Lower vaccine-acquired immunity in the elderly population following two-dose BNT162b2 vaccination is alleviated by a third vaccine dose

Supplementary Figure 1. Anti-SARS-CoV-2 spike protein antibody isotype response after vaccination. A flow cytometry-based assay using the full Spike protein (SFB) assay was used to determine antibody isotype in the same 312 vaccinated individuals described in Figure 1. (A) IgM. Median of group values at day 0, 21, 90 and 180: was 0.4, 1.04, 0.59 and 0.64%, respectively. Antibody levels below the maximum range (7.385) were considered baseline values . *, p < 0.001, Friedman test; (B) IgG1. Median of group values at day 0, 21, 90 and 180: was 0.12, 51.8, 60 and 39.7%, respectively. Antibody levels below the maximum range (7.893) were considered baseline values. *, p < 0.001, Friedman test; (C) IgG2. Median of values at day 0, 21, 90 and 180: was 0.37, 0.52, 1.3 and 0.3, respectively. Antibody levels below the maximum range (1.44) were considered baseline values. *, p < 0.001, Friedman test; (D) IgG3. Median of values at day 0, 21, 90 and 180: was 0.08, 12.53, 11.8 and 1, respectively. Antibody levels below the maximum range (3.19) were considered baseline values. *, p < 0.001, Friedman test; (E) IgG4. Median of values at day 0, 90 and 180: was 0.03, 0.06, 0.38 and 0.35, respectively. Antibody levels below the maximum range (1.953) were considered baseline values. *, p < 0.001, Friedman test. Median of group values are indicated by a red bar. (F) IgM, (G) IgG1 and (H) IgG3 antibody levels comparison between the analyzed age groups: <60 (n=186) and ≥60 (n=144), at different time points (day 0, 21 and 90). The Median of group values are represented as a black line through the dots. The red lines or boxes represent the maximum range of the samples. *, p < 0.001, Mann Whitney test.

Supplementary Figure 2. Linear correlations between participant's age and SARS-CoV-2 specific antibody titer measured at different time after vaccination. Correlation was analyzed by simple linear regression at day 21, 90 and 180 for the Flow cytometry-based assay for the S-pike protein (SFB) (Higher panels); the commercial RBD Roche S assay (mid panels); and the sVNT assay (Lower panels).

Supplementary Figure 3. CD4 Th2 responses. (A) Kinetics of Spike-protein-specific Th2 cells overtime in vaccinees. CD4 Th2 cells were assayed on a subset of vaccinees \on a subset of vaccinees (n =71) by IL4/IL5/IL13 ELISPOT using 15 mer pool peptides. Data are presented are spot forming units (SFU) per million of PBMC from paired samples from vaccinated individuals at 4 time points. Each data point represents the normalized mean spot count from duplicate wells for one study participant, after subtraction of the medium-only control . The median values of each group are represented by a red line and were at day 0, 21, 90 and 180: 4.1, 10.4, 10 and 7.4 SFU for CD4 Th2 T cells. *, p < 0.01, (B) Comparison between the analyzed age groups at day 0, 21, 90 and 180, (n=83), <60: (n= 51) and \geq 60 (n=20). Median values are indicated by a dark line. *, p < 0.01Mann Whitney test. *, p < 0.01, Mann Whitney test. (C) Box plots (with whiskers) showing difference in CD4 Th2 cell responses measure in the different assays between days 180 and 90 for paired samples for both age groups, <60: (n= 51), and \geq 60 (n=20). p = 0.003, Mann Whitney test.

Supplementary Figure 4. Detection of expression the Spike protein from different strains of SARS-CoV-2 on the surface of HEK203 transduced cells. The flow cytometry-based assay using the full Spike protein (SFB) assay was used as described in Figure 1. The serum used to detect S protein expression of different SARS-CoV-2 (W, Wuhan; D, Delta; and O, Omicron (BA.1) strains) was from an individual who recovered from a previous infection and then was vaccinated with two doses of the BNT162b2 vaccine and taken at 90 days postsecond doses.

Supplementary Figure 5. Representative gating strategy for SFB assay to determine spike-specific antibody response. Cells were gated on: (A) FSC-A/SSC-A to exclude cell debris, (B) FSC-A/FSC-H to select for single cells, (C) FSC-H/PI to select for live cells (PI-negative population), (D, E) FITC/Alexa Fluor 647. Binding is determined by the percentage of GFP-positive S protein-expressing cells that are bound by specific antibody, indicated by the events that are Alexa Fluor 647-and FITC-positive (Gate 2). (D) Healthy control individual plasma, 1:100 diluted; (E) COVID-19 patient plasma, 1:100 diluted

Characteristics	<60 years	≥60 years	Total cohort number (%)
Total	178 (57.1)	134 (42.9)	312
Gender			
Male (%)	51 (28.3)	79 (61.7)	130 (41.7)
Female (%)	127 (69.7)	55 (30.3)	182 (58.3)
Ethnicity			
Chinese (%)	106 (46.9)	120 (53.1)	226 (72.4)
Indians (%)	14 (60.9)	9 (39.1)	23 (7.6)
Malays (%)	26 (89.7)	3 (10.3)	29 (8.8)
Others (%)	32 (94.1)	2 (5.9)	34 (11.2)
Median years (minimum-maximum)	35 (22-59)	69 (60-82)	50.85 (22-82)

Supplementary Table 1. Characteristics of the study population

Assays	Proportion of volunteers with response above individual baseline * (%)							
	At day 21	At day 90	At day 180					
Anti-spike protein IgG (SFB)	306/312 (98)	311/312 (99)	311/312 (99)					
Anti-RBD IgG (Roche S)	310/312 (99.3)	312/312 (100)	312/312 (100)					
sVNT	247/312 (79.1)	309/312 (99)	293/312 (93.9)					
B cell Elispot	17/35 (48.6)	28/35 (80)	30/35 (85.7)					
IL-2 T cells	153/155 (98.7)	155/155 (100)	154/155 (99.3)					
IFNγ T cells	144/155 (92.9)	149/155 (96.1)	153/155 (98.7)					
CD8 T cell Elispot	39/72 (54.2)	54/72 (75)	29/72 (40.3)					
CD4 Th1 Elispot	54/78 (69.2)	66/78 (84.6)	65/78 (83.3)					
CD4 Th2 Elispot	42/71 (59)	42/71 (59)	35/71 (49)					

Supplementary Table 2. Immune reactivity across timepoints

* Paired samples

Supplementary Table 3. Long-term immune responses in vaccinated individuals

A.000.00	Proportion of indiv			
Assays	180 compared wit	h day 90 (%)*		
	Total population	< 60 years	≥60 years	P value**
Anti-spike protein IgG (SFB)	243/312 (78)	176/178 (98.9)	66/134 (49.2)	0.0001
Anti-RBD IgG (Roche S)	243/312 (77.8)	153/178 (85.9)	89/134 (66.4)	0.0001
sVNT	243/312 (77.5)	119/178 (66.8)	123/134 (91.8)	NS
B cell Elispot	10/34 (29.4)	3/16 (18.75)	7/18 (52.9)	NS
IL-2 T cells	97/155 (62.5)	56/81 (69.1)	40/74 (54)	NS
IFNγ T cells	72/155 (46.5)	49/81 (60.4)	24/74 (32)	0.0003
CD8 T cell Elispot	45/72 (67.9)	31/45 (68.9)	13/27 (48.1)	NS
CD4 Th1 Elispot	37/79 (46.8)	21/51 (41.2)	16/28 (57.1)	NS
CD4 Th2 Elispot	35/71 (50.7)	30/51 (58.2)	11/20 (55)	NS

* Paired samples

** Difference between age groups

Days		21	90		180	
Median antibody response (% binding)	28.3%		41.98%		23.35%	
Proportion of low responders*				37.2		22.2
(n / tested number)	-		(116/312)		(88/312)	
Age (Years)	Ν	% of total cohort	Ν	% of total cohort	Ν	% of total cohort
<60	57	18.2	42	13.5	40	12.8
>60	99	31.7	74	23.7	48	13.5

Supplementary Table 4. Low responders as determined by the SFB assay

* Low responders are defined as fully vaccinated individuals with antibody response below cohort's median response at consecutive timepoints (%). For example, the low responders, at day 90, have antibody response below cohort's median response at both day 21, 90 and 180.

Days		21	90		180	
Median antibody response (U/ml)		50.28		927		677
Proportion of low responders* (n/tested number)		-	(*	36.5 114/312)	(31.4 98/312)
Age (Years)	Ν	% of total cohort	Ν	% of total cohort	Ν	% of total cohort
<60	60	19.2	32	10.25	26	8.3
>60	99	31.7	82	26.2	69	22

Supplementary Table 5. Low responders as determined by Roche S

Supplementary Table 6. Low responders as determined by sVNT

Days		21		90	180		
Median inhibition (%l)	56.39			89.87	67.4		
Proportion of low							
responders*				39.1		34.9	
(n/tested number)		-		(122/312)	(109/312)		
Age (Years)	N	% of total cohort	Ν	% of total cohort3	Ν	% of total cohort	
<60	53	16.9	38	12.18	35	11.2	
>60	104	33	84	26.9	74	23.7	

Supplementary Table 7. Low responders as determined by measurement of IL-2

production by T cells

Days		21		90		180
Median antibody response (pg/ml)		54.48		89.39		78.06
Proportion of low						
responders*		_		29.7		25.2
				(46/155)	(:	39/155)
(n / tested number)						,
Age (Years)	N	% of total cohort	N	% of total cohort	N	% of total cohort
<60	40	25.8	25	16.1	21	13.5
>60	37	23.9	21	13.5	18	11.6

Supplementary Table 8. Low responders as determined by measurement of IFN- γ

production by T cells

Days		21		90	180	
Median antibody response (U/ml)	11.69		33.81		32.43	
Proportion of low						
responders* (n / tested number)		-		32.2 (50/155)	(4	26.5 41/155)
Age (Years)	N	% of total cohort	N	% of total cohort	N	% of total cohort
<60	33	21.2	22	14.2	20	12.9
>60	45	29	28	18	21	13.5

* These values were determined as in Supplementary table 4. The median values were at day 21: 11.69 pg/ml, at day 90: 33.81 pg/ml and day 180: 32.43 pg/ml).

Supplementary Table 9. Low responders as determined by CD4 Th1 ELISPOT

Days		21	90			180										
Median antibody response (Spot forming units)	53.48		53.48		53.48		53.48		53.48		53.48		89.39			78.06
Proportion of low responders* (n / tested number)	-		19.2 (15/78)			6.4 (5/78)										
Age (Years)	N	% of total cohort	N	% of total cohort	N	% of total cohort										
<60	22	28.2	8	10.2	1	1.2										
>60	13	16.7	7	9	4	6.4										

Days		21		90		180
Median antibody response (Spot forming units)	44.85		71.65		180.42	
Proportion of low responders*				36		23.6
(n / tested number)		-		(26/72)		17/72)
Age (Years)	Ν	% of total cohort	N	% of total cohort	N	% of total cohort
<60	25	42.3	18	11.5	13	1.2
>60	11	57.7	8	7.7	4	6.4

Supplementary Table 10. Low responders as determined by CD8 ELISPOT

* These values were determined as in Table S4. The median values were at day 21: 44.85 SFU, at day 90: 71.65 SFU and day 180: 42.1 SFU).

Supplementary Table 11: Spike protein peptide pool utilized in whole blood cytokine release assay

	Spike pepti	de pool	
Amino Acid Sequence	Amino Acid Position	Amino Acid Sequence	Amino Acid Position
IRGWIFGTTLDSKTQ	101-115	SIIAYTMSLGAENSV	691-705
FGTTLDSKTQSLLIV	106-120	TMSLGAENSVAYSNN	696-710
CTFEYVSQPFLMDLE	166-180	STECSNLLLQYGSFC	746-760
VSQPFLMDLEGKQGN	171-185	NLLLQYGSFCTQLNR	751-765
TRFQTLLALHRSYLT	236-250	KNTQEVFAQVKQIYK	776-790
LLALHRSYLTPGDSS	241-255	VFAQVKQIYKTPPIK	781-795
RSYLTPGDSSSGWTA	246-260	KQIYKTPPIKDFGGF	786-800
CALDPLSETKCTLKS	291-305	TPPIKDFGGFNFSQI	791-805
LSETKCTLKSFTVEK	296-310	NFSQILPDPSKPSKR	801-815
CTLKSFTVEKGIYQT	301-315	AGFIKQYGDCLGDIA	831-845
FTVEKGIYQTSNFRV	306-320	QYGDCLGDIAARDLI	836-850
GIYQTSNFRVQPTES	311-325	GAALQIPFAMQMAYR	891-905
SASFSTFKCYGVSPT	371-385	QMAYRFNGIGVTQNV	901-915
TFKCYGVSPTKLNDL	376-390	FNGIGVTQNVLYENQ	906-920
YNYKLPDDFTGCVIA	421-435	DSLSSTASALGKLQD	936-950
WNSNNLDSKVGGNYN	436-450	TASALGKLQDVVNQN	941-955
LDSKVGGNYNYLYRL	441-455	AQALNTLVKQLSSNF	956-970
GGNYNYLYRLFRKSN	446-460	VLNDILSRLDKVEAE	976-990
YLYRLFRKSNLKPFE	451-465	LITGRLQSLQTYVTQ	996-1010
FRKSNLKPFERDIST	456-470	QLIRAAEIRASANLA	1011-1025
LKPFERDISTEIYQA	461-475	AEIRASANLAATKMS	1016-1030
GPKKSTNLVKNKCVN	526-540	APHGVVFLHVTYVPA	1056-1070
TNLVKNKCVNFNFNG	531-545	HWFVTQRNFYEPQII	1101-1115
FNFNGLTGTGVLTES	541-555	KEIDRLNEVAKNLNE	1181-1195
LTGTGVLTESNKKFL	546-560	LNEVAKNLNESLIDL	1186-1200
RAGCLIGAEHVNNSY	646-660	KNLNESLIDLQELGK	1191-1205
IGAEHVNNSYECDIP	651-665	IWLGFIAGLIAIVMV	1216-1230
SVASQSIIAYTMSLG	686-700		

Supplementary Table 12. Spike peptides (n=211) for CD8 ELISPOT

LTDEMIAQY	GQTGKIADY	NIDGYFKIY	SVYAWNRKR
VRFPNITNL	YRLFRKSNL	HVTYVPAQEK	GLTVLPPLL
VRFPNITNL	VRDPQTLEI	YYVGYLQPRTF	IYQTSNFRV
RLFRKSNLK	VYSTGSNVF	RFDNPVLPF	KFLPFQQF
VRFPNITNL	WTAGAAAYY	YLQPRTFLL	SLIDLQELGK
VYDPLQPEL	GVYYHKNNK	TREASVYAW	KWPWYIWLGF
YLOPRTFLL	VRDPQTLEI	LVRDLPQGF	TRFASVYAW
	HIMSEPOSA	IVREPNITNI	SGWTAGAAAYY
VI KGVKI HY	YYHKNNKSW	YI OPRTELI	VEKNIDGYE
	RI OSI OTYV	NSETRGVYY	II PDPSKPSK
VYSTGSNVF	FRVOPTESI	FRKSNIKPF	ORNEYEPOI
IRGDEVROI	REPNITNI CPE	YKTPPIKDE	
TREOTLIAI	I VKOLSSNE	CVADYSVLY	VEVSNGTHWE
OIYKTPPIK	INITREOTI	VKTPPIKDE	I POGESAI
TREOTLIAI	YOPYRWW	VYYHKNNKSW	OPYRVVVI
ROIAPGOTGK	TDEMIAOY		SILAYTMSI
TYVPAOEKNE	TOLPPAYTNSE	SIVREPNITNI	YRV/// SE
GVYEASTEK			
TIKSETVEK		KREDNPVI	GPKKSTNI
			IVSKHTPINI
			SADHG\A/EI
TREOTLIAI	KEEERDISTEI	SPRRARSV	
		KCYGVSPTK	RVVSTGSNVE
	VTNSETPGVVV	HWEVTOPNE	
VYSSANNCTE		VSSANNCTEEV	
IVNSASESTE		FIAGLIAIV	GVI OPRTEI
			GV/YYPDKV/F
	VTNSETPOVV	OSAPHC\A/E	
IYKTPPIKDE	NOKLIANOE	VSKHTPINI	
	VRI ERKSNI		
TRTOI PPAY	OI TPTWRVY		FPVI KGVKI
STECSNULLOY			EPOSAPHG\//F
VRDPOTI EI		KREDNPVI	SIVREPNITNI
TI DSKTOSI	VASOSIJAY	VPDKV/FRSSVI	
FRVOPTESI	FRVOPTESI	REDNPVI PE	VRDPOTI FII
	VEVSNGTHW		
TSNOVAVLY	NIDSKVGGNY	PYRV/VI SF	FRSSVIHST
KIADYNYKI	TEIL PVSMTK	YRI FRKSNI	GINASV/VNIOK
GRIOSIOTY	KCTI KSETVEK	KTSVDCTMY	KSTNI VKNK
GRIOSLOTY	YLOPRTELLK	ASANI AATK	KMSECVI GOSK
VTYVPAOEK	NITREOTI	GRI OSI OTY	FOPTNGVGY
NYNYI YRI F	TILALHRSY	YPDKVERSSV	OYIKWPWYIW
SPRRARSVA	IVREPNITNI	VADYSVLY	GVVFI HVTY
OPYRV///	ARSVASOSI		GPKKSTNI V
KVFRSSVI H		SIGAENSVAY	RVDFCGKGY
YEPLOSYGE	GAEHVNNSY	KI NDI CETNVY	
	SSANNCTEEY	YLOPRTFLL	AHEPREGVE
RLDKVEAEV	QYGSECTO	YTNSFTRGV	TLKSFTVFK
LADAGFIKOY	KRFDNPVLPF	GPKKSTNL	ASVYAWNRK
RVYSTGSNVF	FRKSNLKPF	SVASQSIIAY	FOFCNDPFI
YLQPRTFL	SEPVLKGVKL	NSFTRGVYY	

Peptide pool adapted from Zhang et al,(2021) and from Kared .(2021).

Supplementary Table 13. Spike peptides (n=315) for CD4 ELISPOT

MFVFLVLLPLVSSQC LVLLPLVSSQCVNLT PLVSSQCVNLTTRTQ SQCVNLTTRTQLPPA NLTTRTQLPPAYTNS RTQLPPAYTNSFTRG PPAYTNSFTRGVYYP TNSFTRGVYYPDKVF TRGVYYPDKVFRSSV YYPDKVFRSSVLHST **KVFRSSVLHSTQDLF** SSVLHSTQDLFLPFF HSTQDLFLPFFSNVT DLFLPFFSNVTWFHA PFFSNVTWFHAIHVS **NVTWFHAIHVSGTNG** FHAIHVSGTNGTKRF HVSGTNGTKRFDNPV TNGTKRFDNPVLPFN **KRFDNPVLPFNDGVY** NPVLPFNDGVYFAST PFNDGVYFASTEKSN **GVYFASTEKSNIIRG** ASTEKSNIIRGWIFG KSNIIRGWIFGTTLD IRGWIFGTTLDSKTQ IFGTTLDSKTOSLLI TLDSKTQSLLIVNNA **KTQSLLIVNNATNVV** LLIVNNATNVVIKVC LLALHRSYLTPGDSS

HRSYLTPGDSSSGWT LTPGDSSSGWTAGAA TQQLIRAAEIRASAN IRAAEIRASANLAAT EIRASANLAATKMSE SANLAATKMSECVLG AATKMSECVLGQSKR MSECVLGQSKRVDFC VLGQSKRVDFCGKGY SKRVDFCGKGYHLMS DFCGKGYHLMSFPQS KGYHLMSFPQSAPHG LMSFPQSAPHGVVFL PQSAPHGVVFLHVTY PHGVVFLHVTYVPAQ VFLHVTYVPAQEKNF VTYVPAOEKNFTTAP PAQEKNFTTAPAICH

DSSSGWTAGAAAYYV GWTAGAAAYYVGYLQ GAAAYYVGYLQPRTF YYVGYLQPRTFLLKY YLQPRTFLLKYNENG RTFLLKYNENGTITD LKYNENGTITDAVDC ENGTITDAVDCALDP ITDAVDCALDPLSET VDCALDPLSETKCTL LDPLSETKCTLKSFT SETKCTLKSFTVEKG CTLKSFTVEKGIYQT SFTVEKGIYQTSNFR EKGIYQTSNFRVQPT YQTSNFRVQPTESIV NFRVQPTESIVRFPN **QPTESIVRFPNITNL** SIVRFPNITNLCPFG FPNITNLCPFGEVFN TNLCPEGEVENATRE PFGEVFNATRFASVY VFNATRFASVYAWNR TRFASVYAWNRKRIS SVYAWNRKRISNCVA WNRKRISNCVADYSV RISNCVADYSVLYNS **CVADYSVLYNSASFS YSVLYNSASFSTFKC** YNSASFSTFKCYGVS QSYGFQPTNGVGYQP FQPTNGVGYQPYRVV NGVGYQPYRVVVLSF **KNFTTAPAICHDGKA** TAPAICHDGKAHFPR ICHDGKAHFPREGVF GKAHFPREGVFVSNG FPREGVFVSNGTHWF

GVFVSNGTHWFVTQR

SNGTHWFVTQRNFYE

HWFVTQRNFYEPQII

TQRNFYEPQIITTDN

FYEPQIITTDNTFVS

QIITTDNTFVSGNCD

TDNTFVSGNCDVVIG

FVSGNCDVVIGIVNN

NCDVVIGIVNNTVYD

VIGIVNNTVYDPLQP

VNNTVYDPLQPELDS

YQPYRVVVLSFELLH **RVVVLSFELLHAPAT** LSFELLHAPATVCGP LLHAPATVCGPKKST PATVCGPKKSTNLVK CGPKKSTNLVKNKCV KSTNLVKNKCVNFNF LVKNKCVNFNFNGLT KCVNFNFNGLTGTGV **FNFNGLTGTGVLTES** GLTGTGVLTESNKKF TGVLTESNKKFLPFQ TESNKKFLPFQQFGR **KKFLPFQQFGRDIAD** PFQQFGRDIADTTDA FGRDIADTTDAVRDP IADTTDAVRDPQTLE TDAVRDPQTLEILDI RDPQTLEILDITPCS TLEILDITPCSFGGV LDITPCSFGGVSVIT PCSFGGVSVITPGTN GGVSVITPGTNTSNQ VITPGTNTSNQVAVL GTNTSNQVAVLYQDV **SNQVAVLYQDVNCTE AVLYQDVNCTEVPVA QDVNCTEVPVAIHAD CTEVPVAIHADOLTP PVAIHADQLTPTWRV** DSTECSNLLLQYGSF CSNLLLQYGSFCTQL LLQYGSFCTQLNRAL VYDPLQPELDSFKEE LQPELDSFKEELDKY LDSFKEELDKYFKNH **KEELDKYFKNHTSPD** DKYFKNHTSPDVDLG KNHTSPDVDLGDISG SPDVDLGDISGINAS DLGDISGINASVVNI ISGINASVVNIQKEI NASVVNIQKEIDRLN VNIQKEIDRLNEVAK KEIDRLNEVAKNLNE RLNEVAKNLNESLID

VAKNLNESLIDLQEL

LNESLIDLQELGKYE

LIDLQELGKYEQYIK

GSFCTQLNRALTGIA TQLNRALTGIAVEQD RALTGIAVEQDKNTQ GIAVEQDKNTQEVFA EQDKNTQEVFAQVKQ NTQEVFAQVKQIYKT VFAQVKQIYKTPPIK VKQIYKTPPIKDFGG YKTPPIKDFGGFNFS PIKDFGGFNFSQILP FGGFNFSQILPDPSK NFSQILPDPSKPSKR ILPDPSKPSKRSFIE PSKPSKRSFIEDLLF SKRSFIEDLLFNKVT FIEDLLFNKVTLADA LLFNKVTLADAGFIK **KVTLADAGFIKQYGD** ADAGFIKQYGDCLGD FIKQYGDCLGDIAAR YGDCLGDIAARDLIC LGDIAARDLICAQKF AARDLICAQKFNGLT LICAOKENGLTVLPP QKFNGLTVLPPLLTD GLTVLPPLLTDEMIA LPPLLTDEMIAOYTS LTDEMIAQYTSALLA MIAQYTSALLAGTIT YTSALLAGTITSGWT ITGRLQSLQTYVTQQ LQSLQTYVTQQLIRA QTYVTQQLIRAAEIR QELGKYEQYIKWPWY **KYEQYIKWPWYIWLG** YIKWPWYIWLGFIAG **PWYIWLGFIAGLIAI** WLGFIAGLIAIVMVT IAGLIAIVMVTIMLC IAIVMVTIMLCCMTS MVTIMLCCMTSCCSC MLCCMTSCCSCLKGC

MLCCMTSCCSCLKGC MTSCCSCLKGCCSCG CSCLKGCCSCGSCCK KGCCSCGSCCKFDED SCGSCCKFDEDDSEP CCKFDEDDSEPVLKG DEDDSEPVLKGVKLHYT

NNATNVVIKVCEFQF	SFSTFKCYGVSPTKL	HADQLTPTWRVYSTG	LLAGTITSGWTFGAG
NVVIKVCEFQFCNDP	FKCYGVSPTKLNDLC	LTPTWRVYSTGSNVF	TITSGWTFGAGAALQ
KVCEFQFCNDPFLGV	GVSPTKLNDLCFTNV	WRVYSTGSNVFQTRA	GWTFGAGAALQIPFA
FQFCNDPFLGVYYHK	TKLNDLCFTNVYADS	STGSNVFQTRAGCLI	GAGAALQIPFAMQMA
NDPFLGVYYHKNNKS	DLCFTNVYADSFVIR	NVFQTRAGCLIGAEH	ALQIPFAMQMAYRFN
LGVYYHKNNKSWMES	TNVYADSFVIRGDEV	TRAGCLIGAEHVNNS	PFAMQMAYRFNGIGV
YHKNNKSWMESEFRV	ADSFVIRGDEVRQIA	CLIGAEHVNNSYECD	QMAYRFNGIGVTQNV
NKSWMESEFRVYSSA	VIRGDEVRQIAPGQT	AEHVNNSYECDIPIG	RFNGIGVTQNVLYEN
MESEFRVYSSANNCT	DEVRQIAPGQTGKIA	NNSYECDIPIGAGIC	IGVTQNVLYENQKLI
FRVYSSANNCTFEYV	QIAPGQTGKIADYNY	ECDIPIGAGICASYQ	QNVLYENQKLIANQF
SSANNCTFEYVSQPF	GQTGKIADYNYKLPD	PIGAGICASYQTQTN	YENQKLIANQFNSAI
NCTFEYVSQPFLMDL	KIADYNYKLPDDFTG	GICASYQTQTNSPRR	KLIANQFNSAIGKIQ
EYVSQPFLMDLEGKQ	YNYKLPDDFTGCVIA	SYQTQTNSPRRARSV	NQFNSAIGKIQDSLS
QPFLMDLEGKQGNFK	LPDDFTGCVIAWNSN	QTNSPRRARSVASQS	SAIGKIQDSLSSTAS
MDLEGKQGNFKNLRE	FTGCVIAWNSNNLDS	PRRARSVASQSIIAY	KIQDSLSSTASALGK
GKQGNFKNLREFVFK	VIAWNSNNLDSKVGG	RSVASQSIIAYTMSL	SLSSTASALGKLQDV
NFKNLREFVFKNIDG	NSNNLDSKVGGNYNY	SQSIIAYTMSLGAEN	TASALGKLQDVVNQN
LREFVFKNIDGYFKI	LDSKVGGNYNYLYRL	IAYTMSLGAENSVAY	LGKLQDVVNQNAQAL
VFKNIDGYFKIYSKH	VGGNYNYLYRLFRKS	MSLGAENSVAYSNNS	QDVVNQNAQALNTLV
IDGYFKIYSKHTPIN	YNYLYRLFRKSNLKP	AENSVAYSNNSIAIP	NQNAQALNTLVKQLS
FKIYSKHTPINLVRD	YRLFRKSNLKPFERD	VAYSNNSIAIPTNFT	QALNTLVKQLSSNFG
SKHTPINLVRDLPQG	RKSNLKPFERDISTE	NNSIAIPTNFTISVT	TLVKQLSSNFGAISS
PINLVRDLPQGFSAL	LKPFERDISTEIYQA	AIPTNFTISVTTEIL	QLSSNFGAISSVLND
VRDLPQGFSALEPLV	ERDISTEIYQAGSTP	NFTISVTTEILPVSM	NFGAISSVLNDILSR
PQGFSALEPLVDLPI	STEIYQAGSTPCNGV	SVTTEILPVSMTKTS	ISSVLNDILSRLDKV
SALEPLVDLPIGINI	YQAGSTPCNGVEGFN	EILPVSMTKTSVDCT	LNDILSRLDKVEAEV
PLVDLPIGINITRFQ	STPCNGVEGFNCYFP	VSMTKTSVDCTMYIC	LSRLDKVEAEVQIDR
LPIGINITRFQTLLA	NGVEGFNCYFPLQSY	KTSVDCTMYICGDST	DKVEAEVQIDRLITG
INITRFQTLLALHRS	GFNCYFPLQSYGFQP	DCTMYICGDSTECSN	AEVQIDRLITGRLQS
RFQTLLALHRSYLTP	YFPLQSYGFQPTNGV	YICGDSTECSNLLLQ	IDRLITGRLQSLQTY

Peptide pool adapted from Cassaniti et al (2021).

Supplementary References

- Zhang et al. Profiling CD8 + T cell epitopes of COVID-19 convalescents reveals reduced cellular immune responses to SARS-CoV-2 variants. *Cell Rep.* 36, 109708 (2021).
- 2. Kared et al, SARS-CoV-2-specific CD8+ T cell responses in convalescent COVID-19 individuals. *J. Clin. Invest.* **131**, e145476 (2021).
- 3. Cassaniti *et al.* SARS-CoV-2 specific T-cell immunity in COVID-19 convalescent patients and unexposed controls measured by ex vivo ELISpot assay. *Clin. Microbiol. Infect.* **27**,1029-1034 (2021).

[§] SCOPE cohort study group

Anthony Torres Ruesta¹, Vanessa Neo¹, Wendy Yehui Chen¹, Estelle Yi Wei Goh¹, Alice Soh Meoy Ong¹, Adeline Chiew Yen Chua¹, Samantha Yee Teng Nguee¹, Yong Jie Tan¹, Weiyi Tang¹.

¹A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore