35 0.0 [0.0; 4.9] Ware, 2015 28 215 13.0 [8.8; 17.9] Haroutounian, 2016 2 206 1.0 [0.0; 2.9] Fanelli, 2017 0 341 0.0 [0.0; 0.5] Paladini, 2017 0 35 0.0 [0.0; 4.9] Passavanti, 2017 0 35 0.0 [0.0; 5.7] Schimrigk, 2017 29 209 13.9 [9.5; 18.9] Crively, 2018 0 35 0.0 [0.0; 6.5] Anderson, 2019 21 1120 1.9 [1.2; 2.8] Cervigni, 2019 0 32 0.0 [0.0; 5.3] Loi, 2019 0 28 0.0 [0.0; 6.5] Habib, 2018 0 26 0.0 [0.0; 6.5] Anderson, 2019 1 1120 1.9 [1.2; 2.8] Cervigni, 2019 0 32 0.0 [0.0; 5.3] Loi, 2019 1 0 28 0.0 [0.0; 6.1] Heterogeneity: $l^2 = 92\%$, $\tau_2^2 = 280.38 (p < 0.01)$ Random effects model Heterogeneity: $l^2 = 91\%$, $\tau_2^2 = 280.38 (p < 0.01)$	Random effects mode	el		0.0	[0.0; 3.2]			
Lynch, 2006 0 30 0.0 $[0.0; 5.7]$ Rog, 2007 32 63 50.8 $[38.4; 63.1]$ Bestard, 2011 0 49 0.0 $[0.0; 3.5]$ Bestard, 2011 0 55 0.0 $[0.0; 3.1]$ Dominguez, 2012 0 64 0.0 $[0.0; 0.3]$ Gatti, 2012 2 37 5.4 $[0.1; 15.6]$ Del Giorno, 2015 0 35 0.0 $[0.0; 4.9]$ Haroutounian, 2016 2 206 1.0 $[0.0; 0.5]$ Paladini, 2017 0 341 0.0 $[0.0; 0.5]$ Paladini, 2017 0 35 0.0 $[0.0; 4.9]$ Passavanti, 2017 0 35 0.0 $[0.0; 4.9]$ Pharoutounian, 2016 2 209 13.9 $[9.5; 18.9]$ Pharoutounian, 2017 0 35 0.0 $[0.0; 4.9]$ Passavanti, 2017 0 35 0.0 $[0.0; 6.5]$ Chirchiglia, 2018 0 100 0.0 $[0.0; 6.5]$ Habib, 2018 0 26 0.0 $[0.0; 6.5]$ Anderson, 2019 21 1120 1.9 $[1.2; 2.8]$ Cervigni, 2019 0 28 0.0 $[0.0; 6.5]$ Loi, 2019 0 28 0.0 $[0.0; 6.5]$ Loi, 2019 0 28 0.0 $[0.0; 6.6]$ Heterogeneity: $l^2 = 92\%$, $l^2 = 0.0173$, $l^2_{24} = 280.38$ ($p < 0.01$) Random effects model Heterogeneity: $l^2 = 92\%$, $l^2_{29} = 280.09$ ($p < 0.01$) Residual heterogeneity: $l^2 = 92\%$, $l^2_{29} = 280.09$ ($p < 0.01$)	Heterogeneity: $l^2 = 0.96$, τ^2	$= 0$, $\chi_1^2 = 0$	$\langle p = 0 \rangle$	96)				
Rog, 2007 32 63 50.8 [38.4; 63.1] Bestard, 2011 0 49 0.0 [0.0; 3.5] Bestard, 2011 0 55 0.0 [0.0; 2.7] Gatti, 2012 0 64 0.0 [0.0; 0.3] Dominguez, 2012 0 564 0.0 [0.0; 0.3] Gatti, 2012 2 37 5.4 [0.1; 15.6] Del Giorno, 2015 0 35 0.0 [0.0; 4.9] Ware, 2015 28 215 13.0 [8.8; 17.9] Haroutounian, 2016 2 206 1.0 [0.0; 0.5] Paladini, 2017 0 341 0.0 [0.0; 4.9] Passavanti, 2017 0 30 0.0 [0.0; 4.9] Passavanti, 2017 0 30 0.0 [0.0; 4.9] Chirchiglia, 2018 0 100 0.0 [0.0; 4.9] Habib, 2018 0 26 0.0 [0.0; 4.9] Cervigni, 2019 0 32 0.0 [0.0; 6.5] Loi, 2019 0 22 0.0	design = longitudinal							
Rog, 2007 32 63 50.8 [38.4; 63.1] Bestard, 2011 0 49 0.0 [0.0; 3.5] Bestard, 2011 0 55 0.0 [0.0; 2.7] Gatti, 2012 0 64 0.0 [0.0; 0.3] Dominguez, 2012 0 564 0.0 [0.0; 0.3] Toth, 2012 2 37 5.4 [0.1; 15.6] Del Giorno, 2015 0 35 0.0 [0.0; 4.9] Ware, 2015 28 215 13.0 [8.8; 17.9] Haroutounian, 2016 2 206 1.0 [0.0; 0.5] Paladini, 2017 0 341 0.0 [0.0; 4.9] Passavanti, 2017 0 30 0.0 [0.0; 5.7] Schimrigk, 2017 29 209 13.9 [9.5; 18.9] Habib, 2018 0 26 0.0 [0.0; 6.5] Anderson, 2019 21 1120 1.9 [1.2; 2.8] Cervigni, 2019 0 32 0.0 [0.0; 6.5] Loi, 2019 0 28 0.0	Lynch, 2006	0	30	0.0	[0.0; 5.7]			
Bestard , 2011 0 49 0.0 [0.0; 3.5] Bestard , 2011 0 55 0.0 [0.0; 3.1] Dominguez , 2012 0 64 0.0 [0.0; 2.7] Gati , 2012 0 564 0.0 [0.0; 3.1] Toth , 2012 2 37 5.4 [0.1; 15.6] Del Giorno , 2015 0 35 0.0 [0.0; 4.9] Ware , 2015 28 215 13.0 [8.8; 17.9] Haroutounian , 2016 2 206 1.0 [0.0; 2.9] Fanelli , 2017 0 341 0.0 [0.0; 0.5] Paladini , 2017 0 35 0.0 [0.0; 4.9] Passavanti , 2017 0 35 0.0 [0.0; 4.9] Passavanti , 2017 29 209 13.9 [9.5; 18.9] Chirchiglia , 2018 0 100 0.0 [0.0; 5.7] Crowley , 2018 0 35 0.0 [0.0; 4.9] Habib , 2018 0 26 0.0 [0.0; 6.5] Anderson , 2019 21 1120 1.9 [1.2; 2.8] Cervigni , 2019 0 32 0.0 [0.0; 5.3] Loi , 2019 0 28 0.0 [0.0; 4.9] Loi , 2019 0 37 0.0 [0.0; 4.6] Loi , 2019 1 120 1.9 [1.2; 2.8] Cervigni , 2019 0 37 0.0 [0.0; 4.6] Heterogeneity: $r^2 = 92\%$, $r^2 = 0.0178$, $r^2_{2x} = 280.99 (p < 0.01)$ Random effects model 1.3 [0.1; 3.4] Heterogeneity: $r^2 = 92\%$, $r^2_{2x} = 280.99 (p < 0.01)$		32	63					
Bestard , 2011 0 55 0.0 $[0.0; 3.1]$ Dominguez , 2012 0 64 0.0 $[0.0; 2.7]$ Gatti , 2012 0 564 0.0 $[0.0; 0.3]$ Toth , 2012 2 37 5.4 $[0.1; 15.6]$ Del Giorno , 2015 0 35 0.0 $[0.0; 4.9]$ Ware , 2015 28 215 13.0 $[8.8; 17.9]$ Haroutounian , 2016 2 206 1.0 $[0.0; 0.5]$ Paladini , 2017 0 341 0.0 $[0.0; 0.5]$ Paladini , 2017 0 35 0.0 $[0.0; 4.9]$ Passavanti , 2017 0 35 0.0 $[0.0; 5.7]$ Passavanti , 2017 29 209 13.9 $[9.5; 18.9]$ Chirchiglia , 2018 0 100 0.0 $[0.0; 6.5]$ Habib , 2018 0 26 0.0 $[0.0; 6.5]$ Anderson , 2019 21 1120 1.9 $[1.2; 2.8]$ Cervigni , 2019 0 32 0.0 $[0.0; 6.5]$ Loi , 2019 0 28 0.0 $[0.0; 6.6]$ Loi , 2019 4 800 0.5 $[0.1; 1.1]$ Vigil , 2017 0 37 0.0 $[0.0; 4.6]$ Heterogeneity: $l^2 = 92\%$, $l^2 = 280.39$ $(p < 0.01)$ Random effects model 1.3 $[0.1; 3.4]$ Heterogeneity: $l^2 = 92\%$, $l^2_{29} = 280.09$ $(p < 0.01)$		0	49					
Dominguez, 2012 0 64 0.0 $[0.0; 2.7]$ Gatti, 2012 0 564 0.0 $[0.0; 0.3]$ Toth, 2012 2 37 5.4 $[0.1; 15.6]$ Del Giorno, 2015 0 35 0.0 $[0.0; 4.9]$ Ware, 2015 28 215 13.0 $[8.8; 17.9]$ Haroutounian, 2016 2 206 1.0 $[0.0; 2.9]$ Fanelli, 2017 0 341 0.0 $[0.0; 0.5]$ Paladini, 2017 0 35 0.0 $[0.0; 4.9]$ Passavanti, 2017 29 209 13.9 $[9.5; 18.9]$ Chirchiglia, 2018 0 100 0.0 $[0.0; 5.7]$ Habb, 2018 0 35 0.0 $[0.0; 4.9]$ Habb, 2018 0 26 0.0 $[0.0; 6.5]$ Anderson, 2019 21 1120 1.9 $[1.2; 2.8]$ Cervigni, 2019 0 28 0.0 $[0.0; 6.3]$ Loi, 2019 0 28 0.0 $[0.0; 6.3]$ Ueberall, 2019 4 800 0.5 $[0.1; 1.1]$ Vigil, 2017 0 37 0.0 $[0.0; 4.6]$ Heterogeneity: $l^2 = 92\%$, $l^2 = 280.39$ ($p < 0.01$) Random effects model Heterogeneity: $l^2 = 92\%$, $l^2 = 280.39$ ($p < 0.01$) Residual heterogeneity: $l^2 = 92\%$, $l^2 = 280.99$ ($p < 0.01$)		0	55					
Gatti, 2012 0 564 0.0 $[0.0; 0.3]$ Toth, 2012 2 37 5.4 $[0.1; 15.6]$ Del Giorno, 2015 0 35 0.0 $[0.0; 4.9]$ Ware, 2015 28 215 13.0 $[8.8; 17.9]$ Haroutounian, 2016 2 206 1.0 $[0.0; 2.9]$ Fanelli, 2017 0 341 0.0 $[0.0; 0.5]$ Paladini, 2017 0 341 0.0 $[0.0; 0.5]$ Passavanti, 2017 0 35 0.0 $[0.0; 4.9]$ Passavanti, 2017 29 209 13.9 $[9.5; 18.9]$ Chirchiglia, 2018 0 35 0.0 $[0.0; 6.5]$ Crowley, 2018 0 35 0.0 $[0.0; 6.5]$ Anderson, 2019 21 1120 1.9 $[1.2; 2.8]$ Cervigni, 2019 0 32 0.0 $[0.0; 6.1]$ Ueberall, 2019 0 28 0.0 $[0.0; 6.1]$ Ueberall, 2019 0 37 0.0 $[0.0; 4.6]$ Giorgi, 2020 0 <td></td> <td>0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		0						
Toth, 2012 2 37 5.4 [0.1; 15.6] Del Giorno, 2015 0 35 0.0 [0.0; 4.9] Ware, 2015 28 215 13.0 [8.8; 17.9] Haroutounian, 2016 2 206 1.0 [0.0; 2.9] Fanelli, 2017 0 341 0.0 [0.0; 0.5] Paladini, 2017 0 35 0.0 [0.0; 4.9] Passavanti, 2017 29 209 13.9 [9.5; 18.9] Chirchiglia, 2018 0 100 0.0 [0.0; 1.7] Chirchiglia, 2018 0 35 0.0 [0.0; 4.9] Habib, 2018 0 26 0.0 [0.0; 6.5] Anderson, 2019 21 1120 1.9 [1.2; 2.8] Cervigni, 2019 0 32 0.0 [0.0; 5.3] Loi, 2019 0 28 0.0 [0.0; 6.1] Ueberall, 2019 4 800 0.5 [0.1; 1.1] Vigil, 2017 0 37 0.0 [0.0; 4.6] Giorgi, 2020 0 102 0.0 [0.0; 1.7] Random effects model 1.3 [0.1; 3.4] Heterogeneity: $l^2 = 91\%$, $\tau^2 = 0.0173$, $\tau^2_{24} = 280.38$ ($p < 0.01$) Residual heterogeneity: $l^2 = 92\%$, $\tau^2 = 0.203$ ($p < 0.01$) 0 20 40 60 80								
Del Giorno , 2015 0 35 0.0 $[0.0; 4.9]$ Ware , 2015 28 215 13.0 $[8.8; 17.9]$ Haroutounian , 2016 2 206 1.0 $[0.0; 2.9]$ Fanelli , 2017 0 341 0.0 $[0.0; 0.5]$ Paladini , 2017 0 35 0.0 $[0.0; 4.9]$ Passavanti , 2017 0 30 0.0 $[0.0; 5.7]$ Schimrigk , 2017 29 209 13.9 $[9.5; 18.9]$ Chirchiglia , 2018 0 100 0.0 $[0.0; 0.7]$ Habib , 2018 0 35 0.0 $[0.0; 6.5]$ Habib , 2018 0 26 0.0 $[0.0; 6.5]$ Anderson , 2019 21 1120 1.9 $[1.2; 2.8]$ Cervigni , 2019 0 32 0.0 $[0.0; 5.3]$ Loi , 2019 0 28 0.0 $[0.0; 6.1]$ Ueberall , 2019 4 800 0.5 $[0.1; 1.1]$ Vigil , 2017 0 37 0.0 $[0.0; 4.6]$ Heterogeneity: $r^2 = 92\%$, $r^2 = 0.0178$, $r^2_{24} = 280.09$ ($p < 0.01$) Random effects model Heterogeneity: $r^2 = 92\%$, $r^2 = 0.0178$, $r^2_{24} = 280.38$ ($p < 0.01$) Residual heterogeneity: $r^2 = 92\%$, $r^2 = 280.09$ ($p < 0.01$) 0 20 40 60 80						-		
Ware, 2015 28 215 13.0 [8.8; 17.9] Image: constraint of the system of the sys								
Haroutounian, 2016 2 206 1.0 $[0.0; 2.9]$ Fanelli, 2017 0 341 0.0 $[0.0; 0.5]$ Paladini, 2017 0 35 0.0 $[0.0; 4.9]$ Passavanti, 2017 29 209 13.9 $[9.5; 18.9]$ Chirchiglia, 2018 0 100 0.0 $[0.0; 1.7]$ Crowley, 2018 0 35 0.0 $[0.0; 4.9]$ Habib, 2018 0 26 0.0 $[0.0; 6.5]$ Anderson, 2019 21 1120 1.9 $[1.2; 2.8]$ Cervigni, 2019 0 32 0.0 $[0.0; 5.3]$ Loi, 2019 0 28 0.0 $[0.0; 6.1]$ Ueberall, 2019 4 800 0.5 $[0.1; 1.1]$ Vigil, 2017 0 37 0.0 $[0.0; 4.6]$ Heterogeneity: $l^2 = 92\%$, $\tau^2 = 0.0178$, $\gamma_{22}^2 = 280.09$ ($p < 0.01$) Random effects model Heterogeneity: $l^2 = 91\%$, $\tau^2 = 0.0173$, $\gamma_{24}^2 = 280.38$ ($p < 0.01$) Residual heterogeneity: $l^2 = 92\%$, $\gamma_{23}^2 = 280.09$ ($p < 0.01$) 0 20 40 60 80						-		
Fanelli, 2017 0 341 0.0 $[0.0; 0.5]$ Paladini, 2017 0 35 0.0 $[0.0; 4.9]$ Passavanti, 2017 0 30 0.0 $[0.0; 5.7]$ Schimrigk, 2017 29 209 13.9 $[9.5; 18.9]$ Chirchiglia, 2018 0 100 0.0 $[0.0; 1.7]$ Crowley, 2018 0 35 0.0 $[0.0; 6.5]$ Habib, 2018 0 26 0.0 $[0.0; 6.5]$ Anderson, 2019 21 1120 1.9 $[1.2; 2.8]$ Cervigni, 2019 0 32 0.0 $[0.0; 5.3]$ Loi, 2019 0 28 0.0 $[0.0; 6.1]$ Ueberall, 2019 4 800 0.5 $[0.1; 1.1]$ Vigil, 2017 0 37 0.0 $[0.0; 4.6]$ Giorgi, 2020 0 102 0.0 $[0.0; 1.7]$ Random effects model . 1.3 $[0.1; 3.4]$ Heterogeneity: $l^2 = 92\%$, $\tau^2 = 0.0173$, $\chi^2_{24} = 280.38$ $(p < 0.01)$ Residual heterogeneity: $l^2 = 92\%$, $\chi^2_{23} = 280.09$ $(p < 0.01)$ 0 20 40 60 80								
Paladini, 2017 0 35 0.0 [0.0; 4.9] Passavanti, 2017 0 30 0.0 [0.0; 5.7] Schimrigk, 2017 29 209 13.9 [9.5; 18.9] Chirchiglia, 2018 0 100 0.0 [0.0; 1.7] Crowley, 2018 0 35 0.0 [0.0; 4.9] Habib, 2018 0 26 0.0 [0.0; 6.5] Anderson, 2019 21 1120 1.9 [1.2; 2.8] Cervigni, 2019 0 32 0.0 [0.0; 5.3] Loi, 2019 0 28 0.0 [0.0; 6.1] Ueberall, 2019 4 800 0.5 [0.1; 1.1] Ueberall, 2019 4 800 0.5 [0.1; 1.1] Vigil, 2017 0 37 0.0 [0.0; 4.6] Giorgi, 2020 0 102 0.0 [0.0; 1.7] Random effects model 1.3 [0.1; 3.4] Heterogeneity: $l^2 = 92\%$, $\tau^2 = 0.0178$, $\tau^2_{22} = 280.09$ ($p < 0.01$) Residual heterogeneity: $l^2 = 92\%$, $\tau^2 = 280.09$ ($p < 0.01$) Comparison 20 20 0 20 20 20 20 20 20 20 20 20 20 2		0.000						
Passavanti, 2017 0 30 0.0 $[0.0; 5.7]$ - Schimrigk, 2017 29 209 13.9 $[9.5; 18.9]$ - Chirchiglia, 2018 0 100 0.0 $[0.0; 1.7]$ Crowley, 2018 0 35 0.0 $[0.0; 4.9]$ - Habib, 2018 0 26 0.0 $[0.0; 6.5]$ - Anderson, 2019 21 1120 1.9 $[1.2; 2.8]$ - Cervigni, 2019 0 32 0.0 $[0.0; 5.3]$ - Loi, 2019 0 28 0.0 $[0.0; 6.1]$ - Ueberall, 2019 4 800 0.5 $[0.1; 1.1]$ - Ueberall, 2019 4 800 0.5 $[0.1; 1.1]$ - Vigil, 2017 0 37 0.0 $[0.0; 4.6]$ - Giorgi, 2020 0 102 0.0 $[0.0; 1.7]$ - Random effects model 1.3 $[0.1; 3.4]$ - Heterogeneity: $l^2 = 92\%$, $\tau^2 = 0.0178$, $\tau^2_{22} = 280.09$ ($p < 0.01$) Residual heterogeneity: $l^2 = 92\%$, $\tau^2 = 280.09$ ($p < 0.01$) 0 20 40 60 80								
Schimrigk, 2017 29 209 13.9 [9.5; 18.9] Chirchiglia, 2018 0 100 0.0 [0.0; 1.7] Crowley, 2018 0 35 0.0 [0.0; 4.9] Habib, 2018 0 26 0.0 [0.0; 6.5] Anderson, 2019 21 1120 1.9 [1.2; 2.8] Cervigni, 2019 0 32 0.0 [0.0; 5.3] Loi, 2019 0 28 0.0 [0.0; 6.1] Ueberall, 2019 4 800 0.5 [0.1; 1.1] Vigil, 2017 0 37 0.0 [0.0; 4.6] Giorgi, 2020 0 102 0.0 [0.0; 1.7] Random effects model 1.3 [0.1; 3.4] Heterogeneity: $l^2 = 92\%$, $\tau^2 = 0.0178$, $\tau^2_{22} = 280.09$ ($p < 0.01$) Random effects model 1.2 [0.1; 3.1] Heterogeneity: $l^2 = 91\%$, $\tau^2 = 0.0173$, $\tau^2_{24} = 280.38$ ($p < 0.01$) Residual heterogeneity: $l^2 = 92\%$, $\tau^2_{23} = 280.09$ ($p < 0.01$) 0 20 40 60 80		100						
Chirchiglia, 2018 0 100 0.0 $[0.0; 1.7]$ Crowley, 2018 0 35 0.0 $[0.0; 4.9]$ Habib, 2018 0 26 0.0 $[0.0; 6.5]$ Anderson, 2019 21 1120 1.9 $[1.2; 2.8]$ Cervigni, 2019 0 32 0.0 $[0.0; 5.3]$ Loi, 2019 0 28 0.0 $[0.0; 6.1]$ Ueberall, 2019 4 800 0.5 $[0.1; 1.1]$ Vigil, 2017 0 37 0.0 $[0.0; 4.6]$ Giorgi, 2020 0 102 0.0 $[0.0; 1.7]$ Random effects model 1.3 $[0.1; 3.4]$ Heterogeneity: $l^2 = 91\%$, $\tau^2 = 0.0178$, $\tau^2_{22} = 280.09$ ($p < 0.01$) Residual heterogeneity: $l^2 = 92\%$, $\tau^2 = 280.09$ ($p < 0.01$) Residual heterogeneity: $l^2 = 92\%$, $\tau^2_{23} = 280.09$ ($p < 0.01$)								
Crowley, 2018 0 35 0.0 $[0.0; 4.9]$ Habib, 2018 0 26 0.0 $[0.0; 6.5]$ Anderson, 2019 21 1120 1.9 $[1.2; 2.8]$ Cervigni, 2019 0 32 0.0 $[0.0; 5.3]$ Loi, 2019 0 28 0.0 $[0.0; 6.1]$ Ueberall, 2019 4 800 0.5 $[0.1; 1.1]$ Vigil, 2017 0 37 0.0 $[0.0; 4.6]$ Giorgi, 2020 0 102 0.0 $[0.0; 1.7]$ Random effects model 1.3 $[0.1; 3.4]$ Heterogeneity: $l^2 = 92\%$, $\tau^2 = 0.0178$, $\tau^2_{22} = 280.09$ ($p < 0.01$) Residual heterogeneity: $l^2 = 92\%$, $\tau^2 = 280.09$ ($p < 0.01$) 0 20 40 60 80						Sectores.		
Habib, 2018 0 26 0.0 [0.0; 6.5] Anderson, 2019 21 1120 1.9 [1.2; 2.8] Cervigni, 2019 0 32 0.0 [0.0; 5.3] Loi, 2019 0 28 0.0 [0.0; 6.1] Ueberall, 2019 4 800 0.5 [0.1; 1.1] Vigil, 2017 0 37 0.0 [0.0; 4.6] Giorgi, 2020 0 102 0.0 [0.0; 1.7] Random effects model 1.3 [0.1; 3.4] Heterogeneity: $l^2 = 92\%$, $\tau^2 = 0.0178$, $\tau^2_{22} = 280.09$ ($p < 0.01$) Random effects model 1.2 [0.1; 3.1] Heterogeneity: $l^2 = 91\%$, $\tau^2 = 0.0173$, $\tau^2_{23} = 280.09$ ($p < 0.01$) Residual heterogeneity: $l^2 = 92\%$, $\tau^2_{23} = 280.09$ ($p < 0.01$) 0 20 40 60 80		1. 20						
Anderson, 2019 21 1120 1.9 [1.2; 2.8] Cervigni, 2019 0 32 0.0 [0.0; 5.3] Loi, 2019 0 28 0.0 [0.0; 6.1] Ueberall, 2019 4 800 0.5 [0.1; 1.1] Vigil, 2017 0 37 0.0 [0.0; 4.6] Giorgi, 2020 0 102 0.0 [0.0; 1.7] Random effects model 1.3 [0.1; 3.4] Heterogeneity: $l^2 = 92\%$, $\tau^2 = 0.0178$, $\chi^2_{22} = 280.09$ ($p < 0.01$) Random effects model 1.2 [0.1; 3.1] Heterogeneity: $l^2 = 91\%$, $\tau^2 = 0.0173$, $\chi^2_{24} = 280.38$ ($p < 0.01$) Residual heterogeneity: $l^2 = 92\%$, $\chi^2_{23} = 280.09$ ($p < 0.01$) 0 20 40 60 80		32						
Cervigni, 2019 0 32 0.0 $[0.0; 5.3]$ Loi, 2019 0 28 0.0 $[0.0; 6.1]$ Ueberall, 2019 4 800 0.5 $[0.1; 1.1]$ Vigil, 2017 0 37 0.0 $[0.0; 4.6]$ Giorgi, 2020 0 102 0.0 $[0.0; 1.7]$ Random effects model 1.3 $[0.1; 3.4]$ Heterogeneity: $l^2 = 92\%$, $\tau^2 = 0.0178$, $\gamma^2_{22} = 280.09$ ($p < 0.01$) Random effects model 1.2 $[0.1; 3.1]$ Heterogeneity: $l^2 = 91\%$, $\tau^2 = 0.0173$, $\gamma^2_{24} = 280.38$ ($p < 0.01$) Residual heterogeneity: $l^2 = 92\%$, $\gamma^2_{23} = 280.09$ ($p < 0.01$) 0 20 40 60 80								
Loi, 2019 0 28 0.0 [0.0; 6.1] Ueberall, 2019 4 800 0.5 [0.1; 1.1] Vigil, 2017 0 37 0.0 [0.0; 4.6] Giorgi, 2020 0 102 0.0 [0.0; 1.7] Random effects model 1.3 [0.1; 3.4] Heterogeneity: $l^2 = 92\%$, $\tau^2 = 0.0178$, $\gamma^2_{22} = 280.09$ ($p < 0.01$) Random effects model 1.2 [0.1; 3.1] Heterogeneity: $l^2 = 91\%$, $\tau^2 = 0.0173$, $\gamma^2_{24} = 280.38$ ($p < 0.01$) Residual heterogeneity: $l^2 = 92\%$, $\gamma^2_{23} = 280.09$ ($p < 0.01$) 0 20 40 60 80								
Ueberall, 2019 4 800 0.5 [0.1; 1.1] Vigil, 2017 0 37 0.0 [0.0; 4.6] Giorgi, 2020 0 102 0.0 [0.0; 1.7] Random effects model 1.3 [0.1; 3.4] Heterogeneity: $l^2 = 92\%$, $\tau^2 = 0.0178$, $\chi^2_{22} = 280.09$ ($p < 0.01$) Random effects model 1.2 [0.1; 3.1] Heterogeneity: $l^2 = 91\%$, $\tau^2 = 0.0173$, $\chi^2_{24} = 280.38$ ($p < 0.01$) Residual heterogeneity: $l^2 = 92\%$, $\chi^2_{23} = 280.09$ ($p < 0.01$) 0 20 40 60 80								
Vigil, 2017 0 37 0.0 [0.0; 4.6] Giorgi, 2020 0 102 0.0 [0.0; 1.7] Random effects model 1.3 [0.1; 3.4] Heterogeneity: $l^2 = 92\%$, $\tau^2 = 0.0178$, $\gamma_{22}^2 = 280.09$ ($p < 0.01$) 1.2 [0.1; 3.1] Random effects model 1.2 [0.1; 3.1] 1.1 Heterogeneity: $l^2 = 91\%$, $\tau^2 = 0.0173$, $\gamma_{24}^2 = 280.38$ ($p < 0.01$) 0 20 40 60 80								
Giorgi , 2020 0 102 0.0 [0.0; 1.7] Random effects model 1.3 [0.1; 3.4] Heterogeneity: $l^2 = 92\%$, $\tau^2 = 0.0178$, $\gamma_{22}^2 = 280.09$ ($p < 0.01$) Random effects model 1.2 [0.1; 3.1] Heterogeneity: $l^2 = 91\%$, $\tau^2 = 0.0173$, $\gamma_{24}^2 = 280.38$ ($p < 0.01$) Residual heterogeneity: $l^2 = 92\%$, $\gamma_{23}^2 = 280.09$ ($p < 0.01$) 0 20 40 60 80		18						
Random effects model . 1.3 [0.1; 3.4] Heterogeneity: $l^2 = 92\%$, $\tau^2 = 0.0178$, $\chi^2_{22} = 280.09$ ($p < 0.01$) Random effects model . 1.2 [0.1; 3.1] Heterogeneity: $l^2 = 91\%$, $\tau^2 = 0.0173$, $\chi^2_{24} = 280.38$ ($p < 0.01$) Residual heterogeneity: $l^2 = 92\%$, $\chi^2_{23} = 280.09$ ($p < 0.01$) 0 20 40 60 80		100						
Heterogeneity: $l^2 = 92\%$, $\tau^2 = 0.0178$, $\chi^2_{22} = 280.09$ ($p < 0.01$) Random effects model Heterogeneity: $l^2 = 91\%$, $\tau^2 = 0.0173$, $\chi^2_{24} = 280.38$ ($p < 0.01$) Residual heterogeneity: $l^2 = 92\%$, $\chi^2_{23} = 280.09$ ($p < 0.01$) 0 20 40 60 80			102					
Heterogeneity: $l^2 = 91\%$, $\tau^2 = 0.0173$, $\chi^2_{24} = 280.38$ (p < 0.01) Residual heterogeneity: $l^2 = 92\%$, $\chi^2_{23} = 280.09$ (p < 0.01) 0 20 40 60 80	Heterogeneity: $\vec{l}^2 = 92\%$,	ei c ² = 0.0178	$\chi^2_{22} = 1$	1.3 (10.0 × q) 280.09	[0.1; 3.4]			
Heterogeneity: $l^2 = 91\%$, $\tau^2 = 0.0173$, $\chi^2_{24} = 280.38$ (p < 0.01) Residual heterogeneity: $l^2 = 92\%$, $\chi^2_{23} = 280.09$ (p < 0.01) 0 20 40 60 80	Random effects mod		12	1.2	[0.1: 3.1] +			
Residual heterogeneity: $l^2 = 92\%$, $\chi^2_{23} = 280.09$ ($p < 0.01$) 0 20 40 60 80	Heterogeneity: /2 = 91%,	² = 0.0173	y2 = 2	280.38 (p < 0.01)	·,, [1	1 1	1
Test for subgroup differences: $\chi_1^2 = 0.59$, df = 1 ($p = 0.44$) Prevalence (%)	Residual heterogeneity:	= 92%, y2	= 280	09 (p < 0.01)	0	20	40 60	80
	Test for subgroup differen	$ces: \chi_1^2 = 0.$	59, df =	1 (p = 0.44)				

Appendix 14: Results for serious adverse events (subgroup by duration)

Study	Cases	Total	Prevalence (%)	95% C.I.						
byvar = More than 24 w	eeks				1					
Lynch, 2006	0	30	0.0	[0.0; 5.7]	-					
Rog, 2007	32	63	50.8	[38.4; 63.1]	1		10	-		
Bestard, 2011	0			[0.0; 3.5]						
Bestard, 2011	0	55								
Ware , 2015	28	215	13.0	[8.8; 17.9]		-				
Haroutounian, 2016	2									
Passavanti, 2017	0									
Schimrigk, 2017	29			[9.5; 18.9]		-				
Crowley, 2018	0									
Habib, 2018	0									
Cervigni, 2019	0									
Vigil, 2017	0									
Giorgi, 2020	0									
Random effects model			2.6		-					
Heterogeneity: $I^2 = 93\%$, τ^2	= 0.0414	$\chi^2_{12} = 1$	169.27 (p < 0.01)	St. 14 - 63						
byvar = Less than 24 w	eeks us	se								
Dominguez, 2012	0		0.0	[0.0; 2.7]						
Gatti, 2012	0									
Toth , 2012	2			[0.1; 15.6]		6				
Del Giorno, 2015	0									
Fanelli, 2017	0									
Paladini, 2017	õ									
Chirchiglia, 2018	03	100								
Anderson, 2019		1120								
Loi, 2019	0									
Ueberall, 2019	4									
Random effects model	12	000		[0.0; 0.8]						
Heterogeneity: $l^2 = 72\%$, τ^2	= 0.0025	$\chi_0^2 = 3$	2.32 (p < 0.01)	[0101 010]						
Random effects model			13	[0.1; 3.4]	1					
Heterogeneity: $l^2 = 92\%$, τ^2	= 0.0178	x ² = 1		[0.1, 0.4]	<u> </u>	1	1	1	1	
Residual heterogeneity: 1 ² =	90% 2	= 201	59 (n < 0.01)		0	20	40	60	80	1
realized increased and the second sec			= 1 (p = 0.08)		0	20	40	00	00	

Appendix 15: Results for serious adverse events (subgroup by selection bias)

Study	Cases	Total	Prevalence (%)	95% C.I.					
Selection_bias = Low									
Lynch, 2006	0	30	0.0	[0.0; 5.7]					
Rog, 2007	32			[38.4; 63.1]		1	<u></u>		
Bestard, 2011	0	49		[0.0; 3.5]					
Bestard, 2011	0	55							
Dominguez, 2012	0	64	0.0						
Gatti, 2012	0	564	0.0	[0.0; 0.3]					
Toth, 2012	2	37		[0.1; 15.6] +					
Del Giorno, 2015	0			[0.0; 4.9]					
Haroutounian, 2016	2	206		[0.0; 2.9]					
Fanelli, 2017	0	341	0.0	[0.0; 0.5]					
Paladini, 2017	0			[0.0; 4.9]					
Passavanti, 2017	0			[0.0; 5.7]					
Chirchiglia, 2018	0			[0.0; 1.7]					
Habib, 2018	0	26		[0.0; 6.5]					
Anderson, 2019	21	1120		[1.2; 2.8]					
Cervigni, 2019	0	32							
Loi, 2019	0			[0.0; 6.1]					
Ueberall, 2019	4	800							
Vigil, 2017	0	37							
Giorgi, 2020	0	102		[0.0; 1.7]					
Random effects model				[0.0; 2.1]					
Heterogeneity: $l^2 = 88\%$, τ^2		$\chi^2_{19} = 0$							
Selection_bias = High									
Ware, 2003	0	32	0.0	[0.0; 5.3]					
Fiz, 2011	0	28	0.0	[0.0; 6.1]					
Ware, 2015	28	215	13.0	[8.8; 17.9]	-				
Schimrigk, 2017	29	209	13.9	[9.5; 18.9]					
Crowley, 2018	0	35	0.0	[0.0; 4.9]					
Random effects model		34	4.2	[0.2; 11.2] 🕶	-				
Heterogeneity: $I^2 = 85\%$, τ^2	= 0.0165	$\chi_4^2 = 2$	8.53 (p < 0.01)						
Random effects model				[0.1; 3.1] •					
Heterogeneity: $l^2 = 91\%$, τ^2	= 0.0173	$\chi^2_{24} = 2$	280.38 (p < 0.01)		a lan	1	Sec. 1	1	
Residual heterogeneity: l^2 =	= 88%, χ^2_{Z}	= 185	.41 (p < 0.01)	0	20	40	60	80	
Test for subgroup difference	$\gamma_1^2 = 2.1$	32, df =	= 1 (p = 0.13)	0			nce (%)		

Appendix 16: Results for psychiatric adverse events

7							
8	Study	Cases T	Total Prevalence	e (%)	95% C.I.		
9							
	Rog, 2007	10	63		7.8; 26.1]		
10	Hoggart, 2015		380		16.9; 25.0]		
11	Ware , 2015		215	21.9 [1	6.6; 27.6]		
12	Ueberall, 2019	16	800	2.0	[1.1; 3.1] 🔳		
13							
14	Random effects model Heterogeneity: $l^2 = 98\%$, τ^2		2 .	13.5 [2.6; 30.6]		
15	Heterogeneity: $\Gamma = 98\%$, τ^{-1}	= 0.0436,)	(₃ = 157.87 (p < 0.	01)		40 00 00 40 50	
16					0	10 20 30 40 50	
17						Prevalence (%)	
18							
19							
20							
21							
22							
23							
24							
25							
26							
27							
28							
29							
30							
31							
32							
33							
34							
35							
36							
37							
38							
39							
40							
41							
42							
43							
44							
45							
46							
47							
48							
49							
50							
51							
52							
53							
54							
55							
56							
57							
58							
59							
60	For p	eer reviev	v only - http://b	mioper	n bmi com/site	/about/guidelines.xhtml	

Appendix 17	7: Results	for suicide

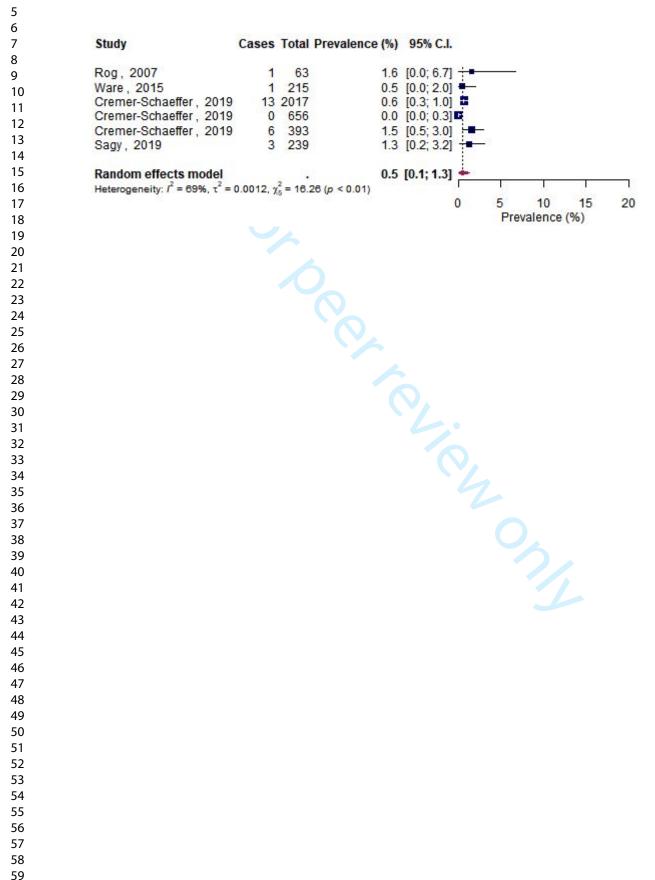
Ware, 20		lence (%) 95% C.I.	
	0 215	0.0 [0;0.8] 0	5 10 15 20 Prevalence (%)

Appendix 18: Results for suicidal thoughts

4					
5					
6	24	C			
7	Study	Cases Total Prevalenc	e (%) 95% C.I.		
8	Cremer-Schaeffer, 2019	4 2017	0.2 [0; 0.5] 🛡		
9	Cremer-Schaeffer, 2019		0.0 [0; 0.3]		
10	Cremer-Schaeffer, 2019		0.5 [0; 1.5] -		
11					
12	Random effects model Heterogeneity: $l^2 = 44\%$, $\tau^2 =$	2 .	0.1 [0; 0.5]		1
13 14	Heterogeneity: Γ = 44%, τ ⁻ =	$0.0003, \chi_2^- = 3.60 \ (p = 0.17)$	0	5 10 15	20
14			0	5 10 15 Prevalence (%)	20
16				Trevalence (70)	
17					
18					
19					
20					
21					
22					
23					
24					
25					
26					
27					
28					
29					
30					
31					
32					
33					
34					
35 36					
30 37					
38					
39					
40					
41					
42					
43					
44					
45					
46					
47					
48					
49					
50					
51					
52					
53					
54 55					
55 56					
56 57					
57 58					
58					

Appendix 19: Results for depression

Study	Cases	Total Prevalence	e (%)	95% C.I.		
Rog, 2007 Ware, 2015 Cremer-Schaeffer, 2019 Cremer-Schaeffer, 2019 Cremer-Schaeffer, 2019 Ueberall, 2019	10 31 10 7	63 215 2017 656 393 800	4.7 1.5 1.5 1.8	[0.6; 11.7] [2.2; 7.9] [1.0; 2.1] [0.7; 2.6] [0.7; 3.4] [0.2; 1.3]	—	
Random effects model Heterogeneity: <i>I</i> ² = 71%, τ ² =				[0.9; 2.7]	5 10 15 Prevalence (%)	20


Appendix 20: Results for mania

7								
8 9	Study	Cases	Total Prevale	nce (%)	95% C.I.			
10	Ware, 2015	5 1	215	0.5	[0; 2]			
11					1.110	1		
12					0		10 15	20
13						Prevale	ence (%)	
14								
15								
16								
17								
18								
19								
20								
21								
22								
23								
24 25								
25								
20								
28								
29								
30								
31								
32								
33								
34								
35								
36								
37								
38								
39								
40								
41								
42								
43								
44 45								
45								
40								
48								
49								
50								
51								
52								
53								
54								
55								
56								
57								
58								
59		_						
60		Fo	r peer review o	only - htti	p://bmjopen.	bmj.com/s	ite/about/gi	udelines.xh

Appendix 21: Results for hallucinations

1 2 3

4

Appendix 22: Results for delusions

7				
8	Study	Cases Total Prevalence	ce (%) 95% C.I.	
9			10 m	
10	Ware, 2015	0 215	0.0 [0.0; 0.8]	
11	Cremer-Schaeffer, 2019		0.5 [0.2, 0.9] 🖬	
12	Cremer-Schaeffer, 2019		0.5 [0.1; 1.2] =	
	Cremer-Schaeffer, 2019	1 393	0.3 [0.0; 1.1]	
13				
14	Random effects model Heterogeneity: $l^2 = 0\%$, $\tau^2 = 0$	2	0.4 [0.2; 0.6]	- <u>r - r - r - </u> r
15	Heterogeneity: $I^{-} = 0\%$, $\tau^{-} = 0$	$\chi_3^2 = 1.27 \ (p = 0.74)$		
16			0	5 10 15 20
17				Prevalence (%)
18				
19				
20				
21				
22				
23				
24				
25				
26				
27				
28				
29				
30				
31				
32				
33				
34				
35				
36				
37				
38				
39				
40				
41				
42				
43				
44				
45				
46				
40				
48				
49				
50				
51				
52				
53				
54				
55				
56				
57				
58				
59				
	Earpa	er review only - http://br	vionen hmi com/sito/	about/quidalinas yhtml

Appendix 23: Results for paranoia

Ware , 2003 Lynch , 2006	5 32 2 30	15.6 [4.8; 30.6] 6.7 [0.1; 19.1]	
Ware , 2015	2 215	0.9 [0.0; 2.8]	
Random effects m Heterogeneity: $r^2 = 85^{\circ}$	odel %, τ ² = 0.0266, χ ² ₂ = 13.14 (5.6 [0.0; 19.2] p < 0.01)	0 10 20 30 4
			Prevalence (%)

Appendix 24: Results for anxiety

Э							
6	Study	Cases	Total	Prevalence (%)	95% C.I.		
7				. ,			
8	Ware, 2003	3	32	9.4	[1.3; 22.4]		
9	Lynch , 2006	2	30		[0.1; 19.1] -		
10	Ware, 2015	10	215		[2.2; 7.9]	- 	
11	Perron, 2019		618		[24.4; 31.4]		
12	Ueberall, 2019		800		[0.0; 0.5]		
13							
	Random effects mode	l.		7.4	[0.0; 26.9] _		_
14	Heterogeneity: $l^2 = 99\%$, τ^2	= 0.0859,	$\chi_{4}^{2} = 3$	70.11 (p < 0.01)	- F		
15					0		50
16						Prevalence (%)	
17							
18							
19							
20							
21							
22							
23							
24							
25							
25 26							
27							
28							
29							
30							
31							
32							
33							
34							
35							
36							
37							
38							
39							
40							
40							
41							
43							
44							
45							
46							
47							
48							
49							
50							
51							
52							
53							
54							
55							
56							
57							
58							
50							

Appendix 25: Results for euphoria

Study	Cases Tota	I Prevalence (%)	95% C.I.
Rog, 2007	3 63	3 4.8	[0.6; 11.7]
Toth , 2012	2 3		[0.1; 15.6]
Ware, 2015	9 21		[1.9; 7.3]
Anderson, 2019	7 112		[0.2; 1.2]
Cremer-Schaeffer, 2019	27 201	7 1.3	[0.9; 1.9]
Cremer-Schaeffer, 2019	29 65		[3.0; 6.1]
Cremer-Schaeffer, 2019	4 39	3 1.0	[0.2; 2.3]
Random effects model		. 2.1	[0.9; 3.8]
Heterogeneity: $l^2 = 86\%$, $\tau^2 = 0$	$0.0028, \chi_6^2 = 4^{\circ}$.86 (p < 0.01)	
			0 5 10 15 20 Prevalence (%)

1 2 3 4 5 6	Appendix 26:	Results for memory impairment	
7 8	Study	Cases Total Prevalence (%) 95% C.I.	
9 10 11 12 13 14 15 16	Toth, 2012 Ware, 2015 Cremer-Schaeffer, 2019 Cremer-Schaeffer, 2019 Cremer-Schaeffer, 2019 Naftali, 2019 Sagy, 2019 Ueberall, 2019	9 12 656 1.8 [0.9; 3.0]	
17 18	Random effects model	= 0.0128, χ_{r}^{2} = 172.53 (p < 0.01)	_
19 20	neterogeneity. 7 – 50%, t =	0 10 20 30 40	50
21		Prevalence (%)	
22 23			
24 25			
26			
27 28			
29 30			
31			
32 33			
34			
35 36			
37 38			
39			
40 41			
42			
43 44			
45			
46 47			
48 49			
50			
51 52			
53			
54 55			
56			
57 58			
59 60	For	r peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtm	าไ

Appendix 27: Results for confusion

Toth, 2012 2 37 5.4 [0.1; 15.6] Ware, 2015 3 215 1.4 [0.2; 3.5] Haroutounian, 2016 1 206 0.5 [0.0; 2.1] Naftali, 2019 11 127 8.7 [4.3; 14.3] Sagy, 2019 1 239 0.4 [0.0; 1.8]	Study	Cases	Total P	evalence (%) 9	5% C.I.				
Toth, 2012 2 37 5.4 [0.1; 15.6] Ware, 2015 3 215 1.4 [0.2; 3.5] Haroutounian, 2016 1 206 0.5 [0.0; 2.1] Naftali, 2019 11 127 8.7 [4.3; 14.3] Sagy, 2019 1 239 0.4 [0.0; 1.8] Ueberall, 2019 4 800 0.5 [0.1; 1.1] Random effects model Heterogeneity: $r^2 = 81\%$, $\tau^2 = 0.0056$, $\gamma_6^2 = 32.09$ ($p < 0.01$) 0 5 10 15	Lynch, 2006	2		6.7	[0.1	1; 19.1] —	100	-		
Haroutounian, 2016 1 206 0.5 $[0.0; 2.1]$ Naftali, 2019 11 127 8.7 $[4.3; 14.3]$ Sagy, 2019 1 239 0.4 $[0.0; 1.8]$ Ueberall, 2019 4 800 0.5 $[0.1; 1.1]$ Random effects model Heterogeneity: $l^2 = 81\%$, $\tau^2 = 0.0056$, $\gamma_6^2 = 32.09$ ($p < 0.01$) 0 5 10 15	Toth, 2012			5.4	1 [0.1	1; 15.6]	-	8	5	
Naftali, 2019 11 127 8.7 [4.3; 14.3] Sagy, 2019 1 239 0.4 [0.0; 1.8] Ueberall, 2019 4 800 0.5 [0.1; 1.1] Random effects model . 1.8 [0.3; 4.2] Heterogeneity: $l^2 = 81\%$, $\tau^2 = 0.0056$, $\gamma_6^2 = 32.09$ ($p < 0.01$) 0 5 10 15							122			
Sagy, 2019 1 239 0.4 [0.0; 1.8] Ueberall, 2019 4 800 0.5 [0.1; 1.1] Random effects model . 1.8 [0.3; 4.2] Heterogeneity: $l^2 = 81\%$, $\tau^2 = 0.0056$, $\gamma_6^2 = 32.09$ ($p < 0.01$) 0 5 10 15	Haroutounian, 2016	1	206	0.5	j [0.	0; 2.1] 🔳	53			
Ueberall, 2019 4 800 0.5 [0.1; 1.1] Random effects model . 1.8 [0.3; 4.2] Heterogeneity: $l^2 = 81\%$, $\tau^2 = 0.0056$, $\gamma_6^2 = 32.09$ ($p < 0.01$) 0 5 10 15	Naftali, 2019	11		8.7	[4.3	3; 14.3]	1	-		
Ueberall, 2019 4 800 0.5 [0.1; 1.1] Random effects model . 1.8 [0.3; 4.2] Heterogeneity: $l^2 = 81\%$, $\tau^2 = 0.0056$, $\gamma_6^2 = 32.09$ ($p < 0.01$) 0 5 10 15	Sagy, 2019			0.4	[0.	0; 1.8] -				
Heterogeneity: $l^2 = 81\%$, $\tau^2 = 0.0056$, $\gamma_6^2 = 32.09$ ($p < 0.01$) 0 5 10 15	Ueberall, 2019	4	800	0.5	5 [0.	1, 1.1] 🔳				
0 5 10 15	Random effects mode	el.	, ·	1.8	8 [0.	3; 4.2] 💻	-			
Prevalence (%)	Heterogeneity: /* = 81%, τ	° = 0.0056,	$\chi_6^* = 32.0$	9 (p < 0.01)		0	5	10	15	
							P	revalence	e (%)	

Appendix 28: Results for disorientation

5							
6	Study	Cases	Total Prevaler	ice (%)	95% C.I.		
7	,						
8	Hoggart, 2015	19	380	5.0	[3.0; 7.4]		
9	Cremer-Schaeffer, 2019		2017		[2.1; 3.5]		
10	Cremer-Schaeffer, 2019		656		[0.1; 1.2]		
11	Cremer-Schaeffer, 2019	8	393		[0.8; 3.7]	 _	
12	Sagy, 2019		239		[0.0; 1.8]		
13	Ueberall, 2019		800		[0.2; 1.5]		
14							
15	Random effects model			1.6	[0.6; 3.0] 📥	-	
	Heterogeneity: $l^2 = 88\%$, $\tau^2 = 0$	0.0028, 7	(² ₅ = 41.05 (p < 0.0	11	CANCE OF ACCO		
16					0	5 10 15	20
17						Prevalence (%)	
18							
19							
20							
21							
22							
23							
24							
25							
26							
27							
28							
29							
30							
31							
32							
33							
33 34							
34 35							
36							
37							
38							
39							
40							
41							
42							
43							
44							
45							
46							
47							
48							
49							
50							
51							
52							
53							
54							
54 55							
56							
57							
58							
1.0							

Appendix 29: Results for impaired attention

7 8	Study	Cases Total	Prevalence (%)	95% C.I.		
8 9 10	Ware, 2015 Anderson, 2019	5 215 15 1120	1.3	[0.7; 4.9] — [0.7; 2.1] 🖶	-	
11	Cremer-Schaeffer, 2019	132 2017	6.5	[5.5; 7.7]		
12	Cremer-Schaeffer, 2019			[2.5; 5.4]		
13	Cremer-Schaeffer, 2019 Sagy, 2019	37 393 6 239		[6.7; 12.5] [0.8; 4.9] —	and the second se	
14	Ueberall, 2019	2 800		[0.0; 0.8]		
15	Vigil, 2019	3 37		[1.1; 19.5] —	-	
16						
17	Random effects model Heterogeneity: $l^2 = 95\%$, $\tau^2 =$		3.4	[1.3; 6.3]		
18	Heterogeneity: / = 95%, τ =	$0.0082, \chi_7^2 = 147.3$	39 (p < 0.01)	1	T T T	-
19				0	5 10 15 Prevalence (%)	20
20					Flevalence (70)	
21 22						
22						
23						
25						
26						
27						
28						
29						
30						
31						
32						
33 34						
35						
36						
37						
38						
39						
40						
41						
42						
43 44						
45						
46						
47						
48						
49						
50						
51						
52						
53						
54 55						
55 56						
57						
58						
50						

1	
2 3 4 5 6 7 8	
4	
5	
5	
0	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
49 50	
50 51	
51	
52	
53	
54	
55	
56	
57	
58	

60

Appendix 30: Results for falls

Study	Cases	Total Pre	evalence	e (%) 95% (
Ware , 201	5 5	215		2.3 [0.7; 4	.9]	<u> </u>		1	
					0	5 Prev	10 valence	15 (%)	20

Appendix 31: Results for motor vehicle accidents

Study			Prevalence						
Ware , 2015	1	215		0.5	[0; 2] == 0	1 5	10	1 15	
						Prev	alence	(%)	

Appendix	32: F	Results	for	dependence

6 7	Study	Cases	Total Prevale	ence (%)	95% C.I.		
8	Feingold, 2017	90	406	21.2 [1]	7.3; 25.3]	0.02	
9	Perron, 2019	12	618	10 1	[1.0; 3.2]		
10	Ueberall, 2019		800	1.0 0	0.0; 0.2]		
11	Oeberail, 2013	0	000	0.0 [[0.0, 0.2]-		
12	Random effects model	1		44 10	0.0; 19.9] 📥	Charles and the second s	
12	Random effects model Heterogeneity: $I^2 = 99\%$, τ^2	= 0.0488	$y^2 = 231.16 (p)$	< 0.01)	[
14	inclugation, t		x ₂		0	10 20 30 40	50
						Prevalence (%)	
15							
16							
17							
18							
19							
20							
21							
22							
23							
24							
25							
26							
27							
28							
29							
30							
31							
32							
33							
34							
35							
36							
37							
38							
39							
40							
41							
42							
43							
44							
45							
46							
47							
48							
40 49							
49 50							
51 52							
52							
53							
54							
55							
56							
57							
50							

Appendix 33: Results for withdrawal symptoms

Study Perron , 2019		Prevalence (%)			-
Fellon, 2019	419 016	07.0	[64.1; 71.4] 0	20 40 Preval	60 80 ence (%)

Appendix 34: Results for withdrawal syndrome

5					
6					
7	Study	Cases	Total Prevalence	(%)	95% C.I.
8					(1977) (1
9	Ware, 2015	1	215	0.5	[0.0; 2.0]
10	Schimrigk, 2017	10	209	4.8	[2.2; 8.2]
11					TO 0 0 01
12	Random effects mode Heterogeneity: $l^2 = 89\%$, τ^2		2	2.1	[0.0; 8.2]
13	Heterogeneity: / = 89%, τ	= 0.0091	$\chi_1 = 8.72 (p < 0.01)$		0 5 10 15 20
14					0 5 10 15 20 Prevalence (%)
15					Trevalence (70)
16					
17					
18					
19					
20					
21					
22					
23					
24					
25					
26					
27					
28					
29					
30					
31					
32					
33					
34					
35					
36					
37					
38					
39					
40					
41					
42					
43					
44					
45					
46					
47					
48					
49					
50					
51					
52					
53					
54					
55					
56					
57					
58					
59	-				
60	For r	heer revie	w only - http://br	mion	pen bmi com/site/about/quidelines xhtml

2					
Section/top ic (page no)	Item	PRISMA checklist item	PRISMA harms (minimum)	Recommendations for reporting harms in systematic reviews (desirable)	Check if done
Fitle Bitle (3) 9 10 11 12 13 Abstract	1	Identify the report as a systematic review, meta-analysis, or both.	Specifically mention "harms" or other related terms, or the harm of interest in the review.		Х
Structured summary (4) 16 17 18 19 20 21 Patroduction	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.		Abstracts should report any analysis of harms undertaken in the review, if harms are a primary or secondary outcome.	Χ
Rationale (5) 24 25 26 27 28	3	Describe the rationale for the review in the context of what is already known.	-	It should clearly describe in introduction or in methods section which events are considered harms and provide a clear rationale for the specific harm(s), condition(s), and patient group(s) included in the review.	Х
Objectives (5) 30 31 32 33 34 Methods	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	<u></u>	PICOS format should be specified, although in systematic reviews of harms the selection criteria for P, C, and O may be very broad (same intervention may have been used for heterogeneous indications in a diverse range of patients)	X
Protocol and Sectorial and registration (6) 37 38 39	5	Indicate if a review protocol exists, if and where it can be accessed (eg, web address), and, if available, provide registration information including registration number.	-7	No specific additional information is required for systematic reviews of harms.	Х
Éfigibility Atteria (6) 42 43 44 45	6	Specify study characteristics (eg, PICOS, length of follow-up) and report characteristics (eg, years considered, language, publication status) used as criteria for eligibility, giving rationale.	_	Report how handled relevant studies (based on population and intervention) when the outcomes of interest were not reported. Report choices for specific study designs and length of follow-up.	Х
Hatormation Hatormation 48 49 50 51	7	Describe all information sources (eg, databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	_	Report if only searched for published data, or also sought data from unpublished sources, from authors, drug manufacturers and regulatory agencies. If includes unpublished data, provide the source and the process of obtaining it.	Х
Syzarch (7) 53 54 55 56 57 58	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.		If additional searches were used specifically to identify adverse events, authors should present the full search process so it can be replicated.	Х
59 60		For peer review only - http://bmjop	oen.bmj.com/site/al	oout/guidelines.xhtml	

1 2					
Study Stelection (8) 5 6 7 8 9	9	State the process for selecting studies (ie, screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	_	If only included studies reporting on adverse events of interest, defined if screening was based on adverse event reporting in title/abstract or full text. If no harms reported in the text, report if any attempt was made to retrieve relevant data from authors.	Х
Dota collection ppocess (9) 13 14	10	Describe method of data extraction from reports (eg, piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	_	No specific additional information is required for systematic reviews of harms.	Х
Pata items (9) 16 17 18 19 20 21 22 23 24 25 26 27 28	11	List and define all variables for which data were sought (eg, PICOS, funding sources) and any assumptions and simplifications made.	_	Report the definition of the harm and seriousness used by each included study (if applicable). Report if multiple events occurred in the same individuals, if this information is available. Consider if the harm may be related to factors associated with participants (eg, age, sex, use of medications) or provider (eg, years of practice, level of training). Specify if information was extracted and how it was used in subsequent results. Specify if extracted details regarding the specific methods used to capture harms (active/passive and timing of adverse event).	Х
RASk of bias in Bolividual Studies (10) 32 33 34	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	<u></u>	The risk of bias assessment should be considered separately for outcomes of benefit and harms.	Х
Summary Bugasures (11)	13	State the principal summary measures (eg, risk ratio, difference in means).	-2	No specific additional information is required for systematic reviews of harms.	Х
Synthesis of Results (11) 39 40	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (eg, I ²) for each meta-analysis.	Specify how zero events were handled, if relevant.		
₩isk of bias #£3coss studies (43) 44 45	15	Specify any assessment of risk of bias that may affect the cumulative evidence (eg, publication bias, selective reporting within studies).		Present the extent of missing information (studies without harms outcomes), any factors that may account for their absence, and whether these reasons may be related to the results.	Х
Additional appalyses (12) 48 49 50 51 51	16	Describe methods of additional analyses (eg, sensitivity or subgroup analyses, meta-regression), if done, indicating which were prespecified.		Sensitivity analyses may be affected by different definitions, grading, and attribution of adverse events, as adverse events are typically infrequent or reported using heterogeneous classifications. Report the number of participants and studies included in each subgroup.	Х
Study selection (13) 55 56 57 58	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each	_	If a review addresses both efficacy and harms, display a flow diagram specific for each (efficacy and harm).	Х
59 60		For peer review only - http://bmjop	pen.bmj.com/site/ab	out/guidelines.xhtml	

2					
3		stage, ideally with a flow diagram.			
4					
5 Study characteristics (14) 9 10 11	18	For each study, present characteristics for which data were extracted (eg, study size, PICOS, follow-up period) and provide the citations.	Define each harm addressed, how it was ascertained (eg, patient report, active search), and over what time period.	Add additional characteristics to: "P" (population) patient risk factors that were considered as possibly affecting the risk of the harm outcome. "I" (intervention) professional expertise/skills if relevant (for example if the intervention is a procedure). "T" (time) timing of all harms assessments	Х
12 Risk of bias Within studies (15) 16 17 18	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).		and the length of follow-up. Consider the possible sources of biases that could affect the specific harm under consideration within the review. Sample selection, dropouts and measurement of adverse events should be evaluated separately from the outcomes of benefit as	X
19 Results of intlividual Intlividual	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plat	_	described in item 12, above. Report the actual numbers of adverse events in each study, separately for each intervention.	Х
24 Synthesis of regults (17) 27	21	intervals, ideally with a forest plot. Present results of each meta-analysis done, including confidence intervals and measures of consistency.	Describe any assessment of possible causality.	If included data from unpublished sources, report clearly the data source and the impact of these studies to the final systematic review.	Х
28 Bisk of bias across studies (18)	22	Present results of any assessment of risk of bias across studies (see item 15).	0	No specific additional information is required for systematic reviews of harms. See item 15 above.	Х
Additional analysis (18) 33 Discussion	23	Give results of additional analyses, if done (eg, sensitivity or subgroup analyses, meta-regression (see item 16)).	R	No specific additional information is required for systematic reviews of harms.	Х
Summary of Widence (18) 37 38	24	Summarise the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (eg, healthcare providers, users,	-2	No specific additional information is required for systematic reviews of harms.	Х
39 14Pmitations (418) 42 43	25	and policy makers). Discuss limitations at study and outcome level (eg, risk of bias), and at review level (eg, incomplete retrieval of identified research, reporting bias).		Recognise possible limitations of meta- analysis for rare adverse events (ie, quality and quantity of data), issues noted previously related to collection and	Х
44 4gnclusions (4g) 47 48 49 50 Eynding	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.		reporting. State conclusions in coherence with the review findings. When adverse events were not identified we caution against the conclusion that the intervention is "safe," when, in reality, its safety remains unknown.	Х
54 Funding (19) 53 54 55	27	Describe sources of funding for the systematic review and other support (eg, supply of data); role of funders for the systematic review.		No specific additional information is required for systematic reviews of harms.	Х
55 56 57 58 59					

BMJ Open

Long-term and serious harms of medical cannabis and cannabinoids for chronic pain: A systematic review of nonrandomized studies

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-054282.R1
Article Type:	Original research
Date Submitted by the Author:	03-May-2022
Complete List of Authors:	Zeraatkar, Dena; McMaster University, Health Research Methods, Evidence, and Impact; Harvard Medical School, Department of Biomedical Informatics Cooper, Matthew; McMaster University, Michael G. Degroote School of Medicine Agarwal, Arnav; University of Toronto, Department of Medicine Vernooij, Robin; Comprehensive Cancer Centre Netherlands Location Groningen Leung, Gareth; University of Cambridge, Department of Public Health and Primary Care Loniewski, Kevin; York University, Faculty of Health Dookie, Jared E ; Western University, Schulich School of Medicine and Dentistry Ahmed, Muhammad Muneeb; McMaster University, Michael G. Degroote School of Medicine Hong, Brian Y; University of Toronto, Division of Plastic and Reconstructive Surgery Hong, Christopher; University of Toronto Faculty of Medicine, Health Research Methods, Evidence, and Impact Hong, Patrick; University of Toronto, Department of Anesthesiology and Pain Medicine Couban, Rachel; McMaster University, Michael G. DeGroote Institute for Pain Research and Care Agoritsas, Thomas; McMaster University, Department of Clinical Epidemiology and Biostatistics; University Hospitals Geneva, Division of General Internal Medicine & Division of Epidemiology Busse, Jason; McMaster University, Anesthesia
Primary Subject Heading :	Medical management
Secondary Subject Heading:	Anaesthesia, Medical management
Keywords:	Pain management < ANAESTHETICS, PAIN MANAGEMENT, PRIMARY CARE

1 2 3	
5 4 5	SCHOLARONE [™] Manuscripts
6 7	Manuscripts
8 9	
10 11	
12 13	
14 15	
16 17	
18 19	
20 21	
22 23 24	
24 25 26	
27 28	
29 30	
31 32	
33 34	
35 36	
37 38	
39 40	
41 42 43	
43 44 45	
46 47	
48 49	
50 51	
52 53	
54 55	
56 57	
58 59 60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xht
00	

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

1		
2		
3	1	Long-term and serious harms of medical cannabis and cannabinoids for chronic pain: A
4		
5	2	systematic review of non-randomized studies
6		
7	2	Dana Zaraatkar, mathadalagist
8	3 4	Dena Zeraatkar, methodologist
9 10	5	Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON Department of Biomedical Informatics, Harvard Medical School, Boston, MA
10	6	Matthew Adam Cooper, <i>medical student</i>
12	7	Michael G. Degroote School of Medicine
12	8	McMaster University, Hamilton, ON
14	9	Arnav Agarwal, resident physician
15	10	Department of Medicine
16	11	University of Toronto, Toronto, ON
17	12	Robin W. M. Vernooij, methodologist
18	13	Netherlands Comprehensive Cancer Organization (IKNL)
19	14	Utrecht, the Netherlands
20	15	Gareth Leung, methodologist
21	16	Department of Public Health and Primary Care,
22	17	University of Cambridge, Cambridge, UK
23	18	Kevin Loniewski, nursing student
24	19	Faculty of Health, Seneca College, King City, ON.
25	20	York University, Toronto, ON
26	21	Jared E. Dookie, medical student
27	22 23	Schulich School of Medicine and Dentistry
28	23 24	Western University, London, ON Nubarmad Munach Abmod, modical student
29	24	Muhammad Muneeb Ahmed, medical student Michael G. Degroote School of Medicine
30	26	McMaster University, Hamilton, ON
31	27	Muhammad Muheeb Ahmed, <i>medical student</i> Michael G. Degroote School of Medicine McMaster University, Hamilton, ON Brian Younho Hong, resident physician Division of Plastic and Reconstructive Surgery University of Toronto, Toronto, ON Chris J. Hong, resident physician Department of Otolaryngology-Head & Neck Surgery
32	28	Division of Plastic and Reconstructive Surgery
33	29	University of Toronto, Toronto, ON
34	30	Chris J. Hong, resident physician
35	31	Department of Otolaryngology-Head & Neck Surgery
36 37	32	University of Toronto, Toronto, ON
	33	Patrick Jiho Hong, resident physician
38 39	34	Department of Anesthesiology and Pain Medicine University of Toronto, Toronto, ON Rachel Couban, medical librarian Department of Anesthesia Department of Health Research Methods, Evidence, and Impact
40	35	University of Toronto, Toronto, ON
41	36	Rachel Couban, medical librarian
42	37	Department of Anesthesia
43	38 39	Department of Health Research Methods, Evidence, and Impact McMaster University, Hamilton, ON
44	40	Thomas Agoritsas, assistant professor
45	40	Department Medicine, University Hospitals of Geneva, Geneva, Switzerland
46	42	Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON
47	43	Jason W. Busse, associate professor*
48	44	Department of Anesthesia
49	45	Department of Health Research Methods, Evidence, and Impact
50	46	McMaster University, Hamilton, ON
51	47	bussejw@mcmaster.ca
52	48	
53		
54	49	*Corresponding author
55	50	
56	50	
57		
58 59		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
00		

1 2		
3	51	Running head: Harms of medical cannabis
4 5	52	
6 7	53	Abbreviations: Cochrane Central Register of Controlled Trials (CENTRAL), Palmitoylethanolamide (PEA),
8 9	54	tetrahydrocannabinol (THC)
10	55	
11 12 13 14 15	56	Keywords: Medical cannabis, chronic pain, adverse events, harms, non-randomized studies,
	57	observational, systematic review, meta-analysis
	58	
16 17	59	Competing Interests: There are no competing interests for any author
18 19	60	
20	61	Funding: DZ is supported by a Banting Postdoctoral Fellowship.
21 22	62	
23 24	63	Ethics approval: The systematic review is exempt from ethics approval.
25	64	
26 27 28 29	65	Data: Data are available in a public, open access repository: https://osf.io/ut36z/
	66	
30 31	67	Acknowledgements: We thank the members of the Rapid Recommendations panel for critical feedback
32	68	on the selection of the adverse events of interest. We thank James MacKillop, PhD, for his guidance
33 34	69	regarding the interpretation of problematic cannabis use, abuse, dependance and withdrawal syndrome
35 36	70	within studies included in our review.
37	71	
38 39	72	Data Sharing: Data on all other adverse events not included in our review, but reported in primary studies,
40 41	73	are available in an open-access database (https://osf.io/ut36z/).
42	74	
43 44	75	Authors' Contributions: JWB and TA conceived the idea. RC designed and conducted the search. DZ, MAC,
45 46	76	AA, RWMV, GL, KL, JED, MMA, BYH, CH, and PJH screened search records, extracted data, and assessed
47	77	the risk of bias of the eligible studies. DZ conducted all analyses. DZ, JWB, and TA interpreted the data. DZ
48 49	78	wrote the first draft of the manuscript. JWB and TA critically revised the manuscript. All authors reviewed
50 51	79	and approved the final version. DZ and JWB are the guarantors.
52	80	* I, the Submitting Author, have the right to grant and does grant on behalf of all authors of the Work (as
53 54	81	defined in the author licence), an exclusive licence and/or a non-exclusive licence for contributions from
55 56	82	authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii)
57 58		
59		2
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

2 3		
4	83	in accordance with the terms applicable for US Federal Government officers or employees acting as part
5 6	84	of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group
7	85	Ltd ("BMJ") its licensees.
8 9	86	
9 10 11 12 13 14 15 16 17 18 9 20 21 22 23 24 25 26 7 28 29 30 31 23 34 35 36 37 38 9 40 142 43 44 50 51 52 34 55 56 57 58	87	Vord court: 5,813
58 59		3
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

88 Abstract

 Objective: To establish the prevalence of long-term and serious harms of medical cannabis for chronic90 pain.

Design: Systematic review and meta-analysis.

Data sources: MEDLINE, EMBASE, PsycInfo, and CENTRAL from inception to April 1, 2020.

93 Study selection: Non-randomized studies reporting on harms of medical cannabis or cannabinoids in
94 adults or children living with chronic pain with ≥4 weeks of follow-up.

Data extraction and synthesis: A parallel guideline panel provided input on the design and interpretation
 of the systematic review, including selection of adverse events for consideration. Two reviewers, working
 independently and in duplicate, screened the search results, extracted data, and assessed risk of bias. We
 used random-effects models for all meta-analyses and the GRADE approach to evaluate the certainty of
 evidence.

Results: We identified 39 eligible studies that enrolled 12,143 adult patients with chronic pain. Very low certainty evidence suggests that adverse events are common (prevalence: 26.0%; 95% CI 13.2 to 41.2) among users of medical cannabis for chronic pain, particularly any psychiatric adverse events (prevalence: 13.5%; 95% Cl 2.6 to 30.6). Very low certainty evidence, however, indicates serious adverse events, adverse events leading to discontinuation, cognitive adverse events, accidents and injuries, and dependence and withdrawal syndrome are less common and each typically occur in fewer than one in 20 patients. We compared studies with <24 weeks and ≥24 weeks of cannabis use and found more adverse events reported among studies with longer follow-up (test for /interaction p < 0.01). Palmitoylethanolamide was usually associated with few to no adverse events. We found insufficient evidence addressing the harms of medical cannabis compared to other pain management options, such as opioids.

49 111 *Conclusions:* There is very low certainty evidence that adverse events are common among people living
 50 112 with chronic pain who use medical cannabis or cannabinoids, but that few patients experience serious
 52 113 adverse events.

55 114 Systematic review registration <u>https://osf.io/25bxf</u>

BMJ Open

2		
3 4	115	trengths and limitations of this study
5 6	116	Strengths of this systematic review include a comprehensive search for non-randomized studies,
7	117	explicit eligibility criteria, screening of studies and collection of data in duplicate to increase
8 9	118	reliability, and use of the GRADE approach to evaluate the certainty of evidence.
10 11	119	Our review is limited by the non-comparative design of most studies, which precludes confident
12 13	120	inferences regarding the proportion of adverse events that can be attributed to medical cannabis or
14	121	cannabinoids.
15 16	122	A third of studies were at high risk of selection bias, primarily because they included prevalent
17 18	123	cannabis users. In such studies, the prevalence of adverse events may be underestimated.
19	124	Our review provides limited evidence on the harms of prolonged medical cannabis use since most
20 21	125	studies reported adverse events for less than one year of follow-up.
22 23	126	Some studies reported on smoked or vaporized medical cannabis, which may be associated with
24	127	different adverse events (e.g. respiratory) than oral or topical formulations. We performed
25 26	128	subgroup analyses based on the type of medical cannabis, but our findings were of low credibility
27 28	129	due to inconsistency and/or imprecision.
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43	129 130	due to inconsistency and/or imprecision.
44 45 46 47 48 49 50 51 52 53 54 55		

Background

Chronic pain is the primary cause of health care resource use and disability among working adults in North America and Western Europe.^{1 2} The use of cannabis for the management of chronic pain is becoming increasingly common due to pressure to reduce opioid use, increased availability and changing legislation, shift in public attitudes and decreased stigma, and aggressive marketing.^{3 4} The two most-studied cannabinoids in medical cannabis are delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD).⁵ THC binds to cannabinoid receptors type 1 and 2, is an analog to the endogenous cannabinoid, anandamide, and has shown psychoactive, analgesic, anti-inflammatory, antioxidant, antipruritic, anti-spasmodic, and muscle-relaxant activities. CBD directly interacts with various ion channels to produce analgesic, anti-inflammatory, anti-convulsant and anxiolytic activities, without the psychoactive effects of THC.⁵ Use of cannabis for therapeutic purposes, however, remains contentious due to the social and legal context and its known and suspected harms.⁶⁻⁹

Though common adverse events caused by medical cannabis, including nausea, vomiting, headache, drowsiness, and dizziness, have been well documented in randomized controlled trials and reviews of randomized controlled trials,^{10 11} less is known about potentially uncommon but serious adverse events, particularly events that may occur with longer durations of medical cannabis use, such as dependence, withdrawal symptoms, and psychosis.^{4 12-17} Such adverse events are usually observed in large non-randomized studies that recruit larger numbers of patients and typically follow them for longer durations of time. Further, evidence from non-randomized studies may be more generalizable, since randomized controlled trials often use strict eligibility criteria.

The objective of this systematic review and meta-analysis is to summarize the evidence on the risks and, when evidence on risk is not available, the prevalence of adverse events related to medical cannabis and cannabinoids from non-randomized studies for a BMJ Rapid Recommendation addressing medical cannabis for chronic pain.¹⁸ This evidence synthesis is part of the BMJ Rapid Recommendations project, a collaborative effort from the MAGIC Evidence Ecosystem Foundation (www.magicevidence.org) and the BMJ.¹⁹ A guideline panel helped define the study question and selected adverse events for review. The adverse events of interest include psychiatric and cognitive adverse events, injuries and accidents, and dependence and withdrawal. It is one of four systematic reviews that together informed a parallel guideline.^{11 18 20 21} A parallel systematic review addressed evidence from randomized trials.¹¹

BMJ Open

1 2		
3 4	161	Methods
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	162	We report our systematic review in accordance with the PRISMA Harms Checklist. ²² We registered the
	163	protocol for our review at OSF (<u>https://osf.io/25bxf</u>) and followed this protocol unless otherwise reported
	164	in this manuscript. ²²
	165	Guideline panel involvement
	166	A guideline panel helped define the study question and selected the adverse events for review. The panel
	167	included nine content experts (two general internists, two family physicians, a pediatrician, a physiatrist,
	168	a pediatric anesthesiologist, a clinical pharmacologist, and a rheumatologist), nine methodologists (five of
	169	whom are also front-line clinicians), and three people living with chronic pain (one of whom used
	170	cannabinoids for medical purposes).
23 24	171	Patient and public involvement
25 26 27 28 29 30 31 32 33	172	Three patient partners (two women and one man) were included as part of the guideline panel and
	173	contributed to the selection and prioritization of outcomes, protocol, and interpretation of review
	174	findings, and provided insight on values and preferences. Each of our patient partners was living with
	175	chronic pain and were selected to represent a range of experiences regarding medical cannabis. One had
	176	tried and discontinued medical cannabis due to lack of efficacy. One had found success with use of medical
34 35	177	cannabis (primarily oral CBD). The third had no personal experience with medical cannabis.
36 37	178	Search
38 39	179	A medical librarian searched MEDLINE, EMBASE, PsychInfo, and Cochrane Central Register of Controlled
40	180	Trials (CENTRAL) from inception to April 1, 2020, with no restrictions on language, for non-randomized
41 42	181	studies reporting on harms or adverse events of medical cannabis or cannabinoids for chronic pain
43 44	182	(Supplement Appendix 1). We scanned reference lists of relevant reviews to identify any eligible studies
45	183	not retrieved by our electronic search and solicited content experts from our panel for unpublished
46 47	184	studies. Search records, and later full-texts of studies, not reported in English were translated by a native
48 49	185	speaker of the language.
50 51 52	186	Study selection
53 54	187	Reviewers (DZ, MAC, AA, RWMV, GL, KL, JED, MMA, BYH, CJH, PJH), working independently and in
55 56 57	188	duplicate, reviewed titles and abstracts of search records and subsequently full texts of records found

potentially eligible at the title and abstract screening stage. Reviewers resolved disagreements bydiscussion or by adjudication by a third reviewer (DZ).

We included all non-randomized studies that reported on any patient-important harm or adverse event associated with the use of any formulation of medical cannabis or cannabinoids in adults or children, living with chronic pain (pain lasting for \geq 3 months) or a medical condition associated with chronic pain (i.e., fibromyalgia, arthritis, multiple sclerosis, neuropathy, inflammatory bowel disease, stroke, or advanced cancer) or that compared adverse events associated with medical cannabis or cannabinoids with another pharmacologic or non-pharmacologic intervention. We considered herbal cannabis consumed for medical reasons as medical cannabis. Based on input from the guideline panel, we excluded studies in which patients used cannabis for less than 4 weeks because we anticipated that four weeks would be the minimum amount of time after which we would reasonably expect to observe potential serious or long term harms associated with medical cannabis.²³ We looked for explicit statements or evidence that patients were experiencing chronic pain. We excluded studies in which: (1) fewer than 25 patients used medical cannabis or cannabinoids (to exclude studies that would not appreciably contribute to pooled estimates and studies that may be too small to reliably estimate the prevalence of adverse events), (2) patients did not suffer from chronic pain or a condition commonly associated with chronic pain or more than 20% of patients reported using medical cannabis or cannabinoids for a condition other than chronic pain (to exclude studies in which patients did not predominantly suffer from chronic pain), (3) patients were using cannabis for recreational reasons, (4) only surrogate measures of patient-important harms and adverse effects (e.g., performance on cognitive tests, lab values) were reported, and (5) systematic reviews and other types of studies that did not provide primary data.

210 Data extraction and risk of bias

Reviewers (DZ, MAC, AA, RWMV, GL, KL, JED, MMA, BYH, CJH, PJH), working independently and in duplicate and using a standardized and pilot-tested data collection form, extracted the following information from each eligible study: (1) study design, (2) patient characteristics (age, sex, condition/diagnosis), (3) characteristics of medical cannabis or cannabinoids (name of product, dose, and duration), and (4) number of patients that experienced adverse events, including all adverse events, serious adverse events, and withdrawal due to adverse events. Reviewers resolved disagreements by discussion or by adjudication with a third party (DZ). We classified adverse events as serious based on the classification used in primary studies. For comparative studies, we collected results from models adjusted

for confounders, when reported, and unadjusted models when results for adjusted models were notreported.

When studies reported the number of events rather than the number of patients experiencing adverse events, we only extracted the number of events if they were infrequent (the number of events accounted for less than 10% of the total number of study participants). For studies that reported on adverse events at multiple timepoints, we extracted data for the longest point of follow-up that included, at minimum, 80% of the patients recruited into the study. Reviewers resolved disagreements by discussion or by adjudication with a third reviewer (DZ).

Reviewers (DZ, MAC, AA, RWMV, GL, KL, JED, MMA, BYH, CJH, PJH), working independently and in duplicate, used the Cochrane-endorsed ROBINS-I tool to rate the risk of bias of studies as low, moderate, serious, or critical across seven domains: (1) bias due to confounding, (2) selection of patients into the study, (3) classification of the intervention, (4) bias due to deviations from the intended intervention, (5) missing data, (6) measurement of outcomes, and (7) selection of reported results.²⁴ Reviewers resolved discrepancies by discussion or by adjudication by a third party (DZ). Supplement Appendix 2 presents additional details on the assessment of risk of bias. Studies were considered to adequately adjust for confounders if they adjusted, at minimum, for pain intensity, concomitant pain medication, disability status, alcohol use, and past cannabis use. Studies were rated at low risk of bias overall when all domains were at low risk of bias; moderate risk of bias if all domains were rated at low or moderate risk of bias; at serious risk of bias when all domains were rated either at low, moderate, or serious risk of bias; and at critical risk of bias when one or more domains were rated as critical.

239 Data synthesis

In this review, we synthesized data on serious adverse events and adverse events that may emerge with
longer duration of medical cannabis use. Identified by a parallel BMJ Rapid Recommendations guideline
panel as important, these patient-important outcomes included psychiatric and cognitive adverse events,
injuries and accidents, and dependence and withdrawal. Data on all other adverse events reported in
primary studies are available in an open-access database (https://osf.io/ut36z/).²⁵. We classified adverse
events as serious based on the classification used in primary studies.

Adverse events are reported as binary outcomes. For comparative studies, when possible, we present risk
differences and associated 95% confidence intervals (95% Cls). Since there were only two eligible

comparative studies, each with different comparators, we did not perform meta-analysis. For single-arm studies, we pooled the proportion of patients experiencing adverse events of interest by first applying a Freeman-Tukey type arcsine square root transformation to stabilize the variance. Without this transformation, very high or very low prevalence estimates can produce confidence intervals that contain values lower than 0% or higher than 100%. All meta-analyses used DerSimonian-Laird random-effects models, which are conservative as they consider both within- and between-study variability.²⁶⁻²⁸ We also pooled all effect estimates using fixed-effects models as a sensitivity analysis. We evaluated heterogeneity for all pooled estimates through visual inspection of forest plots and calculation of tau-squared (τ^2), because some statistical tests of heterogeneity (I² and Cochrane's Q) can be misleading when sample sizes are large and CIs are therefore narrow.²⁹ Higher values of τ^2 , I², and Cochrane's Q indicate higher statistical heterogeneity. For studies that reported estimates for all-cause adverse events and those deemed to be potentially related to cannabis use, we preferentially synthesized results for all adverse events.

For analyses for which we observed high clinical heterogeneity (i.e., substantial differences in the estimates of individual studies and minimal overlap in the confidence intervals), we presented results narratively.

In consultation with the parallel BMJ Rapid Recommendations guideline panel, we also prespecified six subgroup hypotheses to explain heterogeneity between studies: (1) study design (longitudinal vs. cross-sectional), (2) type of medical cannabis, (3) cancer vs. non-cancer pain, (4) children vs. adults, (5) duration of medical cannabis use (shorter or longer than the median duration of follow-up across studies), and (6) risk of bias (low/moderate vs. serious/critical). We also performed two post-hoc subgroup analyses: (1) duration of follow-up (shorter or longer than the median duration of follow-up across studies) and (2) selection bias (studies at moderate, serious, or critical risk of selection bias vs. studies at low risk of selection bias). We anticipated that studies reporting on shorter use of medical cannabis, as well as cross-sectional studies, studies on cancer patients, studies including adults, studies with active comparators, studies at high risk of bias would report fewer adverse events. We anticipated that studies at moderate, serious, or critical risk of selection bias that included prevalent cannabis users (i.e., people who were using medical cannabis before the inception of the study) or were preceded by a run-in period or clinical trial during which patients that experienced adverse events or found medical cannabis intolerable could discontinue would report fewer adverse events because prevalent of medical cannabis are likely to represent populations that have self-selected for tolerance to cannabis. We performed tests for

1	
2	
3	
4	
5	
6	
7	
, 8	
9	
	0
1	1
1	
1	
1	4
1	5
1	6
1	7
	8
	9
	0
2	1
	2
2	
2	4
2	5
2	6
2	7
2	8
	9
	0
3	
	2
3	
3	4 5
3	6
3	7 8
3	9
	0
4	1
4	2
4	
4	
4	
4	
4	
4	
4	~
-	9
5	9

57 58

59

60

interaction to establish whether subgroups differed significantly from one another. We assessed the credibility of significant subgroup effects (test for interaction p < .05) using published criteria.^{30 31}

We performed all analyses using the 'meta' package in R (version 3.5.1, R Foundation for Statistical
Computing).³²

2 282 *Certainty of evidence*

283 We used the GRADE approach to rate the certainty of evidence.^{33 34} Based on GRADE guidance for using 284 the ROBINS-I tool, evidence starts at high certainty and is downgraded by one level when the majority of 285 the evidence comes from studies at moderate risk of bias, two levels when the majority of the evidence 286 comes from studies at high risk of bias, and three levels when the majority of the evidence comes from 287 studies rated at critical risk of bias.³³ We additionally considered potential limitations due to indirectness 288 if the population, intervention, or adverse events assessed in studies did not reflect the populations, 289 interventions, or adverse events of interest, inconsistency if there was important unexplained differences 290 in the results of studies, and imprecision if the upper and lower bounds of confidence intervals indicated 291 appreciably different rates of adverse events. For assessing inconsistency and imprecision for the outcome 292 all adverse events, based on feedback from the guideline panel, we deemed a 20% difference in the 293 prevalence of all adverse evidence to be patient-important; a 10% difference for adverse events leading 294 to discontinuation, serious adverse events, and psychiatric, cognitive, withdrawal and dependence, 295 injuries; and a 3% difference for potentially fatal adverse events, such as suicides and motor vehicle accidents. We followed GRADE guidance for communicating our findings.³⁵ Guideline panel members 296 297 interpreted the magnitude of adverse events and decided whether the observed prevalence of adverse 298 events was sufficient to affect patients' decisions to use medical cannabis or cannabinoids for chronic pain.

299 Results

300 Study selection

301 Our search yielded 17,178 unique records of which 434 were reviewed in full. We excluded more than 302 half of references because they did not describe a non-randomized study, a guarter because they did not 303 include patients with chronic pain, and a small minority because they did not report on adverse events. 51 52 304 Of these records, 39 non-randomized studies were eligible for review (Supplement Appendix 3).³⁶⁻⁷⁴ Figure 53 54 305 1 presents additional details related to study selection. Supplement Appendix 4 presents studies excluded 55 306 at the full-text screening stage and accompanying reasons for exclusion. 56

307 Description of studies

One study was published in German and the remainder in English. Studies included 12,143 adults living with chronic pain and included a median of 100 (IQR 34 to 361) participants (Table 1). Most studies (30/39; 76.9%) were longitudinal in design. Eighteen studies (46.2%) were conducted in Western Europe, fourteen (35.9%) in North America, six (15.4%) in Israel, and two (5.1%) in the United Kingdom. Ten studies (25.6%) were funded by industry alone or industry in combination with government and institutional funds; the remainder were funded either by governments, institutions, or not-for-profit organizations (n=9; 23.1%), did not receive funds (n=3; 7.7%), or did not report funding information (n=17; 43.6%).

Thirty studies (76.9%) reported on people living with chronic non-cancer pain, eight (n=20.5%) with mixed cancer and non-cancer chronic pain, and one (2.6%) with chronic cancer pain. All studies reported on adults. Sixteen studies reported on mixed types of herbal cannabis (e.g., buds for smoking, vaporizing, and ingesting, hashish, oils, extracts, edibles), nine on palmitoylethanolamide (PEA), four each on nabiximols and dronabinol, two on nabilone, one each on Trokie lozenges and extracts, and four did not report the type of medical cannabis used. Herbal cannabis, lozenges, extracts, and nabiximols are mixed CBD and THC products whereas nabilone and dronabinol only contain THC. One study reported on three types of medical cannabis (dronabinol, nabiximols, and mixed herbal) separately. The median duration of medical cannabis use was 24 weeks (IQR 12.0 to 33.8 weeks). Two studies were comparative: one study compared nabilone with gabapentin and another compared herbal cannabis with standard care.⁴⁰⁴⁹ Studies reported a total of 525 unique adverse events.

326 Risk of bias

Supplement Appendix 5 presents the risk of bias of included studies. We rated all results at critical risk of bias except for the comparative results from two studies,^{40 49} which were rated at serious and moderate risk of bias. The primary limitation across studies was inadequate control for potential confounding either due to the absence of a control group or inadequate adjustment for confounders. A third of studies were rated at serious risk of bias for selection bias, primarily because they included prevalent users of medical cannabis. Such studies may underestimate the incidence of adverse events since patients that experience adverse events are more likely to discontinue medical cannabis early. Such studies may also include adverse events that may have been present at inception and that are unrelated to medical cannabis use.

BMJ Open

335 All adverse events

Twenty longitudinal and two cross-sectional studies, including 4,108 patients, reported the number of patients experiencing one or more adverse events.^{37-44 47 48 55 57-61 63 65 66 70 71 74} Seven studies reported on PEA, five on mixed herbal cannabis, three each on nabilone and nabiximols, two on dronabinol, and one each on extracts and Trokie lozenges. The median duration of medical cannabis use was 24 weeks [IQR 12 to 32]. We observed substantial unexplained heterogeneity and so summarize the results descriptively (Table 2; Supplement Appendices 6 to 9). The prevalence of any adverse event ranged between 0% to 92.1%. Studies with less than 24 weeks of cannabis use (the median duration of cannabis) typically reported fewer adverse events than those with more than 24 weeks. Patients using PEA experienced no adverse events. The evidence was overall very uncertain due to risk of bias and inconsistency.

One study suggested that nabilone may reduce the risk of adverse events compared to gabapentin (-13.1%; 95% CI -26.2 to 0), but the certainty of evidence was very low due to risk of bias and imprecision (Table 3).

⁶ 348 Adverse events leading to discontinuation

Twenty longitudinal studies, including 6,509 patients, reported on the number of patients that discontinued medical cannabis or cannabinoids due to adverse events.^{38 40 42-45 47-50 53 55 57 58 60 63 64 66 71 74} Eight studies reported on PEA, four studies on mixed herbal cannabis, three on nabiximols, two on nabilone, and one each on dronabinol and extracts, and one study did not report the type of medical cannabis used by patients. The median duration of cannabis use was 24 weeks [IQR 8.6 to 32]. We observed substantial unexplained heterogeneity and so summarize the results descriptively (Supplement Appendices 10 to 12). The prevalence of discontinuations due to adverse events ranged between 0% to 27.0%. Studies with less than 24 weeks of cannabis use typically reported fewer discontinuations than those with more than 24 weeks. Patients using PEA experienced no adverse events. The evidence was overall very uncertain due to risk of bias and inconsistency.

359 One study suggested herbal cannabis may increase the risk of adverse events leading to discontinuation 49 360 compared to standard care without cannabis (4.7%; 95% CI 1.8 to 7.5). Another study suggested that 50 361 nabilone may reduce the risk of adverse events leading to discontinuation compared to gabapentin (-52 362 9.4%; 95% CI -18.5 to -0.2). The certainty of evidence was low to very low due to risk of bias and 54 363 imprecision.

364 Serious adverse events

Twenty-two longitudinal and two cross-sectional studies, including 4,273 patients, reported on the number of patients experiencing one or more serious adverse events.^{36-38 40-44 47 49 50 53 55-61 63 66 71 72 74} Eight studies reported on mixed herbal cannabis, eight on PEA, two each on nabilone and nabiximols each, and one study each on dronabinol, extracts, and Trokie lozenges, and one study did not report the type of cannabis used. The median duration of medical cannabis or cannabinoid use was 24 weeks (IQR 12 to 32), and few patients experienced serious adverse events (1.2%; 95% Cl 0.1 to 3.1; l²=91%) (Figure 2) (Supplement Appendices 13 to 15). There was a statistically significant subgroup effect across different types of medical cannabis though serious adverse events appeared consistently uncommon (low credibility). The certainty of evidence was very low overall due to serious risk of bias.

One study suggested use of herbal cannabis may make little to no difference in the risk of serious adverse events compared to standard care without cannabis (1.5%; 95% CI -8.3 to 20.2). Another study found use of nabilone vs. gabapentin may make little to no difference in the risk of serious adverse events. The certainty of evidence was low to very low for both studies due to risk of bias and imprecision.

Psychiatric adverse events

Eleven longitudinal and two cross-sectional studies, including 6,600 patients, reported on any psychiatric adverse events, including psychiatric disorders, suicide, suicidal thoughts, depression, mania, hallucinations, delusions, paranoia, anxiety, and euphoria (Supplement Appendices 16 to 25).^{36-38 44 48 49 61} ^{64 68 69 71} Five studies reported on mixed herbal cannabis, four on nabiximols, one each on dronabinol, nabilone, and mixed types and one study did not specify the type of medical cannabis. The median duration of cannabis use across studies was 52 weeks (IQR 20 to 52). Approximately one in seven medical cannabis users experienced one or more psychiatric disorders or adverse events (13.5%; 95% CI 2.6 to 30.6; I²=98%). The most frequently occurring psychiatric adverse events were paranoia (5.6%; 9% CI 0 to 19.2; I²=85%) and anxiety (7.4%; 95% Cl 0 to 26.9; I²=99%). The certainty of evidence was very low due to risk of bias, inconsistency (for psychiatric disorders and paranoia), and imprecision (for psychiatric disorder, paranoia, and anxiety).

One study suggested that herbal cannabis may result in a trivial to moderate increase in the risk for
 psychiatric disorders, mania, hallucinations, depression, paranoia, anxiety, and euphoria and a reduction
 in the risk for suicides and delusions, compared with standard care without cannabis, though the certainty
 of evidence was low to very low due to risk of bias and imprecision.

394 Cognitive and attentional adverse events

Eleven longitudinal studies, including 6,257 patients, reported on cognitive adverse events, including memory impairment, confusion, disorientation, and impaired attention (Supplement Appendices 26 to 29).^{36-38 44 48 49 61 64 68 69 71} Five studies reported on herbal cannabis, three on nabiximols, three on mixed types of cannabis, and one each on dronabinol and nabilone. The median duration of cannabis use was 52 weeks (IQR 24 to 52). The prevalence of cognitive adverse events ranged from 1.6% (95% Cl 0.6 to 3.0; l²=88%) for disorientation to 5.3% (95% Cl 2.1 to 9.6; l²=96%) for memory impairment. The certainty of evidence was very low due to risk of bias.

402 One study suggested herbal cannabis may slightly increase the risk for memory impairment and 403 disturbances in attention compared to standard care without cannabis, but reduce the risk for confusion, 404 though the certainty of evidence was low to very low due to risk of bias and imprecision.

405 Accidents and injuries

406 One longitudinal study, including 431 patients, reported on accidents and injuries in patients using mixed 407 herbal cannabis for 52 weeks (Supplement Appendices 30 & 31).⁴⁹ This study suggested herbal cannabis 408 used for medical purposes may slightly increase the risk of motor vehicle accidents (0.5%; 95% CI -0.4 to 409 1.4) but may not increase the risk of falls (0%; 95% CI -2.8 to 2.9). The certainty of evidence was low due 410 to risk of bias.

Dependence and withdrawal

Four longitudinal and one cross-sectional study, including 2,248 patients, reported on dependence-related adverse events, including dependence (one study reported on 'abuse' based on unspecified criteria, one study reported on 'problematic use' using the Alcohol Use Disorder and Associated Disabilities Interview Schedule–Diagnostic and Statistical Manual of Mental Disorders–Fourth Edition [AUDADIS-IV]⁷⁵, and one study reported on 'dependence' using the Alcohol, Smoking, and Substance Involvement Screening Test⁷⁶), withdrawal symptoms (defined as one or moderate or severe withdrawal symptoms including sleep difficulties, anxiety, irritability, and appetite disturbance), and withdrawal syndrome (two studies that used unspecified criteria) (Supplement Appendices 32 to 34).^{49 54 57 68 71} Two studies reported on herbal cannabis, one each on nabiximols and nabilone, and one did not specify type of medical cannabis used by patients. Follow-up ranged from 12 to 52 weeks. The pooled prevalence of dependence was 4.4% (95% CI 0.0 to 19.9; I²=99%) and 2.1% (95% CI 0 to 8.2; I²=89%) for withdrawal

syndrome; however, withdrawal symptoms were much more common (67.8%; 95% CI 64.1 to 71.4). The
certainty of evidence was very low due to risk of bias, inconsistency, imprecision (for dependence), and
indirectness due to vagueness of definitions in studies that precluded confident distinguishment between
dependence, addiction, withdrawal symptoms, and withdrawal syndrome.

427 One study suggested that herbal cannabis compared to standard care may slightly increase the risk of 428 withdrawal syndrome (0.5%; 95% Cl -0.4 to 1.4) but the certainty of evidence was low due to risk of bias.

429 Discussion

430 Main findings

Our systematic review and meta-analysis suggests that adverse events are common among people living with chronic pain who use medical cannabis or cannabinoids, with approximately one in four experiencing at least one adverse event-though the certainty of evidence is very low and the true prevalence of adverse events may be substantially different. In contrast, serious adverse events, adverse events leading to discontinuation, cognitive adverse events, accidents and injuries, and dependence and withdrawal syndrome are less common. We compared studies with <24 weeks and \geq 24 weeks cannabis use and found more adverse events reported among studies with longer follow-up. This may be explained by increased tolerance (tachyphylaxis) with prolonged exposure, necessitating increases in dosage with consequent increased risk of harms. PEA, compared to other formulations of medical cannabis, may result in the fewest adverse events. Though adverse events associated with medical cannabis appear to be common, few patients discontinued use due to adverse events suggesting that most adverse events are transient and/or outweighed by perceived benefits.

Our review represents the most comprehensive review of evidence from non-randomized studies addressing adverse events of medical cannabis or cannabinoid use in people living with chronic pain. While several previous reviews have summarized the evidence on short-term and common adverse events of medical cannabis reported in randomized trials, such as oral discomfort, dizziness, and headaches, our review focuses on serious and rare adverse events—the choice of which was informed by a panel including patients, clinicians, and methodologists—and non-randomized studies, which typically follow larger numbers of patients for longer periods of time and thus may detect adverse events that are infrequent or that are associated with longer durations of cannabis use.^{10 77-81} A parallel systematic review of evidence from randomized controlled trials found no evidence to inform long-term harms of medical cannabis as no eligible trial followed patients for more than 5.5 months.¹¹ One previously published review that

Page 19 of 120

BMJ Open

included non-randomized studies searched the literature until 2007, included studies exploring medical cannabis for any indication (excluding synthetic cannabinoids) of which only two enrolled people living with chronic pain.¹² This review did not synthesize adverse event data from non-randomized studies.¹² Unlike previous reviews, we focused exclusively on medical cannabis for chronic pain and excluded recreational cannabis, because cannabis used for recreational purposes often contains higher concentrations of THC than medical cannabis. We focused on chronic pain because this patient population may be susceptible to different adverse events. Depression and anxiety, for example, are commonly occurring comorbidities of chronic pain, which may be exacerbated by cannabis.¹⁵⁻¹⁷

461 Strengths and limitations

462 Strengths of this systematic review and meta-analysis include a comprehensive search for non-463 randomized studies, explicit eligibility criteria, screening of studies and collection of data in duplicate to 464 increase reliability, and use of the GRADE approach to evaluate the certainty of evidence.

Our review is limited by the non-comparative design of most studies, which precludes confident inferences regarding the proportion of adverse events that can be attributed to medical cannabis or cannabinoids and the magnitude by which medical cannabis may increase or decrease the risk of adverse events compared to other pain management options. Though adverse events appear common among medical cannabis users, it is possible that other management options for chronic pain, particularly opioids, may be associated with more (and more severe) adverse events.⁸² Partly due to the non-comparative design of most studies, nearly all results included in our review were at serious or critical risk of bias for confounding and Simpson's paradox,⁸³ either due to the absence of a control group or due to insufficient adjustment for important confounders. Further, a third of studies were at high risk of selection bias, primarily because they included prevalent cannabis users. In such studies, the prevalence of adverse events may be underestimated. Our review provides limited evidence on the harms of medical cannabis beyond one year of use since most studies reported adverse events for less than one year of follow-up.

477 We observed some inconsistency for many adverse events of interest and substantial inconsistency for all
 478 adverse events and adverse events leading to discontinuation. We downgraded the certainty of evidence
 479 when we observed important inconsistency and we did not present estimates from meta-analyses for all
 480 adverse events and adverse events leading to discontinuation due to substantial inconsistency. Further,
 481 some analyses included too few studies or participants, due to which estimates were imprecise.

BMJ Open

482 Sixteen of 39 studies reported on herbal medical cannabis, some of which were consumed by smoking or
483 vaporizing, and may be associated with different adverse events (e.g. respiratory) than other formulations
484 of medical cannabis. We attempted to perform subgroup analyses based on the type of medical cannabis.
485 Results for subgroups, however, lacked credibility due to inconsistency and/or imprecision.

Clinicians and patients may be more inclined to use medical cannabis or cannabinoids for pain relief if adverse events are mild; however, the evidence on whether adverse events are transient, life threatening, or the extent to which they impact quality of life is limited. While more than half of studies reported on the proportion of adverse events that were serious, criteria for ascertaining severity were rarely reported. None of the included studies reported the duration for which patients experienced adverse events. Further, most primary studies did not report adequate details on methods for the ascertainment of adverse events, including definitions or diagnostic criteria. The two studies that reported on withdrawal syndrome, for example, did not provide diagnostic criteria.^{49 57} However, the DSM-5 requires \geq 3 of 7 withdrawal symptoms to be present within a week of stopping cannabis use to meet a diagnosis of cannabis withdrawal syndrome.⁸⁴ It is therefore reasonable that people living with chronic pain that use medical cannabis would be more likely to experience withdrawal symptoms vs. withdrawal syndrome.

While children and youth account for approximately 15% of all chronic pain patients, we did not identify any evidence addressing the harms of medical cannabis in this population.⁸⁵ As such, the extent to which our findings are generalizable to pediatric populations is uncertain. Although there is evidence that cannabis use during youth is associated with increased risk of acute psychotic disorders, particularly acute psychosis,⁸⁶ such studies have focussed on use of recreational cannabis that contains greater amounts of THC than is typically seen in medical preparations. Further, the population of patients with chronic pain included in the studies we reviewed may not be representative of all patients with chronic pain-particularly rare conditions that cause chronic pain.

We used the DerSimonian and Laird method for meta-analysis.²⁷ A growing body of evidence, however,
 suggests that this model has important limitations that may be addressed by alternative models⁸⁷—
 though there is limited evidence on the performance of these models for meta-analyses of proportions
 and prevalence.

509 Finally, we excluded studies from meta-analyses when they did not explicitly report the adverse events of 510 interest to our panel members. This may have overestimated the prevalence of adverse events if the 511 adverse events of interest were not observed in the studies in which they were not reported. This was,

Page 21 of 120

1 2 3

57 58

59

60

BMJ Open

3 4	512	however, not possible to confirm because methods for the collection and reporting of adverse event data
5	513	across studies were variable (e.g., active monitoring vs. passive surveillance; collecting data on specific
6 7 8	514	adverse events vs. all adverse events) and poorly described in study reports.
9 10	515	Implications
11 12	516	Our systematic review and meta-analysis shows that evidence regarding long-term and serious harms of
13	517	medical cannabis or cannabinoids is insufficient—an issue with important implications for patients and
14 15	518	clinicians considering this management option for chronic pain. While the evidence suggests that adverse
16 17	519	events are common in patients using medical cannabis for chronic pain, serious adverse events appear
18 19	520	less common, which suggests that the potential benefits of medical cannabis or cannabinoids (although
20 21	521	modest) may outweigh potential harms for some patients. ^{11 18}
22 23	522	Clinicians and patients considering medical cannabis should be aware that more adverse events were
24 25	523	reported among studies with longer follow-up, necessitating long term follow-up of patients and re-
26	524	evaluation of pain treatment options. Our findings also have implications for the choice of medical
27 28	525	cannabis. We found PEA, for example, to consistently be associated with few or no adverse events across
29 30 31	526	studies, though the evidence on the efficacy of PEA is limited. ¹¹
32	527	We found very limited evidence comparing medical cannabis or cannabinoids with other pain
33 34	528	management options. Other pharmacological treatments for chronic pain, such as gabapentinoids,
35 36	529	antidepressants, and opioids, may be associated with more (and more serious) adverse events. ⁸⁸⁻⁹⁰ To
37 38	530	guide patients' and clinicians' decisions on medical cannabis for chronic pain, future research should
39	531	compare the harms of medical cannabis and cannabinoids with other pain management options, including
40 41 42	532	opioids, ideally beyond one year of use, and adjust results for confounders.
43	533	Our review highlights the need for standardization of reporting of adverse events in non-randomized
44 45	534	studies since such studies represent a critical source of data on long-term and infrequently occurring
46 47	535	harms. To enhance the interpretability of adverse event data, future studies should also report the
48 49	536	duration and severity of adverse events and whether adverse events are life-threatening, since these
49 50 51	537	factors are critical to patients' decisions.
52 53	538	A valuable output of our systematic review is an open-source database of over 500 unique adverse events

54 539 reported to date in non-randomized studies of medical cannabis or cannabinoids for chronic pain with 55 corresponding assessments of risk of bias (https://osf.io/ut36z/). This database was compiled in duplicate 540 56

BMJ Open

by trained and calibrated data extractors and is freely available to those interested in further analyzing the prevalence of different types of adverse events or to those interested in expanding the database to include adverse events in patients using medical cannabis or cannabinoids for other indications.

Conclusion

Our systematic review and meta-analysis found very low certainty evidence that suggests adverse events are common among people living with chronic pain using medical cannabis or cannabinoids, but that serious adverse events, adverse events causing discontinuation, cognitive adverse events, motor vehicle accidents, falls, and dependence and withdrawal syndrome are less common. We also found very low certainty evidence that longer duration of use was associated more adverse events and that PEA, compared with other types of medical cannabis, may result in few or no adverse events. Future research should compare the risks of adverse events of medical cannabis and cannabinoids with alternative pain ιs, anu στ management options, including opioids, and adjust for potential confounders.

1		
2		
3	553	Figure Legends
4 5		
6	554	
7		
8		
9	555	Figure 1: Study selection process
10		
11 12	556	
12		
14	557	Figure 2: Forest plot of the meta-analysis for serious adverse events stratified by type of medical
15	558	cannabis
16	220	Camabis
17		
18		
19 20		
20		
22		
23		
24		
25		
26		
27 28		
28 29		
30		Figure 2: Forest plot of the meta-analysis for serious adverse events stratified by type of medical cannabis
31		
32		
33		
34 35		
36		
37		
38		
39		
40		
41 42		
43		
44		
45		
46		
47		
48 49		
49 50		
51		
52		
53		
54		
55 56		
56 57		
58		
59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Study	Design	Country	Condition	Cannabis/ comparator	Dose	# of participants	Duration of cannabis use (weeks)
Ware, 2003 ³⁵	cross-sectional*	Canada	mixed non-cancer pain	mixed herbal (CBD + THC)	frequency: rarely (n=9), weekly (n=8), daily (n=5), >once daily (n=7) dose: 1-2 puffs (n=4), 3-4 puffs (n=13), whole joint (n=8), more than one joint (n=4)	32	NR
Lynch, 2006 ³⁶	longitudinal*	Canada	mixed non-cancer pain	mixed herbal (CBD + THC)	mean: 2.5 g/day	30	mean: 94.4
Rog, 2007 ³⁷	longitudinal*	UK	multiple sclerosis	nabiximols (CBD + THC)	mean: 7.5 sprays/day	63	66.1
Weber, 2009 ³⁸	longitudinal*†	Germany	mixed non-cancer pain	dronabinol (THC)	median: 7.5 mg/day	172	mean: 31
Bestard, 2011 ³⁹	longitudinal*	Canada	peripheral neuropathic pain	nabilone (THC)	mean: 3.0 mg/day	104	24
				gabapentin	mean: 2.3 g/day	107	
Fiz, 2011 40	cross-sectional*	Spain	fibromyalgia	mixed herbal (CBD + THC)	~1 to 2 cigarettes or spoonful daily (n=12) once every 2 to 4 days (n=5), less than twice a week (n=3), or occasionally (n=8)	28	<52 (n=11), 52 to 156 (n=9), >156 weeks (n=8)
Dominguez, 2012 ⁴¹	longitudinal*	Spain	lumbosciatica	PEA	300 mg bid	64	4
Gatti, 2012 42	longitudinal++	Italy	mixed cancer and non-cancer pain	PEA	600 mg bid 3 weeks; 600 mg/day for 4 weeks	564	7
Toth, 2012 43	longitudinal*†	Canada	diabetic peripheral neuropathy	nabilone (THC)	mean: 2.85 mg/day	37	4
Schifilliti, 2014 44	longitudinal++	Italy	diabetic neuropathy	PEA	300 mg bid	30	8.6
Storr, 2014 45	cross-sectional*	Canada	Crohn's disease (n=42), ulcerative colitis (n=10), indeterminate colitis (n=4)	mixed herbal (CBD + THC)	NR	56	<4 (n=3), 4 to 24 (n=9), 24 to 52 (n=5), >52 (n=32)
Del Giorno, 2015 ⁴⁶	longitudinal++	Italy	fibromyalgia	PEA	600 mg bid first month; 300 mg bid in the next 2 months	35	12
Hoggart, 2015 47	longitudinal++	UK, Czech Republic, Romania, Belgium, Canada	diabetic neuropathy	nabiximols (CBD + THC)	median: 6 to 8 sprays/day	380	median: 35.6
Ware, 2015 48	longitudinal*†	Canada	mixed non-cancer pain	mixed herbal (CBD + THC)	median: 2.5 g/day	215	52
				standard care		216	
Haroutounian, 2016 ⁴⁹	longitudinal*	Israel	mixed cancer and non-cancer pain	mixed herbal (CBD + THC)	mean: 43.2 g/month	206	30
	longitudinal*				Capsule: 10 mg /8 to 10 hours		
Bellnier, 2017 ⁵⁰		US	mixed cancer and non-cancer pain	mixed herbal (CBD + THC)	Inhaler for breakthrough pain: 2 mg THC, 0.1 mg CBD; 1 to 5 puffs every 15 minutes until pain relief; could be used every 4 to 6 hours	29	12
Cranford, 2017 ⁵¹	cross-sectional*	US	mixed non-cancer pain	NR	0 (n=69), <1/8 oz/week (n=130), 1/8 to 1/4 oz/week (n=156), 1/4 to 1/2 oz/week (n=179), 1/2 to 1 oz/week (n=122), 1 or more oz/week	775	NR

ige 25 of 120 Fanelli, 2017 52	longitudinal++	Italy	mixed cancer and non-cancer pain	BMJ Open mixed herbal (CBD + THC)	mean: 69.5 mg/day bediol; 67.0 mg/day bedrocan	341	mean: 14.01
Feingold, 2017 53	cross-sectional*	Israel	mixed cancer and non-cancer pain	Mixed herbal (CBD + THC)	NR	406	NR
Paladini, 2017 54	longitudinal++	Italy	failed back surgery syndrome	PEA	600 mg bid for one month; 600 mg/day for one month	35	8
Passavanti, 2017 55	longitudinal++	Italy	lower back pain	PEA	600 mg bid	30	24
Schimrigk, 2017 ⁵⁶	longitudinal*†	Germany, Austria	multiple sclerosis	dronabinol (THC)	range: 7.5 to 15 mg/day	209	32
Chirchiglia, 2018 57	longitudinal++	Italy	lower back pain	PEA	1.2 g/day	100	4
Crowley, 2018 58	longitudinal*	US	mixed non-cancer pain	Trokie lozenges (CBD + THC)	NR	35	4 to 60
Habib, 2018 59	longitudinal*	Israel	fibromyalgia	mixed herbal (CBD + THC)	mean: 26 g/month	26	mean: 41.6
Anderson, 2019 60	longitudinal*	US	cancer pain	mixed herbal (CBD + THC)	NR	1120	16
Bonar, 2019 61	cross- sectional++	US	mixed non-cancer pain	NR	0 (n=95), <1/8 oz/week (n=126), 1/8 to 1/4 oz/week (n=158), 1/4 to 1/2 oz/week (n=174), 1/2 to 1 oz/week (n=119), 1 or more oz/week (n=119)	790	NR
Cervigni, 2019 ⁶²	longitudinal ⁺	Italy	interstitial cystitis/bladder pain syndrome	PEA	400 mg m-PEA plus 40 mg polydatin bid for 3 months, od for 3 months	32	24
Cremer-Schaeffer, 2019 ⁶³	longitudinal++	Germany	mixed cancer and non-cancer pain	dronabinol (THC)	NR	2017	52
				mixed herbal	NR	656	
				nabiximols	NR	393	
Lejczak, 2019 ⁶⁴	longitudinal ⁺	France	mixed cancer and non-cancer pain	dronabinol (THC)	range: 2.5 to 30 mg/day	148	range: 4 to 24 week
Loi, 2019 65	longitudinal*	Italy	endometriosis	PEA	600 mg/bid for 10 days; 400 mg m-PEA plus 40 mg polydatin bid	28	12.9
Naftali, 2019 66	longitudinal*	Israel	inflammatory bowel disease	mixed herbal (CBD + THC)	mean: 31 g/month mean: 21 g/day THC; 170 g/day CBD	127	median: 176
Perron, 2019 67	cross-sectional*	US	mixed non-cancer pain	NR	daily (n=580), weekly (n=85)	618	≥12
Sagy, 2019 68	longitudinal++	Israel	mixed cancer and non-cancer pain	mixed herbal (CBD + THC)	median: 1000 mg/day cannabis median: 140 mg/day THC; 39 mg/day CBD	239	24
Sinclair, 2019 69	cross-sectional*	Australia	endometriosis	mixed herbal (CBD + THC)	less than once per week (n=12), once per week (n=6), two to six times per week (n=9), daily or multiple times per day (n=21)	48	NR
Ueberall, 2019 70	longitudinal*	Germany	mixed cancer and non-cancer pain	nabiximols (CBD + THC)	mean: 7.1 sprays/day	800	12
Vigil, 2017 71	longitudinal*	US	mixed non-cancer pain	NR	NR	37	mean: 82.4
Yassin, 2019 72	longitudinal++	Israel	fibromyalgia	mixed herbal (CBD + THC)	20 to 30 g/month	31	24
Yassin, 2019 /2	longitudinal++			extracts	10 to 30 drops/day; no more than 120	102	24

BMJ Open

For peer review only

59

Outcome All adverse	Number of studies	Number of participants	of follow-	Prevalence	²		
All adverse			up (weeks)	% (95% CI)	1² (τ²)	Certainty	Reasons for downgradin
events	22	4,108	4 to 94	The prevalence events ranged b to 92.1%. Studie than 24 weeks o use typically repp adverse events i with more than Patients usin experienced no events. The evic overall very unc to risk of bia inconsiste	etween 0% as with less of cannabis orted fewer than those 24 weeks. ng PEA o adverse dence was ertain due as and	very low	risk of bias (3 levels), inconsistency
Adverse events causing discontinuation	20	6,509	4 to 66	The prevale discontinuatio adverse event between 0% t Studies with les weeks of canr typically report discontinuations with more than Patients usin experienced no events. The evid overall very unc to risk of bis inconsiste	ns due to s ranged o 27.0%. ss than 24 habis use ted fewer than those 24 weeks. ng PEA o adverse dence was ertain due as and ency.	very low	risk of bias (3 levels), inconsistency
Serious adverse events	24	4,273	4 to 94	1.2 (0.1 to 3.1)	91 (0.01273)	very low	risk of bias (3 levels)
Psychiatric adverse	e events						
Psychiatric disorder	4	1,458	12 to 66	13.5 (2.6 to 30.6)	98 (0.0436)	very low	risk of bias (3 levels), inconsistency, imprecision
Suicide	1	215	52	0 (0 to 0.8)	NA	very low	risk of bias (3 levels)
Suicidal thoughts	1	3,066	52	0.1 (0 to 0.5)	44 (0.0003)	very low	risk of bias (3 levels)
Depression	6	4,144	12 to 66	1.7 (0.9 to 2.7)	71 (0.0011)	very low	risk of bias (3 levels)
Mania	1	215	52	0.5 (0 to 2)	NA	very low	risk of bias (3 levels)
Hallucinations	6	3,583	24 to 66	0.5 (0.1 to 1.3)	69 (0.0012)	very low	risk of bias (3 levels)
Delusions	4	3,281	52	0.4 (0.2 to 0.6)	0 (0)	very low	risk of bias (3 levels)
Paranoia	3	277	52 to 94; one cross- sectional study	5.6 (0 to 19.2)	85 (0.0266)	very low	risk of bias (3 levels), inconsistency, imprecision
Anxiety	5	1,695	12 to 94; two cross- sectional studies	7.4 (0 to 26.9)	99 (0.0859)	very low	risk of bias (3 levels), imprecision
Euphoria	7	4,501	4 to 66	2.1 (0.9 to 3.8)	96 (0.0028)	very low	risk of bias (3 levels)

Dependence 3 1,824 sectional study sectional 19.9) 19.9) (0.0488) very low imprecision, indirectness Withdrawal syndrome 2 424 32 to 52 2.1 (0 to 8.2) 89 (0.0091) very low risk of bias (3 levels), indirectness Withdrawal NA: cross- 67.8 (64.1 to 67.8 (64.1 to 67.8 (64.1 to								
Contrision71,6544 to 1/61.8 (0.3 to 4.2)(0.0056)Very lowrisk of blas (3 levels)Disorientation64,48512 to 521.6 (0.6 to 3.0) $\binom{88}{(0.0028)}$ very lowrisk of blas (3 levels)Attentionaddicate5,47712 to 823.4 (1.3 to 6.3) $\binom{95}{(0.0082)}$ very lowrisk of blas (3 levels)Accidents and injuriesFalls1215522.3 (0.7 to 4.9)NAvery lowrisk of blas (3 levels)Motor vehicle accidents1215520.5 (0 to 2.0)NAvery lowrisk of blas (3 levels)Dependence and withdrawal1215520.5 (0 to 2.0)NAvery lowrisk of blas (3 levels), inconsistence imprecision, indirectnessWithdrawal syndrome242432 to 522.1 (0 to 8.2) $\binom{89}{(0.0091)}$ very lowrisk of blas (3 levels), indirectnessWithdrawal syndroms1618NA; cross- sectional67.8 (64.1 to 71.4)NAvery lowrisk of blas (3 levels), indirectness		6	4,484	4 to 176	5.3 (2.1 to 9.6)	(0.0126)	very low	risk of bias (3 levels)
Disorientation64,48512 to 521.6 (0.6 to 3.0) (0.0028)very lowrisk of bias (3 levels)Attention disorder or deficit85,47712 to 823.4 (1.3 to 6.3)95 (0.0082)very lowrisk of bias (3 levels)Accidents and injuriesFalls1215522.3 (0.7 to 4.9)NAvery lowrisk of bias (3 levels)Motor vehicle accidents1215520.5 (0 to 2.0)NAvery lowrisk of bias (3 levels)Dependence and withdrawalDependence31,82412; one cross- sectional study4.4 (0.0 to 19.9)99 (0.0488)very lowrisk of bias (3 levels), inconsistence imprecision, indirectnessWithdrawal syndrome242432 to 522.1 (0 to 8.2)89 (0.0091)very lowrisk of bias (3 levels), indirectnessWithdrawal symptoms1618NA; cross- sectional67.8 (64.1 to 71.4)NAvery lowrisk of bias (3 levels), indirectness	Confusion	7	1,654	4 to 176	1.8 (0.3 to 4.2)		very low	risk of bias (3 levels)
disorder or deficit85,47712 to 823.4 (1.3 to 6.3)95 (0.0082)very lowrisk of bias (3 levels)Accidents and injuriesFalls1215522.3 (0.7 to 4.9)NAvery lowrisk of bias (3 levels)Motor vehicle accidents1215520.5 (0 to 2.0)NAvery lowrisk of bias (3 levels)Dependence and withdrawal1215520.5 (0 to 2.0)NAvery lowrisk of bias (3 levels), inconsistenc imprecision, indirectnessWithdrawal syndrome242432 to 522.1 (0 to 8.2) sectional study89 (0.0091)very lowrisk of bias (3 levels), indirectnessWithdrawal symptoms1618NA; cross- sectional study67.8 (64.1 to 71.4)NAvery lowrisk of bias (3 levels), indirectness	Disorientation	6	4,485	12 to 52	1.6 (0.6 to 3.0)		very low	risk of bias (3 levels)
Falls1215522.3 (0.7 to 4.9)NAvery lowrisk of bias (3 levels)Motor vehicle accidents1215520.5 (0 to 2.0)NAvery lowrisk of bias (3 levels)Dependence and withdrawal212; one cross- sectional study4.4 (0.0 to 19.9)99 (0.0488)very lowrisk of bias (3 levels), inconsistence imprecision, indirectnessWithdrawal syndrome242432 to 522.1 (0 to 8.2) (0.091)89 (0.0091)very lowrisk of bias (3 levels), indirectnessWithdrawal symptoms1618NA; cross- sectional 71.4)67.8 (64.1 to 71.4)NAvery lowrisk of bias (3 levels), indirectness	disorder or	8	5,477	12 to 82	3.4 (1.3 to 6.3)		very low	risk of bias (3 levels)
Motor vehicle accidents1215520.5 (0 to 2.0)NAvery lowrisk of bias (3 levels)Dependence and withdrawalDependence31,82412; one cross- sectional study4.4 (0.0 to 19.9)99 (0.0488)very lowrisk of bias (3 levels), inconsistence imprecision, indirectnessWithdrawal syndrome242432 to 522.1 (0 to 8.2)89 (0.0091)very lowrisk of bias (3 levels), indirectnessWithdrawal symptoms1618NA; cross- sectional67.8 (64.1 to 71.4)NAvery lowrisk of bias (3 levels), indirectness	Accidents and inju	ries						
accidents1215520.5 (0 to 2.0)NAvery lowrisk of bias (3 levels)Dependence and withdrawalDependence31,82412; one cross- sectional study4.4 (0.0 to 19.9)99 (0.0488)very lowrisk of bias (3 levels), inconsistence imprecision, indirectnessWithdrawal syndrome242432 to 522.1 (0 to 8.2)89 (0.0091)very lowrisk of bias (3 levels), indirectnessWithdrawal symptoms1618NA; cross- sectional67.8 (64.1 to 71.4)NAvery lowrisk of bias (3 levels), indirectness	Falls	1	215	52	2.3 (0.7 to 4.9)	NA	very low	risk of bias (3 levels)
Dependence31,82412; one cross- sectional study4.4 (0.0 to 99 (0.0488)99 very lowrisk of bias (3 levels), inconsistence imprecision, indirectnessWithdrawal syndrome242432 to 522.1 (0 to 8.2)89 (0.0091)very lowrisk of bias (3 levels), indirectnessWithdrawal symptoms1618NA; cross- sectional67.8 (64.1 to 71.4)NAvery lowrisk of bias (3 levels), indirectness		1	215	52	0.5 (0 to 2.0)	NA	very low	risk of bias (3 levels)
Dependence31,824cross-sectional sectional study4.4 (0.0 to 19.9)99 (0.0488)very lowrisk of bias (3 levels), inconsistence imprecision, indirectnessWithdrawal syndrome242432 to 522.1 (0 to 8.2)89 (0.0091)very lowrisk of bias (3 levels), indirectnessWithdrawal syndrome1618NA; cross- sectional67.8 (64.1 to 71.4)NAvery lowrisk of bias (3 levels), indirectness	Dependence and w	vithdrawal						
Withdrawal syndrome242432 to 522.1 (0 to 8.2)89 (0.0091)very lowrisk of bias (3 levels), indirectnessWithdrawal symptoms1618NA; cross- sectional67.8 (64.1 to 71.4)NAvery lowrisk of bias (3 levels), indirectness	Dependence	3	1,824	cross- sectional	•		very low	
symptoms 1 618 sectional 71.4) NA Very low risk of bias (3 levels), indirectness		2	424	· · · · · · · · · · · · · · · · · · ·	2.1 (0 to 8.2)		very low	risk of bias (3 levels), indirectness
symptoms sectional (1.4)		1	618			NA	very low	risk of bias (3 levels), indirectness

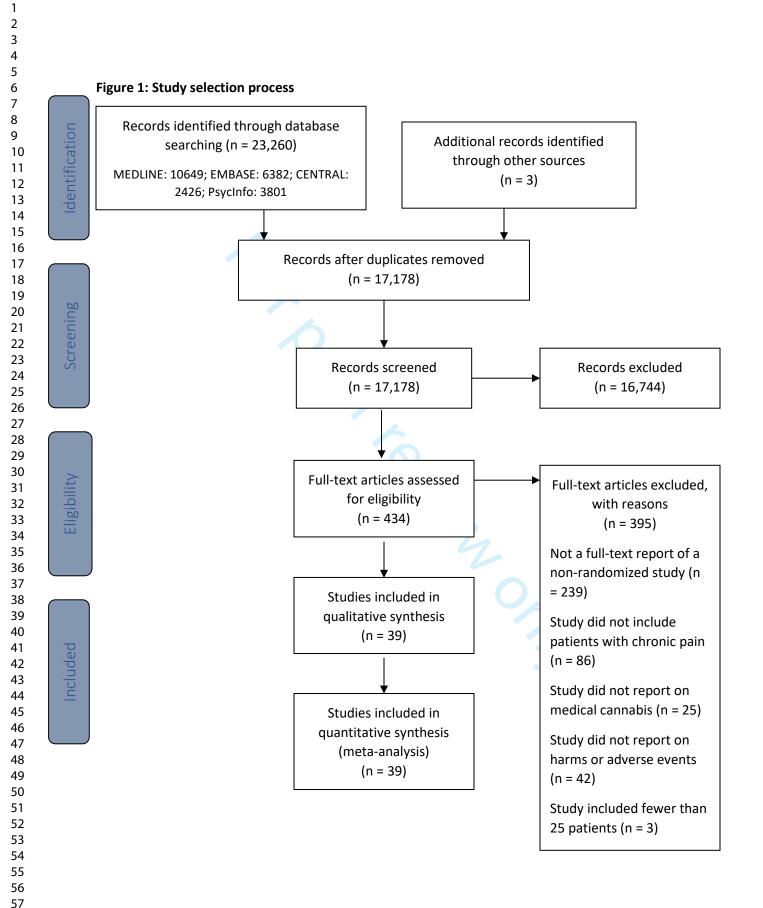
		N			Risk	Pl L			
Outcome	Exposure	Number of studies	Number of participants	Follow- up (weeks)	with cannabis (/1000)	Risk with comparator (/1000)	Risk difference (95% Cl)	Certainty	Reasons for downgrading
All adverse events	Nabilone vs. gabapentin	1	220	24	404	534	-13.1% (-26.2 to 0)	Very low	Risk of bias (2 levels), imprecision
Adverse events causing discontinuation	Herbal cannabis vs. standard care	1	431	52	47	0	4.7% (1.8 to 7.5)	Low	Risk of bias (2 levels),
	Nabilone vs. gabapentin	1	220	24	96	190	-9.4% (-18.5 to -0.2)	Very low	Risk of bias (2 levels), imprecision
Serious	Herbal cannabis vs. standard care	1	431	52	130	194	1.5% (-8.3 to 20.2) *	Low	Risk of bias, imprecision
	Nabilone vs. gabapentin	1	220	24	0	0	0% (0 to 0)	Very low	Risk of bias (2 levels), imprecision
Psychiatric disorder	Herbal cannabis vs. standard care	1	431	52	219	97	16.9% (5.8 to 40.5) †	Very low	Risk of bias (2 levels), imprecision
Suicide	Herbal cannabis vs. standard care	1	431	52	0	5	-0.5% (-1.4 to 0.4)	Low	Risk of bias (2 levels)
Mania	Herbal cannabis vs. standard care	1	431	52	5	0	0.5% (-0.4 to 1.4)	Low	Risk of bias (2 levels)
Hallucinations	Herbal cannabis vs. standard care	1	431	52	5	0	0.5% (-0.4 to 1.4)	Low	Risk of bias (2 levels)
Delusions	Herbal cannabis vs. standard care	1	431	52	0	5	-0.5% (-1.4 to 0.4)	Low	Risk of bias (2 levels)
Depression	Herbal cannabis vs. standard care	1	431	52	47	46	0.1% (-4 to 4)	Low	Risk of bias (2 levels)
Paranoia	Herbal cannabis vs. standard care	1	431	52	9	0	0.9% (-0.4 to 2.2)	Low	Risk of bias (2 levels)
Anxiety	Herbal cannabis vs. standard care	1	431	52	47	9	3.8% (0.6 to 6.8)	Low	Risk of bias (2 levels)
Euphoria	Herbal cannabis vs. standard care	1	431	52	42	0	4.2% (1.5 to 6.9)	Low	Risk of bias (2 levels)
									27

BMJ Open

1 2										
3 [−] ⊿	Memory impairment	Herbal cannabis vs. standard care	1	431	52	19	0	1.9% (0.1 to 3.7)	Low	Risk of bias (2 levels)
6 7	Confusion	Herbal cannabis vs. standard care	1	431	52	14	19	-0.5% (-2.8 to 1.9)	Low	Risk of bias (2 levels)
9 10	Disturbance in attention	Herbal cannabis vs. standard care	1	431	52	23	9	1.4% (-1 to 3.8)	Low	Risk of bias (2 levels)
11 12 13	Falls	Herbal cannabis vs. standard care	1	431	52	23	23	0% (-2.8 to 2.9)	Low	Risk of bias (2 levels)
	Motor vehicle accidents	Herbal cannabis vs. standard care	1	431	52	5	0	0.5% (-0.4 to 1.4)	Low	Risk of bias (2 levels)
17	Withdrawal syndrome	Herbal cannabis vs. standard care	1	431	52	5	0	0.5% (-0.4 to 1.4)	Very low	Risk of bias (2 levels),
18	* Risk difference of	alculated from adjus	sted incident ra	ate ratio repor	ted in study.					
20	† Risk difference o	alculated from unad	ljusted inciden	t rate ratio rep	ported in study.			erien o		
21										
22										
23										
24										
25										
26										
27 28										
20 29										
30										
31										
32										
33										
34										
35										
36										
37										
38										
39										
40										
41										
42										
43										28
44					For near revi	ew only - ht	tn·//hmion/	en.bmj.com/site/about/guidel	ines yhtml	
45					i or peer revi	Cvv Only - Itt	rh.//pilijoh	inishij.com/site/about/guider		
46 47										

2		
3	562	References
4	302	
5	563	1. Mills SEE, Nicolson KP, Smith BH. Chronic pain: a review of its epidemiology and associated factors in
6 7	564	population-based studies. Br J Angesth 2019;123(2):e273-e83. doi: 10.1016/j.bja.2019.03.023
8	565	[published Online First: 2019/05/14]
9	566	2. Mills SEE, van Hecke O, Smith BH. Handbook of Pain and Palliative Care: Biopsychosocial and
10	567	Environmental Approaches for the Life Course. 2019.
11	568	3. Keyhani S, Steigerwald S, Ishida J, et al. Risks and Benefits of Marijuana Use: A National Survey of U.S.
12	569	Adults. Ann Intern Med 2018;169(5):282-90. doi: 10.7326/m18-0810 [published Online First:
13	570	2018/07/25]
14 15	571	4. Dai H, Richter KP. A National Survey of Marijuana Use Among US Adults With Medical Conditions,
16	572	2016-2017. <i>JAMA Netw Open</i> 2019;2(9):e1911936. doi: 10.1001/jamanetworkopen.2019.11936
17	573	[published Online First: 2019/09/21]
18	574	5. National Academies of Sciences E, Medicine, Health, et al. The National Academies Collection: Reports
19	575	funded by National Institutes of Health. The Health Effects of Cannabis and Cannabinoids: The
20	576	Current State of Evidence and Recommendations for Research. Washington (DC): National
21	577	Academies Press (US) 2017.
22	578	6. Carr D, Schatman M. Cannabis for Chronic Pain: Not Ready for Prime Time. American Journal of Public
23 24	579	Health 2019;109(1):50-51. doi: 10.2105/AJPH.2018.304593 [published Online First: 2019/01/]
25	580	7. Ziemianski D, Capler R, Tekanoff R, et al. Cannabis in medicine: a national educational needs
26	581	assessment among Canadian physicians. BMC Med Educ 2015;15:52. doi: 10.1186/s12909-015-
27	582	0335-0 [published Online First: 2015/04/19]
28	583	8. Kahan M, Srivastava A. Is there a role for marijuana in medical practice? No. Can Fam Physician
29	584	2007;53(1):22-5. [published Online First: 2007/09/18]
30	585	9. Ware MA. Is there a role for marijuana in medical practice? Yes. <i>Can Fam Physician</i> 2007;53(1):22-5.
31 32	586	[published Online First: 2007/09/18]
33	587	10. Deshpande A, Mailis-Gagnon A, Zoheiry N, et al. Efficacy and adverse effects of medical marijuana
34	588	for chronic noncancer pain: Systematic review of randomized controlled trials. Can Fam
35	589	Physician 2015;61(8):e372-81. [published Online First: 2015/10/28]
36	590	11. Wang L, Hong PJ, May C, et al. Medical cannabis or cannabinoids for chronic non-cancer and cancer
37	591	related pain: a systematic review and meta-analysis of randomised clinical trials. BMJ
38 39	592	2021;8;374:n1034. doi: 10.1136/bmj.n1034
40	593 594	 Wang T, Collet JP, Shapiro S, et al. Adverse effects of medical cannabinoids: a systematic review. Cmaj 2008;178(13):1669-78. doi: 10.1503/cmaj.071178 [published Online First: 2008/06/19]
41	594 595	13. Whiting PF, Wolff RF, Deshpande S, et al. Cannabinoids for Medical Use: A Systematic Review and
42	596	Meta-analysis. Jama 2015;313(24):2456-73. doi: 10.1001/jama.2015.6358 [published Online
43	590 597	First: 2015/06/24]
44	598	14. Hill KP, Hurley-Welljams-Dorof WM. Low to moderate quality evidence demonstrates the potential
45 46	599	benefits and adverse events of cannabinoids for certain medical indications. <i>Evid Based Med</i>
46 47	600	2016;21(1):17. doi: 10.1136/ebmed-2015-110264 [published Online First: 2015/10/23]
48	601	15. Bair MJ, Robinson RL, Katon W, et al. Depression and pain comorbidity: a literature review. Arch
49	602	Intern Med 2003;163(20):2433-45. doi: 10.1001/archinte.163.20.2433 [published Online First:
50	603	2003/11/12]
51	604	16. Magni G, Marchetti M, Moreschi C, et al. Chronic musculoskeletal pain and depressive symptoms in
52	605	the National Health and Nutrition Examination. I. Epidemiologic follow-up study. <i>Pain</i>
53	606	1993;53(2):163-8. doi: 10.1016/0304-3959(93)90076-2 [published Online First: 1993/05/01]
54 55		
56		
57		
58		29
59		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
60		for peer review only - http://binjopen.binj.com/site/about/guidelines.xhtml

3 4 5	607 608	17. Wilson KG, Eriksson MY, D'Eon JL, et al. Major depression and insomnia in chronic pain. <i>Clin J Pain</i> 2002;18(2):77-83. doi: 10.1097/00002508-200203000-00002 [published Online First:
6	609	2002/03/08]
7	610	18. Busse JW, Vankrunkelsven P, Zeng L, et al. Medical cannabis or cannabinoids for chronic pain: a
8	611	clinical practice guideline. <i>BMJ</i> 2021;8;374:n2040(8;374:n2040) doi: 10.1136/bmj.n2040
9	612	19. Siemieniuk RA, Agoritsas T, Macdonald H, et al. Introduction to BMJ Rapid Recommendations. Bmj
10	613	2016;354:i5191. doi: 10.1136/bmj.i5191 [published Online First: 2016/09/30]
11	614	20. Zeng L, Lytvyn L, Wang X, et al. Values and preferences towards medical cannabis among patients
12	615	with chronic pain: A mixed methods systematic review. <i>BMJ Open</i> 2021;7;11(9):e050831 doi:
13	616	10.1136/bmjopen-2021-050831
14	617	21. Noori A, Miroshnychenko A, Shergill Y, et al. Opioid-Sparing effects of medical cannabis for chronic
15		
16	618	pain: A systematic review and meta-analysis of randomized and observational studies. BMJ
17	619	2020;Submitted
18	620	22. Zorzela L, Loke YK, Ioannidis JP, et al. PRISMA harms checklist: improving harms reporting in
19	621	systematic reviews. <i>Bmj</i> 2016;352:i157. doi: 10.1136/bmj.i157 [published Online First:
20	622	2016/02/03]
21	623	23. Busse JW, Bartlett SJ, Dougados M, et al. Optimal Strategies for Reporting Pain in Clinical Trials and
22	624	Systematic Reviews: Recommendations from an OMERACT 12 Workshop. J Rheumatol
23	625	2015;42(10):1962-70. doi: 10.3899/jrheum.141440 [published Online First: 2015/05/17]
24 25	626	24. Sterne JA, Hernán MA, Reeves BC, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised
25 26	627	studies of interventions. Bmj 2016;355:i4919. doi: 10.1136/bmj.i4919 [published Online First:
20 27	628	2016/10/14]
28	629	25. Zeraatkar D, JW B. Cannabis harms in chronic pain, 2021.
29	630	26. Freeman MF, Tukey JW. Transformations related to the angular and the square root. <i>The Annals of</i>
30	631	Mathematical Statistics 1950:607-11.
31	632	
32		27. DerSimonian R, Laird N. Meta-analysis in clinical trials. <i>Controlled clinical trials</i> 1986;7(3):177-88.
33	633	28. Murad M, Montori V, Ioannidis J, et al. Fixed-effects and random-effects models. Users' guide to the
34	634	medical literature A manual for evidence-based clinical practice McGraw-Hill, 3rd ed New York,
35	635	America 2015
36	636	29. Rücker G, Schwarzer G, Carpenter JR, et al. Undue reliance on I(2) in assessing heterogeneity may
37	637	mislead. BMC Med Res Methodol 2008;8:79. doi: 10.1186/1471-2288-8-79 [published Online
38	638	First: 2008/11/28]
39	639	30. Sun X, Briel M, Walter SD, et al. Is a subgroup effect believable? Updating criteria to evaluate the
40	640	credibility of subgroup analyses. <i>Bmj</i> 2010;340:c117. doi: 10.1136/bmj.c117 [published Online
41	641	First: 2010/04/01]
42	642	31. Schandelmaier S, Briel M, Varadhan R, et al. Development of the Instrument to assess the Credibility
43	643	of Effect Modification Analyses (ICEMAN) in randomized controlled trials and meta-analyses.
44 45	644	<i>Cmaj</i> 2020;192(32):E901-e06. doi: 10.1503/cmaj.200077 [published Online First: 2020/08/12]
45 46	645	32. Schwarzer G. meta: An R package for meta-analysis. <i>R news</i> 2007;7(3):40-45.
40 47	646	33. Schünemann HJ, Cuello C, Akl EA, et al. GRADE guidelines: 18. How ROBINS-I and other tools to
47	647	assess risk of bias in nonrandomized studies should be used to rate the certainty of a body of
49	648	evidence. J Clin Epidemiol 2019;111:105-14. doi: 10.1016/j.jclinepi.2018.01.012 [published
50		
51	649	Online First: 2018/02/13]
52	650	34. Guyatt GH, Oxman AD, Vist GE, et al. GRADE: an emerging consensus on rating quality of evidence
53	651	and strength of recommendations. <i>Bmj</i> 2008;336(7650):924-6. doi:
54	652	10.1136/bmj.39489.470347.AD [published Online First: 2008/04/26]
55		
56		
57		
58		30
59		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
60		r or peer review only - http://binjopen.binj.com/site/about/guidelines.xittini


BMJ Open

1 2		
2 3		
4	653	35. Santesso N, Glenton C, Dahm P, et al. GRADE guidelines 26: informative statements to communicate
5	654	the findings of systematic reviews of interventions. <i>J Clin Epidemiol</i> 2020;119:126-35. doi:
6	655	10.1016/j.jclinepi.2019.10.014 [published Online First: 2019/11/13]
7	656	36. Ware MA, Doyle CR, Woods R, et al. Cannabis use for chronic non-cancer pain: results of a
8	657	prospective survey. <i>Pain</i> 2003;102(1-2):211-6.
9	658	37. Lynch ME, Young J, Clark AJ. A case series of patients using medicinal marihuana for management of
10	659	chronic pain under the Canadian Marihuana Medical Access Regulations. Journal of Pain &
11	660	Symptom Management 2006;32(5):497-501.
12	661	38. Rog DJ, Nurmikko TJ, Young CA. Oromucosal delta9-tetrahydrocannabinol/cannabidiol for
13 14	662	neuropathic pain associated with multiple sclerosis: an uncontrolled, open-label, 2-year
14	663	extension trial. Clinical Therapeutics 2007;29(9):2068-79.
16	664	39. Weber J, Schley M, Casutt M, et al. Tetrahydrocannabinol (Delta 9-THC) treatment in chronic central
17	665	neuropathic pain and fibromyalgia patients: Results of a multicenter survey. Anesthesiology
18	666	Research and Practice 2009;2009 (no pagination)(827290) doi:
19	667	http://dx.doi.org/10.1155/2009/827290
20	668	40. Bestard JA, Toth CC. An open-label comparison of nabilone and gabapentin as adjuvant therapy or
21	669	monotherapy in the management of neuropathic pain in patients with peripheral neuropathy.
22	670	Pain Practice 2011;11(4):353-68. doi: https://dx.doi.org/10.1111/j.1533-2500.2010.00427.x
23	671	41. Fiz J, Duran M, Capella D, et al. Cannabis use in patients with Fibromyalgia: Effect on symptoms relief
24	672	and health-related quality of life. PLoS ONE 2011;6 (4) (no pagination)(e18440) doi:
25 26	673	http://dx.doi.org/10.1371/journal.pone.0018440
20 27	674	42. Domínguez CM, Martín AD, Ferrer FG, et al. N-palmitoylethanolamide in the treatment of
28	675	neuropathic pain associated with lumbosciatica. <i>Pain Manag</i> 2012;2(2):119-24. doi:
29	676	10.2217/pmt.12.5 [published Online First: 2012/03/01]
30	677	43. Gatti A, Lazzari M, Gianfelice V, et al. Palmitoylethanolamide in the treatment of chronic pain caused
31	678	by different etiopathogenesis. <i>Pain Medicine</i> 2012;13(9):1121-30. doi:
32	679	https://dx.doi.org/10.1111/j.1526-4637.2012.01432.x
33	680	44. Toth C, Mawani S, Brady S, et al. An enriched-enrolment, randomized withdrawal, flexible-dose,
34	681	double-blind, placebo-controlled, parallel assignment efficacy study of nabilone as adjuvant in
35	682	the treatment of diabetic peripheral neuropathic pain. <i>Pain</i> 2012;153(10):2073-82. doi:
36	683	http://dx.doi.org/10.1016/j.pain.2012.06.024
37	684	45. Schifilliti C, Cucinotta L, Fedele V, et al. Micronized palmitoylethanolamide reduces the symptoms of
38 39	685	
40		neuropathic pain in diabetic patients. <i>Pain Res Treat</i> 2014;2014:849623. doi:
41	686	10.1155/2014/849623 [published Online First: 2014/05/08]
42	687	46. Storr M, Devlin S, Kaplan GG, et al. Cannabis use provides symptom relief in patients with
43	688	inflammatory bowel disease but is associated with worse disease prognosis in patients with
44	689	Crohn's disease. <i>Inflammatory Bowel Diseases</i> 2014;20(3):472-80. doi:
45	690	https://dx.doi.org/10.1097/01.MIB.0000440982.79036.d6
46	691	47. Del Giorno R, Skaper S, Paladini A, et al. Palmitoylethanolamide in Fibromyalgia: Results from
47	692	Prospective and Retrospective Observational Studies. <i>Pain and Therapy</i> 2015;4(2):169-78. doi:
48	693	http://dx.doi.org/10.1007/s40122-015-0038-6
49 50	694	48. Hoggart B, Ratcliffe S, Ehler E, et al. A multicentre, open-label, follow-on study to assess the long-
50	695	term maintenance of effect, tolerance and safety of THC/CBD oromucosal spray in the
52	696	management of neuropathic pain. <i>Journal of Neurology</i> 2015;262(1):27-40. doi:
53	697	https://dx.doi.org/10.1007/s00415-014-7502-9
54	698	49. Ware MA, Wang T, Shapiro S, et al. Cannabis for the Management of Pain: Assessment of Safety
55	699	Study (COMPASS). Journal of Pain 2015;16(12):1233-42. doi:
56	700	https://dx.doi.org/10.1016/j.jpain.2015.07.014
57		
58		31
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
60		· ·· Peer ······ ···· ···· ·············

3	701	50. Haroutounian S, Ratz Y, Ginosar Y, et al. The Effect of Medicinal Cannabis on Pain and Quality-of-Life
4	702	Outcomes in Chronic Pain: A Prospective Open-label Study. Clinical Journal of Pain
5	703	2016;32(12):1036-43.
6	704	51. Bellnier T, Brown G, Ortega T, et al. A preliminary evaluation of the effcacy, safety, and costs
7	705	associated with the treatment of chronic pain with medical marijuana in the elderly. <i>Consultant</i>
8		
9	706	<i>Pharmacist</i> 2017;32 (10):597. doi: <u>http://dx.doi.org/10.4140/TCPn.2017.577</u>
10	707	52. Cranford JA, Arnedt JT, Conroy DA, et al. Prevalence and correlates of sleep-related problems in
11 12	708	adults receiving medical cannabis for chronic pain. Drug & Alcohol Dependence 2017;180:227-
12 13	709	33. doi: <u>https://dx.doi.org/10.1016/j.drugalcdep.2017.08.017</u>
13 14	710	53. Fanelli G, De Carolis G, Leonardi C, et al. Cannabis and intractable chronic pain: an explorative
14	711	retrospective analysis of Italian cohort of 614 patients. Journal of pain research 2017;10:1217-
16	712	24. doi: <u>https://dx.doi.org/10.2147/JPR.S132814</u>
17	713	54. Feingold D, Goor-Aryeh I, Bril S, et al. Problematic Use of Prescription Opioids and Medicinal
18	714	Cannabis Among Patients Suffering from Chronic Pain. Pain Medicine 2017;18(2):294-306. doi:
19	715	https://dx.doi.org/10.1093/pm/pnw134
20	716	55. Paladini A, Varrassi G, Bentivegna G, et al. Palmitoylethanolamide in the Treatment of Failed Back
21	717	Surgery Syndrome. <i>Pain Res Treat</i> 2017;2017:1486010. doi: 10.1155/2017/1486010 [published
22	718	Online First: 2017/09/07]
23	718	
24		56. Passavanti MB, Fiore M, Sansone P, et al. The beneficial use of ultramicronized
25	720	palmitoylethanolamide as add-on therapy to Tapentadol in the treatment of low back pain: a
26	721	pilot study comparing prospective and retrospective observational arms. BMC Anesthesiology
27	722	2017;17(1):171. doi: <u>https://dx.doi.org/10.1186/s12871-017-0461-9</u>
28	723	57. Schimrigk S, Marziniak M, Neubauer C, et al. Dronabinol Is a Safe Long-Term Treatment Option for
29	724	Neuropathic Pain Patients. <i>European Neurology</i> 2017;78(5-6):320-29. doi:
30	725	https://dx.doi.org/10.1159/000481089
31	726	58. Chirchiglia D, Chirchiglia P, Signorelli F. Nonsurgical lumbar radiculopathies treated with
32	727	ultramicronized palmitoylethanolamide (umPEA): A series of 100 cases. Neurologia i
33	728	Neurochirurgia Polska 2018;52(1):44-47. doi: https://dx.doi.org/10.1016/j.pjnns.2017.11.002
34 25	729	59. Crowley K, de Vries ST, Moreno-Sanz G. Self-Reported Effectiveness and Safety of Trokie R Lozenges:
35 36	730	A Standardized Formulation for the Buccal Delivery of Cannabis Extracts. <i>Frontiers in</i>
30 37	731	Neuroscience 2018;12:564. doi: https://dx.doi.org/10.3389/fnins.2018.00564
38	732	60. Habib G, Artul S. Medical Cannabis for the Treatment of Fibromyalgia. <i>JCR: Journal of Clinical</i>
39	733	<i>Rheumatology</i> 2018;24(5):255-58. doi: https://dx.doi.org/10.1097/RHU.0000000000000702
40		
41	734	61. Anderson SP, Zylla DM, McGriff DM, et al. Impact of medical cannabis on patient-reported symptoms
42	735	for patients with cancer enrolled in Minnesota's medical cannabis program. Journal of Oncology
43	736	<i>Practice</i> 2019;15(6):E338-E45. doi: <u>http://dx.doi.org/10.1200/JOP.18.00619</u>
44	737	62. Bonar EE, Cranford JA, Arterberry BJ, et al. Driving under the influence of cannabis among medical
45	738	cannabis patients with chronic pain. Drug & Alcohol Dependence 2019;195:193-97. doi:
46	739	https://dx.doi.org/10.1016/j.drugalcdep.2018.11.016
47	740	63. Cervigni M, Nasta L, Schievano C, et al. Micronized Palmitoylethanolamide-Polydatin Reduces the
48	741	Painful Symptomatology in Patients with Interstitial Cystitis/Bladder Pain Syndrome. BioMed
49	742	Research International 2019;2019 (no pagination)(9828397) doi:
50	743	http://dx.doi.org/10.1155/2019/9828397
51	744	64. Cremer-Schaeffer P, Schmidt-Wolf G, Broich K. [Cannabis medicines in pain management : Interim
52	745	analysis of the survey accompanying the prescription of cannabis-based medicines in Germany
53	746	with regard to pain as primarily treated symptom]. <i>Der Schmerz</i> 2019;33(5):415-23. doi:
54	747	https://dx.doi.org/10.1007/s00482-019-00399-z
55 56	/ + /	11(1p3)// UX/UUI/015/ 10/1007/ 300402-013-00333-2
56 57		
57 58		
58 59		32
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1		
2 3		
4	748	65. Lejczak S, Rousselot H, Di Patrizio P, et al. Dronabinol use in France between 2004 and 2017. Revue
5	749	Neurologique 2019;175(5):298-304. doi: <u>https://dx.doi.org/10.1016/j.neurol.2018.07.011</u>
6	750	66. Loi ES, Pontis A, Cofelice V, et al. Effect of ultramicronized-palmitoylethanolamide and co-
7	751	micronizedpalmitoylethanolamide/polydatin on chronic pelvic pain and quality of life in
8	752	endometriosis patients: An open-label pilot study. International Journal of Women's Health
9	753	2019;11:443-49. doi: <u>http://dx.doi.org/10.2147/IJWH.S204275</u>
10	754	67. Naftali T, Bar-Lev Schleider L, Sklerovsky Benjaminov F, et al. Medical cannabis for inflammatory
11	755	bowel disease: real-life experience of mode of consumption and assessment of side-effects.
12	756	European Journal of Gastroenterology & Hepatology 2019;31(11):1376-81. doi:
13	757	https://dx.doi.org/10.1097/MEG.000000000001565
14 15	758	68. Perron BE, Holt KR, Yeagley E, et al. Mental health functioning and severity of cannabis withdrawal
16	759	among medical cannabis users with chronic pain. Drug & Alcohol Dependence 2019;194:401-09.
17	760	doi: <u>https://dx.doi.org/10.1016/j.drugalcdep.2018.09.029</u>
18	761	69. Sagy I, Bar-Lev Schleider L, Abu-Shakra M, et al. Safety and Efficacy of Medical Cannabis in
19	762	Fibromyalgia. Journal of Clinical Medicine 2019;8(6):05. doi:
20	763	https://dx.doi.org/10.3390/jcm8060807
21	764	70. Sinclair J, Smith CA, Abbott J, et al. Cannabis Use, a Self-Management Strategy Among Australian
22	765	Women With Endometriosis: Results From a National Online Survey. Journal of Obstetrics &
23	766	Gynaecology Canada: JOGC 2020;42(3):256-61. doi:
24	767	https://dx.doi.org/10.1016/j.jogc.2019.08.033
25 26	768	71. Ueberall MA, Essner U, Mueller-Schwefe GHH. Effectiveness and tolerability of THC:CBD oromucosal
20	769	spray as add-on measure in patients with severe chronic pain: Analysis of 12-week open-label
28	770	real-world data provided by the German pain e-registry. Journal of Pain Research 2019;12:1577-
29	771	604. doi: <u>http://dx.doi.org/10.2147/JPR.S192174</u>
30	772	72. Vigil JM, Stith SS, Adams IM, et al. Associations between medical cannabis and prescription opioid
31	773	use in chronic pain patients: A preliminary cohort study. <i>PLoS ONE [Electronic Resource]</i>
32	774	2017;12(11):e0187795. doi: https://dx.doi.org/10.1371/journal.pone.0187795
33	775	73. Yassin M, Oron A, Robinson D. Effect of adding medical cannabis to analgesic treatment in patients
34	776	with low back pain related to fibromyalgia: an observational cross-over single centre study.
35	777	<i>Clinical & Experimental Rheumatology</i> 2019;37 Suppl 116(1):13-20.
36 37	778	74. Giorgi V, Bongiovanni S, Atzeni F, et al. Adding medical cannabis to standard analgesic treatment for
38	779	fibromyalgia: a prospective observational study. <i>Clinical & Experimental Rheumatology</i> 2020;38
39	780	Suppl 123(1):53-59.
40	781	75. Grant BF, Dawson DA, Stinson FS, et al. The Alcohol Use Disorder and Associated Disabilities
41	782	Interview Schedule-IV (AUDADIS-IV): reliability of alcohol consumption, tobacco use, family
42	783	history of depression and psychiatric diagnostic modules in a general population sample. Drug
43	784	Alcohol Depend 2003;71(1):7-16. doi: 10.1016/s0376-8716(03)00070-x [published Online First:
44	785	2003/06/25]
45	786	76. Humeniuk R, Ali R. Validation of the Alcohol, Smoking and Substance Involvement Screening Test
46 47	780 787	(ASSIST) and pilot brief intervention: a technical report of phase II findings of the WHO ASSIST
47 48		
40 49	788 789	Project. Validation of the alcohol, smoking and substance involvement screening test (ASSIST) and pilot brief intervention: a technical report of phase II findings of the WHO ASSIST
50	789 790	Project2006.
51		•
52	791 702	77. Stockings E, Campbell G, Hall WD, et al. Cannabis and cannabinoids for the treatment of people with
53	792 702	chronic noncancer pain conditions: a systematic review and meta-analysis of controlled and
54	793	observational studies. <i>Pain</i> 2018;159(10):1932-54. doi: 10.1097/j.pain.000000000001293
55	794	[published Online First: 2018/05/31]
56		
57 58		
58 59		33
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3	795	78. Allan GM, Finley CR, Ton J, et al. Systematic review of systematic reviews for medical cannabinoids:
4	796	Pain, nausea and vomiting, spasticity, and harms. Can Fam Physician 2018;64(2):e78-e94.
5	797	[published Online First: 2018/02/17]
6	798	79. Campeny E, López-Pelayo H, Nutt D, et al. The blind men and the elephant: Systematic review of
7	799	systematic reviews of cannabis use related health harms. <i>Eur Neuropsychopharmacol</i> 2020;33:1-
8	800	35. doi: 10.1016/j.euroneuro.2020.02.003 [published Online First: 2020/03/14]
9		
10	801	80. Memedovich KA, Dowsett LE, Spackman E, et al. The adverse health effects and harms related to
11	802	marijuana use: an overview review. CMAJ Open 2018;6(3):E339-e46. doi:
12 12	803	10.9778/cmajo.20180023 [published Online First: 2018/08/18]
13 14	804	81. Nugent SM, Morasco BJ, O'Neil ME, et al. The Effects of Cannabis Among Adults With Chronic Pain
15	805	and an Overview of General Harms: A Systematic Review. Ann Intern Med 2017;167(5):319-31.
16	806	doi: 10.7326/m17-0155 [published Online First: 2017/08/15]
17	807	82. Els C, Jackson TD, Kunyk D, et al. Adverse events associated with medium- and long-term use of
18	808	opioids for chronic non-cancer pain: an overview of Cochrane Reviews. Cochrane Database Syst
19	809	Rev 2017;10(10):Cd012509. doi: 10.1002/14651858.CD012509.pub2 [published Online First:
20	810	2017/10/31]
21	811	83. Rücker G, Schumacher M. Simpson's paradox visualized: the example of the rosiglitazone meta-
22	812	analysis. BMC Med Res Methodol 2008;8:34. doi: 10.1186/1471-2288-8-34 [published Online
23	813	First: 2008/06/03]
24		
25	814	84. Diagnostic and statistical manual of mental disorders : DSM-5. Arlington, VA: American Psychiatric
26	815	Association 2013.
27	816	85. Goodman JE, McGrath PJ. The epidemiology of pain in children and adolescents: a review. Pain
28	817	1991;46(3):247-64. doi: 10.1016/0304-3959(91)90108-a [published Online First: 1991/09/01]
29	818	86. Myles H, Myles N, Large M. Cannabis use in first episode psychosis: Meta-analysis of prevalence, and
30	819	the time course of initiation and continued use. Aust N Z J Psychiatry 2016;50(3):208-19. doi:
31	820	10.1177/0004867415599846 [published Online First: 2015/08/20]
32	821	87. Veroniki AA, Jackson D, Bender R, et al. Methods to calculate uncertainty in the estimated overall
33	822	effect size from a random-effects meta-analysis. Res Synth Methods 2019;10(1):23-43. doi:
34 25	823	10.1002/jrsm.1319 [published Online First: 2018/08/22]
35	824	88. Shanthanna H, Gilron I, Rajarathinam M, et al. Benefits and safety of gabapentinoids in chronic low
36 37	825	back pain: A systematic review and meta-analysis of randomized controlled trials. <i>PLoS Med</i>
37 38	826	2017;14(8):e1002369. doi: 10.1371/journal.pmed.1002369 [published Online First: 2017/08/16]
39	820	
40		89. Ferraro MC, Bagg MK, Wewege MA, et al. Efficacy, acceptability, and safety of antidepressants for
41	828	low back pain: a systematic review and meta-analysis. Syst Rev 2021;10(1):62. doi:
42	829	10.1186/s13643-021-01599-4 [published Online First: 2021/02/26]
43	830	90. Busse JW, Craigie S, Juurlink DN, et al. Guideline for opioid therapy and chronic noncancer pain.
44	831	Cmaj 2017;189(18):E659-e66. doi: 10.1503/cmaj.170363 [published Online First: 2017/05/10]
45	832	
46	052	
47		
48		
49		
50		
51		
52		
53		
54		
55		
56 57		
57 50		
58 59		34
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
00		

Figure 2: Forest plot of the meta-analysis for serious adverse events stratified by type of medical cannabis

Study	Cases	Total	Prevalence (%)	95% C.I.				
cannabis = herbal, mixe Lynch, 2006 Ware, 2003 Fiz, 2011 Ware, 2015 Haroutounian, 2016 Fanelli, 2017 Habib, 2018 Anderson, 2019 Fixed effect model Random effects model Heterogeneity: $l^2 = 89\%$, τ^2	0 0 28 2 0 0 21	341 26 1120	1.0 0.0 0.0 1.9 1.1 1.0	[8.8; 17.9] [0.0; 2.9] [0.0; 0.5] [0.0; 6.5] [1.2; 2.8]	- - -			
cannabis = nabiximols Rog, 2007 Ueberall, 2019 Fixed effect model Random effects model Heterogeneity: t^2 = 99%, τ^2	32 4 = 0.2559,	63 800 	0.5 1.2 17.2	[38.4; 63.1] [0.1; 1.1] [0.5; 2.2] [0.0; 82.5]			—	-
cannabis = nabilone Bestard, 2011 Bestard, 2011 Toth, 2012 Fixed effect model Random effects model Heterogeneity: $l^2 = 50\%$, τ^2	0 0 2 = 0.0052,	49 55 37 χ ₂ ² = 3	0.0 5.4 0.5 0.7	[0.0; 3.5] [0.0; 3.1] [0.1; 15.6] [0.0; 3.0] [0.0; 4.8]				
cannabis = PEA Dominguez, 2012 Gatti, 2012 Del Giorno, 2015 Paladini, 2017 Passavanti, 2017 Chirchiglia, 2018 Cervigni, 2019 Loi, 2019 Fixed effect model Random effects model Heterogeneity: $l^2 = 0\%$, $t^2 =$	$\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	32 28	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	[0.0; 4.9] [0.0; 5.7] [0.0; 1.7] [0.0; 5.3]				
cannabis = dronabinol Schimrigk , 2017 Fixed effect model Random effects model Heterogeneity: not applicab	29	209	13.9 13.9 13.9	[9.5; 18.9] [9.5; 18.9] [9.5; 18.9]	+ + +			
cannabis = Trokie lozer Crowley, 2018 Fixed effect model Random effects model Heterogeneity: not applicab	0	35	0.0	[0.0; 4.9] [0.0; 4.9] [0.0; 4.9]	-			
cannabis = NR Vigil , 2017 Fixed effect model Random effects model Heterogeneity: not applicab	0	37	0.0	[0.0; 4.6] [0.0; 4.6] [0.0; 4.6]	F			
cannabis = extracts Giorgi, 2020 Fixed effect model Random effects model Heterogeneity: not applicab		102	0.0	[0.0; 1.7] [0.0; 1.7] [0.0; 1.7]				
Fixed effect model Random effects model Heterogeneity: $l^2 = 91\%$, τ^2 Test for subgroup difference	= 0.0173, is (randor	$\chi^2_{24} = 2$ n effect	1.2 280.38 (p < 0.01)	[0.4; 1.1] [0.1; 3.1]	20	40	60 80) 100
						revaler	nce (%)	

Long-term and serious harms of medical cannabis and cannabinoids for chronic pain: A systematic review and meta-analysis of nonrandomized studies

Appendix

Appendix	
Dr. Jason Busse	
bussejw@mcmaster.ca	
Contents	
Appendix 1: Search strategy	3
Appendix 2: Detailed methods for the assessment of risk of bias	3
Appendix 3: List of included studies)
Appendix 4: Studies excluded at the full-text screening stage	3
Appendix 5: Risk of bias ratings	2
Appendix 6: Results for all adverse events (subgroup by design)	3
Appendix 7: Results for all adverse events (subgroup by duration)	ļ
Appendix 8: Results for all adverse events (subgroup by cannabis)	5
Appendix 9: Results for all adverse events (subgroup by selection bias)	5
Appendix 10: Results for adverse events leading to discontinuation (subgroup by duration)	7
Appendix 11: Results for adverse events leading to discontinuation (subgroup by cannabis)	3
Appendix 12: Results for adverse events leading to discontinuation (subgroup by selection bias))
Appendix 13: Results for serious adverse events (subgroup by design)60)
Appendix 14: Results for serious adverse events (subgroup by duration)	L
Appendix 15: Results for serious adverse events (subgroup by selection bias)	
Appendix 16: Results for psychiatric adverse events	
Appendix 17: Results for suicide	
Appendix 18: Results for suicidal thoughts65	5

BMJ Open

Appendix 20: Results for mania67 Appendix 23: Results for paranoia......70 Appendix 24: Results for anxiety71 Appendix 25: Results for euphoria......72 Appendix 26: Results for memory impairment......73 Appendix 27: Results for confusion74 Appendix 29: Results for impaired attention......76 Appendix 30: Results for falls......77 Appendix 31: Results for motor vehicle accidents......78

2
3
4
5
6
7
8
9
10
11
12
13
14
15
10
16
17
18
19
20
21
22
23
24
25
26
27
28
28 29
79
30
30 31
30 31
30 31 32
30 31 32 33
30 31 32 33 34
30 31 32 33 34 35
30 31 32 33 34 35 36
30 31 32 33 34 35 36 37
30 31 32 33 34 35 36
30 31 32 33 34 35 36 37
 30 31 32 33 34 35 36 37 38 39
 30 31 32 33 34 35 36 37 38 39 40
 30 31 32 33 34 35 36 37 38 39 40 41
 30 31 32 33 34 35 36 37 38 39 40 41 42
 30 31 32 33 34 35 36 37 38 39 40 41 42 43
 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
 30 31 32 33 34 35 36 37 38 39 40 41 42 43
 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 445 46 47 48 49
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 9 50
 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 9 50
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 50 51 52 53
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 50 51 52 53 54
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 9 50 51 52 53 54 55
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 50 51 52 53 54

1

58

Appendix 1: Search strategy

MEDLINE	10649
EMBASE	6382
Central	2426
PsycInfo	3801
Subtotal	23260
-dupes	-6085
Total	17175
April 1, 2020	

Database: OVID Medline Epub Ahead of Print, In-Process & Other Non-Indexed Citations, Ovid

exp Cohort Studies/ (1974212)

- Case control.tw. (123081)
- (cohort adj (study or studies)).tw. (199133)

- Cohort analy\$.tw. (7799)
- (Follow up adj (study or studies)).tw. (48708)
- (observational adj (study or studies)).tw. (103255)
- Longitudinal.tw. (239715)
- Retrospective.tw. (515751)
- Cross sectional.tw. (342224)
- Cross-sectional studies/ (322752)
- or/1-12 (2953281)
- exp animals/ not humans.sh. (4685189)
- 13 not 14 (2889789)
- Annotation: SIGN observational studies filter
- randomized controlled trial.pt. (503041)
- controlled clinical trial.pt. (93591)
- randomized.ab. (474985)
- placebo.ab. (206552)

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21 22	
22	
23 24	
24 25	
25 26	
20 27	
27	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49 50	
50 51	
52	
52	
55 54	
55	
56	
57	
58	
59	

60

20 drug therapy.fs. (2191450)

randomly.ab. (330409) 21

22 trial.ab. (500400)

23 groups.ab. (2028909)

24 or/16-23 (4670111)

25 exp animals/ not humans.sh. (4685189)

24 not 25 (4048339) 26

Annotation: Cochrane HSSS RCT filter

27 15 or 26 (6033576)

Annotation: study design filter broad

28 Cannabis/ (8968)

29 exp cannabinoids/ or cannabidiol/ or cannabinol/ or dronabinol/ (13810)

Endocannabinoids/ (5630) 30

31 exp Receptors, Cannabinoid/ (9240) 32 (Cannabis or cannabinol or cannabinoid* or cannabidiol or bhang or cannador or charas or ganja or ganjah or hashish or hemp or marihuana or marijuana or nabilone or cesamet or cesametic or ajulemic acid or cannabichromene or cannabielsoin or cannabigerol or tetrahydrocannabinol or dronabinol or levonantradol or nabiximols or palmidrol or tetrahydrocannabinolic acid or tetrahydro cannabinol or marinol or tetranabinex or sativex or endocannabinoid*).mp. (54925)

33 or/28-32 (54925)

Annotation: strategy from 2020 cannabis review

34 27 and 33 (16307)

Annotation: cannabis AND study design filter

35 exp "Drug-Related Side Effects and Adverse Reactions"/ (114376)

36 (ae or to or po or co).fs. (3890270)

37 (safe or safety).ti,ab. (758301)

38 side effect\$.ti,ab. (243706)

39 ((adverse or undesirable or harms\$ or serious or toxic) adj3 (effect\$ or reaction\$ or event\$ or outcome\$)).ti,ab. (501888)

eliezon

40 exp Product Surveillance, Postmarketing/ (15237)

41 adverse drug reaction reporting systems/ (7463)

42 clinical trials, phase iv/ (295)

1		
2		
3		
4		
5	43	exp Poisoning/ (156177)
6		
7		
8		
9	44	exp Substance-Related Disorders/ (274845)
10		
11		
12	4 5	
13	45	Abnormalities, Drug-Induced/ (14514)
14		
15		
16	46	Drug Monitoring/ (20599)
17	40	brug monitoring/ (20000)
18		
19		
20	47	exp Drug Hypersensitivity/ (45642)
21		
22		
23		
24	48	(toxicity or complication\$ or noxious or tolerability).ti,ab. (1298802)
25		
26		
27	40	
28	49	or/35-48 (5596308)
29		
30		
31	Δnn	otation: OVID AE filter
32	,	
33		
34		
35	50	34 and 49 (10649)
36		
37		
38		
39	Ann	otation: Study design filter AND Cannabis AND AE Filter (broad)
40		
41		
42	Date	abase: Embase <1974 to 2020 March 31>
43	Date	abase. Liiibase >1374 (0 2020 Widi (11 31/
44		
45		
46	Sea	rch Strategy:
47		
48		
49		
50		
51		
52		
53		
54	1	cannabis/ (33859)
55		
56		
57		
58		
59		

2 exp cannabinoid/ (65694)

3 medical cannabis/ (2104)

4 exp cannabinoid receptor/ (14557)

5 exp endocannabinoid/ (8589)

6 (Cannabis or cannabinol or cannabinoid* or cannabidiol or bhang or cannador or charas or ganja or ganjah or hashish or hemp or marihuana or marijuana or nabilone or cesamet or cesametic or ajulemic acid or cannabichromene or cannabielsoin or cannabigerol or tetrahydrocannabinol or dronabinol or levonantradol or nabiximols or palmidrol or tetrahydrocannabinolic acid or tetrahydro cannabinol or marinol or tetranabinex or sativex or endocannabinoid*).mp. [mp=title, abstract, heading word, drug trade name, original title, device manufacturer, drug manufacturer, device trade name, keyword, floating subheading word, candidate term word] (86550)

Elezony

7 or/1-6 (87843)

Annotation: cannabis

- 8 clinical study/ (154879)
- 9 case control study/ (153658)
- 10 family study/ (26012)
- 11 longitudinal study/ (137463)
- 12 retrospective study/ (897628)

13 prospective study/ (590879)

2
Δ
т 5
6
3 4 5 6 7 8 9 10 11 23 14 15 16 17 18 9 20 21 22 23 24 25 26 27 28 29 30 31 22 33 34 35 36 37 8 39
, 8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

60

14 randomized controlled trials/ (176633)

15 13 not 14 (584662)

16 cohort analysis/ (564001)

17 (Cohort adj (study or studies)).mp. [mp=title, abstract, heading word, drug trade name, original title, device manufacturer, drug manufacturer, device trade name, keyword, floating subheading word, candidate term word] (296961)

18 (Case control adj (study or studies)).mp. [mp=title, abstract, heading word, drug trade name, original title, device manufacturer, drug manufacturer, device trade name, keyword, floating subheading word, candidate term word] (211490)

19 (follow up adj (study or studies)).mp. [mp=title, abstract, heading word, drug trade name, original title, device manufacturer, drug manufacturer, device trade name, keyword, floating subheading word, candidate term word] (65948)

20 (observational adj (study or studies)).mp. [mp=title, abstract, heading word, drug trade name, original title, device manufacturer, drug manufacturer, device trade name, keyword, floating subheading word, candidate term word] (242526)

21 (epidemiologic\$ adj (study or studies)).mp. [mp=title, abstract, heading word, drug trade name, original title, device manufacturer, drug manufacturer, device trade name, keyword, floating subheading word, candidate term word] (109669)

22 (cross sectional adj (study or studies)).mp. [mp=title, abstract, heading word, drug trade name, original title, device manufacturer, drug manufacturer, device trade name, keyword, floating subheading word, candidate term word] (385983)

23 or/8-12,15-22 (2808984)

Annotation: SIGN observational studies filter

7 and 23 (9720)

Annotation: cannabis AND observational studies

- randomized controlled trial/ (597702)
- Controlled clinical study/ (463832)
- random\$.ti,ab. (1518977)
- randomization/ (86491)
- intermethod comparison/ (258334)
- placebo.ti,ab. (303428)

3) (compare or compared or comparison).ti. (504683)

((evaluated or evaluate or evaluating or assessed or assess) and (compare or compared or comparing or comparison)).ab. (2082229)

(open adj label).ti,ab. (78190)

((double or single or doubly or singly) adj (blind or blinded or blindly)).ti,ab. (229917)

double blind procedure/ (171048)

1	
2	
3 4	
5	
6	
7	
8	
9	
10 11	
12	
13	
12 13 14 15	
15	
16 17 18	
17	
19	
19 20	
21 22 23	
22	
23 24	
24 25	
26	
27	
28	
29 30	
30 31	
32	
33	
34	
35	
36 37	
38	
39	
40	
41	
42 43	
44	
45	
46	
47	
48 49	
49 50	
51	
52	
53	
54	
55 56	
50 57	
58	
59	
60	

36	narallel	group\$1.ti,ab.	(25201)
30	paraner	groupst.u,ab.	(23201)

37 (crossover or cross over).ti,ab. (104010)

((assign\$ or match or matched or allocation) adj5 (alternate or group\$1 or intervention\$1 or 38 patient\$1 or subject\$1 or participant\$1)).ti,ab. (325625)

- 39 (assigned or allocated).ti,ab. (383429)
- (controlled adj7 (study or design or trial)).ti,ab. (343515) 40
- 41 (volunteer or volunteers).ti,ab. (244577)
- 42 human experiment/ (490389)
- 43 trial.ti. (295850)
- 44 or/25-43 (4952112)

Annotation: Cochrane RCT filter

45 7 and 44 (14036)

Annotation: cannabis AND RCTs

46 24 or 45 (21357)

Annotation: cannabis AND (Obs studies OR RCTs)

7 and (23 or 44) (21357)

Annotation: logic check

(ae or si or to or co).fs. (3204803)

(safe or safety).ti,ab. (1154971)

side effect\$.ti,ab. (358075)

((adverse or undesirable or harm\$ or serious or toxic) adj3 (effect\$ or reaction\$ or event\$ or outcome\$)).ti,ab. (787739)

exp adverse drug reaction/ (522775)

exp drug toxicity/ (125051)

exp intoxication/ (366563)

exp drug safety/ (393912)

exp drug monitoring/ (53058)

exp drug hypersensitivity/ (56248)

exp postmarketing surveillance/ (35831)

exp drug surveillance program/ (26017)

BMJ Open

1		
2		
3	60	exp phase iv clinical trial/ (3822)
4	00	
5		
6		
7	61	(toxicity or complication\$ or noxious or tolerability).ti,ab. (1868476)
	01	
8		
9		
10	6.9	
11	62	or/48-61 (6002309)
12		
13		
14		
15	Anno	tation: OVID AE filter 1-14
16		
17		
18	63	47 and 62 (6382)
19		
20		
21		
22		
23		
24	Cann	abis AEs
25	cann	
26		
27	Searc	ch Name: cannabis AEs
28	Searc	In Name. Cannabis ALS
29		
30		
31	Data	Dura: 01/01/2020 10:12:10
32	Date	Run: 01/04/2020 18:42:40
33		
34		
	~	
35	Com	ment:
36		
37		
38		
39		
40		
41		
42		
43	ID	Search Hits
44		
45		
46	#1	MeSH descriptor: [Cannabis] explode all trees 298
47		
48		
49		
50	#2	MeSH descriptor: [Cannabinoids] explode all trees 790
51		
52		
53	#2	MeSH descriptor: [Endocannabinoids] explode all trees 48
54	#3	אובשה מבשנווףנטו. נבוומטנמווומטוווטומשן פגאוטטיב מו נופפש 40
55		
56		
57		
58		
59		

#4 MeSH descriptor: [Endocannabinoids] explode all trees 48

#5 (Cannabis or cannabinol or cannabinoid* or cannabidiol or bhang or cannador or charas or ganja or ganjah or hashish or hemp or marihuana or marijuana or nabilone or cesamet or cesametic or ajulemic acid or cannabichromene or cannabielsoin or cannabigerol or tetrahydrocannabinol or dronabinol or levonantradol or nabiximols or palmidrol or tetrahydrocannabinolic acid or tetrahydro cannabinol or marinol or tetranabinex or sativex or endocannabinoid*):ti,ab,kw (Word variations have been searched) 4370

#6 #1 or #2 or #3 or #4 or #5 4370

#7 MeSH descriptor: [Drug-Related Side Effects and Adverse Reactions] explode all trees 3463

#8MeSH descriptor: [] explode all trees and with qualifier(s): [adverse effects - AE, toxicity - TO,
poisoning - PO, complications - CO]169278

#9 (safe or safety):ti,ab,kw (Word variations have been searched) 258304

#10 (side effect*):ti,ab,kw (Word variations have been searched) 149400

#11 ((adverse or undesirable or harms* or serious or toxic) near/3 (effect* or reaction* or event* or outcome*)):ti,ab,kw (Word variations have been searched) 279577

#12 MeSH descriptor: [Product Surveillance, Postmarketing] explode all trees 191

#13 MeSH descriptor: [Adverse Drug Reaction Reporting Systems] explode all trees 82

- #14 MeSH descriptor: [Clinical Trial, Phase IV] explode all trees 0
- #15 MeSH descriptor: [Poisoning] explode all trees 2101

BMJ Open

2 3 4	#16	MeSH descriptor: [Substance-Related Disorders] explode all trees 14586		
5 6 7 8	#17	MeSH descriptor: [Abnormalities, Drug-Induced] explode all trees 47		
9 10 11 12	#18	MeSH descriptor: [Drug Monitoring] explode all trees 1725		
13 14 15 16	#19	MeSH descriptor: [Drug Hypersensitivity] explode all trees 965		
17 18 19 20	#20 searche	(toxicity or complication* or noxious or tolerability):ti,ab,kw (Word variations have been ed) 332240		
21 22 23 24	#21	#7 or #8 or #9 or #10 or #11 or #12 or #13 or #14 or #15 or #16 or #17 or #18 or #19 or #20		
25 26 27		626064		
28 29 30 31	#22	#6 and #21 in Trials 2426		
32 33 34	PsycInf	o		
35 36 37 38	Database: APA PsycInfo <1806 to March Week 4 2020>			
39 40 41 42	Search	Strategy:		
43 44 45 46				
47 48 49	1 exp	o cannabis/ or exp cannabinoids/ or tetrahydrocannabinol/ (12819)		

2 (Cannabis or cannabinol or cannabinoid* or cannabidiol or bhang or cannador or charas or ganja or ganjah or hashish or hemp or marihuana or marijuana or nabilone or cesamet or cesametic or ajulemic acid or cannabichromene or cannabielsoin or cannabigerol or tetrahydrocannabinol or dronabinol or levonantradol or nabiximols or palmidrol or tetrahydrocannabinolic acid or tetrahydro cannabinol or

marinol or tetranabinex or sativex or endocannabinoid*).mp. [mp=title, abstract, heading word, table of contents, key concepts, original title, tests & measures, mesh] (26466)

3 1 or 2 (26466)

4 exp "side effects (drug)"/ (57604)

5 (safe or safety).ti,ab. (84148)

6 side effect\$.ti,ab. (31950)

7 ((adverse or undesirable or harms\$ or serious or toxic) adj3 (effect\$ or reaction\$ or event\$ or outcome\$)).ti,ab. (44183)

8 toxic disorders/ (1433)

9 exp "substance use disorder"/ (127742)

10 (toxicity or complication\$ or noxious or tolerability).ti,ab. (42844)

11 or/4-10 (310848)

12 3 and 11 (10984)

13 epidemiology/ (49562)

14 ((case* adj5 control*) or (case adj3 comparison*) or case-comparison or control group*).ti,ab,id. not "Literature Review".md. (95810)

15 ((cohort or longitudinal or prospective or retrospective).ti,ab,id. or longitudinal study.md. or prospective study.md.) not "Literature Review".md. (286455)

16 (cross section* or "prevalence study").ti,ab,id. (80384)

17 clinical trials/ or "treatment outcome clinical trial".md. or ((randomi?ed adj7 trial*) or ((single or doubl* or tripl* or treb*) and (blind* or mask*)) or (controlled adj3 trial*) or (clinical adj2 trial*)).ti,ab,id. (101001)

18 Case control.mp. (10736)

19 (cohort adj (study or studies)).mp. [mp=title, abstract, heading word, table of contents, key concepts, original title, tests & measures, mesh] (21026)

20 Cohort analy\$.mp. (2099)

21 (Follow up adj (study or studies)).mp. [mp=title, abstract, heading word, table of contents, key concepts, original title, tests & measures, mesh] (12876)

22 (Longitudinal or Retrospective or Cross sectional).mp. [mp=title, abstract, heading word, table of contents, key concepts, original title, tests & measures, mesh] (218589)

23 or/13-22 (561443)

24 12 and 23 (3801)

Appendix 2: Detailed methods for the assessment of risk of bias

We rated studies at serious risk of <u>confounding bias</u> when they when they did not adjust for important predictors of adverse events and cannabis use, including, at minimum, pain intensity, concomitant pain medication, disability status, alcohol use, past cannabis use and at critical risk if they did not include a control group. We rated studies at serious risk of <u>selection bias</u> when studies included prevalent medical cannabis users (i.e., patients who experience serious or debilitating adverse events are more likely to discontinue cannabis and hence less likely to be included in studies of prevalent users). We rated studies at serious risk of <u>misclassification of the intervention</u> if there was evidence that medical cannabis users were not appropriately classified. We rated studies at serious risk of bias due to <u>departure from the intended intervention</u> if the intervention was not delivered as intended or more than 20% of patients discontinued the intervention for reasons unrelated to adverse effects (e.g., costs). We rated studies at serious risk of <u>missing data</u> when 20% or more of the original patients did not have adverse event data. Finally, we rated studies at moderate risk of <u>selective reporting</u> when the study did not differentiate between minor and serious adverse events or when there were indications that adverse events were selectively, and not comprehensively, reported.

€d.

Appendix 3: List of included studies

1. Anderson SP, Zylla DM, McGriff DM, Arneson TJ. Impact of medical cannabis on patient-reported symptoms for patients with cancer enrolled in Minnesota's medical cannabis program. Journal of Oncology Practice. 2019;15(6):E338-E45.

2. Bellnier T, Brown GW, Ortega TR. Preliminary evaluation of the efficacy, safety, and costs associated with the treatment of chronic pain with medical cannabis. The Mental Health Clinician. 2018;8(3):110-5.

3. Bestard JA, Toth CC. An open-label comparison of nabilone and gabapentin as adjuvant therapy or monotherapy in the management of neuropathic pain in patients with peripheral neuropathy. Pain Practice. 2011;11(4):353-68.

4. Bonar EE, Cranford JA, Arterberry BJ, Walton MA, Bohnert KM, Ilgen MA. Driving under the influence of cannabis among medical cannabis patients with chronic pain. Drug & Alcohol Dependence. 2019;195:193-7.

5. Cervigni M, Nasta L, Schievano C, Lampropoulou N, Ostardo E. Micronized Palmitoylethanolamide-Polydatin Reduces the Painful Symptomatology in Patients with Interstitial Cystitis/Bladder Pain Syndrome. BioMed Research International. 2019;2019 (no pagination)(9828397).

6. Chirchiglia D, Chirchiglia P, Signorelli F. Nonsurgical lumbar radiculopathies treated with ultramicronized palmitoylethanolamide (umPEA): A series of 100 cases. Neurologia i Neurochirurgia Polska. 2018;52(1):44-7.

7. Cranford JA, Arnedt JT, Conroy DA, Bohnert KM, Bourque C, Blow FC, et al. Prevalence and correlates of sleep-related problems in adults receiving medical cannabis for chronic pain. Drug & Alcohol Dependence. 2017;180:227-33.

8. Cremer-Schaeffer P, Schmidt-Wolf G, Broich K. [Cannabis medicines in pain management : Interim analysis of the survey accompanying the prescription of cannabis-based medicines in Germany with regard to pain as primarily treated symptom]. Der Schmerz. 2019;33(5):415-23.

9. Crowley K, de Vries ST, Moreno-Sanz G. Self-Reported Effectiveness and Safety of Trokie R Lozenges: A Standardized Formulation for the Buccal Delivery of Cannabis Extracts. Frontiers in Neuroscience. 2018;12:564.

10. Del Giorno R, Skaper S, Paladini A, Varrassi G, Coaccioli S. Palmitoylethanolamide in Fibromyalgia: Results from Prospective and Retrospective Observational Studies. Pain and Therapy. 2015;4(2):169-78.

11. Domínguez CM, Martín AD, Ferrer FG, Puertas MI, Muro AL, González JM, et al. N-palmitoylethanolamide in the treatment of neuropathic pain associated with lumbosciatica. Pain Manag. 2012;2(2):119-24.

12. Fanelli G, De Carolis G, Leonardi C, Longobardi A, Sarli E, Allegri M, et al. Cannabis and intractable chronic pain: an explorative retrospective analysis of Italian cohort of 614 patients. Journal of pain research. 2017;10:1217-24.

13. Feingold D, Goor-Aryeh I, Bril S, Delayahu Y, Lev-Ran S. Problematic Use of Prescription Opioids and Medicinal Cannabis Among Patients Suffering from Chronic Pain. Pain Medicine. 2017;18(2):294-306.

14. Fiz J, Duran M, Capella D, Carbonell J, Farre M. Cannabis use in patients with Fibromyalgia: Effect on symptoms relief and health-related quality of life. PLoS ONE. 2011;6 (4) (no pagination)(e18440).

15. Gatti A, Lazzari M, Gianfelice V, Di Paolo A, Sabato E, Sabato AF. Palmitoylethanolamide in the treatment of chronic pain caused by different etiopathogenesis. Pain Medicine. 2012;13(9):1121-30.

16. Giorgi V, Bongiovanni S, Atzeni F, Marotto D, Salaffi F, Sarzi-Puttini P. Adding medical cannabis to standard analgesic treatment for fibromyalgia: a prospective observational study. Clinical & Experimental Rheumatology. 2020;38 Suppl 123(1):53-9.

17. Habib G, Artul S. Medical Cannabis for the Treatment of Fibromyalgia. JCR: Journal of Clinical Rheumatology. 2018;24(5):255-8.

18. Haroutounian S, Ratz Y, Ginosar Y, Furmanov K, Saifi F, Meidan R, et al. The Effect of Medicinal Cannabis on Pain and Quality-of-Life Outcomes in Chronic Pain: A Prospective Open-label Study. Clinical Journal of Pain. 2016;32(12):1036-43.

19. Hoggart B, Ratcliffe S, Ehler E, Simpson KH, Hovorka J, Lejcko J, et al. A multicentre, open-label, follow-on study to assess the long-term maintenance of effect, tolerance and safety of THC/CBD oromucosal spray in the management of neuropathic pain. Journal of Neurology. 2015;262(1):27-40.

20. Lejczak S, Rousselot H, Di Patrizio P, Debouverie M. Dronabinol use in France between 2004 and 2017. Revue Neurologique. 2019;175(5):298-304.

21. Loi ES, Pontis A, Cofelice V, Pirarba S, Fais MF, Daniilidis A, et al. Effect of ultramicronizedpalmitoylethanolamide and co-micronizedpalmitoylethanolamide/polydatin on chronic pelvic pain and quality of life in endometriosis patients: An open-label pilot study. International Journal of Women's Health. 2019;11:443-9.

22. Lynch ME, Young J, Clark AJ. A case series of patients using medicinal marihuana for management of chronic pain under the Canadian Marihuana Medical Access Regulations. Journal of Pain & Symptom Management. 2006;32(5):497-501.

23. Naftali T, Bar-Lev Schleider L, Sklerovsky Benjaminov F, Lish I, Konikoff FM, Ringel Y. Medical cannabis for inflammatory bowel disease: real-life experience of mode of consumption and assessment of side-effects. European Journal of Gastroenterology & Hepatology. 2019;31(11):1376-81.

24. Paladini A, Varrassi G, Bentivegna G, Carletti S, Piroli A, Coaccioli S. Palmitoylethanolamide in the Treatment of Failed Back Surgery Syndrome. Pain Res Treat. 2017;2017:1486010.

25. Passavanti MB, Fiore M, Sansone P, Aurilio C, Pota V, Barbarisi M, et al. The beneficial use of ultramicronized palmitoylethanolamide as add-on therapy to Tapentadol in the treatment of low back pain: a pilot study comparing prospective and retrospective observational arms. BMC Anesthesiology. 2017;17(1):171.

26. Perron BE, Holt KR, Yeagley E, Ilgen M. Mental health functioning and severity of cannabis withdrawal among medical cannabis users with chronic pain. Drug & Alcohol Dependence. 2019;194:401-9.

27. Rog DJ, Nurmikko TJ, Young CA. Oromucosal delta9-tetrahydrocannabinol/cannabidiol for neuropathic pain associated with multiple sclerosis: an uncontrolled, open-label, 2-year extension trial. Clinical Therapeutics. 2007;29(9):2068-79.

28. Sagy I, Bar-Lev Schleider L, Abu-Shakra M, Novack V. Safety and Efficacy of Medical Cannabis in Fibromyalgia. Journal of Clinical Medicine. 2019;8(6):05.

29. Schifilliti C, Cucinotta L, Fedele V, Ingegnosi C, Luca S, Leotta C. Micronized palmitoylethanolamide reduces the symptoms of neuropathic pain in diabetic patients. Pain Res Treat. 2014;2014:849623.

30. Schimrigk S, Marziniak M, Neubauer C, Kugler EM, Werner G, Abramov-Sommariva D. Dronabinol Is a Safe Long-Term Treatment Option for Neuropathic Pain Patients. European Neurology. 2017;78(5-6):320-9.

31. Sinclair J, Smith CA, Abbott J, Chalmers KJ, Pate DW, Armour M. Cannabis Use, a Self-Management Strategy Among Australian Women With Endometriosis: Results From a National Online Survey. Journal of Obstetrics & Gynaecology Canada: JOGC. 2020;42(3):256-61.

32. Storr M, Devlin S, Kaplan GG, Panaccione R, Andrews CN. Cannabis use provides symptom relief in patients with inflammatory bowel disease but is associated with worse disease prognosis in patients with Crohn's disease. Inflammatory Bowel Diseases. 2014;20(3):472-80.

33. Toth C, Mawani S, Brady S, Chan C, Liu C, Mehina E, et al. An enriched-enrolment, randomized withdrawal, flexible-dose, double-blind, placebo-controlled, parallel assignment efficacy study of nabilone as adjuvant in the treatment of diabetic peripheral neuropathic pain. Pain. 2012;153(10):2073-82.

34. Ueberall MA, Essner U, Mueller-Schwefe GHH. Effectiveness and tolerability of THC:CBD oromucosal spray as add-on measure in patients with severe chronic pain: Analysis of 12-week openlabel real-world data provided by the German pain e-registry. Journal of Pain Research. 2019;12:1577-604.

35. Vigil JM, Stith SS, Adams IM, Reeve AP. Associations between medical cannabis and prescription opioid use in chronic pain patients: A preliminary cohort study. PLoS ONE [Electronic Resource]. 2017;12(11):e0187795.

36. Ware MA, Doyle CR, Woods R, Lynch ME, Clark AJ. Cannabis use for chronic non-cancer pain: results of a prospective survey. Pain. 2003;102(1-2):211-6.

37. Ware MA, Wang T, Shapiro S, Collet JP, team Cs. Cannabis for the Management of Pain: Assessment of Safety Study (COMPASS). Journal of Pain. 2015;16(12):1233-42.

38. Weber J, Schley M, Casutt M, Gerber H, Schuepfer G, Rukwied R, et al. Tetrahydrocannabinol (Delta 9-THC) treatment in chronic central neuropathic pain and fibromyalgia patients: Results of a multicenter survey. Anesthesiology Research and Practice. 2009;2009 (no pagination)(827290).

39. Yassin M, Oron A, Robinson D. Effect of adding medical cannabis to analgesic treatment in patients with low back pain related to fibromyalgia: an observational cross-over single centre study. Clinical & Experimental Rheumatology. 2019;37 Suppl 116(1):13-20.

tor peer teriew only

Appendix 4: Studies excluded at the full-text screening stage

Not a full-text report of a non-randomized study

1. Aapro MS. Prevention of chemotherapy-induced nausea and vomiting in patients with cancer. Arizona Medicine. 1981;38(11):843-5.

2. Abrams DI, Guzman M. Cannabis in cancer care. Clinical Pharmacology & Therapeutics. 2015;97(6):575-86.

3. Actrn. Cannabis-Based Medicine (Sativex) in the Treatment of Pain in Kidney Failure. http://www.hoint/trialsearch/Trial2aspx?TrialID=ACTRN12610000783022. 2010.

4. Actrn. The CANBACK trial, to determine the efficacy of oral cannabidiol, when compared to placebo, as an adjunct for the treatment of acute non-traumatic low back pain. http://www.hoint/trialsearch/Trial2aspx?TrialID=ACTRN12618000487213. 2018.

5. Adhiyaman V, Arshad S. Cannabis for intractable nausea after bilateral cerebellar stroke. Journal of the American Geriatrics Society. 2014;62(6):1199.

6. Ahmed A, van der Marck MA, van den Elsen G, Olde Rikkert M. Cannabinoids in late-onset Alzheimer's disease. Clinical Pharmacology & Therapeutics. 2015;97(6):597-606.

7. Ahmed AI, van den Elsen GA, van der Marck MA, Olde Rikkert MG. Cannabinoids for pain in dementia: the good, the bad, and the ugly. Journal of the American Geriatrics Society. 2014;62(5):1001-2.

8. Anonymous. Latest trial suggests cannabis does not relieve spasticity of multiple sclerosis. Pharmaceutical Journal. 2002;268(7198):675.

9. Anonymous. Cannabis derivatives and pain. A small role for delta9-tetrahydrocannabinol (THC) in some forms of multiple sclerosis. Prescrire International. 2009;18(103):226.

10. Anonymous. Association between cannabis use and complications related to ulcerative colitis in hospitalized patients: A propensity matched retrospective cohort study: Erratum. Medicine. 2019;98(35):e17046.

11. Arboleda MF, Dam V, Prosk E, Dworkind M, Vigano A. Cannabis-Based Medications: The Future Co-analgesics of Choice for Cancer Patients? Journal of Pain and Symptom Management. 2018;56 (6):e68.

12. Arboleda MF, Dam V, Prosk E, Dworkind M, Vigano A. Tranforming symptom management in cancer patients: Is medical cannabis a new paradigm? Supportive Care in Cancer. 2018;26 (2 Supplement 1):S53.

13. Ashton CH. Adverse effects of cannabis and cannabinoids. British Journal of Anaesthesia. 1999;83(4):637-49.

14. Ballas SK. Use of marijuana in patients with sickle cell disease increased the frequency of hospitalization for acute painful vaso-occlusive crises. Blood Conference: 58th Annual Meeting of the American Society of Hematology, ASH. 2016;128(22).

15. Bergamaschi V, Konrad G, Battaglia MA, Brichetto G. Efficacy and discontinuation of nabiximols in patients with multiple sclerosis: A real-life study. Multiple Sclerosis Journal. 2018;24 (2 Supplement):959.

16. Bertsche T, Schulz M. Cannabis can relieve spasticity associated with multiple sclerosis. [German]. Pharmazeutische Zeitung. 2003;148(8):32-3.

17. Bialas P, Drescher B, Gottschling S, Juckenhofel S, Konietzke D, Kuntz W, et al. [Cannabis-based medicines for chronic pain: indications, selection of drugs, effectiveness and safety : Experiences of pain physicians in Saarland]. Der Schmerz. 2019;33(5):399-406.

18. Blondin N. The evolving role of complementary cannabis therapy in glioblastoma treatment. Neuro-Oncology. 2018;20 (Supplement 6):vi214-vi5.

19. Bronstein K, Dhaliwal J, Leider H. Rates of inappropriate drug use in the chronic pain population: An update. Journal of Pain. 2011;1):P5.

20. Brusberg M, Kang D, Larsson H, Lindstrom E, Martinez V. Inhibition of fatty acid amide hydrolase (FAAH) activity enhances the analgesic action of the endocannabinoid anandamide on visceral pain. Gastroenterology. 2009;1):A141.

21. Bulbul A, Mino EA, Khorsand-Sahbaie M, Lentkowski L. Opioid dose reduction and pain control with medical cannabis. Journal of Clinical Oncology Conference. 2018;36(34 Supplement).

22. Caulley L, Caplan B, Ross E. Medical Marijuana for Chronic Pain. New England Journal of Medicine. 2018;379(16):1575-7.

23. Clements-Nolle K, Lensch T, Larson S, Yang W. Prevalence and correlates of any and frequent synthetic cannabinoid use in a representative sample of high school students. Substance Use & Misuse. 2016;51(9):1139-46.

24. Costales B, Van Boemmel-Wegmann S, Segal R. A descriptive analysis of Florida medical marijuana registry patients from 2016-2017. Pharmacoepidemiology and Drug Safety. 2019;28 (Supplement 2):268.

25. Cuestas E. [Cannabis for chronic neuropathic pain.]. Revista de la Facultad de Ciencias Medicas de Cordoba. 2019;76(1):1-2.

26. De Trane S, Buchanan K, Keenan L, Valentine C, Liddicut M, Stevenson V, et al. Nabiximols has a beneficial effect on self report of MS related spasticity. Multiple Sclerosis. 2016;22 (Supplement 3):684.

27. De Trane S, Buchanan K, Keenan L, Valentine C, Liddicut M, Stevenson V, et al. Thc:cbd (nabiximols) has a beneficial effect on multiple sclerosis (MS) related spasticity and delays or negates the need for intrathecal baclofen pump implantation. Neurology Conference: 69th American Academy of Neurology Annual Meeting, AAN. 2017;88(16 Supplement 1).

BMJ Open

28. Degenhardt L, Hall WD. The adverse effects of cannabinoids: implications for use of medical marijuana. CMAJ Canadian Medical Association Journal. 2008;178(13):1685-6.

29. Di Francesco A, Pizzigallo D. Use of micronized palmitoylethanolamide and trans-polydatin in chronic pelvic pain associated with endometriosis. An open-label study. Giornale Italiano di Ostetricia e Ginecologia. 2014;36(2):353-8.

30. Dimou T, Spanomanoli A, Michelis S. The use of palmitoylethinolamide (PEA) in FBSS for chronic pain management. Regional Anesthesia and Pain Medicine. 2019;44 (10 Supplement 1):A168.

31. Donato F, Turri M, Zanette G, Tugnoli V, Deotto L, Teatini F, et al. A study of cortical and spinal excitability in patients affected by multiple sclerosis and spasticity after oromucosal cannabinoid spray (THC/CBD). Clinical Neurophysiology. 2016;127 (4):e147.

32. Donovan KA. Age-related differences in cannabis use by cancer patients referred for supportive care. Diane Portman. Journal of Clinical Oncology Conference. 2019;37(31 Supplement 1).

33. Dow GJ, Meyers FH, Stanton W, Devine ML. Serious reactions to oral delta-9-tetrahydrocannabinol in cancer chemotherapy patients. Clinical Pharmacy. 1984;3(1):14.

34. Dusi V, Attili SVS, Singaraju M. Observational study on role of crude cannabis in pain control and quality of life in terminally ill cancer patients: An Indian perspective. Annals of Oncology. 2019;30 (Supplement 9):ix119.

35. Eltayb A, Etges T, Wright S. An observational post-approval registry study of patients prescribed Sativex. Results from clinical practice. Multiple Sclerosis. 2013;1):480.

36. Erbe B. [Cannabis - medicinal use]. Deutsche Medizinische Wochenschrift. 2014;139(3):74-5.

37. Euctr AT. SATIVEX[®] AS ADD-ON THERAPY VS. FURTHER OPTIMIZED FIRST-LINE ANTISPASTICS. http://www.hoint/trialsearch/Trial2aspx?TrialID=EUCTR2015-004451-40-AT. 2016.

38. Euctr BE. An investigational study to assess the effect of GS-5745 on adult patients with Cystic Fibrosis. http://www.hoint/trialsearch/Trial2aspx?TrialID=EUCTR2015-002192-23-BE. 2016.

39.EuctrDE.Acannabispreparationforneuropathicpain.http://wwwwhoint/trialsearch/Trial2aspx?TrialID=EUCTR2014-005344-17-DE.2015.

40. Euctr DK. Effect of Sativex on pain and spasticity following spinal cord injury. http://www.hoint/trialsearch/Trial2aspx?TrialID=EUCTR2012-005328-14-DK. 2013.

41. Euctr DK. The effect of cannabis products on nerve pain and muscle stiffness in patients with multiple sclerosis and in patients with spinal cord injury. http://www.hoint/trialsearch/Trial2aspx?TrialID=EUCTR2018-002315-98-DK. 2018.

42. Euctr GB. Study of Sativex for the Treatment of Cancer Related Pain. http://www.hoint/trialsearch/Trial2aspx?TrialID=EUCTR2009-016065-29-GB. 2010.

43. Euctr IT. CLINICAL STUDY TO EVALUATE THE EFFECTIVENESS OF Sativex in relieving pain PEOPLE AFFECTED BY MULTIPLE SCLEROSIS. http://www.hoint/trialsearch/Trial2aspx?TrialID=EUCTR2011-002258-30-IT. 2012.

44. Euctr NL. ?9-THC (Namisol[®]) in persistent postsurgical pain. http://www.hoint/trialsearch/Trial2aspx?TrialID=EUCTR2012-000812-27-NL. 2012.

45. Euctr NL. Perioperative ?9-THC for postsurgical pain. http://www.hoint/trialsearch/Trial2aspx?TrialID=EUCTR2012-005808-17-NL. 2013.

46. Euctr NL. Interaction between opioids and cannabinoids in the treatment of fibromyalgia pain. http://www.hoint/trialsearch/Trial2aspx?TrialID=EUCTR2019-001861-33-NL. 2019.

47. Fernandez O. Advances in the management of multiple sclerosis spasticity: Recent clinical trials. European Neurology. 2014;72:9-11.

48. Ferrante F, Polito G, Ferraro M. DELTA-9-tetrahydrocannabinol (Sativex) for the treatment of multiple sclerosis spasticity: Evaluation of effectiveness and safety. European Journal of Hospital Pharmacy. 2019;26 (Supplement 1):A239.

49. Ferre L, Nuara A, Pavan G, Radaelli M, Moiola L, Rodegher M, et al. Medium and long term efficacy of nabiximols for the treatment of multiple sclerosis related spasticity: An Italian monocentric study. Multiple Sclerosis. 2015;1):728-9.

50. Ferre L, Pavan G, Nuara A, Radaelli M, Liberatore G, Guaschino C, et al. Efficacy, safety and response rate to Nabiximol for the treatment of MS-related spasticity in an Italian monocentric cohort. Multiple Sclerosis. 2015;21 (4):501-2.

51. Ferre L, Sorosina M, Santoro S, Moiola L, Rodegher M, Colombo B, et al. Efficacy, safety and response rate of nabiximols assessed in an Italian monocentric cohort. Multiple Sclerosis. 2014;1):469-70.

52. Fitzcharles MA, McDougall J, Ste-Marie PA, Padjen I. Clinical implications for cannabinoid use in the rheumatic diseases: potential for help or harm? Arthritis & Rheumatism. 2012;64(8):2417-25.

53. Flachenecker P, Zettl U, Henze T. THC:CBD oromucosal spray (nabiximols) in the long term treatment of multiple sclerosis spasticity. The MOVE 2 long-term study. Multiple Sclerosis. 2013;1):527.

54. Flank J, Lavoratore S, Vol H, Taylor T, Zelunka E, Nathan P, et al. Chemotherapy-induced nausea and vomiting in children receiving high dose methotrexate with or without vincristine: Preliminary results. Canadian Journal of Hospital Pharmacy. 2014;67 (1):61.

55. Freidel M, Tiel-Wilck K, Schreiber H, Lang M. Resistant multiple sclerosis spasticity (MSS) treatment with THC:CBD spray and effects on driving ability. Multiple Sclerosis. 2013;1):522-3.

56. Friedman D, Devinsky O. Cannabinoids in the Treatment of Epilepsy. New England Journal of Medicine. 2015;373(11):1048-58.

57. Funke A, Spittel S, Kettemann D, Maier A, Munch C, Meyer T. Delta-9-Tetrahydrocannabinolcannabidiol (THC/CBD) oromucosal spray for the treatment of spasticity in ALS - Assessment of patient reported outcomes. Clinical Neurophysiology. 2018;129 (8):e83.

58. Gallo E, Maggini V, Comite M, Sofi F, Baccetti S, Vannacci A, et al. SENeCA Study: Observational study on the effect of medicinal cannabis on quality of life and nutritional outcomes. BMC

Page 65 of 120

BMJ Open

Complementary and Alternative Medicine Conference: World Congress Integrative Medicine and Health. 2017;17(Supplement 1).

59. Galvin D, Mulkerrin O. Cannabis-based medications: A comparison of patients' knowledge and awareness in pain, neurology and prescription out-patient settings. Pain Practice. 2018;18 (Supplement 1):60.

60. Gamaoun R, Kasvis P, Patronidis F, Arboleda MF, Vigano A. Potential impact of medical cannabis treatment on pain control among cancer patients in Quebec-Canada: A pilot study. Supportive Care in Cancer. 2019;27 (1 Supplement):S54-S5.

61. Gaston T, Szaflarski M, Hansen B, Grayson L, Bebin EM, Szaflarski J. Improvement in quality of life ratings after one year of treatment with pharmaceutical formulation of cannabidiol (CBD). Epilepsia. 2017;58 (Supplement 5):S159.

62. Gauter B, Rukwied R, Konrad C. [Use and effectiveness of dronabinol (delta9-tetrahydrocannabinol) in chronic pain]. Der Schmerz. 2004;18 Suppl 2:S11-4.

63. Gerardi MC, Batticciotto A, Talotta R, Ditto MC, Atzeni F, Sarzi-Puttini P. Efficacy of cannabis flos in patients with fibromyalgia: A monocentric observational study. Arthritis and Rheumatology. 2016;68 (Supplement 10):72-4.

64. Gilmore D, Hooper C, Nemastil CJ, Dell ML, McCoy K, Kirkby SE. Effects of self-reported marijuana use on adherence and mental health disease in cystic fibrosis. Pediatric Pulmonology. 2018;53 (Supplement 2):424.

65. Gubbiotti M, Illiano E, Costantini E, Giannantoni A. Palmitoylethanolamide/polydatin as add-on therapy in pain resistant patients with interstitial cystitis/bladder painful syndrome. European Urology, Supplements. 2019;18 (1):e1970.

66. Guerrero LJ, Maclas IC, Del Castillo SSF, Izquierdo MM, Rengifo CD, Nunez MN. Effectiveness and safety of d-9-tetrahydrocannabinol (sativex) in patients with multiple sclerosis spasticity. European Journal of Hospital Pharmacy. 2017;24 (Supplement 1):A113.

67. Guindon J. Nabilone in inflammatory pain: to be or not to be. Clinical & Experimental Pharmacology & Physiology. 2012;39(4):327-8.

68. Gurevich T, Bar Lev Chleider L, Rosenberg A, Knaani J, Baruch Y, Djaldetti R. Effect of medical cannabis in Parkinson's disease: Survey of patient experiences. Movement Disorders. 2015;1):S88-S9.

69. Gutierrez T, Hohmann AG. Cannabinoids for the treatment of neuropathic pain: Are they safe and effective? Future Neurology. 2011;6(2):129-33.

70. Guttenthaler V, Wittmann M. Replacement of benzodiacepines by cannabinoids for the preoperative medication-a feasibility trial (Beach-Trial). Medical Cannabis and Cannabinoids. 2019;2 (2):78.

71. Gyang T, Hyland M, Samkoff L, Goodman A. "Real world" experience of medical marijuana in symptomatic management of multiple sclerosis and transverse myelitis. Neurology Conference: 70th Annual Meeting of the American Academy of Neurology, AAN. 2018;90(15 Supplement 1).

72. Hansra D, Granada H. Evaluation of safety, efficacy, and clinical endpoints of delta-9-tetrahydrocannabinol in patients age 60 or older with hematologic and oncologic malignancies. Blood Conference: 59th Annual Meeting of the American Society of Hematology, ASH. 2017;130(Supplement 1).

73. Hansra DM. Evaluation of safety, efficacy, and other clinical endpoints of delta-9-tetrahydrocannabinol in older patients with hem/onc malignancies. Journal of Clinical Oncology Conference. 2017;35(15 Supplement 1).

74. Haupts M, Jonas A, Witte K, Alvarez-Ossorio L. Influence of optimized anti-spastic pre-treatment on the efficacy and tolerability of THC: CBD oromucosal spray in multiple sclerosis spasticity patients. A post-hoc RCT data analyses. Multiple Sclerosis. 2015;1):708-9.

75. Hicks K, Snyder C. Impact of high-dose cannabis use in patients with advanced pancreatic cancer undergoing treatment in a phase i clinical trial: Lessons learned and impact on future clinical research design. Journal of Oncology Pharmacy Practice. 2018;24 (2 Supplement 1):8.

76. Higgins P, Ginsburg D, Gilder K, Walsh B, English B, Turner S, et al. Safety and efficacy of olorinab, a peripherally restricted, highly-selective, cannabinoid receptor 2 agonist in a phase 2A study in chronic abdominal pain associated with Crohn's disease. Journal of Crohn's and Colitis. 2019;13 (Supplement 1):S318.

77. Hill KP, Hurley-Welljams-Dorof WM. Low to moderate quality evidence demonstrates the potential benefits and adverse events of cannabinoids for certain medical indications. Evidence Based Medicine. 2016;21(1):17.

78. Hobart JC, Zajicek JP. Cannabis as a symptomatic treatment for MS: Clinically meaningful MUSEC to the stiffness and walking problems of people with MS. Multiple Sclerosis. 2012;1):247.

79. Hoffenberg E, Murphy B, Mikulich-Gilbertson S, McWilliams S, Hoffenberg A, Hopfer C. Why and how adolescents and young adults with inflammatory bowel disease use cannabis. Journal of Pediatric Gastroenterology and Nutrition. 2017;65 (Supplement 2):S147-S8.

80. Honarmand K, Tierney MC, O'Connor P, Feinstein A. Effects of cannabis on cognitive function in patients with multiple sclerosis. Neurology. 2011;76(13):1153-60.

81. Huestis MA, Elsohly M, Nebro W, Barnes A, Gustafson RA, Smith ML. Estimating time of last oral ingestion of cannabis from plasma THC and THCCOOH concentrations. Therapeutic Drug Monitoring. 2006;28(4):540-4.

82. Hulgan T, Kingsley P, Koethe J, Sterling T, Patel S. Associations between circulating endocannabinoids and cardio-metabolic factors in HIV-infected persons on antiretroviral therapy: A pilot study. Antiviral Therapy. 2014;2):A8.

83. Irving P, Iqbal T, Nwokolo C, Subramanian S, Bloom S, Prasad N, et al. Trial to assess cannabidiol in the symptomatic treatment of ulcerative colitis. Gut. 2015;1):A430.

84. Isrctn. A one year open label assessment of the use of nabilone in the treatment of chronic neuropathic pain. http://www.hoint/trialsearch/Trial2aspx?TrialID=ISRCTN38408594. 2007.

BMJ Open

85. Jamal N, Korman J, Musing M, Malavade A, Coleman BL, Siddiqui N, et al. The effect of preoperative cannabis use on opioid consumption following surgery: A cohort analysis. Canadian Journal of Hospital Pharmacy. 2018;71 (1):73.

86. Kalu N, O'Neal PA, Nwokolo C, Diaz S, Owoyemi O. The use of marijuana and hydroxyurea among sickle cell patients. Blood Conference: 58th Annual Meeting of the American Society of Hematology, ASH. 2016;128(22).

87. Kanaan AS, Muller-Vahl KR. Cannabinoid-based medicines for the treatment of Gilles de la Tourette syndrome. Handbook of cannabis and related pathologies: Biology, pharmacology, diagnosis, and treatment. San Diego, CA: Elsevier Academic Press; US; 2017. p. 883-92.

88. Keating GM. Delta-9-Tetrahydrocannabinol/Cannabidiol Oromucosal Spray (Sativex R): A Review in Multiple Sclerosis-Related Spasticity. Drugs. 2017;77(5):563-74.

89. Khalid L, Starrels JL, Sohler N, Arnsten JH, Jost J, Cunningham C. Marijuana use is associated with low prescription opioid analgesic (POA) use among hiv-infected patients with chronic pain. Journal of General Internal Medicine. 2016;1):S297.

90. Kiszko K, Patel K, Chudasama B, Samodulski J, Nienaber C, Martins-Welch D, et al. Older adults' perspectives on medical marijuana (MM) use. Journal of the American Geriatrics Society. 2017;65 (Supplement 1):S70.

91. Klooker T, Leliefeld K, Van Den Wijngaard RM, Boeckxstaens GE. The cannabinoid receptor agonist delta-9-tetrahydrocannabinol increases rectal sensitivity in IBS patients and healthy volunteers. Gastroenterology. 2009;1):A726-A7.

92. Koehler J, Feneberg W, Gorodetzky H, Meier M, Pollmann W. Clinical experiences with on-label nabiximols therapy in multiple sclerosis-induced spasticity. Multiple Sclerosis. 2013;1):281-2.

93. Koehler J, Gorodetzky H, Pollmann W, Meier M, Feneberg W. Monotherapy with nabiximols in multiple sclerosisinduced spasticity. Multiple Sclerosis. 2013;1):282.

94. Laux L, Devinsky O, Miller I, Nabbout R, Zolnowska M, Wright S, et al. Maintenance of long-term safety and efficacy of cannabidiol (CBD) treatment in dravet syndrome (DS): Results of the open-label extension (OLE) trial (GWPCARE5). Annals of Neurology. 2018;84 (Supplement 22):S344.

95. Leehey M, Liu Y, Epstein C, Hart F, Bainbridge J, Cook M, et al. Open label study of cannabidiol in Parkinson's disease. Movement Disorders. 2017;32 (Supplement 2):913.

96. Leehey MA, Liu Y, Hart F, Klawitter J, Sempio C, Fischer S, et al. Preliminary findings of the use of cannabis in Parkinson disease. Movement Disorders. 2019;34 (Supplement 1):S18-S9.

97. Libzon S, Schleider LB, Saban N, Levit L, Tamari Y, Linder I, et al. Medical Cannabis for Pediatric Moderate to Severe Complex Motor Disorders. Journal of Child Neurology. 2018;33(9):565-71.

98. Lindley EM, Razavi-Shearer D, Patel VV, Henry SE, McBeth Z, Burger EL, et al. Medical marijuana use characteristics in patients with chronic spine pain disorders. Spine Journal. 2013;1):84S.

99. Lissoni P, Porro G, Messina G, Porta E, Rovelli F, Roselli MG, et al. Morphine, melatonin, Marijuana, Magnolia and MYRRH as the "five m" schedule in the treatment of cancer pain and the

possible dose-dependency of the antitumor and analgesic effects of the pineal hormone melatonin. Anticancer Research. 2014;34 (10):6033-4.

100. Lothe C. The painful truth. Nursing Standard. 1999;13(52):25.

101. Luckett T, Agar M, Chye R, Lintzeris N, McGregor I, Allsop D, et al. Medicinal cannabis use and preferred mode of administration: Preliminary results from an anonymous patient survey to inform medicinal cannabis phase II and III trials for cancer-related anorexia-cachexia. Palliative Medicine. 2016;30 (6):NP88.

102. Macari D, Gbadamosi B, Ezekwudo D, Khoury J, Jaiyesimi IA, Gaikazian SS. Medical cannabis in cancer patients: Prevalence, efficacy, and safety. Journal of Clinical Oncology Conference. 2019;37(Supplement 15).

103. Maggioli C, Giannone FA, Baldassarre M, Fanelli F, Mezzullo M, Belluomo I, et al. Endocannabinoids in advanced cirrhosis: Have we picked the right one? Digestive and Liver Disease. 2012;1):S40.

104. Malfitano AM, Laezza C, D'Alessandro A, Procaccini C, Saccomanni G, Tuccinardi T, et al. Effects on immune cells of a new 1,8-naphthyridin-2-one derivative and its analogues as selective CB2 agonists: implications in multiple sclerosis. PLoS ONE [Electronic Resource]. 2013;8(5):e62511.

105. Martellucci I, Laera L, Lippi S, Marsili S, Petrioli R, Francini G. Impact of cannabinoids on the quality of life in oncology: Prospective observational study. Annals of Oncology Conference: 17th National Congress of Medical Oncology Rome Italy Conference Publication:. 2015;26(SUPPL. 6).

106. Mbachi C, Wang Y, Barkin JA, Demetria MV, Barkin JS, Kroner PT, et al. Does cannabis
consumption impact chronic pancreatitis related complications? American Journal of Gastroenterology.
2019;114 (Supplement):S21-S2.

107. Mc Vige J, Bargnes VH, Shukri S, Mechtler L. Cannabis, concussion, and chronic pain: An ongoing retrospective analysis at Dent Neurologic Institute in Buffalo, NY. Neurology. 2018;91 (23 Supplement 1):S18-S9.

108. McLeod SA, Lemay JF. Medical cannabinoids. CMAJ Canadian Medical Association Journal. 2017;189(30):E995.

109. McQuay HJ. More evidence cannabis can help in neuropathic pain. CMAJ Canadian Medical Association Journal. 2010;182(14):1494-5.

110. McVige J, Kaur D, Hart P, Lillis M, Mechtler L, Bargnes V, et al. Medical cannabis in the treatment of post-traumatic concussion. Neurology Conference: 71st Annual Meeting of the American Academy of Neurology, AAN. 2019;92(15 Supplement 1).

111. Mechtler L, Bargnes V, Hart P, McVige J, Saikali N. Medical cannabis for chronic migraine: A retrospective review. Neurology Conference: 71st Annual Meeting of the American Academy of Neurology, AAN. 2019;92(15 Supplement 1).

BMJ Open

112. Mechtler L, Hart P, Bargnes V, Saikali N. Medical cannabis treatment in patients with trigeminal neuralgia. Neurology Conference: 71st Annual Meeting of the American Academy of Neurology, AAN. 2019;92(15 Supplement 1).

113. Melen CM, Merrien M, Wasik A, Sonnevi K, Junlen HR, Christersson B, et al. A clinical trial of cannabis as targeted therapy for indolent leukemic lymphoma. Blood Conference: 61st Annual Meeting of the American Society of Hematology, ASH. 2019;134(Supplement 1).

114. Melen CM, Merrien M, Wasik AM, Sonnevi K, Junlen H, Christensson B, et al. The cannabinoid study-01: Investigating the effects of cannabinoids in indolent leukemic B-cell lymphoma. Hematological Oncology. 2019;37 (Supplement 2):572.

115. Mesquita B, Ferreira G, Corral LL, Riviera D, Pita A, Carrillo J, et al. Cannabinoids in the management of chronic GVHD - Experience of a center. Bone Marrow Transplantation. 2017;52 (Supplement 1):233.

116. Messenheimer JA, O'Brien T, Berkovic S, French J, Bonn-Miller M, Gutterman D. Transdermal cannabidiol (CBD) gel for the treatment of focal epilepsy in adults. Neurology. 2018;90 (24):e2188.

117. Milstein SL, MacCannell K, Karr G, Clark S. Marijuana-produced changes in pain tolerance. Experienced and non-experienced subjects. International pharmacopsychiatry. 1975;10(3):177-82.

118. Miodownik H, Bradford C, Starrels JL, Ogu UO, Thomas M, Cunningham CO, et al. Clinical characteristics and health care utilization patterns of sickle cell disease patients using marijuana. Blood Conference: 60th Annual Meeting of the American Society of Hematology, ASH. 2018;132(Suppl. 1).

119. Mirman J. Why we need to legalize medical marijuana. One more potential therapy. Minnesota Medicine. 2014;97(4):38.

120. Moreno M, Vaillancourt R, Pouliot A, Sell E, Hevenor B, Viracoumarane K. A survey of the use of cannabis in children at a tertiary teaching hospital. Canadian Journal of Hospital Pharmacy. 2018;71 (1):72.

121. Morera C. Palmitoylethanolamide (PEA) for sciatic pain associated to usual treatment. Pain Practice. 2012;1):88-9.

122. Morrison G, Sardu ML, Rasmussen CH, Sommerville K, Roberts C, Blakey GE. Exposure-response analysis of cannabidiol for the treatment of lennox-gastaut syndrome. Epilepsia. 2018;59 (Supplement 3):S11-S2.

123. Morrison G, Sardu ML, Rasmussen CH, Sommerville K, Roberts C, Blakey GE. Exposure-Response Analysis of Cannabidiol (CBD) oral solution for the treatment of lennox-gastaut syndrome. Neurology Conference: 70th Annual Meeting of the American Academy of Neurology, AAN. 2018;90(15 Supplement 1).

124. Mousa A, Petrovic M, Laszlo S, Fleshner N. Is there a therapeutic role for cannabis in advanced prostate cancer? Exploring the patterns and predictors of use among men receiving androgendeprivation therapy. Canadian Urological Association Journal. 2018;12 (6 Supplement 2):S126. 125. Mupamombe CT, Nathan RA, Case AA, Walter M, Hansen E. Efficacy of medical cannabis for cancer-related pain in the elderly: A single-center retrospective analysis. Journal of Clinical Oncology Conference. 2019;37(31 Supplement 1).

126. Myers B, Geist T, Hart P, Aladeen T, Begley A, Westphal ES, et al. Medical cannabis in the treatment of parkinson's disease. Neurology Conference: 71st Annual Meeting of the American Academy of Neurology, AAN. 2019;92(15 Supplement 1).

127. Nadal X, Del Rio C, Casano S, Palomares B, Ferreiro-Vera C, Navarrete C, et al. Tetrahydrocannabinolic acid is a potent PPARgamma agonist with neuroprotective activity. British Journal of Pharmacology. 2017;174(23):4263-76.

128. Naftali T, Bar Lev Schlieder L, Hirsch J, Lish I, Benjaminov F, Konikoff F. Cannabis use patterns in patients with IBD. Journal of Crohn's and Colitis. 2016;10 (Supplement 1):S375-S6.

129. Naftali T, Bar Lev Schlieder L, Sklerovsky Benjaminov F, Lish I, Hirsch J, Konikoff FM. Cannabis induces clinical and endoscopic improvement in moderately active ulcerative colitis (UC). Journal of Crohn's and Colitis. 2018;12 (Supplement 1):S306.

130. Naftali T, Bar-Lev L, Gabay G, Chowers Y, Dotan I, Bronshtein M, et al. Tetrahydrocannabinol (THC) rich medical cannabis induces clinical and biochemical improvement with a steroid sparing effect in active crohn's disease. Gastroenterology. 2012;1):S780.

131. Naftali T, Barlev L, Gabay G, Chowers Y, Dotan I, Stein A, et al. Tetrahydrocannabinol (THC) induces clinical and biochemical improvement with a steroid sparing effect in active inflammatory bowel disease. Journal of Crohn's and Colitis. 2013;7 (SUPPL.1):S153.

132. Nathan RA, Tonderai C, Mupamombe, Walter M, Case AA, Hansen E. Use of medical cannabis in treating anorexia and nausea in elderly cancer patients. Journal of Clinical Oncology Conference. 2019;37(31 Supplement 1).

133. Nauck F, Klaschik E. [Dronabinol (delta9-tetrahydrocannabinol) in long-term treatment. Symptom control in patients with multiple sclerosis and spasticity, neuropathic pain, loss of appetite and cachexia]. Der Schmerz. 2004;18 Suppl 2:S26-30.

134. Nct. Study to Evaluate the Efficacy of Dronabinol (Marinol) as Add-On Therapy for Patients on Opioids for Chronic Pain. https://clinicaltrialsgov/show/NCT00153192. 2005.

135. Nct. Medicinal Cannabis for Painful HIV Neuropathy. https://clinicaltrialsgov/show/NCT00255580. 2005.

136. Nct. Supporting Effect of Dronabinol on Behavioral Therapy in Fibromyalgia and Chronic Back Pain. https://clinicaltrialsgov/show/NCT00176163. 2005.

137. Nct. Nabilone Versus Amitriptyline in Improving Quality of Sleep in Patients With Fibromyalgia. https://clinicaltrialsgov/show/NCT00381199. 2006.

138. Nct. MUltiple Sclerosis and Extract of Cannabis (MUSEC) Study. https://clinicaltrialsgov/show/NCT00552604. 2007.

139. Nct. Efficacy and Safety Evaluation of Nabilone as Adjunctive Therapy to Gabapentin for the Management of Neuropathic Pain in Multiple Sclerosis. Clinicaltrials gov, national institutes of health [http://www clinicaltrials gov]. 2007.

140. Nct. A Study to Determine the Maintenance of Effect After Long-term Treatment of Sativex[®] in Subjects With Neuropathic Pain. https://clinicaltrialsgov/show/NCT00713817. 2008.

141. Nct. Prevention of Postoperative Nausea and Vomiting (PONV) in Surgical Patients. https://clinicaltrialsgov/show/NCT00757822. 2008.

142. Nct. Sativex for Treatment of Chemotherapy Induced Neuropathic Pain. https://clinicaltrialsgov/show/NCT00872144. 2009.

143. Nct. Efficacy and Safety of the Pain Relieving Effect of Dronabinol in Central Neuropathic Pain Related to Multiple Sclerosis. Clinicaltrials gov, national institutes of health [http://www clinicaltrials gov]. 2009.

144. Nct. A Study of the Safety and Effectiveness of SativexÂ[®], for the Relief of Symptoms of Spasticity in Subjects With Multiple Sclerosis (MS). Clinicaltrials gov, national institutes of health [http://www clinicaltrials gov]. 2010.

145. Nct. Palmitoylethanolamide for Post-operative Pain Prevention. https://clinicaltrialsgov/show/NCT01491191. 2011.

146. Nct. Efficacy Study of Δ 9-THC to Treat Chronic Abdominal Pain. https://clinicaltrialsgov/show/NCT01318369. 2011.

147. Nct. Vaporized Cannabis and Spinal Cord Injury Pain. https://clinicaltrialsgov/show/NCT01555983. 2012.

148. Nct. Δ9-THC (Namisol[®]) in Chronic Pancreatitis Patients Suffering From Persistent Abdominal Pain. https://clinicaltrialsgov/show/NCT01551511. 2012.

149. Nct. A Study of Cannabis Based Medicine Extracts and Placebo in Patients With Pain Due to Spinal Cord Injury. https://clinicaltrialsgov/show/NCT01606202. 2012.

150. Nct. Safety and Efficacy Study of Dronabinol to Treat Obstructive Sleep Apnea. https://clinicaltrialsgov/show/NCT01755091. 2012.

151. Nct. Vaporized Cannabis for Chronic Pain Associated With Sickle Cell Disease. https://clinicaltrialsgov/show/NCT01771731. 2013.

152. Nct. Combined THC and CBD Drops for Treatment of Crohn's Disease. https://clinicaltrialsgov/show/NCT01826188. 2013.

153. Nct. Phase 1 Study to Study the Efficacy and Safety of Cannabis in the Treatment of Tinnitus. Clinicaltrialsgov [wwwclinicaltrialsgov]. 2013.

154. Nct. Safety and Efficacy of Nabilone in Alzheimer's Disease. http0s://clinicaltrialsgov/show/NCT02351882. 2014.

155. Nct. Cannabidiol Oral Solution as an Adjunctive Therapy for Treatment of Participants With Inadequately Controlled Dravet Syndrome. https://clinicaltrialsgov/show/NCT02318563. 2014.

156. Nct. Cannabidiol Oral Solution as an Adjunctive Therapy for Treatment of Participants With Inadequately Controlled Lennox-Gastaut Syndrome. https://clinicaltrialsgov/show/NCT02318537. 2014.

157. Nct. Cannabinoid Profile Investigation of Vapourized Cannabis in Patients With Osteoarthritis of the Knee. https://clinicaltrialsgov/show/NCT02324777. 2014.

158. Nct. Investigation of Cannabinoid Receptor Agonist Dronabinol in Patients With Functional Chest Pain. https://clinicaltrialsgov/show/NCT02569073. 2015.

159. Nct. The Safety, Tolerability and Efficacy of Dronabinol, for the Treatment of Nausea and Vomiting in Familial Dysautonomia. https://clinicaltrialsgov/show/NCT02608931. 2015.

160. Nct. Trial of Dronabinol and Vaporized Cannabis in Neuropathic Low Back Pain. https://clinicaltrialsgov/show/NCT02460692. 2015.

161. Nct. The Effects of Cannabis on Dystonia and Spasticity on Pediatric Patients. https://clinicaltrialsgov/show/NCT02470325. 2015.

162. Nct. Evaluating Safety and Efficacy of Cannabis in Participants With Chronic Posttraumatic Stress Disorder. https://clinicaltrialsgov/show/NCT02517424. 2015.

163. Nct. Nabilone Effect on the Attenuation of Anorexia, Nutritional Status and Quality of Life in Lung Cancer Patients. https://clinicaltrialsgov/show/NCT02802540. 2016.

164. Nct. Cannabidiol Oral Solution for the Treatment of Subjects With Prader-Willi Syndrome. https://clinicaltrialsgov/show/NCT02844933. 2016.

165. Nct. Investigation of Cannabis for Chronic Pain and Palliative Care. https://clinicaltrialsgov/show/NCT02683018. 2016.

166. Nct. Effect of Cannabis and Endocannabinoids on HIV Neuropathic Pain. https://clinicaltrialsgov/show/NCT03099005. 2017.

167. Nct. Cannabis Oil for Pain in Parkinson's Disease. https://clinicaltrialsgov/show/NCT03639064.2018.

168. Nct. A Study to Assess the Efficacy, Safety, and Tolerability of Cannabidiol Oral Solution With Vigabatrin as Initial Therapy in Participants With Infantile Spasms. https://clinicaltrialsgov/show/NCT03421496. 2018.

169. Nct. A Study to Examine the Efficacy of a Therapeutic THX-110 for Tourette Syndrome. https://clinicaltrialsgov/show/NCT03651726. 2018.

Nct. Cannabis For Cancer-Related Symptoms. https://clinicaltrialsgov/show/NCT03948074.
 2019.

171. Nct. A Phase 2a Study to Evaluate the Safety, Tolerability and Efficacy of Cannabidiol as a Steroid-sparing Therapy in Steroid-dependent Crohn's Disease Patients. https://clinicaltrialsgov/show/NCT04056442. 2019.

172. Nct. Cannabinoids and an Anti-inflammatory Diet for the Treatment of Neuropathic Pain After Spinal Cord Injury. https://clinicaltrialsgov/show/NCT04057456. 2019.

173. Nct. Efficacy and Safety of Dronabinol in the Improvement of Chemotherapy-induced and
Tumor-related Symptoms in Advanced Pancreatic Cancer. https://clinicaltrialsgov/show/NCT03984214.
2019.

174. Nct. Study to Investigate the Efficacy and Safety of Cannabis Oil for the Treatment of Subjects With Hidradenitis Suppurativa. https://clinicaltrialsgov/show/NCT03929835. 2019.

175. Nct. Pain Response to Cannabidiol in Induced Acute Nociceptive Pain, Allodynia and Hyperalgesia By Using a Model Mimicking Acute Pain in Healthy Adults. https://clinicaltrialsgov/show/NCT03985995. 2019.

176. Nct. Efficacy and Safety of Cannabidiol for Gastroparesis and Functional Dyspepsia. https://clinicaltrialsgov/show/NCT03941288. 2019.

177. Ngan TYT, Litt M, Eguzo K, Thiel JA. Patient Outcomes Following Initiation of Medical Cannabis in Women with Chronic Pelvic Pain. Journal of Minimally Invasive Gynecology. 2019;26 (7 Supplement):S89-S90.

178. Nickels K. Cannabidiol in patients with intractable epilepsy due to TSC: A possible medication but not a miracle. Epilepsy Currents. 2017;17(2):91-2.

179. Nicolodi M, Pinnaro MS, Sandoval V. Selected cannabinoids and cutaneous allodynia in chronic refractory migraine. Journal of Headache and Pain Conference: 12th European Headache Federation Congress and the 32nd National Congress of the Italian Society for the Study of Headaches Italy. 2018;19(Supplement 1).

180. Nicolodi M, Pinnaro MS, Sandoval V, Torrini A. Possible effects, side-effects and adverse events of a selective cannabinoid (6% THC/7.5% CBD) in refractory chronic migraine. 2013-2018 pilot data. Journal of Headache and Pain Conference: 12th European Headache Federation Congress and the 32nd National Congress of the Italian Society for the Study of Headaches Italy. 2018;19(Supplement 1).

181. Nicolodi M, Sandoval V, Torrini A. Therapeutic use of cannabinoids-dose finding, effects and pilot data of effects in chronic migraine and cluster headache. European Journal of Neurology. 2017;24 (Supplement 1):287.

182. Nikles CJ, Yelland M, Glasziou PP, Del Mar C. Do individualized medication effectiveness tests (nof-1 trials) change clinical decisions about which drugs to use for osteoarthritis and chronic pain? American Journal of Therapeutics. 2005;12(1):92-7.

183. Notcutt W, Phillips C, Hughes J, Lacoux P, Vijayakulasingam V, Baldock L. A retrospective description of the use of nabilone in UK clinical practice. Multiple Sclerosis. 2014;1):468.

184. Patel A, Gil-Nagel A, Chin R, Mitchell W, Perry MS, Weinstock A, et al. Long-term safety and efficacy of add-on cannabidiol (CBD) treatment in patients with lennox gastaut syndrome in an openlabel extension trial (GWPCARE5). Neurology Conference: 71st Annual Meeting of the American Academy of Neurology, AAN. 2019;92(15 Supplement 1).

185. Patel A, Gil-Nagel A, Chin R, Mitchell W, Perry MS, Weinstock A, et al. Long-term safety and efficacy of add-on cannabidiol treatment in patients with Lennox Gastaut syndrome in an open-label extension trial (GWPCARE5). Developmental Medicine and Child Neurology. 2019;61 (Supplement 1):13.

186. Patti F, Chisari C, D'Amico E, Solaro C, Arena S, Annunziata P, et al. Long-term effectiveness of 9delta-tetrahydrocannabinol:Cannabidiol oromucosal spray in clinical practice: Results from a 18-months multicenter Italian study. Neurology Conference: 71st Annual Meeting of the American Academy of Neurology, AAN. 2019;92(15 Supplement 1).

187. Patti F, Messina S, Amato MP, Benedetti MD, Bergamaschi R, Bertolotto A, et al. Multicenter, prospective, observational study aimed at evaluating SAtivex efFEcts (effectiveness and tolerability) in a large population of Italian multiple sclerosis patients: SA.FE. Study. Multiple Sclerosis. 2015;1):613-5.

188. Perello Alonso M, Ivanov P. [Pain, cannabis, psychosis. A logical sequence?]. Revista Espanola de Geriatria y Gerontologia. 2017;52(6):350-1.

189. Pires C, Lachiewicz M. A pilot survey of marijuana use and self-reported benefit in women with chronic pelvic pain. Pain Medicine (United States). 2018;19 (4):890.

190. Plummer R, Anthoney A, Evans J, Haris N, D'Archangelo M, Slater S, et al. A phase I dose escalation study to assess the safety tolerability and pharmacokinetics of ETS2101 in patients (pts) with advanced solid tumours. European Journal of Cancer. 2015;3):S58-S9.

191. Poli P, Salvadori C, Sannino C. Effects of cannabis based drugs on chronic neuropathic pain: Comparison between italian and dutch medical cannabis variety. Pain Practice. 2018;18 (Supplement 1):101.

192. Quintans JS, Antoniolli AR, Almeida JR, Santana-Filho VJ, Quintans-Junior LJ. Natural products evaluated in neuropathic pain models - a systematic review. Basic & Clinical Pharmacology & Toxicology. 2014;114(6):442-50.

193. Reisfield GM. Medical cannabis and chronic opioid therapy. Journal of Pain & Palliative Care Pharmacotherapy. 2010;24(4):356-61.

194. Reznik I. Post-traumatic stress disorder and medical cannabis use: A naturalistic observational study. European Neuropsychopharmacology. 2012;2):S363-S4.

195. Reznik I. Medical marijuana/cannabis treatment of Tourette's syndrome: Focus on the quality of life. European Neuropsychopharmacology. 2014;2):S645-S6.

196. Robinson D, Garti A, Yassin M. Cannabis treatment of diabetic neuropathy: Treatment effect and change in health over a 6 month period. Foot and Ankle Surgery. 2016;1):58.

197. Ron A, Abuhasira R, Novack V. Establishment of a specialized geriatric clinic providing medical cannabis. Journal of the American Geriatrics Society. 2019;67 (Supplement 1):S299.

198. Roy A, Konda M, Goel A, Sasapu A. Characteristics of marijuana usage in sickle cell patients. Journal of Investigative Medicine. 2020;68 (2):646.

199. Roy AM, Konda M, Goel A, Sasapu A. Characteristics of marijuana usage in sickle cell patients: A nationwide analysis. Blood Conference: 61st Annual Meeting of the American Society of Hematology, ASH. 2019;134(Supplement 1).

200. Russo EB, Killestein J, Uitdehaag BMJ, Polman CH. Safety, tolerability, and efficacy of orally administered cannabinoids in MS (multiple letters). Neurology. 2003;60(4):729-30.

201. Sacca F, Pane C, Carotenuto A, Massarelli M, Lanzillo R, Florio EB, et al. The use of medical-grade Cannabis (Bedrocan[®]) in patients non-responders to nabiximols (sativex[®]). Multiple sclerosis (houndmills, basingstoke, england). 2016;22:686-.

202. Sallan S, Zinberg N, Frei E. Oral delta 9 tetrahydrocannabinol (THC) in the prevention of vomiting (V) associated with cancer chemotherapy (CC). Proceedings of the American Association for Cancer Research. 1975;16(66):No. 575.

203. Sastre-Garriga J, Vila C, Clissold S, Montalban X. THC and CBD oromucosal spray (Sativex) in the management of spasticity associated with multiple sclerosis. Expert Review of Neurotherapeutics. 2011;11(5):627-37.

204. Saxon AJ, Browne KW. Marijuana not ready for prime time as an analgesic. General Hospital Psychiatry. 2014;36(1):4-6.

205. Scheffer IE, Halford J, Nabbout R, Sanchez-Carpintero R, Shiloh Malawsky Y, Wong M, et al. Long-term safety and efficacy of add-on cannabidiol (CBD) treatment in patients with Dravet syndrome (DS) in an open-label extension (OLE) trial. Developmental Medicine and Child Neurology. 2019;61 (Supplement 1):63.

206. Schimpfossl M, Berweck S, Betzler C, Dotzler E, Herberhold T, Pringsheim M, et al. Retrospective analysis of tetrahydrocannabinol based on 31 neurologically critically ill children. Neuropediatrics Conference: 41st Annual Meeting of the Society of Neuropediatrics Switzerland. 2015;46(Supplement 1).

207. Schorn M, Krashin D, Mannava A, Belaskova S, Murinova N. Marijuana use in headache in a university-based headache clinic. Neurology Conference: 71st Annual Meeting of the American Academy of Neurology, AAN. 2019;92(15 Supplement 1).

208. Seibert SM, Kumar P, Gomez PL, Gomez CN, Miller LM, Logsdon M. Cannabis in cancer patients [CP] to improve quality of life [QOL] and cancer related symptoms [CRS]: Illinois cancer care cannabis education and clinical analysis. Journal of Clinical Oncology Conference. 2018;36(15 Supplement 1).

209. Shipton EA, Shipton EE. Should doctors be allowed to prescribe cannabinoids for pain in Australia and New Zealand? Australian & New Zealand Journal of Psychiatry. 2014;48(4):310-3.

210. Slaven M, Levine M, Parpia S, Shaw E. An approach to dosing: The cannabis oil in pain effectiveness (COPE) trial. Medical Cannabis and Cannabinoids. 2019;2 (2):2.

211. Spittel S, Funke A, Kettemann D, Maier A, Gajewski N, Baldes T, et al. Patients' satisfaction and usability for tetrahydrocannabinol/cannabidiol (THC:CBD) in the treatment of spasticity in patients with

amyotrophic lateral sclerosis (ALS). Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration. 2018;19 (Supplement 1):376.

212. Stern P, Roberts L. The future of pain research. Science. 2016;354(6312):564-5.

213. Sutton IR, Daeninck P. Cannabinoids in the management of intractable chemotherapy-induced nausea and vomiting and cancer-related pain. The Journal of Supportive Oncology. 2006;4(10):531-5.

214. Szaflarski JP, Bebin EM, Gaston T, Grayson L, Liu Y, Cutter G, et al. Improvements in seizure frequency parallel improvements in seizure severity in an open label study of cannabidiol. Epilepsia. 2017;58 (Supplement 5):S158.

215. Taha T, Meiri D, Talhamy S, Wollner M, Peer A, Bar-Sela G. Cannabis Impacts Tumor Response Rate to Nivolumab in Patients with Advanced Malignancies. Oncologist. 2019;24(4):549-54.

216. Thirlwell C, Rainville K, Miri D, Donath A, Shulman H. New frontiers in treating chronic insomnia in Canadian veterans with PTSD: Retrospective analysis reveals an innovative role for medical cannabis in optimizing sleep/wake health. Medical Cannabis and Cannabinoids. 2018;1 (2):126.

217. Tripp D, Nickel JC, Laura K, Ginting JV, Mark W, Santor D. Cannabis (marijuana) use in men with chronic prostatitis / chronic pelvic pain syndrome. Journal of Urology. 2012;1):e439-e40.

218. Trojano M. THC:CBD Observational Study Data: Evolution of Resistant MS Spasticity and Associated Symptoms. European Neurology. 2016;75 Suppl 1:4-8.

219. Vermersch P, Trojano M. Tetrahydrocannabinol + cannabidiol oromucosal spray for multiple sclerosis resistant spasticity on daily practice, new data. Multiple Sclerosis. 2016;22 (Supplement 3):377.

220. Vezyroglou K, Eltze C, Varadkar S, Carr L, O'Sullivan C, Ninnis E, et al. Efficacy and safety of cannabidiol as add-on therapy in drugresistant epilepsy, a single center experience. European Journal of Paediatric Neurology. 2017;21 (Supplement 1):e87.

221. Vezyroglou K, Eltze C, Varadkar S, Carr L, Sullivan CO, Ninnis E, et al. Cannabidiol as add on therapy in children with complex epilepsy. Developmental Medicine and Child Neurology. 2017;59 (Supplement 1):17.

222. Voelker R. States Move to Substitute Opioids With Medical Marijuana to Quell Epidemic. JAMA. 2018;320(23):2408-10.

223. Vorobeichik L, Bhatia A, Buzon-Tan A, Walker S, Kirkham K, Ilangomaran D, et al. Risk factors for failure of Patient-Controlled Oral Analgesia after total hip and knee arthroplasty. Regional Anesthesia and Pain Medicine Conference: 42nd Annual Regional Anesthesiology and Acute Pain Medicine Meeting, ASRA. 2017;42(6).

224. Webb CW, Webb SM. Therapeutic benefits of cannabis: a patient survey. Hawai'i Journal of Medicine & Public Health : A Journal of Asia Pacific Medicine & Public Health. 2014;73(4):109-11.

225. Werth VP, Hejazi E, Pena S, Haber J, Feng R, Patel B, et al. Study of safety and efficacy of lenabasum, a cannabinoid receptor type 2 agonist, in refractory skin-predominant dermatomyositis. Journal of Investigative Dermatology. 2018;138 (5 Supplement 1):S103.

BMJ Open

2	
3	
4	
-	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20	
22	
23	
24	
25	
26	
20 27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
45 46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

226. Wilsey B, Marcotte T, Deutsch R, Gouaux B, Sakai S, Donaghe H. Low-dose vaporized cannabis significantly improves neuropathic pain. Journal of Pain. 2013;14(2):136-48.

227. Wilsey B, Marcotte T, Tsodikov A, Millman J, Bentley H, Gouaux B, et al. A randomized, placebocontrolled, crossover trial of cannabis cigarettes in neuropathic pain. Journal of Pain. 2008;9(6):506-21.

228. Wilson M, Masterson E, Broglio K. Cannabis Use Among Patients Prescribed Opioids in a Palliative Care Clinic (S875). Journal of Pain and Symptom Management. 2019;57 (2):522.

229. Wilson MM, Masterson E, Broglio K. Cannabis Use among Patients in a Rural Academic Palliative Care Clinic. Journal of Palliative Medicine. 2019;22(10):1224-6.

230. Wirrell E, Privitera M, Bhathal H, Wong M, Cross J, Sommerville K. Cannabidiol (CBD) treatment effect and adverse events (AES) by time in patients with lennox-gastaut syndrome (LGS): Pooled results from 2 trials. Annals of Neurology. 2018;84 (Supplement 22):S341.

231. Wright S, Etges T. An observational post approval registry study of patients prescribed Sativex. Results from clinical practice. (#14). Multiple Sclerosis. 2012;18 (5):S30.

232. Xu JJ, Diaz P, Astruc-Diaz F, Craig S, Munoz E, Naguib M. Pharmacological characterization of a novel cannabinoid ligand, MDA19, for treatment of neuropathic pain. Anesthesia & Analgesia. 2010;111(1):99-109.

233. Zajicek J. Cannabinoids on trial for multiple sclerosis. Lancet Neurology. 2002;1(3):147.

Zajicek JP, Hobart JC, Slade A, Barnes D, Mattison PG, Group MR. Multiple sclerosis and extract of cannabis: results of the MUSEC trial. Journal of Neurology, Neurosurgery & Psychiatry.
2012;83(11):1125-32.

235. Zajicek JP, Sanders HP, Wright DE, Vickery PJ, Ingram WM, Reilly SM, et al. Cannabinoids in multiple sclerosis (CAMS) study: safety and efficacy data for 12 months follow up. Journal of Neurology, Neurosurgery & Psychiatry. 2005;76(12):1664-9.

236. Zettl U, Henze T, Pfiffner C, Vila Silvan C, Flachenecker P. Effectiveness of Sativex in multiple sclerosis spasticity. First data from a large observational study in Germany. Multiple Sclerosis. 2012;1):246.

237. Zettl UK, Rommer P, Hipp P, Patejdl R. Evidence for the efficacy and effectiveness of THC-CBD oromucosal spray in symptom management of patients with spasticity due to multiple sclerosis. Therapeutic Advances in Neurological Disorders. 2016;9(1):9-30.

238. Zhou R, Jacobson C, Weng J, Cheng E, Lay J, Hung P, et al. Potential efficacy of cannabidiol for treatment of refractory infantile spasms and lennox gastaut syndrome. Epilepsy Currents. 2015;1):360-1.

239. Ziemssen T. Tetrahydrocannabinol: Cannabidiol oromucosal spray for treating symptoms of multiple sclerosis spasticity: Newest evidence. Neurodegenerative Disease Management. 2019;9(2s):1-2.

Study did not include patients with chronic pain

1. Abuhasira R, Ron A, Sikorin I, Novack V. Medical cannabis for older patients-treatment protocol and initial results. Journal of Clinical Medicine. 2019;8 (11) (no pagination)(1819).

2. Adejumo AC, Adegbala OM, Adejumo KL, Bukong TN. Reduced Incidence and Better Liver Disease Outcomes among Chronic HCV Infected Patients Who Consume Cannabis. Canadian Journal of Gastroenterology and Hepatology. 2018;2018 (no pagination)(9430953).

3. Allen D. Dronabinol Therapy: Central Nervous System Adverse Events in Adults With Primary Brain Tumors. Clinical Journal of Oncology Nursing. 2019;23(1):23-6.

4. Balash Y, Bar-Lev Schleider L, Korczyn AD, Shabtai H, Knaani J, Rosenberg A, et al. Medical Cannabis in Parkinson Disease: Real-Life Patients' Experience. Clinical Neuropharmacology. 2017;40(6):268-72.

5. Bar-Lev Schleider L, Mechoulam R, Lederman V, Hilou M, Lencovsky O, Betzalel O, et al. Prospective analysis of safety and efficacy of medical cannabis in large unselected population of patients with cancer. European Journal of Internal Medicine. 2018;49:37-43.

6. Bar-Sela G, Vorobeichik M, Drawsheh S, Omer A, Goldberg V, Muller E. The medical necessity for medicinal cannabis: prospective, observational study evaluating the treatment in cancer patients on supportive or palliative care. Evidence-Based Complementary & Alternative Medicine: eCAM. 2013;2013:510392.

7. Beal JE, Olson R, Lefkowitz L, Laubenstein L, Bellman P, Yangco B, et al. Long-term efficacy and safety of dronabinol for acquired immunodeficiency syndrome-associated anorexia. Journal of Pain & Symptom Management. 1997;14(1):7-14.

8. Bobitt J, Qualls SH, Schuchman M, Wickersham R, Lum HD, Arora K, et al. Qualitative Analysis of Cannabis Use Among Older Adults in Colorado. Drugs & Aging. 2019;36(7):655-66.

9. Bouso JC, Jimenez-Garrido D, Ona G, Woznica D, Dos Santos RG, Hallak JEC, et al. Quality of Life, Mental Health, Personality and Patterns of Use in Self-Medicated Cannabis Users with Chronic Diseases: A 12-Month Longitudinal Study. Phytotherapy Research. 2020;21:21.

10. Boyd CJ, Veliz PT, McCabe SE. Adolescents' Use of Medical Marijuana: A Secondary Analysis of Monitoring the Future Data. Journal of Adolescent Health. 2015;57(2):241-4.

11. Bruce D, Brady JP, Foster E, Shattell M. Preferences for Medical Marijuana over Prescription Medications Among Persons Living with Chronic Conditions: Alternative, Complementary, and Tapering Uses. Journal of Alternative & Complementary Medicine. 2018;24(2):146-53.

12. Cameron C, Watson D, Robinson J. Use of a synthetic cannabinoid in a correctional population for posttraumatic stress disorder-related insomnia and nightmares, chronic pain, harm reduction, and other indications: a retrospective evaluation. Journal of Clinical Psychopharmacology. 2014;34(5):559-64.

13. Carlini BH, Garrett SB, Carter GT. Medicinal Cannabis: A Survey Among Health Care Providers in Washington State. The American journal of hospice & palliative care. 2017;34(1):85-91.

14. Chen KA, Farrar M, Cardamone M, Gill D, Smith R, Cowell CT, et al. Cannabidiol for treating drugresistant epilepsy in children: the New South Wales experience. Medical Journal of Australia. 2018;209(5):217-21.

BMJ Open

15. Choi NG, DiNitto DM, Marti CN. Nonmedical versus medical marijuana use among three age groups of adults: Associations with mental and physical health status. American Journal on Addictions. 2017;26(7):697-706.

16. Clark AJ, Ware MA, Yazer E, Murray TJ, Lynch ME. Patterns of cannabis use among patients with multiple sclerosis. Neurology. 2004;62(11):2098-100.

17. Darke S, Duflou J, Farrell M, Peacock A, Lappin J. Characteristics and circumstances of synthetic cannabinoid-related death. Clinical Toxicology: The Official Journal of the American Academy of Clinical Toxicology & European Association of Poisons Centres & Clinical Toxicologists. 2019:1-7.

18. Davies BH, Weatherstone RM, Graham JDP, Griffiths RD. A pilot study of orally administered DELTA trans tetrahydrocannabinol in the management of patients undergoing radiotherapy for carcinoma of the bronchus. BritJClinPharmacol. 1974;1(4):301-6.

19. Devinsky O, Marsh E, Friedman D, Thiele E, Laux L, Sullivan J, et al. Cannabidiol in patients with treatment-resistant epilepsy: an open-label interventional trial. Lancet Neurology. 2016;15(3):270-8.

20. Devinsky O, Marsh E, Friedman D, Thiele E, Laux L, Sullivan J, et al. "Cannabidiol in patients with treatment-resistant epilepsy: An open-label interventional trial": Corrections. The Lancet Neurology. 2016;15(4):352.

21. Ebrahimi-Fakhari D, Agricola KD, Tudor C, Krueger D, Franz DN. Cannabidiol Elevates Mechanistic Target of Rapamycin Inhibitor Levels in Patients With Tuberous Sclerosis Complex. Pediatric Neurology. 2020;105:59-61.

22. Etges T, Karolia K, Grint T, Taylor A, Lauder H, Daka B, et al. An observational postmarketing safety registry of patients in the UK, Germany, and Switzerland who have been prescribed Sativex (THC: CBD, nabiximols) oromucosal spray. Therapeutics and Clinical Risk Management. 2016;12:1667-75.

23. Felix-Ukwu F, Reichert K, Bernhardt MB, Schafer ES, Berger A. Evaluation of aprepitant for acute chemotherapy-induced nausea and vomiting in children and adolescents with acute lymphoblastic leukemia receiving high-dose methotrexate. Pediatric Blood and Cancer. 2018;65 (2) (no pagination)(e26857).

24. Ferre L, Nuara A, Pavan G, Radaelli M, Moiola L, Rodegher M, et al. Efficacy and safety of nabiximols (Sativex) on multiple sclerosis spasticity in a real-life Italian monocentric study. Neurological Sciences. 2016;37(2):235-42.

25. Flachenecker P, Henze T, Zettl UK. Nabiximols (THC/CBD Oromucosal Spray, Sativex) in clinical practice - results of a multicenter, non-interventional study (MOVE 2) in patients with multiple sclerosis spasticity. European Neurology. 2014;71(5-6):271-9.

26. Freeman JL. Safety of cannabidiol prescribed for children with refractory epilepsy. Medical Journal of Australia. 2018;209(5):228-9.

Gazibara T, Prpic M, Maric G, Pekmezovic T, Kisic-Tepavcevic D. Medical Cannabis in Serbia: The
Survey of Knowledge and Attitudes in an Urban Adult Population. Journal of Psychoactive Drugs.
2017;49(3):217-24.

28. Gorter RW, Butorac M, Cobian EP, van der Sluis W. Medical use of cannabis in the Netherlands. Neurology. 2005;64(5):917-9.

29. Goulet-Stock S, Rueda S, Vafaei A, Ialomiteanu A, Manthey J, Rehm J, et al. Comparing Medical and Recreational Cannabis Users on Socio-Demographic, Substance and Medication Use, and Health and Disability Characteristics. European Addiction Research. 2017;23(3):129-35.

30. Grella CE, Rodriguez L, Kim T. Patterns of medical marijuana use among individuals sampled from medical marijuana dispensaries in los angeles. Journal of Psychoactive Drugs. 2014;46(4):267-75.

31. Gulbransen G, Xu W, Arroll B. Cannabidiol prescription in clinical practice: an audit on the first 400 patients in New Zealand. Bjgp Open. 2020;04:04.

32. Hausman-Kedem M, Menascu S, Kramer U. Efficacy of CBD-enriched medical cannabis for treatment of refractory epilepsy in children and adolescents - An observational, longitudinal study. Brain & Development. 2018;40(7):544-51.

33. Hermanns-Clausen M, Kneisel S, Szabo B, Auwarter V. Acute toxicity due to the confirmed consumption of synthetic cannabinoids: clinical and laboratory findings. Addiction. 2013;108(3):534-44.

Highet BH, Lesser ER, Johnson PW, Kaur JS. Tetrahydrocannabinol and Cannabidiol Use in an
Outpatient Palliative Medicine Population. American Journal of Hospice & Palliative Medicine.
2020:1049909119900378.

35. Hussain SA, Zhou R, Jacobson C, Weng J, Cheng E, Lay J, et al. Perceived efficacy of cannabidiolenriched cannabis extracts for treatment of pediatric epilepsy: A potential role for infantile spasms and Lennox-Gastaut syndrome. Epilepsy & Behavior. 2015;47:138-41.

36. Johnson-Sasso CP, Tompkins C, Kao DP, Walker LA. Marijuana use and short-term outcomes in patients hospitalized for acute myocardial infarction. PLoS ONE. 2018;13 (7) (no pagination)(e0199705).

37. Khelemsky Y, Goldberg AT, Hurd YL, Winkel G, Ninh A, Qian L, et al. Perioperative Patient Beliefs Regarding Potential Effectiveness of Marijuana (Cannabinoids) for Treatment of Pain: A Prospective Population Survey. Regional Anesthesia & Pain Medicine. 2017;42(5):652-9.

38. Klotz KA, Grob D, Hirsch M, Metternich B, Schulze-Bonhage A, Jacobs J. Efficacy and Tolerance of Synthetic Cannabidiol for Treatment of Drug Resistant Epilepsy. Frontiers in Neurology. 2019;10 (no pagination)(1313).

39. Koehler J, Feneberg W, Meier M, Pollmann W. Clinical experience with THC:CBD oromucosal spray in patients with multiple sclerosis-related spasticity. International Journal of Neuroscience. 2014;124(9):652-6.

40. Kolansky H, Moore WT. Toxic effects of chronic marihuana use. JAMA. 1972;222(1):35-41.

41. Krcevski-Skvarc N, Wells C, Hauser W. Availability and approval of cannabis-based medicines for chronic pain management and palliative/supportive care in Europe: A survey of the status in the chapters of the European Pain Federation. European Journal of Pain. 2018;22(3):440-54.

BMJ Open

42. Lagae L, Schoonjans AS, Gammaitoni AR, Galer BS, Ceulemans B. A pilot, open-label study of the effectiveness and tolerability of low-dose ZX008 (fenfluramine HCl) in Lennox-Gastaut syndrome. Epilepsia. 2018;59(10):1881-8.

43. Laux LC, Bebin EM, Checketts D, Chez M, Flamini R, Marsh ED, et al. Long-term safety and efficacy of cannabidiol in children and adults with treatmentresistant Lennox-Gastaut syndrome or Dravet syndrome: Expanded access program results. Epilepsy Research. 2019;154:13-20.

44. Leconte M, Nicco C, Ngo C, Arkwright S, Chereau C, Guibourdenche J, et al. Antiproliferative effects of cannabinoid agonists on deep infiltrating endometriosis. American Journal of Pathology. 2010;177(6):2963-70.

45. Liebregts N, Benschop A, van der Pol P, Van Laar M, De Graaf R, Van den Brink W, et al. Cannabis dependence and peer selection in social networks of frequent users. Contemporary Drug Problems: An Interdisciplinary Quarterly. 2011;38(1):93-120.

46. Lim M, Kirchhof MG. Dermatology-Related Uses of Medical Cannabis Promoted by Dispensaries in Canada, Europe, and the United States. Journal of Cutaneous Medicine & Surgery. 2019;23(2):178-84.

47. Lorente Fernandez L, Monte Boquet E, Perez-Miralles F, Gil Gomez I, Escutia Roig M, Bosca Blasco I, et al. Clinical experiences with cannabinoids in spasticity management in multiple sclerosis. [Spanish]. Neurologia. 2014;29(5):257-60.

48. Luckett T, Phillips J, Lintzeris N, Allsop D, Lee J, Solowij N, et al. Clinical trials of medicinal cannabis for appetite-related symptoms from advanced cancer: a survey of preferences, attitudes and beliefs among patients willing to consider participation. Internal Medicine Journal. 2016;46(11):1269-75.

49. Marcellin F, Lions C, Rosenthal E, Roux P, Sogni P, Wittkop L, et al. No significant effect of cannabis use on the count and percentage of circulating CD4 T-cells in HIV-HCV co-infected patients (ANRS CO13-HEPAVIH French cohort). Drug & Alcohol Review. 2017;36(2):227-38.

50. McCabe SE, West BT, Veliz P, Frank KA, Boyd CJ. Social contexts of substance use among U.S. high school seniors: A multicohort national study. Journal of Adolescent Health. 2014;55(6):842-4.

51. Michalski CW, Laukert T, Sauliunaite D, Pacher P, Bergmann F, Agarwal N, et al. Cannabinoids ameliorate pain and reduce disease pathology in cerulein-induced acute pancreatitis. Gastroenterology. 2007;132(5):1968-78.

52. Milloy MJ, Marshall B, Kerr T, Richardson L, Hogg R, Guillemi S, et al. High-intensity cannabis use associated with lower plasma human immunodeficiency virus-1 RNA viral load among recently infected people who use injection drugs. Drug & Alcohol Review. 2015;34(2):135-40.

53. Mitelpunkt A, Kramer U, Hausman Kedem M, Zilbershot Fink E, Orbach R, Chernuha V, et al. The safety, tolerability, and effectiveness of PTL-101, an oral cannabidiol formulation, in pediatric intractable epilepsy: A phase II, open-label, single-center study. Epilepsy and Behavior. 2019;Part A. 98:233-7.

54. Mousa A, Petrovic M, Fleshner NE. Prevalence and predictors of cannabis use among men receiving androgen-deprivation therapy for advanced prostate cancer. Canadian Urological Association Journal. 2020;14(1):E20-E6.

55. Nordmann S, Vilotitch A, Roux P, Esterle L, Spire B, Marcellin F, et al. Daily cannabis and reduced risk of steatosis in human immunodeficiency virus and hepatitis C virus-co-infected patients (ANRS CO13-HEPAVIH). Journal of Viral Hepatitis. 2018;25(2):171-9.

56. Notcutt WG. A questionnaire survey of patients and carers of patients prescribed Sativex as an unlicensed medicine. Primary Health Care Research & Development. 2013;14(2):192-9.

57. Novotna A, Mares J, Ratcliffe S, Novakova I, Vachova M, Zapletalova O, et al. A randomized, double-blind, placebo-controlled, parallel-group, enriched-design study of nabiximols (Sativex(R)), as add-on therapy, in subjects with refractory spasticity caused by multiple sclerosis. European Journal of Neurology. 2011;18(9):1122-31.

58. Ofir R, Bar-Sela G, Weyl Ben-Arush M, Postovsky S. Medical marijuana use for pediatric oncology patients: single institution experience. Pediatric Hematology & Oncology. 2019;36(5):255-66.

59. Palmieri B, Laurino C, Vadala M. A therapeutic effect of cbd-enriched ointment in inflammatory skin diseases and cutaneous scars. Clinica Terapeutica. 2019;170(2):e93-e9.

60. Paolicelli D, Direnzo V, Manni A, D'Onghia M, Tortorella C, Zoccolella S, et al. Long-Term Data of Efficacy, Safety, and Tolerability in a Real-Life Setting of THC/CBD Oromucosal Spray-Treated Multiple Sclerosis Patients. Journal of Clinical Pharmacology. 2016;56(7):845-51.

61. Patel VP, Feinstein A. Cannabis and cognitive functioning in multiple sclerosis: The role of gender. Multiple Sclerosis Journal Experimental Translational & Clinical. 2017;3(2):2055217317713027.

62. Patti F. Health Authorities Data Collection of THC:CBD Oromucosal Spray (L'Agenzia Italiana del Farmaco Web Registry): Figures after 1.5 Years. European Neurology. 2016;75 Suppl 1:9-12.

63. Patti F, Messina S, Solaro C, Amato MP, Bergamaschi R, Bonavita S, et al. Efficacy and safety of cannabinoid oromucosal spray for multiple sclerosis spasticity. Journal of Neurology, Neurosurgery & Psychiatry. 2016;87(9):944-51.

64. Pavisian B, MacIntosh BJ, Szilagyi G, Staines RW, O'Connor P, Feinstein A. Effects of cannabis on cognition in patients with MS: a psychometric and MRI study. Neurology. 2014;82(21):1879-87.

65. Punzo F, Tortora C, Di Pinto D, Pota E, Argenziano M, Di Paola A, et al. Bortezomib and endocannabinoid/endovanilloid system: a synergism in osteosarcoma. Pharmacological Research. 2018;137:25-33.

66. Purcell C, Davis A, Moolman N, Taylor SM. Reduction of Benzodiazepine Use in Patients Prescribed Medical Cannabis. Cannabis and Cannabinoid Research. 2019;4(3):214-8.

67. Radke PM, Mokhtarzadeh A, Lee MS, Harrison AR. Medical Cannabis, a Beneficial High in Treatment of Blepharospasm? An Early Observation. Neuro-Ophthalmology. 2017;41(5):253-8.

68. Romero K, Pavisian B, Staines WR, Feinstein A. Multiple sclerosis, cannabis, and cognition: A structural MRI study. NeuroImage Clinical. 2015;8:140-7.

69. Russo M, Calabro RS, Naro A, Sessa E, Rifici C, D'Aleo G, et al. Sativex in the Management of Multiple Sclerosis-Related Spasticity: Role of the Corticospinal Modulation. Neural Plasticity. 2015;2015 (no pagination)(656582).

BMJ Open

70. Sarnelli G, D'Alessandro A, Iuvone T, Capoccia E, Gigli S, Pesce M, et al. Palmitoylethanolamide Modulates Inflammation-Associated Vascular Endothelial Growth Factor (VEGF) Signaling via the Akt/mTOR Pathway in a Selective Peroxisome Proliferator-Activated Receptor Alpha (PPAR-alpha)-Dependent Manner. PLoS ONE [Electronic Resource]. 2016;11(5):e0156198.

71. Savage TE, Sourbron J, Bruno PL, Skirvin LA, Wolper ES, Anagnos CJ, et al. Efficacy of cannabidiol in subjects with refractory epilepsy relative to concomitant use of clobazam. Epilepsy Research.
2020;160 (no pagination)(106263).

72. Schabas AJ, Vukojevic V, Taylor C, Thu Z, Badyal A, Chan JK, et al. Cannabis-based product use in a multiple sclerosis cohort. Multiple Sclerosis Journal Experimental Translational & Clinical. 2019;5(3):2055217319869360.

73. Stillman M, Capron M, Mallow M, Ransom T, Gustafson K, Bell A, et al. Utilization of medicinal cannabis for pain by individuals with spinal cord injury. Spinal Cord Series and Cases. 2019;5:66.

74. Swift W, Gates P, Dillon P. Survey of Australians using cannabis for medical purposes. Harm Reduction Journal. 2005;2:18.

75. Sylvestre DL, Clements BJ, Malibu Y. Cannabis use improves retention and virological outcomes in patients treated for hepatitis C. European Journal of Gastroenterology & Hepatology.
2006;18(10):1057-63.

76. Tyree GA, Sarkar R, Bellows BK, Ellis RJ, Atkinson JH, Marcotte TD, et al. A Cost-Effectiveness Model for Adjunctive Smoked Cannabis in the Treatment of Chronic Neuropathic Pain. Cannabis and Cannabinoid Research. 2019;4(1):62-72.

77. Vermersch P, Trojano M. Tetrahydrocannabinol:Cannabidiol Oromucosal Spray for Multiple Sclerosis-Related Resistant Spasticity in Daily Practice. European Neurology. 2016;76(5-6):216-26.

78. Vidot DC, Lerner B, Gonzalez R. Cannabis Use, Medication Management and Adherence Among Persons Living with HIV. AIDS & Behavior. 2017;21(7):2005-13.

79. Voon P, Hayashi K, Milloy MJ, Nguyen P, Wood E, Montaner J, et al. Pain Among High-Risk Patients on Methadone Maintenance Treatment. Journal of Pain. 2015;16(9):887-94.

80. Wade DT, Makela PM, House H, Bateman C, Robson P. Long-term use of a cannabis-based medicine in the treatment of spasticity and other symptoms in multiple sclerosis. Multiple Sclerosis. 2006;12(5):639-45.

81. Waissengrin B, Urban D, Leshem Y, Garty M, Wolf I. Patterns of use of medical cannabis among Israeli cancer patients: a single institution experience. Journal of Pain & Symptom Management. 2015;49(2):223-30.

82. Walsh Z, Callaway R, Belle-Isle L, Capler R, Kay R, Lucas P, et al. Cannabis for therapeutic purposes: patient characteristics, access, and reasons for use. International Journal of Drug Policy. 2013;24(6):511-6.

83. Ware MA, Rueda S, Singer J, Kilby D. Cannabis use by persons living with HIV/AIDS: Patterns and prevalence of use. Journal of Cannabis Therapeutics. 2003;3(2):3-15.

84. Witt CM, Berling NEJ, Rinpoche NT, Cuomo M, Willich SN. Evaluation of medicinal plants as part of Tibetan medicine prospective observational study in Sikkim and Nepal. Journal of Alternative and Complementary Medicine. 2009;15(1):59-65.

85. Woolridge E, Barton S, Samuel J, Osorio J, Dougherty A, Holdcroft A. Cannabis use in HIV for pain and other medical symptoms. Journal of Pain & Symptom Management. 2005;29(4):358-67.

86. Zhang H, Xie M, Levin M, Archibald SD, Jackson BS, Young JEM, et al. Survival outcomes of marijuana users in p16 positive oropharynx cancer patients. Journal of Otolaryngology: Head and Neck Surgery. 2019;48(1):43.

Study did not report on medical cannabis

1. Brenton JN, Schreiner T, Karoscik K, Richter M, Ferrante S, Waldman A, et al. Attitudes, perceptions, and use of marijuana in youth with multiple sclerosis. Journal of Neurology. 2018;265(2):417-23.

2. Chirchiglia D, Paventi S, Seminara P, Cione E, Gallelli L. N-Palmitoyl Ethanol Amide Pharmacological Treatment in Patients With Nonsurgical Lumbar Radiculopathy. Journal of Clinical Pharmacology. 2018;58(6):733-9.

3. Coates MD, Soriano C, Dalessio S, Stuart A, Walter V, Koltun W, et al. Gastrointestinal hypoalgesia in inflammatory bowel disease. Annals of Gastroenterology. 2020;33(1):45-52.

4. Cooke AC, Knight KR, Miaskowski C. Patients' and clinicians' perspectives of co-use of cannabis and opioids for chronic non-cancer pain management in primary care. International Journal of Drug Policy. 2019;63:23-8.

5. Costiniuk CT, Saneei Z, Salahuddin S, Cox J, Routy JP, Rueda S, et al. Cannabis Consumption in People Living with HIV: Reasons for Use, Secondary Effects, and Opportunities for Health Education. Cannabis and Cannabinoid Research. 2019;4(3):204-13.

6. Cuomo A, Russo G, Esposito G, Forte CA, Connola M, Marcassa C. Efficacy and gastrointestinal tolerability of oral oxycodone/naloxone combination for chronic pain in outpatients with cancer: An observational study. American Journal of Hospice & Palliative Medicine. 2014;31(8):867-76.

7. Finnerup NB, Norrbrink C, Trok K, Piehl F, Johannesen IL, Sorensen JC, et al. Phenotypes and predictors of pain following traumatic spinal cord injury: A prospective study. Journal of Pain. 2014;15(1):40-8.

8. Gallagher R, Best JA, Fyles G, Hawley P, Yeomans W. Attitudes and beliefs about the use of Cannabis for symptom control in a palliative population. Journal of Cannabis Therapeutics. 2003;3(2):41-50.

9. Gill A, Williams AC. Preliminary study of chronic pain patients' concerns about cannabinoids as analgesics. Clinical Journal of Pain. 2001;17(3):245-8.

10. Habib G, Avisar I. The Consumption of Cannabis by Fibromyalgia Patients in Israel. Pain Research and Treatment. 2018;2018:7829427.

BMJ Open

11. Harder S, Groenvold M, Isaksen J, Sigaard J, Frandsen KB, Neergaard MA, et al. Antiemetic use of olanzapine in patients with advanced cancer: results from an open-label multicenter study. Supportive Care in Cancer. 2019;27(8):2849-56.

12. Hefner K, Sofuoglu M, Rosenheck R. Concomitant cannabis abuse/dependence in patients treated with opioids for non-cancer pain. American Journal on Addictions. 2015;24(6):538-45.

13. Johnson JR, Lossignol D, Burnell-Nugent M, Fallon MT. An open-label extension study to investigate the long-term safety and tolerability of THC/CBD oromucosal spray and oromucosal THC spray in patients with terminal cancer-related pain refractory to strong opioid analgesics. Journal of Pain & Symptom Management. 2013;46(2):207-18.

 Lal S, Prasad N, Ryan M, Tangri S, Silverberg MS, Gordon A, et al. Cannabis use amongst patients with inflammatory bowel disease. European Journal of Gastroenterology & Hepatology. 2011;23(10):891-6.

15. Mai LM, Clark AJ, Gordon AS, Lynch ME, Morley-Forster PK, Nathan H, et al. Long-Term Outcomes in the Management of Painful Diabetic Neuropathy. Canadian Journal of Neurological Sciences. 2017;44(4):337-42.

16. Noyes R, Jr., Brunk SF, Avery DA, Canter AC. The analgesic properties of delta-9tetrahydrocannabinol and codeine. Clinical Pharmacology & Therapeutics. 1975;18(1):84-9.

17. Pezzilli R, Ciuffreda P, Ottria R, Ravelli A, Melzi d'Eril G, Barassi A. Serum endocannabinoids in assessing pain in patients with chronic pancreatitis and in those with pancreatic ductal adenocarcinoma. Scandinavian Journal of Gastroenterology. 2017;52(10):1133-9.

18. Rogers AH, Shepherd JM, Paulus DJ, Orr MF, Ditre JW, Bakhshaie J, et al. The Interaction of Alcohol Use and Cannabis Use Problems in Relation to Opioid Misuse Among Adults with Chronic Pain. International Journal of Behavioral Medicine. 2019;26(5):569-75.

19. Shiplo S, Asbridge M, Leatherdale ST, Hammond D. Medical cannabis use in Canada: Vapourization and modes of delivery. Harm Reduction Journal. 2016;13 (1) (no pagination)(30).

20. Ste-Marie PA, Shir Y, Rampakakis E, Sampalis JS, Karellis A, Cohen M, et al. Survey of herbal cannabis (marijuana) use in rheumatology clinic attenders with a rheumatologist confirmed diagnosis. Pain. 2016;157(12):2792-7.

21. Stein MD, Herman DS, Bailey GL, Straus J, Anderson BJ, Uebelacker LA, et al. Chronic pain and depression among primary care patients treated with buprenorphine. Journal of General Internal Medicine. 2015;30(7):935-41.

22. Stillman M, Mallow M, Ransom T, Gustafson K, Bell A, Graves D. Attitudes toward and knowledge of medical cannabis among individuals with spinal cord injury. Spinal Cord Series and Cases. 2019;5:6.

23. Tripp DA, Nickel JC, Katz L, Krsmanovic A, Ware MA, Santor D. A survey of cannabis (marijuana) use and self-reported benefit in men with chronic prostatitis/chronic pelvic pain syndrome. Canadian Urological Association Journal. 2014;8(11-12):E901-5.

24. Weinkle L, Domen CH, Shelton I, Sillau S, Nair K, Alvarez E. Exploring cannabis use by patients with multiple sclerosis in a state where cannabis is legal. Multiple Sclerosis and Related Disorders. 2019;27:383-90.

25. Weinrieb RM, Barnett R, Lynch KG, DePiano M, Atanda A, Olthoff KM. A matched comparison study of medical and psychiatric complications and anesthesia and analgesia requirements in methadone-maintained liver transplant recipients. Liver Transplantation. 2004;10(1):97-106.

Study did not report on harms or adverse events

1. Aggarwal S, Carter G, Sullivan M, Zumbrunnen C, Morrill R, Mayer J. Prospectively surveying health-related quality of life and symptom relief in a lot-based sample of medical cannabis-using patients in urban Washington State reveals managed chronic illness and debility. American Journal of Hospice & Palliative Medicine. 2013;30(6):523-31.

2. Ashrafioun L, Bohnert KM, Jannausch M, Ilgen MA. Characteristics of substance use disorder treatment patients using medical cannabis for pain. Addictive Behaviors. 2015;42:185-8.

3. Bigand T, Anderson CL, Roberts ML, Shaw MR, Wilson M. Benefits and adverse effects of cannabis use among adults with persistent pain. Nursing Outlook. 2019;67(3):223-31.

4. Boehnke KF, Litinas E, Clauw DJ. Medical Cannabis Use Is Associated With Decreased Opiate Medication Use in a Retrospective Cross-Sectional Survey of Patients With Chronic Pain. Journal of Pain. 2016;17(6):739-44.

5. Boehnke KF, Scott JR, Litinas E, Sisley S, Williams DA, Clauw DJ. Pills to Pot: Observational Analyses of Cannabis Substitution Among Medical Cannabis Users With Chronic Pain. Journal of Pain. 2019;20(7):830-41.

6. Capano A, Weaver R, Burkman E. Evaluation of the effects of CBD hemp extract on opioid use and quality of life indicators in chronic pain patients: a prospective cohort study. Postgraduate Medicine. 2020;132(1):56-61.

7. Consroe P, Musty R, Rein J, Tillery W, Pertwee R. The perceived effects of smoked cannabis on patients with multiple sclerosis. European Neurology. 1997;38(1):44-8.

8. Cranford JA, Bohnert KM, Perron BE, Bourque C, Ilgen M. Prevalence and correlates of "Vaping" as a route of cannabis administration in medical cannabis patients. Drug and Alcohol Dependence. 2016;169:41-7.

9. Curtis SA, Spodick J, Lew D, Roberts JD. Medical marijuana certification for patients with sickle cell disease: A survey study of patient's use and preferences. Blood Conference: 60th Annual Meeting of the American Society of Hematology, ASH. 2018;132(Suppl. 1).

10. Davis AK, Walton MA, Bohnert KM, Bourque C, Ilgen MA. Factors associated with alcohol consumption among medical cannabis patients with chronic pain. Addictive Behaviors. 2018;77:166-71.

11. Donovan KA, Oberoi-Jassal R, Chang YD, Rajasekhara S, Haas MF, Randich AL, et al. Cannabis Use in Young Adult Cancer Patients. Journal of Adolescent & Young Adult Oncology. 2020;9(1):30-5.

BMJ Open

12. Drossel C, Forchheimer M, Meade MA. Characteristics of Individuals with Spinal Cord Injury Who Use Cannabis for Therapeutic Purposes. Topics in Spinal Cord Injury Rehabilitation. 2016;22(1):3-12.

13. Ehde DM, Alschuler KN, Osborne TL, Hanley MA, Jensen MP, Kraft GH. Utilization and patients' perceptions of the effectiveness of pain treatments in multiple sclerosis: A cross-sectional survey. Disability & Health Journal. 2015;8(3):452-6.

14. Gras A, Broughton J. A cost-effectiveness model for the use of a cannabis-derived oromucosal spray for the treatment of spasticity in multiple sclerosis. Expert Review of Pharmacoeconomics and Outcomes Research. 2016;16(6):771-9.

15. Jehangir A, Parkman HP. Cannabinoid Use in Patients With Gastroparesis and Related Disorders: Prevalence and Benefit. American Journal of Gastroenterology. 2019;114(6):945-53.

16. Kindred JH, Li K, Ketelhut NB, Proessl F, Fling BW, Honce JM, et al. Cannabis use in people with Parkinson's disease and Multiple Sclerosis: A web-based investigation. Complementary Therapies in Medicine. 2017;33:99-104.

17. Lake S, Walsh Z, Kerr T, Cooper ZD, Buxton J, Wood E, et al. Frequency of cannabis and illicit opioid use among people who use drugs and report chronic pain: A longitudinal analysis. PLoS Medicine / Public Library of Science. 2019;16(11):e1002967.

18. Li X, Vigil JM, Stith SS, Brockelman F, Keeling K, Hall B. The effectiveness of self-directed medical cannabis treatment for pain. Complementary Therapies in Medicine. 2019;46:123-30.

19. Lucas P, Baron EP, Jikomes N. Medical cannabis patterns of use and substitution for opioids & other pharmaceutical drugs, alcohol, tobacco, and illicit substances; Results from a cross-sectional survey of authorized patients. Harm Reduction Journal Vol 16 2019, ArtID 9. 2019;16.

20. Mallada Frechin J. Effect of tetrahydrocannabinol:cannabidiol oromucosal spray on activities of daily living in multiple sclerosis patients with resistant spasticity: a retrospective, observational study. Neurodegenerative Disease Management. 2018;8(3):151-9.

21. Marinelli L, Mori L, Canneva S, Colombano F, Curra A, Fattapposta F, et al. The effect of cannabinoids on the stretch reflex in multiple sclerosis spasticity. International Clinical Psychopharmacology. 2016;31(4):232-9.

22. Mbachi C, Attar B, Oyenubi O, Yuchen W, Efesomwan A, Paintsil I, et al. Association between cannabis use and complications related to ulcerative colitis in hospitalized patients: A propensity matched retrospective cohort study. Medicine. 2019;98(32):e16551.

23. Mbachi C, Attar B, Wang Y, Paintsil I, Mba B, Fugar S, et al. Association Between Cannabis Use and Complications Related to Crohn's Disease: A Retrospective Cohort Study. Digestive Diseases & Sciences. 2019;64(10):2939-44.

24. Mercurio A, Aston ER, Claborn KR, Waye K, Rosen RK. Marijuana as a substitute for prescription medications: A qualitative study. Substance Use & Misuse. 2019;54(11):1894-902.

25. Merker AM, Riaz M, Friedman S, Allegretti JR, Korzenik J. Legalization of Medicinal Marijuana Has Minimal Impact on Use Patterns in Patients With Inflammatory Bowel Disease. Inflammatory Bowel Diseases. 2018;24(11):2309-14.

26. Messina S, Solaro C, Righini I, Bergamaschi R, Bonavita S, Bossio RB, et al. Sativex in resistant multiple sclerosis spasticity: Discontinuation study in a large population of Italian patients (SA.FE. study). PLoS ONE [Electronic Resource]. 2017;12(8):e0180651.

27. Meyer T, Funke A, Munch C, Kettemann D, Maier A, Walter B, et al. Real world experience of patients with amyotrophic lateral sclerosis (ALS) in the treatment of spasticity using tetrahydrocannabinol:cannabidiol (THC:CBD). BMC Neurology. 2019;19(1):222.

28. Michalski CW, Oti FE, Erkan M, Sauliunaite D, Bergmann F, Pacher P, et al. Cannabinoids in pancreatic cancer: Correlation with survival and pain. International Journal of Cancer. 2008;122(4):742-50.

29. Naftali T, Lev LB, Yablecovitch D, Half E, Konikoff FM. Treatment of Crohn's disease with cannabis: an observational study. Israel Medical Association Journal: Imaj. 2011;13(8):455-8.

30. Page SA, Verhoef MJ, Stebbins RA, Metz LM, Levy JC. Cannabis use as described by people with multiple sclerosis. Canadian Journal of Neurological Sciences. 2003;30(3):201-5.

31. Perron BE, Bohnert K, Perone AK, Bonn-Miller MO, Ilgen M. Use of prescription pain medications among medical cannabis patients: comparisons of pain levels, functioning, and patterns of alcohol and other drug use. Journal of Studies on Alcohol & Drugs. 2015;76(3):406-13.

32. Piper BJ, Dekeuster RM, Beals ML, Cobb CM, Burchman CA, Perkinson L, et al. Substitution of medical cannabis for pharmaceutical agents for pain, anxiety, and sleep. Journal of Psychopharmacology. 2017;31(5):569-75.

33. Reiman A, Welty M, Solomon P. Cannabis as a Substitute for Opioid-Based Pain Medication: Patient Self-Report. Cannabis and Cannabinoid Research. 2017;2(1):160-6.

34. Rochford C, Edgeworth D, Hashim M, Harmon D. Attitudes of Irish patients with chronic pain towards medicinal cannabis. Irish Journal of Medical Science. 2019;188(1):267-72.

35. Russo M, De Luca R, Torrisi M, Rifici C, Sessa E, Bramanti P, et al. Should we care about sativexinduced neurobehavioral effects? A 6-month follow-up study. European Review for Medical & Pharmacological Sciences. 2016;20(14):3127-33.

36. Saadeh CE, Rustem DR. Medical Marijuana Use in a Community Cancer Center. Journal of oncology practice/American Society of Clinical Oncology. 2018;14(9):e566-e78.

37. Spencer N, Shaw E, Slaven M. Medical cannabis use in an outpatient palliative care clinic: A retrospective chart review. Journal of Pain Management. 2016;9(4):507-13.

38. Ste-Marie PA, Fitzcharles MA, Gamsa A, Ware MA, Shir Y. Association of herbal cannabis use with negative psychosocial parameters in patients with fibromyalgia. Arthritis care & research. 2012;64(8):1202-8.

39. Sznitman SR, Goldberg V, Sheinman-Yuffe H, Flechter E, Bar-Sela G. Storage and disposal of medical cannabis among patients with cancer: Assessing the risk of diversion and unintentional digestion. Cancer. 2016;122(21):3363-70.

40. Victorson D, McMahon M, Horowitz B, Glickson S, Parker B, Mendoza-Temple L. Exploring cancer survivors' attitudes, perceptions, and concerns about using medical cannabis for symptom and side effect management: A qualitative focus group study. Complementary Therapies in Medicine. 2019;47:102204.

41. Ware MA, Adams H, Guy GW. The medicinal use of cannabis in the UK: results of a nationwide survey. International Journal of Clinical Practice. 2005;59(3):291-5.

42. Ware MA, Martel MO, Jovey R, Lynch ME, Singer J. A prospective observational study of problematic oral cannabinoid use. Psychopharmacology. 2018;235(2):409-17.

Study included <25 patients

1. Apel A, Greim B, Zettl UK. How frequently do patients with multiple sclerosis use complementary and alternative medicine? Complementary Therapies in Medicine. 2005;13(4):258-63.

2. Mondello E, Quattrone D, Cardia L, Bova G, Mallamace R, Barbagallo AA, et al. Cannabinoids and spinal cord stimulation for the treatment of failed back surgery syndrome refractory pain. Journal of Pain Research. 2018;11:1761-7.

3. Toth C, Au S. A prospective identification of neuropathic pain in specific chronic polyneuropathy syndromes and response to pharmacological therapy. Pain. 2008;138(3):657-66.

Study	Confounding	Selection of participants into the study	Classification of the intervention	Departures from the intended intervention	Missing data	Measurement of outocmes	Selection of the reported Results
Ware, 2003							
Lynch, 2006							
Rog, 2007							
Weber, 2009 Bestard, 2011*							
Fiz, 2011							
Dominguez, 2012	Ĭ		ŏ	ŏ	ŏ	ŏ	ŏ
Gatti, 2012	ŏ	Ŏ	ŏ	ŏ	ŏ	ŏ	ŏ
Toth, 2012	ŏ	Ŏ	ŏ	ŏ	ŏ	Ŏ	ŏ
Schifilliti, 2014	ŏ	Ŏ	5	ŏ	ŏ	Ŏ	Ŏ
Storr, 2014	Ŏ	Õ	Ŏ	Ŏ	Ŏ	Ŏ	Ŏ
Del Giorno, 2015						0	
Hoggart, 2015							
Ware, 2015†			0				
Haroutounian, 2016				0			
Bellnier, 2017							
Cranford, 2017	_						
Fanelli, 2017	_						
Feingold, 2017	_						
Paladini, 2017	_						
Passavanti, 2017							
Schimrigk, 2017 Chirchiglia, 2018							
Crowley, 2018							
Habib, 2018		ŏ	ŏ				ŏ
Anderson, 2019	ŏ	ŏ	ŏ	ŏ	ŏ	Ŏ	
Bonar, 2019	ŏ	Ŏ	Ŏ	ŏ	Ŏ		
Cervigni, 2019	ŏ	Ŏ	ŏ	ŏ	Ŏ	Ŏ	Ŏ
Cremer-Schaeffer, 2019 ‡	Ŏ	Ŏ	Ŏ	Õ		Ŏ	O
Lejczak, 2019					0		0
Loi, 2019							
Naftali, 2019							
Perron, 2019							
Sagy, 2019					0	0	
Sinclair, 2019							
Ueberall, 2019	_						
Vigil, 2019	_						
Yassin, 2019	_						
Giorgi, 2020					·		
* Risk of bias for confound	ing for co	omparative	results we	ere rated a	is serious.		
+ Risk of bias for confound serious. Adjusted compara					ative result	ts were rate	ed as
‡ The study reported on dr	onabino	l, nabiximo	ols, and her	bal cannal	bis separat	tely. The re	sults for
herbal cannabis were at se							
particpants.							2

Low risk of bias	
Moderate risk of bias	
Serious risk of bias	
Critical risk of bias	

Study	Cases	Total	Prevalence (%)	95	5% C.I.		
design = longitudinal		_					
Lynch , 2006	27			[76.2;			
Rog, 2007	58			[83.9;		_	
Weber, 2009	12			[5.2;			_
Bestard, 2011	21			[29.2;			
Bestard, 2011	21			[25.7;			
Dominguez, 2012	0				2.7]		
Gatti , 2012 Toth , 2012	13			[20.4;	; 0.3] D		
Del Giorno, 2015	0				; 4.9] ■		
Hoggart, 2015	295			[73.3;			
Paladini, 2017	295				; 4.9] 🖿		
Schimrigk, 2017	_	209		[77.9;	-		
Chirchiglia, 2018	0				; 1.7]		
Crowley, 2018	16	35		[29.4;		<u> </u>	-
Habib, 2018		26		[14.3;			
Anderson, 2019		1120		[8.8;		⊡ .	
Cervigni, 2019	0	32			; 5.3] 🖿		
Lejczak, 2019	26			[11.8;		-	
Loi, 2019	0				6.1] 🖛		
Ueberall, 2019	119	800		[12.5;		.	
Giorgi, 2020	40	102		[29.9;		_ ¦ <u>i</u> −•	
Fixed effect model			18.0	[16.8;	19.3]	+	
Random effects mode				[10.9;	39.0]	-	-
Heterogeneity: $I^2 = 99\%$, τ^2	2 = 0.1434	$\chi^2_{20} = 1$	1985.88 (p = 0)				
design = cross-section							
Fiz, 2011	27			[85.3;		_	
Sinclair, 2019	5	48			20.9] -	•	_
Fixed effect model				[31.5;			
Random effects mode		2 -	55./	[0.0; 1	100.0] —	i ;	
Heterogeneity: $I^2 = 99\%$, τ^2	= 0.4963	$\chi_1 = 72$	2.27 (p < 0.01)				
Fixed effect model			18.4	[17.2;	19.6]	+	
Random effects mode				[13.2;	41.2]		-
Heterogeneity: $l^2 = 99\%$, τ^2	⁻ = 0.1463	$\chi^2_{22} = 2$	2079.69 (p = 0)		I	I	1 1
Test for subgroup difference	es (randor	n effect	s): $\chi_1^2 = 0.42$, df = 1	(p = 0.5	2) 0		40 60
						Prev	/alence (%

Study	Cases Total Preval	ence (%) 95% (C.I.		
byvar = More than 24 w	eeks use				
Lynch, 2006	27 30	90.0 [76.2; 98	1		
Rog , 2007	58 63	92.1 [83.9; 97			
			-		
Weber, 2009	12 120	10.0 [5.2; 16		-	
Bestard, 2011	21 49	42.9 [29.2; 57		_	
Bestard, 2011	21 55	38.2 [25.7; 51	-		_
Hoggart, 2015	295 380	77.6 [73.3; 81	- :		
Schimrigk, 2017	174 209	83.3 [77.9; 88	3.0]		
Crowley, 2018	16 35	45.7 [29.4; 62	2.5]		
Habib, 2018	8 26	30.8 [14.3; 50).1] 🕂	1	
Cervigni, 2019	0 32	0.0 [0.0; 5	5.3] 💻		
Giorgi, 2020	40 102	39.2 [29.9; 48			
Random effects model		49.3 [28.7; 70	•		-
Heterogeneity: $I^2 = 98\%$, $\tau^2 = 0$	0.1204, $\chi^2_{10} = 443.87$ (p < 0	1.01)			
byvar = Less than 24 we	eeks use				
Dominguez, 2012	0 64	0.0 [0.0; 2	71		
Gatti, 2012	0 564	0.0 [0.0; 0	-		
		• · · ·	-		
Toth, 2012	13 37	35.1 [20.4; 51			
Del Giorno, 2015	0 35	0.0 [0.0; 4	-		
Paladini, 2017	0 35	0.0 [0.0; 4	-		
Chirchiglia, 2018	0 100	0.0 [0.0; 1			
Anderson, 2019	118 1120	10.5 [8.8; 12	-		
Lejczak, 2019	26 148	17.6 [11.8; 24	-		
Loi, 2019	0 28	0.0 [0.0; 6	6.1]■−		
Ueberall, 2019	119 800	14.9 [12.5; 17	7.4] 🔳		
Random effects model		4.2 [0.5; 10	.5] 🗕		
Heterogeneity: $I^2 = 97\%$, $\tau^2 = 0$	0.0322, χ ₉ ² = 288.38 (p < 0.	01)			
				-	
Random effects model		23.5 [10.9; 39	.0]		
Random effects model Heterogeneity: $I^2 = 99\%$, $\tau^2 = 0$	0.1434, χ ² ₂₀ = 1985.88 (ρ =	0)	.0]	1 1	1
Random effects model Heterogeneity: $l^2 = 99\%$, $\tau^2 = 0$ Residual heterogeneity: $l^2 = 97$	7%, χ ² ₁₉ = 732.25 (p < 0.01	0))	0 20	40 60	80
Random effects model Heterogeneity: $l^2 = 99\%$, $\tau^2 = 0$ Residual heterogeneity: $l^2 = 97$	7%, χ ² ₁₉ = 732.25 (p < 0.01	0))	0 20	40 60 Prevalence (%	
Random effects model Heterogeneity: $l^2 = 99\%$, $\tau^2 = 0$ Residual heterogeneity: $l^2 = 97$	7%, χ ² ₁₉ = 732.25 (p < 0.01	0))	0 20		
Random effects model Heterogeneity: $I^2 = 99\%$, $\tau^2 = 0$	7%, χ ² ₁₉ = 732.25 (p < 0.01	0))	0 20		
Random effects model Heterogeneity: $l^2 = 99\%$, $\tau^2 = 0$ Residual heterogeneity: $l^2 = 97$	7%, χ ² ₁₉ = 732.25 (p < 0.01	0))	0 20		
Random effects model Heterogeneity: $l^2 = 99\%$, $\tau^2 = 0$ Residual heterogeneity: $l^2 = 97$	7%, χ ² ₁₉ = 732.25 (p < 0.01	0))	0 20		
Random effects model Heterogeneity: $l^2 = 99\%$, $\tau^2 = 0$ Residual heterogeneity: $l^2 = 97$	7%, χ ² ₁₉ = 732.25 (p < 0.01	0))	0 20		
Random effects model Heterogeneity: $l^2 = 99\%$, $\tau^2 = 0$ Residual heterogeneity: $l^2 = 97$	7%, χ ² ₁₉ = 732.25 (p < 0.01	0))	0 20		
Random effects model Heterogeneity: $l^2 = 99\%$, $\tau^2 = 0$ Residual heterogeneity: $l^2 = 97$	7%, χ ² ₁₉ = 732.25 (p < 0.01	0))	0 20		
Random effects model Heterogeneity: $l^2 = 99\%$, $\tau^2 = 0$ Residual heterogeneity: $l^2 = 97$	7%, χ ² ₁₉ = 732.25 (p < 0.01	0))	0 20		
Random effects model Heterogeneity: $l^2 = 99\%$, $\tau^2 = 0$ Residual heterogeneity: $l^2 = 97$	7%, χ ² ₁₉ = 732.25 (p < 0.01	0))	0 20		
Random effects model Heterogeneity: $l^2 = 99\%$, $\tau^2 = 0$ Residual heterogeneity: $l^2 = 97$	7%, χ ² ₁₉ = 732.25 (p < 0.01	0))	0 20		
Random effects model Heterogeneity: $l^2 = 99\%$, $\tau^2 = 0$ Residual heterogeneity: $l^2 = 97$	7%, χ ² ₁₉ = 732.25 (p < 0.01	0))	0 20		
Random effects model Heterogeneity: $l^2 = 99\%$, $\tau^2 = 0$ Residual heterogeneity: $l^2 = 97$	7%, χ ² ₁₉ = 732.25 (p < 0.01	0))	0 20		

. ••

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Study	Cases Total Prevale	ence (%)	95% C.I.		
connobio = borbol mive	d			:	
cannabis = herbal, mixe Lynch, 2006	27 30	90.0	[76.2; 98.7]		
Fiz, 2011	27 28		[85.3; 100.0]		_
Habib, 2018	8 26		[14.3; 50.1]		-
Anderson, 2019	118 1120		[8.8; 12.4]	-	
Sinclair, 2019	5 48		[3.1; 20.9] -	-	
Random effects model	2 *	47.8	[11.5; 85.5]		
Heterogeneity: $I^2 = 98\%$, $\tau^2 =$	$0.2060, \chi_4^2 = 209.87 \ (p < 0.2060, \chi_4^2 = 200.87 \ ($	01)			
cannabis = nabiximols					
Rog, 2007	58 63	92.1	[83.9; 97.7]		
Hoggart, 2015	295 380		[73.3; 81.7]		-
Ueberall, 2019	119 800		[12.5; 17.4]	-	
Random effects model		62.8	[12.2; 99.2]		
Heterogeneity: $I^2 = 100\%$, $\tau^2 =$	$0.2378, \chi_2^2 = 582.31 (p < 0.2378)$	0.01)			
and the state of t					
cannabis = dronabinol	10 100	10.0	[5 2: 46 4]	-	
Weber, 2009 Schimrigk, 2017	12 120 174 209		[5.2; 16.1] - [77.9; 88.0]	-	
Lejczak, 2019	26 148		[11.8; 24.2]		
Random effects model		35.3	[0.8; 85.0] -		
Heterogeneity: $I^2 = 99\%$, $\tau^2 = 0$	0.2202, $\chi_2^2 = 275.37 \ (p < 0.2202)$	01)			
cannabis = nabilone				_	
Bestard, 2011	21 49		[29.2; 57.0]		
Bestard, 2011	21 55 13 37		[25.7; 51.5]		_
Toth , 2012 Random effects model			[20.4; 51.3] [31.0; 47.3]		
Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$	$\gamma_{p}^{2} = 0.53 (p = 0.77)$	05.0	[01.0, 47.0]		
	, , , 2 0.00 (2 0.007)				
cannabis = PEA					
Dominguez, 2012	0 64	0.0			
Gatti, 2012	0 564		[0.0; 0.3]		
Del Giorno, 2015	0 35		[0.0; 4.9]		
Paladini, 2017	0 35	0.0			
Chirchiglia, 2018	0 100 0 32	0.0 0.0			
Cervigni, 2019 Loi, 2019	0 28		[0.0; 5.3]■+ [0.0; 6.1]■+		
Random effects model			[0.0; 0.0]		
Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$	$\chi_6^2 = 2.12 \ (p = 0.91)$				
	E. E				
cannabis = Trokie lozer	-	45.5	100 4: 00 51	_	
Crowley, 2018	16 35		[29.4; 62.5]		
Random effects model Heterogeneity: not applicable		45.7	[29.4; 62.5]		
neterogeneity, not applicable					
cannabis = extracts					
Giorgi, 2020	40 102	39.2	[29.9; 48.9]		
Random effects model		39.2	[29.9; 48.9]		
Heterogeneity: not applicable					
Random effects model		26.0	[13.2; 41.2]		
Heterogeneity: $I^2 = 99\%$, $\tau^2 = 0$	$\frac{1}{2}$ 0.1463, $\chi^2_{22} = 2079.69$ (p =	0)	[10.2, 41.2]		
Residual heterogeneity: /2 = 9	$9\%, \chi^2_{18} = 1070.20 \ (p < 0.0)$	1)	0	20 40	60 80
Test for subgroup differences:	$\chi_6^2 = 372.45$, df = 6 ($p < 0.0$	1)		Prevale	ence (%)

Study Cases Total Prevalence (%) 95% C.I. Selection_bias = Low Lynch, 2006 27 30 90.0 [76.2; 98.7] Rog, 2007 63 92.1 [83.9; 97.7] 58 Weber, 2009 12 120 10.0 [5.2; 16.1] Bestard, 2011 21 49 42.9 [29.2; 57.0] Bestard, 2011 21 55 38.2 [25.7; 51.5] 0 64 Dominguez, 2012 0.0 [0.0; 2.7] 🖿 Gatti, 2012 0 564 0.0 [0.0; 0.3] 🖪 Toth , 2012 35.1 [20.4; 51.3] 13 37 Del Giorno, 2015 0 35 0.0 [0.0; 4.9] Paladini, 2017 0 35 0.0 [0.0; 4.9] 🖿 0 Chirchiglia, 2018 100 0.0 [0.0; 1.7] 🖪 Habib , 2018 8 26 30.8 [14.3; 50.1] Anderson, 2019 118 1120 10.5 [8.8; 12.4] Cervigni, 2019 0 32 0.0 [0.0; 5.3] 17.6 [11.8; 24.2] Lejczak, 2019 26 148 Loi, 2019 0 28 0.0 [0.0; 6.1] 119 Ueberall, 2019 800 14.9 [12.5; 17.4] 40 102 Giorgi, 2020 39.2 [29.9; 48.9] Random effects model 16.8 [8.3; 27.3] Heterogeneity: $I^2 = 98\%$, $\tau^2 = 0.0684$, $\chi^2_{17} = 768.46$ (p < 0.01) Selection_bias = High Fiz, 2011 27 28 96.4 [85.3; 100.0] Hoggart, 2015 295 380 77.6 [73.3; 81.7] Schimrigk, 2017 174 209 83.3 [77.9; 88.0] Crowley, 2018 45.7 [29.4; 62.5] 16 35 Sinclair, 2019 5 48 10.4 [3.1; 20.9] 64.7 [40.1; 85.9] Random effects model Heterogeneity: $I^2 = 97\%$, $\tau^2 = 0.0734$, $\chi^2_4 = 129.47$ (p < 0.01) Random effects model 26.0 [13.2; 41.2] Heterogeneity: $I^2 = 99\%$, $\tau^2 = 0.1463$, $\gamma^2_{22} = 2079.69$ (p = 0) Residual heterogeneity: $l^2 = 98\%$, $\gamma_{21}^2 = 897.92$ (p < 0.01) 0 20 40 60 80 100 Test for subgroup differences: $\chi_1^2 = 12.88$, df = 1 (p < 0.01) Prevalence (%)

Appendix 9: Results for all adverse events (subgroup by selection bias)

1 2 3

4 5

6 7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26 27

28

29

30

31

32

33

34 35

36

37

38

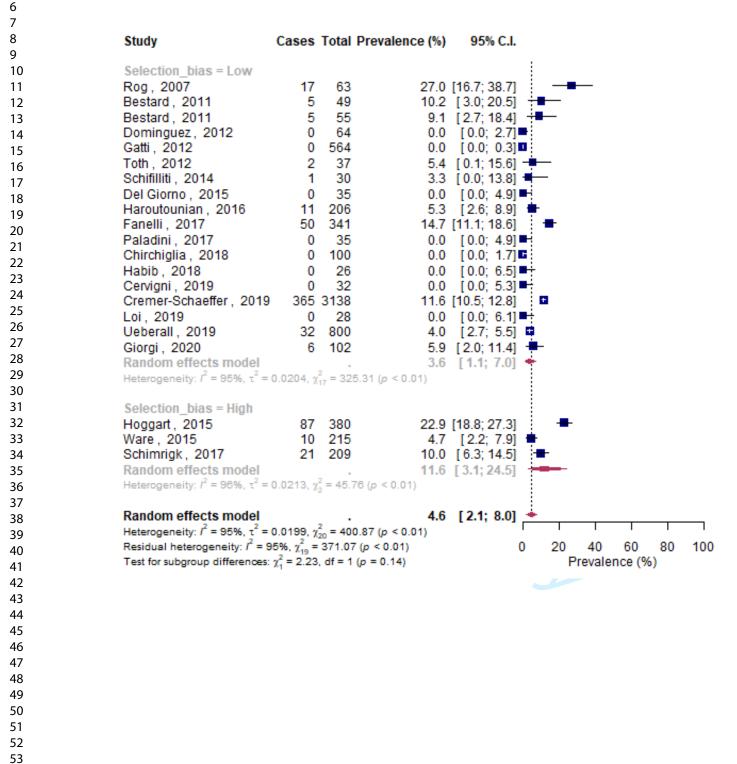
59

60

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Appendix 10: Results for adverse events leading to discontinuation (subgroup by duration)

Study	Cases	Total	Prevalence (%)	95% C.I.		
duration = More than 24	weeks u	se			1	
Rog, 2007	17	63	27.0	[16.7; 38.7]	- 	
Bestard, 2011	5	49		[3.0; 20.5]	₩	
Bestard, 2011	5			[2.7; 18.4]	—	
Hoggart, 2015	87	380	22.9	[18.8; 27.3]		
Ware, 2015		215		[2.2; 7.9] 🛢	4	
Haroutounian, 2016		206		[2.6; 8.9] 🛢	ł	
Schimrigk, 2017	21	209		[6.3; 14.5]	.	
Habib , 2018	0	26	0.0			
Cervigni, 2019	0	32	0.0			
Cremer-Schaeffer, 2019		3138				
Giorgi, 2020	6	102		[2.0; 11.4]	₽ -	
Fixed effect model		-		[10.0; 11.9]	1.	
Random effects model		-		[5.4; 12.9]	***	
Heterogeneity: $I^2 = 89\%$, $\tau^2 =$	0.0089, χ	10 = 88.	79 (p < 0.01)			
duration = Less than 24 y	weeks u	se				
Dominguez, 2012	0	64	0.0	[0.0; 2.7]		
Gatti, 2012	0	564	0.0			
Toth , 2012	2	37	5.4	[0.1; 15.6] 📑	←	
Schifilliti, 2014	1	30		[0.0; 13.8] 🖷	<u>1</u>	
Del Giorno, 2015	0	35	0.0	[0.0; 4.9] 🖿		
Fanelli, 2017	50	341	14.7	[11.1; 18.6]	-	
Paladini, 2017	0	35	0.0	[0.0; 4.9] 🖬		
Chirchiglia, 2018	0	100	0.0			
Loi, 2019	0	28	0.0	[0.0; 6.1]	1	
Ueberall, 2019	32	800	4.0	[2.7; 5.5] 📫	4	
Fixed effect model			2.0	[1.3; 2.8] •	1	
Random effects model			1.4	[0.0; 5.2] +		
Heterogeneity: $I^2 = 93\%$, $\tau^2 =$	0.0210, χ	² = 135	.36 (p < 0.01)			
Fixed effect model			7.5	[6.9; 8.2]	÷	
Random effects model Heterogeneity: I^2 = 95%, τ^2 =	0.0199. v	² = 400	4.6	[2.1; 8.0] 🔺	▶ 	_
Test for subgroup differences	(random e	effects):	$\chi_1^2 = 7.36$, df = 1 (p	< 0.01) 0	20 40 60 80	100
. .			nt . 4	, -	Prevalence (%)	


Appendix 11: Results for adverse events leading to discontinuation (subgroup by <u>cannabis)</u>

Study	22.00	1922	Prevalence (%)	95% C.I.	
cannabis = nabiximols					<u>~</u>
Rog, 2007	17	63	27.0	[16.7; 38.7]	
Hoggart, 2015	87	380		[18.8; 27.3]	
Ueberall, 2019	32	800		[2.7; 5.5]	÷
Random effects model	-			[2.8; 36.7]	
Heterogeneity: $l^2 = 98\%$, $\tau^2 =$	0.0427, ე	² ₂ = 106).25 (p < 0.01)	[2:0;00:1]	
cannabis = nabilone					
Bestard, 2011	5	49	10.2	[3.0; 20.5]	
Bestard, 2011	5	55	9.1	[2.7; 18.4]	
Toth , 2012	2	37	5.4	[0.1; 15.6] -	
Random effects model				[4.1; 13.8]	
Heterogeneity: $l^2 = 0\%$, $\tau^2 = 0$	$\chi_2^2 = 0.5$	7 (p = 0).75)		
cannabis = PEA					
Dominguez, 2012	0	64		[0.0; 2.7]	
Gatti, 2012	0	564	0.0	[0.0; 0.3]	
Schifilliti, 2014	1	30	3.3	[0.0; 13.8] -	
Del Giorno, 2015	0	35	0.0	[0.0; 4.9]	+
Paladini, 2017	0	35		[0.0; 4.9]	
Chirchiglia, 2018	0	100		[0.0; 1.7]	
Cervigni, 2019	0	32		[0.0; 5.3]	+
Loi, 2019	0				+
Random effects model			0.0	[0.0; 0.0]	1
Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$	$\gamma_{-}^{2} = 5.9$	8 (p = 0		[out out]	
	7				
cannabis = herbal, mixed					1
Ware, 2015		215			
Haroutounian, 2016	11	206		[2.6; 8.9]	
Fanelli, 2017	50			[11.1; 18.6]	
Habib , 2018	0	26			<u>+</u>
Random effects model				[1.5; 12.4]	
Heterogeneity: $l^2 = 88\%$, $\tau^2 =$	0.0104, ງ	² ₃ = 24.	91 (p < 0.01)		
cannabis = dronabinol					
Schimrigk, 2017	21	209		[6.3; 14.5]	
Random effects model			10.0	[6.3; 14.5]	
Heterogeneity: not applicable					
cannabis = mixed					2
Cremer-Schaeffer, 2019	365	3138		[10.5; 12.8]	
Random effects model			11.6	[10.5; 12.8]	*
Heterogeneity: not applicable					
cannabis = extracts	-	100			L
Giorgi, 2020	6	102		[2.0; 11.4] -	
Random effects model		1	5.9	[2.0; 11.4]	
Heterogeneity: not applicable					
Random effects model			4.6	[2.1; 8.0]	<u> </u>
Heterogeneity: $I^2 = 95\%$, $\tau^2 =$	0.0199,)	(₂₀ = 40	0.87 (p < 0.01)		
Residual heterogeneity: $l^2 = 9$	004 - Z -	127 7	$2(n \le 0.01)$	0	10 20 30 40

6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
20
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
42
45
44
45
46
47
48
49
50
50
51
52
53
54
55
56
57
58
20

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

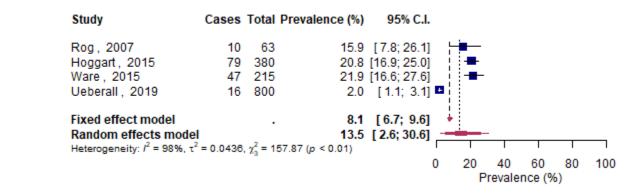
Appendix 12: Results for adverse events leading to discontinuation (subgroup by selection bias)

Appendix 13: Results for serious adverse events (subgroup by design)

Study	Cases	Total	Prevalence (%)	95% C.I.	
design = longitudinal				1	
Lynch, 2006	0	30	0.0	[0.0; 5.7] 🛉	
Rog, 2007	32	63	50.8	[38.4; 63.1]	
Bestard, 2011	0	49	0.0	[0.0; 3.5] 🖶	
Bestard, 2011	0	55	0.0	[0.0; 3.1] 🖷	
Dominguez, 2012	0	64	0.0	[0.0; 2.7]	
Gatti , 2012	0	564	0.0	[0.0; 0.3] 획	
Toth , 2012	2	37	5.4	[0.1; 15.6] 🕶	⊢
Del Giorno, 2015	0	35	0.0	[0.0; 4.9]	
Ware, 2015	28	215	13.0	[8.8; 17.9]	-
Haroutounian, 2016	2	206		[0.0; 2.9] 🛱	
Fanelli, 2017	0	341	0.0	[0.0; 0.5]	
Paladini , 2017	0	35	0.0	[0.0; 4.9]	
Passavanti, 2017	0	30	0.0	[0.0; 5.7] 🗰	
Schimrigk, 2017	29	209	13.9	[9.5; 18.9]	-
Chirchiglia, 2018	0	100		[0.0; 1.7]	
Crowley, 2018	0	35		[0.0; 4.9]	
Habib, 2018	0	26		[0.0; 6.5]	
Anderson, 2019	21	1120		[1.2; 2.8]	
Cervigni, 2019	0	32		[0.0; 5.3]	
Loi, 2019	0	28	0.0	[0.0; 6.1] 📫	
Ueberall, 2019	4	800	0.5	[0.1; 1.1] 📮	
Vigil, 2017	0	37		[0.0; 4.6]	
Giorgi, 2020	0	102		[0.0; 1.7]	
Fixed effect model			0.8	[0.5; 1.2]	
Random effects model				[0.1; 3.4]	
Heterogeneity: $I^2 = 92\%$, $\tau^2 =$	= 0.0178,	$\chi^2_{22} = 2$	80.09 (p < 0.01)		
design = cross-sectiona	al				
Ware, 2003	0	32	0.0	[0.0; 5.3] 🗣	
Fiz, 2011	0	28	0.0	[0.0; 6.1] 🗭	
Fixed effect model			0.0	[0.0; 3.2]	
Random effects model				[0.0; 3.2]	
Heterogeneity: $I^2 = 0\%$, $\tau^2 =$	$0, \chi_1^2 = 0$ (p = 0.9	96)		
Fixed effect model				[0.4; 1.1]	
Random effects model		2	1.2	[0.1; 3.1] 📥	
Heterogeneity: $I^2 = 91\%$, $\tau^2 =$	= 0.0173,	$\chi_{24}^{2} = 2$	80.38 (p < 0.01)	1	
Test for subgroup differences	(random	effects): χ ₁ [*] = 0.59, df = 1	(p = 0.44) 0	20 40 60 80 Prevalence (%)

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

60


Study	Cases	Total	Prevalence (%)	95% C.I						
byvar = More than 24 v	veeks									
Lynch , 2006	0	30	0.0	[0.0; 5.7]					
Rog, 2007	32	63	50.8	[38.4; 63.1			1			
Bestard, 2011	0	49	0.0	[0.0; 3.5						
Bestard, 2011	0	55		[0.0; 3.1						
Ware, 2015	28	215	13.0	[8.8; 17.9		-				
Haroutounian, 2016	2	206		[0.0; 2.9						
Passavanti, 2017	0	30	0.0	[0.0; 5.7						
Schimrigk, 2017	29	209	13.9	[9.5; 18.9		-				
Crowley, 2018	0			[0.0; 4.9						
Habib, 2018	0			[0.0; 6.5	—					
Cervigni, 2019	0	32	0.0	[0.0; 5.3						
Vigil, 2017	0	37	0.0	[0.0; 4.6						
Giorgi, 2020	0	102	0.0	[0.0; 1.7						
Random effects model			2.6	[0.0; 8.2						
Heterogeneity: $I^2 = 93\%$, τ^2	= 0.0414	, $\chi^2_{12} = 1$	169.27 (p < 0.01)							
byvar = Less than 24 w	veeks us	se								
Dominguez, 2012	0	64	0.0	[0.0; 2.7]					
Dominguez, 2012	0									
Dominguez, 2012 Gatti, 2012		564	0.0	[0.0; 0.3]	<u></u>				
Dominguez, 2012	0	564 37	0.0 5.4	[0.0; 0.3 [0.1; 15.6]	<u></u>				
Dominguez, 2012 Gatti, 2012 Toth, 2012 Del Giorno, 2015	0	564 37 35	0.0 5.4 0.0	[0.0; 0.3 [0.1; 15.6 [0.0; 4.9] []	<u>~</u>				
Dominguez, 2012 Gatti, 2012 Toth, 2012	020	564 37 35 341	0.0 5.4 0.0 0.0	[0.0; 0.3 [0.1; 15.6] []] -] []	<u>~</u>				
Dominguez, 2012 Gatti, 2012 Toth, 2012 Del Giorno, 2015 Fanelli, 2017 Paladini, 2017	0 2 0 0	564 37 35 341 35	0.0 5.4 0.0 0.0 0.0	[0.0; 0.3 [0.1; 15.6 [0.0; 4.9 [0.0; 0.5 [0.0; 4.9] []] -] []] []	<u></u>				
Dominguez, 2012 Gatti, 2012 Toth, 2012 Del Giorno, 2015 Fanelli, 2017 Paladini, 2017 Chirchiglia, 2018	0 2 0 0 0 0	564 37 35 341	0.0 5.4 0.0 0.0 0.0 0.0	[0.0; 0.3 [0.1; 15.6 [0.0; 4.9 [0.0; 0.5 [0.0; 4.9 [0.0; 1.7] []] -] []] []] []	<u></u>				
Dominguez, 2012 Gatti, 2012 Toth, 2012 Del Giorno, 2015 Fanelli, 2017 Paladini, 2017 Chirchiglia, 2018 Anderson, 2019	0 2 0 0 0 0	564 37 35 341 35 100	0.0 5.4 0.0 0.0 0.0 0.0 1.9	[0.0; 0.3 [0.1; 15.6 [0.0; 4.9 [0.0; 0.5 [0.0; 4.9 [0.0; 1.7 [1.2; 2.8		_				
Dominguez, 2012 Gatti, 2012 Toth, 2012 Del Giorno, 2015 Fanelli, 2017 Paladini, 2017 Chirchiglia, 2018 Anderson, 2019 Loi, 2019	0 2 0 0 0 21	564 37 35 341 35 100 1120 28	0.0 5.4 0.0 0.0 0.0 0.0 1.9 0.0	[0.0; 0.3 [0.1; 15.6 [0.0; 4.9 [0.0; 0.5 [0.0; 4.9 [0.0; 1.7 [1.2; 2.8 [0.0; 6.1] []] []] []] []] []] []] []] []] []	-				
Dominguez, 2012 Gatti, 2012 Toth, 2012 Del Giorno, 2015 Fanelli, 2017 Paladini, 2017 Chirchiglia, 2018 Anderson, 2019	0 2 0 0 0 21 0 4	564 37 35 341 35 100 1120 28	0.0 5.4 0.0 0.0 0.0 1.9 0.0 0.5	[0.0; 0.3 [0.1; 15.6 [0.0; 4.9 [0.0; 0.5 [0.0; 4.9 [0.0; 1.7 [1.2; 2.8 [0.0; 6.1 [0.1; 1.1]] 4)]	-				
Dominguez, 2012 Gatti, 2012 Toth, 2012 Del Giorno, 2015 Fanelli, 2017 Paladini, 2017 Chirchiglia, 2018 Anderson, 2019 Loi, 2019 Ueberall, 2019	0 2 0 0 21 21 4	564 37 35 341 35 100 1120 28 800	0.0 5.4 0.0 0.0 0.0 1.9 0.0 0.5 0.1	[0.0; 0.3 [0.1; 15.6 [0.0; 4.9 [0.0; 0.5 [0.0; 4.9 [0.0; 1.7 [1.2; 2.8 [0.0; 6.1] 4)]	_				
Dominguez, 2012 Gatti, 2012 Toth, 2012 Del Giorno, 2015 Fanelli, 2017 Paladini, 2017 Chirchiglia, 2018 Anderson, 2019 Loi, 2019 Ueberall, 2019 Random effects model	0 2 0 0 21 0 4 = 0.0025	564 37 35 341 35 100 1120 28 800	0.0 5.4 0.0 0.0 0.0 1.9 0.0 0.5 0.1 2.32 (p < 0.01)	[0.0; 0.3 [0.1; 15.6 [0.0; 4.9 [0.0; 0.5 [0.0; 4.9 [0.0; 1.7 [1.2; 2.8 [0.0; 6.1 [0.1; 1.1 [0.0; 0.8]] []] ()] ()] ()] ()] ()] ()] ()] ()] ()] ()	-				
Dominguez, 2012 Gatti, 2012 Toth, 2012 Del Giorno, 2015 Fanelli, 2017 Paladini, 2017 Chirchiglia, 2018 Anderson, 2019 Loi, 2019 Ueberall, 2019 Random effects model Heterogeneity: $r^2 = 72\%$, τ^2 Random effects model	0 2 0 2 21 0 4 = 0.0025	564 37 35 341 35 100 1120 28 800 $\chi_9^2 = 3$	0.0 5.4 0.0 0.0 0.0 1.9 0.0 0.5 0.1 2.32 (p < 0.01) 1.3	[0.0; 0.3 [0.1; 15.6 [0.0; 4.9 [0.0; 0.5 [0.0; 4.9 [0.0; 1.7 [1.2; 2.8 [0.0; 6.1 [0.1; 1.1]] []] ()] ()] ()] ()] ()] ()] ()] ()] ()] ()	-	- 1	-1	-1	
Dominguez, 2012 Gatti, 2012 Toth, 2012 Del Giorno, 2015 Fanelli, 2017 Paladini, 2017 Chirchiglia, 2018 Anderson, 2019 Loi, 2019 Ueberall, 2019 Random effects model Heterogeneity: $r^2 = 72\%$, τ^2	0 2 0 21 0 4 = 0.0025	564 37 35 341 35 100 1120 28 800 $\chi_{9}^{2} = 3$	0.0 5.4 0.0 0.0 0.0 1.9 0.0 0.5 0.1 2.32 (p < 0.01) 1.3 280.09 (p < 0.01)	[0.0; 0.3 [0.1; 15.6 [0.0; 4.9 [0.0; 0.5 [0.0; 4.9 [0.0; 1.7 [1.2; 2.8 [0.0; 6.1 [0.1; 1.1 [0.0; 0.8]] []] ()] ()] ()] ()] ()] ()] ()] ()] ()] ()	-	40	60		1

Appendix 15: Results for serious adverse events (subgroup by selection bias)

Study	Cases	Total	Prevalence (%)	959	% C.I.					
Selection_bias = Low										
Lynch, 2006	0				5.7] 🖣	-				
Rog, 2007	32			[38.4;						
Bestard, 2011	0			[0.0;	3.5]					
Bestard, 2011	0	55			3.1]					
Dominguez, 2012	0	64	0.0	[0.0;	2.7]					
Gatti , 2012	0	564	0.0	[0.0;	0.3]					
Toth , 2012	2	37			15.6] †					
Del Giorno , 2015	0		0.0	[0.0;	4.9] 🖷	-				
Haroutounian , 2016	2				2.9]					
Fanelli, 2017	0				0.5] 🖣					
Paladini , 2017	0	35			4.9] 🖷					
Passavanti, 2017	0	30			5.7] 🖷	-				
Chirchiglia , 2018	0	100	0.0	[0.0;	1.7]					
Habib , 2018	0	26	0.0	[0.0;	6.5] 🖣	-				
Anderson, 2019	21	1120	1.9	[1.2;	2.8] 🖣					
Cervigni, 2019	0	32	0.0	[0.0;	5.3] 🖣	-				
Loi, 2019	0	28	0.0	[0.0;	6.1] 🖷	-				
Ueberall, 2019	4	800	0.5	[0.1;	1.1] 🗖					
Vigil, 2017	0	37	0.0	[0.0;	4.6] 🖷					
Giorgi, 2020	0	102	0.0	[0.0;	1.7]					
Random effects model		-		[0.0;	2.1]					
Heterogeneity: $I^2 = 88\%$, $\tau^2 =$	0.0112,	$\chi^2_{19} = 1$	158.87 (p < 0.01)							
Selection_bias = High										
Ware , 2003	0	32			5.3]					
Fiz, 2011	0				6.1]					
Ware , 2015		215		[8.8;		-				
Schimrigk, 2017	29			[9.5;		-				
Crowley, 2018	0	35			4.9]	-				
Random effects model		2 *	4.2	[0.2;	11.2]					
Heterogeneity: $I^2 = 85\%$, $\tau^2 =$	0.0165	$\chi_4^- = 20$	8.53 (p < 0.01)							
Random effects model Heterogeneity: $l^2 = 91\%$, $\tau^2 =$	0.0172	,2 - 2	1.2	[0.1;	3.1]					
Residual heterogeneity: $I^2 = 3$	0.01/0,	- 195	41 (p < 0.01)		0	20	40	60	80	100
	00 m, 1 ₂₃	- 100.	1 (p = 0.13)				Prevale		00	100

BMJ Open

Appendix 16: Results for psychiatric adverse events

Appendix 17: Results for suicide

Study	Cases T	'otal Preval						
Ware , 2015	0	215	0.0	[0; 0.8]				
				0	5 Pre	10 valence	15 (%)	2

Appendix 18: Results for suicidal thoughts

Cases Total Prevalence (%) 95% C.I. Study Cremer-Schaeffer, 2019 4 2017 0.2 [0; 0.5] Cremer-Schaeffer, 2019 0.0 [0; 0.3] 0 656 Cremer-Schaeffer, 2019 2 393 0.5 [0; 1.5] Fixed effect model 0.1 [0;0.3] Random effects model 0.1 [0; 0.5] Heterogeneity: $I^2 = 44\%$, $\tau^2 = 0.0003$, $\gamma_2^2 = 3.60$ (p = 0.17) Prevalence (%)

Appendix 19: Results for depression

Study Cases Total Prevalence (%) 95% C.I. Rog, 2007 4.8 [0.6; 11.7] 🕶 Ware, 2015 10 215 4.7 [2.2; 7.9] Cremer-Schaeffer, 2019 31 2017 1.5 [1.0; 2.1] 🖗 1.5 [0.7; 2.6] 🗖 Cremer-Schaeffer, 2019 10 656 1.8 [0.7; 3.4] Cremer-Schaeffer, 2019 7 393 Ueberall, 2019 5 800 0.6 [0.2; 1.3] Fixed effect model 1.4 [1.0; 1.8] Random effects model 1.7 [0.9; 2.7] Heterogeneity: $l^2 = 71\%$, $\tau^2 = 0.0011$, $\chi_5^2 = 17.22$ (p < 0.01) Prevalence (%)

--. З 3 3 Z

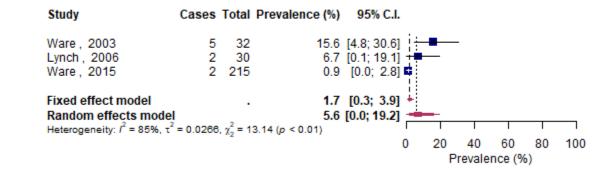
Appendix 20: Results for mania

8 9	Study	Cases	Total Prevalence	e (%) 🤉	95% C.I.		
10	Ware, 2015	1	215	0.5	[0; 2] 💻		
11							-
12					0	5 10 15	5 20
13						Prevalence (%)	
14							
15							
16							
17 18							
19							
20							
21							
22							
23							
24							
25							
26							
27							
28							
29							
30 31							
32							
33							
34							
35							
36							
37							
38							
39							
40 41							
41							
43							
44							
45							
46							
47							
48							
49							
50							
51							
52 53							
53 54							
54 55							
56							
57							
58							
59							

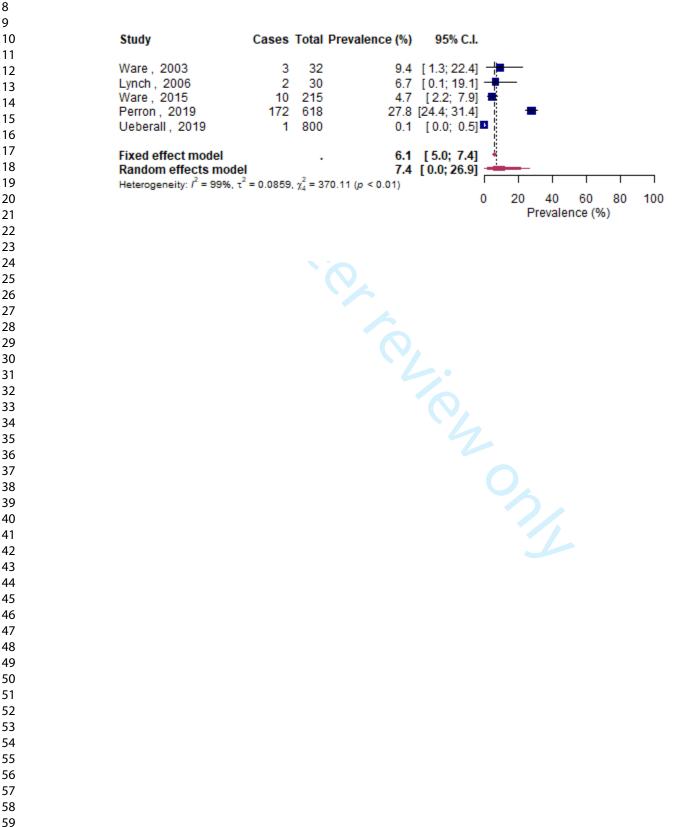
Appendix 21: Results for hallucinations

Study Cases Total Prevalence (%) 95% C.I. Rog, 2007 1.6 [0.0; 6.7] Ware, 2015 0.5 [0.0; 2.0] \$ Cremer-Schaeffer, 2019 13 2017 0.6 [0.3; 1.0] 0.0 [0.0; 0.3] Cremer-Schaeffer, 2019 0 656 Cremer-Schaeffer, 2019 6 393 1.5 [0.5; 3.0] 🖗 Sagy, 2019 3 239 1.3 [0.2; 3.2] Fixed effect model 0.4 [0.2; 0.7] . Random effects model 0.5 [0.1; 1.3] Heterogeneity: $l^2 = 69\%$, $\tau^2 = 0.0012$, $\chi_5^2 = 16.26$ (p < 0.01) Prevalence (%)

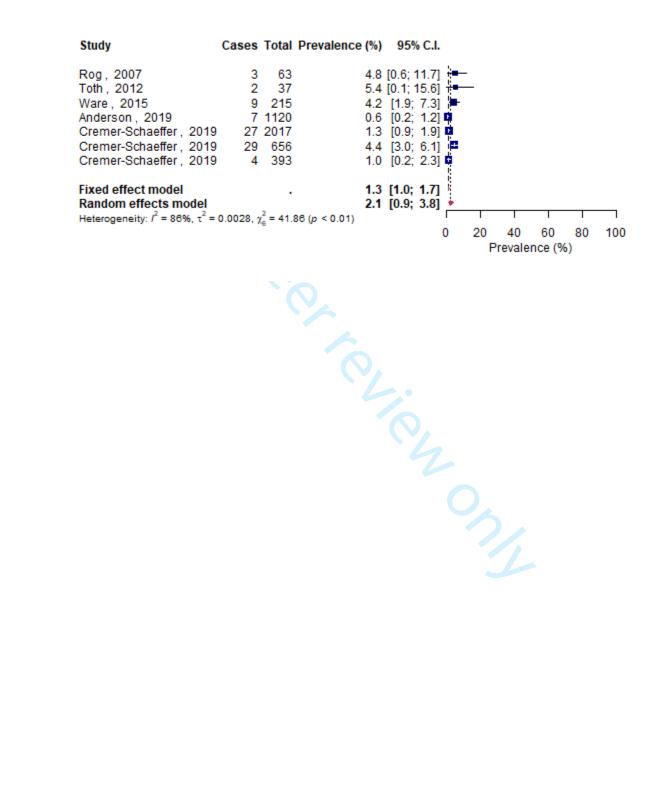
Appendix 22: Results for delusions


Study

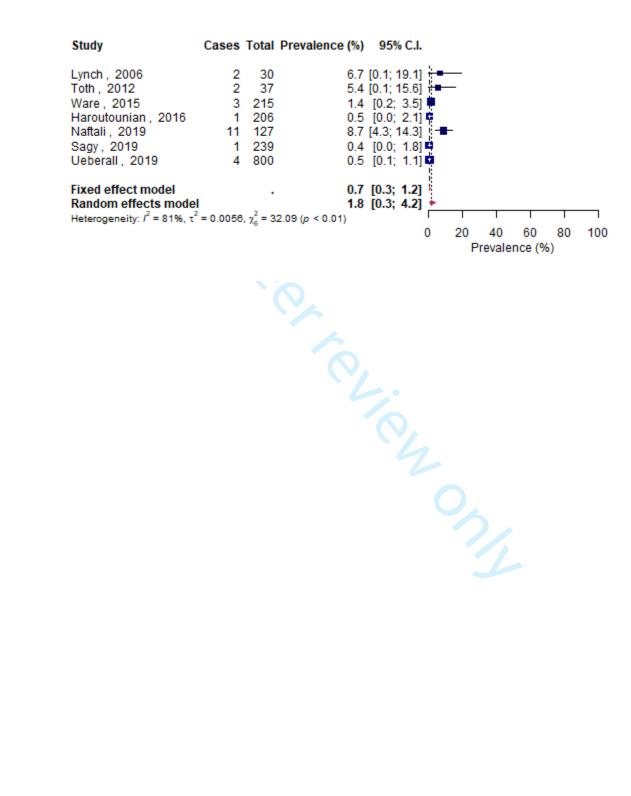
Cases Total Prevalence (%) 95% C.I.


	3	0	20	40	60	80	100
Random effects model Heterogeneity: $l^2 = 0\%$, $\tau^2 = 0$, γ	$c^2 = 1.27 (p = 0.74)$	0.4 [0.2; 0.6]	-			-	
Fixed effect model		0.4 [0.2; 0.6]					
Cremer-Schaeffer, 2019	1 393	0.3 [0.0; 1.1]					
Cremer-Schaeffer, 2019	3 656	0.5 [0.1; 1.2]					
Cremer-Schaeffer, 2019	10 2017	0.5 [0.2; 0.9] 🖣					
Ware, 2015	0 215	0.0 [0.0; 0.8]					

Prevalence (%)

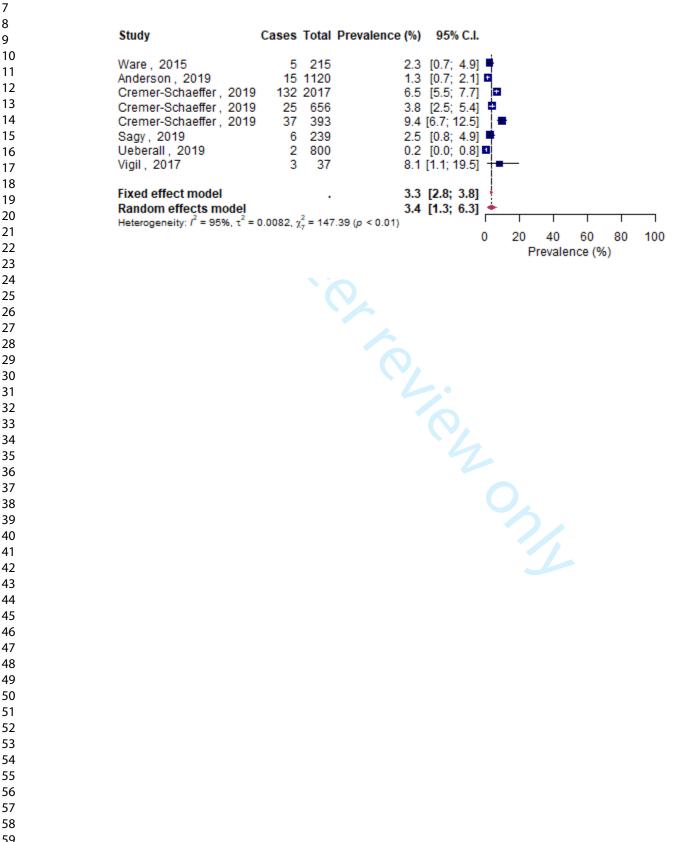

Appendix 23: Results for paranoia

Appendix 24: Results for anxiety


Appendix 25: Results for euphoria

Appendix 26: Results for memory impairment

8									
9	Study	Cases	Total Pr	revalence ((%)	95% C.I.			
10									
11	Toth , 2012	5				[4.1; 26.7]			
12	Ware, 2015	4				[0.4; 4.2] 🖬			
12	Cremer-Schaeffer, 2019		2017			[4.0; 5.9]			
14	Cremer-Schaeffer, 2019		656			[0.9; 3.0]			
15	Cremer-Schaeffer, 2019		393			[3.3; 7.8]			
16	Naftali, 2019 Sagy, 2019		127 239			[25.9; 42.3] [0.8; 4.9]	-		
17	Ueberall, 2019		800			[0.0; 0.9]			
17	0000000, 2010					[0.0, 0.0]			
19	Fixed effect model				3.3	[2.8; 3.9]			
20	Random effects model		_		5.3	[2.1; 9.6]	•		
20	Heterogeneity: $I^2 = 96\%$, $\tau^2 =$	0.0126, ງ	(₇ = 172.53	8 (p < 0.01)		1	1 1	1 1	
22						0	20 40	60 80	100
23							Prevaler	1Ce (%)	
24									
25									
26									
27									
28									
29									
30									
31									
32									
33									
34									
35									
36									
37									
38									
39									
40									
41									
42									
43									
44									
45									
46									
47									
48									
49									
50									
51									
52									
53									
54									
55									
56 57									
57									
58									


Appendix 27: Results for confusion

Appendix 28: Results for disorientation

Study Cases Total Prevalence (%) 95% C.I. 19 380 5.0 [3.0; 7.4] Hoggart, 2015 Cremer-Schaeffer, 2019 55 2017 2.7 [2.1; 3.5] Cremer-Schaeffer, 2019 3 656 0.5 [0.1; 1.2] Cremer-Schaeffer, 2019 8 393 2.0 [0.8; 3.7] 0.4 [0.0; 1.8] Sagy, 2019 1 239 Ueberall, 2019 6 800 0.8 [0.2; 1.5] Fixed effect model 1.8 [1.4; 2.2] . Random effects model 1.6 [0.6; 3.0] Heterogeneity: $l^2 = 88\%$, $\tau^2 = 0.0028$, $\chi_5^2 = 41.05$ (p < 0.01) Prevalence (%)

Appendix 29: Results for impaired attention

Study

Ware, 2015

Appendix 30: Results for falls

5 215

Cases Total Prevalence (%) 95% C.I.

1

10

Prevalence (%)

5

15

20

2.3 [0.7; 4.9]

0

to beet terms only

2	
3	
4	
5 6 7	
6	
7	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20 21 22 23	
21	
22	
23	
24	
25	
24 25 26 27 28 29	
27	
20	
20	
29	
30	
31	
32	
33	
24	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	

59

Appendix 31: Results for motor vehicle accidents

Study	Cases Total Prevale	nce (%) 95% C.I.	
Ware , 2015	1 215	0.5 [0; 2] — 0	5 10 15 20 Prevalence (%)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

95% C.I.

21.2 [17.3; 25.3]

1.9 [1.0; 3.2]

0.0 [0.0; 0.2]

2.5 [1.9; 3.3]

4.4 [0.0; 19.9]

0

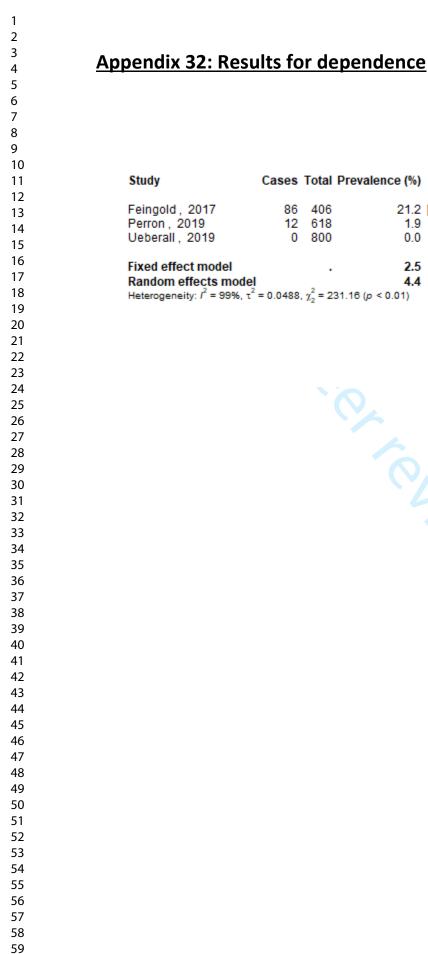
20

40

Prevalence (%)

60

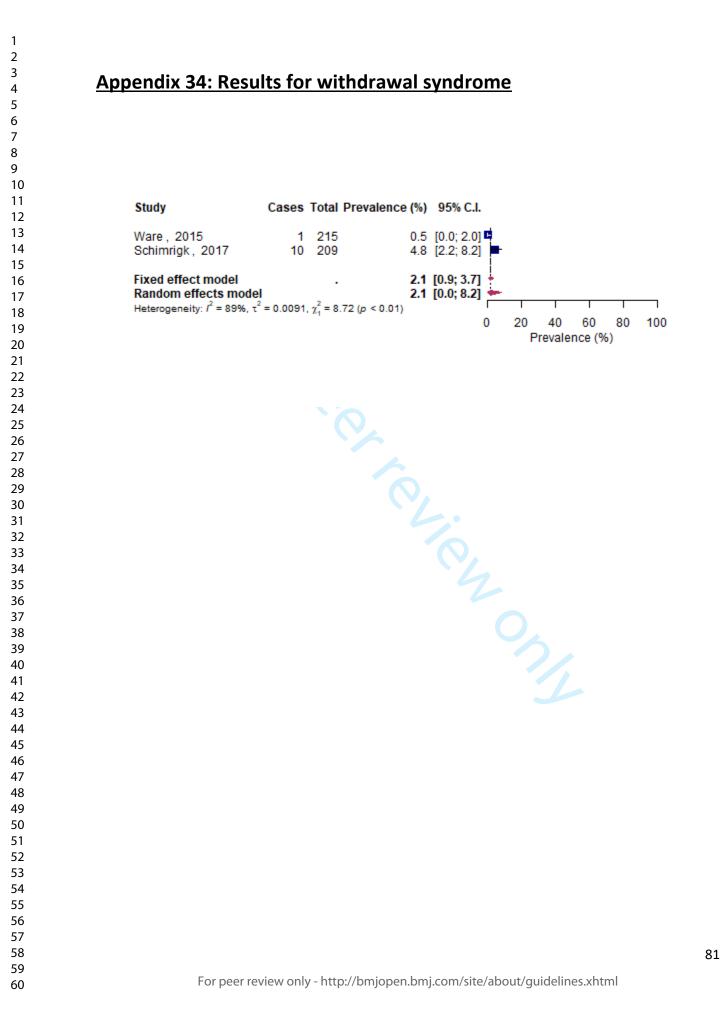
80


100

Cases Total Prevalence (%)

86 406

0 800


618 12

Appendix 33: Results for withdrawal symptoms

Study	Cases Total Prevale	nce (%) 95% C.I.	
Perron, 2019	419 618	67.8 [64.1; 71.4] 0	20 40 60 80 100 Prevalence (%)

BMJ Open

2					
Section/top	Item	PRISMA checklist item	PRISMA	Recommendations for reporting	Check
ić (page no)			harms	harms in systematic reviews	if done
_6			(minimum)	(desirable)	
Fitle	1	List Cothe annual an an a thirt	C		v
Teitle (3)	1	Identify the report as a systematic review, meta-analysis, or both.	Specifically mention "harms"	—	Х
9		nou anarysis, or oour.	or other related		
10 11			terms, or the		
12			harm of interest		
Abstract			in the review.		
Abstract Structured	2	Provide a structured summary including, as		Abstracts should report any analysis of	Х
summary (4)	2	applicable: background; objectives; data		harms undertaken in the review, if harms	Λ
16		sources; study eligibility criteria,		are a primary or secondary outcome.	
17		participants, and interventions; study			
18 19		appraisal and synthesis methods; results;			
20		limitations; conclusions and implications of key findings; systematic review			
20		registration number.			
- Introduction					
Ra tionale (5)	3	Describe the rationale for the review in the	—	5	Х
24		context of what is already known.		in methods section which events are	
25				considered harms and provide a clear	
26 27				rationale for the specific harm(s), condition(s), and patient group(s) included	
27 28				in the review.	
Objectives (5)	4	Provide an explicit statement of questions	N –	PICOS format should be specified,	Х
30		being addressed with reference to		although in systematic reviews of harms	
31		participants, interventions, comparisons,		the selection criteria for P, C, and O may	
32		outcomes, and study design (PICOS).		be very broad (same intervention may have been used for heterogeneous indications in	
33				a diverse range of patients)	
34 Nethods					
Protocol and	5	Indicate if a review protocol exists, if and		No specific additional information is	Х
registration (6)		where it can be accessed (eg, web		required for systematic reviews of harms.	
38		address), and, if available, provide registration information including			
39		registration number.			
Engibility	6	Specify study characteristics (eg, PICOS,	_	Report how handled relevant studies	Х
criteria (6)		length of follow-up) and report		(based on population and intervention)	
42		characteristics (eg, years considered,		when the outcomes of interest were not	
43 44		language, publication status) used as criteria for eligibility, giving rationale.		reported. Report choices for specific study designs	
45		cincina for engiginity, giving fationale.		Report choices for specific study designs and length of follow-up.	
H ormation	7	Describe all information sources (eg,		Report if only searched for published data,	Х
storurces (7)		databases with dates of coverage, contact		or also sought data from unpublished	
48		with study authors to identify additional		sources, from authors, drug manufacturers	
49		studies) in the search and date last searched.		and regulatory agencies. If includes unpublished data, provide the source and	
50 51		ระสเบาเยน.		the process of obtaining it.	
Secarch (7)	8	Present full electronic search strategy for		If additional searches were used	Х
53		at least one database, including any limits		specifically to identify adverse events,	
54		used, such that it could be repeated.		authors should present the full search	
55				process so it can be replicated.	
56					
57					
58 59					
60		For peer review only - http://bmjop	oen.bmj.com/site/ab	pout/guidelines.xhtml	
00		, , , , , , , , , , , , , , , , , , , ,	,	2	

BMJ Open

1 2					
Study Selection (8) 5 6 7 8 9	9	State the process for selecting studies (ie, screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).		If only included studies reporting on adverse events of interest, defined if screening was based on adverse event reporting in title/abstract or full text. If no harms reported in the text, report if any attempt was made to retrieve relevant data from authors.	Х
Dota collection ppocess (9) 13 14	10	Describe method of data extraction from reports (eg, piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	—	No specific additional information is required for systematic reviews of harms.	Х
Pata items (9) 16 17 18 19 20 21 22 23 24 25 26 27 28	11	List and define all variables for which data were sought (eg, PICOS, funding sources) and any assumptions and simplifications made.	_	Report the definition of the harm and seriousness used by each included study (if applicable). Report if multiple events occurred in the same individuals, if this information is available. Consider if the harm may be related to factors associated with participants (eg, age, sex, use of medications) or provider (eg, years of practice, level of training). Specify if information was extracted and how it was used in subsequent results. Specify if extracted details regarding the specific methods used to capture harms (active/passive and timing of adverse event).	х
Resk of bias in Bolividual Studies (10) 32 33 34	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	<u> </u>	The risk of bias assessment should be considered separately for outcomes of benefit and harms.	Х
Symmary Beasures (11)	13	State the principal summary measures (eg, risk ratio, difference in means).	-2	No specific additional information is required for systematic reviews of harms.	Х
Synthesis of Results (11) 39 40	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (eg, I ²) for each meta-analysis.	Specify how zero events were handled, if relevant.		
Kalsk of bias a&acoss studies (43) 44 45	15	Specify any assessment of risk of bias that may affect the cumulative evidence (eg, publication bias, selective reporting within studies).	_	Present the extent of missing information (studies without harms outcomes), any factors that may account for their absence, and whether these reasons may be related to the results.	Х
Ad ditional atp alyses (12) 48 49 50 51 52 Results	16	Describe methods of additional analyses (eg, sensitivity or subgroup analyses, meta-regression), if done, indicating which were prespecified.		Sensitivity analyses may be affected by different definitions, grading, and attribution of adverse events, as adverse events are typically infrequent or reported using heterogeneous classifications. Report the number of participants and studies included in each subgroup.	Х
Study selection (13) 55 56 57 58	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each	_	If a review addresses both efficacy and harms, display a flow diagram specific for each (efficacy and harm).	Х
59 60		For peer review only - http://bmjop	pen.bmj.com/site/ab	oout/guidelines.xhtml	

1					
2 3 4		stage, ideally with a flow diagram.			
5 Study characteristics (14) 9 10 11 12	18	For each study, present characteristics for which data were extracted (eg, study size, PICOS, follow-up period) and provide the citations.	Define each harm addressed, how it was ascertained (eg, patient report, active search), and over what time period.	Add additional characteristics to: "P" (population) patient risk factors that were considered as possibly affecting the risk of the harm outcome. "I" (intervention) professional expertise/skills if relevant (for example if the intervention is a procedure). "T" (time) timing of all harms assessments	Х
Risk of bias Within studies (13) 16 17	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).		and the length of follow-up. Consider the possible sources of biases that could affect the specific harm under consideration within the review. Sample selection, dropouts and measurement of adverse events should be evaluated	Х
18 19 Roesults of intividual Stadies (16) 23	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence	—	separately from the outcomes of benefit as described in item 12, above. Report the actual numbers of adverse events in each study, separately for each intervention.	Х
24 Synthesis of regults (17) 27	21	intervals, ideally with a forest plot. Present results of each meta-analysis done, including confidence intervals and measures of consistency.	Describe any assessment of possible causality.	If included data from unpublished sources, report clearly the data source and the impact of these studies to the final systematic review.	Х
28 Bisk of bias across studies (18) Additional	22	Present results of any assessment of risk of bias across studies (see item 15).	0,-	No specific additional information is required for systematic reviews of harms. See item 15 above.	Х
analysis (18) 33	23	Give results of additional analyses, if done (eg, sensitivity or subgroup analyses, meta-regression (see item 16)).	Ċ,	No specific additional information is required for systematic reviews of harms.	Х
34 Summary of Addence (18) 37 38 39	24	Summarise the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (eg, healthcare providers, users,	-2	No specific additional information is required for systematic reviews of harms.	Х
招印 itations (418) 42 43	25	and policy makers). Discuss limitations at study and outcome level (eg, risk of bias), and at review level (eg, incomplete retrieval of identified research, reporting bias).	_	Recognise possible limitations of meta- analysis for rare adverse events (ie, quality and quantity of data), issues noted previously related to collection and	Х
44 45 nclusions (48) 47 48 49 50 E ynding	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	_	reporting. State conclusions in coherence with the review findings. When adverse events were not identified we caution against the conclusion that the intervention is "safe," when, in reality, its safety remains unknown.	Х
52 53 54 - 55	27	Describe sources of funding for the systematic review and other support (eg, supply of data); role of funders for the systematic review.	—	No specific additional information is required for systematic reviews of harms.	Х
56 57 58 59		For peer review only - http://bmior	aan hmi com/site/ak	oout/quidelines.yhtml	