Allosteric modulation of GPCR-induced β-arrestin trafficking and signaling by a synthetic intrabody

Mithu Baidya^{1#}, Madhu Chaturvedi^{1#}, Hemlata Dwivedi-Agnihotri^{1#}, Ashutosh Ranjan¹, Dominic Devost², Yoon Namkung³, Tomasz Maciej Stepniewski^{4,5}, Shubhi Pandey¹, Minakshi Baruah¹, Bhanupriya Panigrahi¹, Parishmita Sarma¹, Manish K. Yadav¹, Jagannath Maharana¹, Ramanuj Banerjee¹, Kouki Kawakami⁶, Asuka Inoue⁶, Jana Selent⁴, Stéphane A. Laporte^{2,3}, Terence E. Hébert² and Arun K. Shukla^{1*}

- Supplementary Figure 1
- Supplementary Figure 2
- Supplementary Figure 3
- Supplementary Figure 4
- Supplementary Figure 5
- Supplementary Figure 6

b

Supplementary Figure 1. Limited trypsin proteolysis of βarr1: (a) The trypsin digestion pattern of V₂Rpp^{WT}, V₂Rpp^{T360-1} or V₂Rpp^{T360-2} bound βarr1 is shown at indicated time points. βarr1 activated with 50-fold molar excess of different phosphopeptides was subjected to limited trypsin proteolysis at a trypsin: βarr1 ratio of 1:50. The proteolysis reaction was quenched with SDS buffer after 15 and 30min, and the digested fragments were separated by SDS-PAGE. There are evident differences in the fragments (Leu¹-Arg⁴¹⁸ and Leu¹-Arg¹⁸⁸) resulting from digestion of ligand-free and ligand bound (V₂Rpp^{WT}, V₂R^{T360-1} or V₂Rpp^{T360-2}) βarr1. **(b)**. Densitometry based quantification (mean±SEM) of the band intensities for different tryptic fragments generated from βarr1 at 15min time-point. Data from four independent experiments, normalized with respect to V₂R^{T360-2} (p=0.909); Leu¹ to Arg⁴¹⁸ (48kDa) band- Apo (p= 0.041), V₂R^{T360-1} (p= 0.0006), V₂R^{T360-2} (p=0.909); Leu¹ to Arg⁴¹⁸ (47kDa) band-Apo(p=0.9997), V₂R^{T360-1} (p= 0.8193), V₂R^{T360-2} (p=0.4146); Leu¹ to Arg²⁸⁵ (32kDa) band- Apo(p=0.0002), V₂R^{T360-1} (p= 0.0113), V₂R^{T360-2} (p=0.0015); Leu¹ to Arg¹⁸⁸ (21kDa) band- Apo,V₂R^{T360-1}, V₂R^{T360-2} (p<0.0001). Source data are provided as a Source Data file (*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001).

Supplementary Figure 2. Densitometry based quantification (mean±SEM) of trypsin fragments corresponding to 47kDa (Leu¹-Arg⁴¹⁸), 32kDa (Leu¹-Arg²⁸⁵) and 21kDa (Leu¹-Arg¹⁸⁸) generated in presence and absence of ScFv30 is shown (based on data presented in Figure 2E). Data from four independent experiments, normalized with respect to V_2R^{WT} - without ScFv30 condition, and analyzed using One-way ANOVA (mean±SEM; Dunnett's multiple comparisons test) is presented here. The exact p values are as follows: Leu¹ to Arg⁴¹⁸ (47kDa) band- Apo (p=0.9997), V_2R^{WT} (p <0.0001), V_2R^{T360-1} (p =0.0001), V_2R^{T360-2} (p =0.0008); Leul¹ to Arg¹⁸⁸ (21kDa) band- Apo, V_2R^{WT} , V_2R^{T360-1} , V_2R^{T360-2} (p =0.0001); Leul¹ to Arg²⁸⁵ (32kDa) band- Apo (p=0.9503), V_2R^{WT} (p=0.0003), V_2R^{T360-1} (p =0.0003), V_2R^{T360-2} (p =0.0004). Source data are provided as a Source Data file. (***p<0.001, **** p<0.0001)

4JQI			7DFA		
Residue	Interacting partner residue	Distance (Å)	Residue	Interacting partner residue	Distance (Å)
188 ARG N 188 ARG CA 188 ARG CA 188 ARG C 188 ARG O 188 ARG CB 188 ARG CB 188 ARG CB 188 ARG CG 188 ARG CG 188 ARG CG 188 ARG CG 188 ARG NH1 188 ARG NH1	197 LEU C 197 LEU O 197 LEU O 197 LEU N 196 PRO CA 196 PRO C 197 LEU N 197 LEU CA 197 LEU CA 197 LEU CB 190 PHE N 196 PRO CB 197 LEU O 343 VAL CG2 190 PHE CZ 343 VAL CG2 190 PHE CZ 343 VAL CG2 190 PHE CE1 341 SER C 341 SER C 342 ASP C 342 ASP C 340 SER O	4.00 2.90 3.84 3.90 3.42 3.58 2.77 3.73 3.76 3.81 3.99 3.72 3.94 3.57 3.57 3.57 3.83 3.52 3.84 3.84 3.89 2.78 3.07	188 ARG CG 188 ARG CG 188 ARG NE 188 ARG NH2 188 ARG NH2	190 PHE CE1 190 PHE CZ 190 PHE CE1 341 SER CA 340 SER O	3.68 3.63 3.97 3.95 3.17
285 ARG N 285 ARG CA 285 ARG CA 285 ARG C 285 ARG C 285 ARG C 285 ARG O 285 ARG O 285 ARG O 285 ARG O 285 ARG O 285 ARG CB 285 ARG CB 285 ARG CG 285 ARG CG 285 ARG CD 285 ARG NH1 285 ARG NH1 285 ARG NH1 285 ARG NH1	283 GLU C 283 GLU O 130 GLN O 130 GLN O 287 LEU N 336 GLY CA 287 LEU N 335 LEU C 335 LEU C 338 LEU CG 338 LEU CD1 130 GLN O 130 GLN O 131 PRO C 132 GLY N 336 GLY CA 333 GLY O 336 GLY N 333 GLY O 333 GLY O 135 ASP CG 135 ASP OD1 135 ASP OD2 333 GLY O	3.43 3.13 3.45 3.58 3.27 3.91 3.55 3.80 3.47 3.51 3.50 3.89 3.26 3.86 3.61 3.80 3.29 3.88 3.41 3.64 3.99 3.85 3.33 3.72	285 ARG CB 285 ARG CG 285 ARG CD 285 ARG CD 285 ARG CD 285 ARG CD 285 ARG NE 285 ARG NE 285 ARG NE 285 ARG NE 285 ARG NH1 285 ARG NH1 285 ARG NH1 285 ARG NH1 285 ARG NH2 285 ARG NH2	130 GLN O 130 GLN O 132 GLY N 132 GLY CA 132 GLY N 135 ASP OD2 135 ASP OD1 135 ASP OD1 135 ASP OD2 333 GLY O 336 GLY CA 336 GLY N 333 GLY O 135 ASP OD1 333 GLY O	3.98 3.55 3.66 3.85 3.55 3.31 3.70 3.53 3.04 3.58 3.58 3.58 3.58 3.47 3.82 3.04

Supplementary Figure 3. Inter residue contacts (within 4Å) corresponding to residues Arg¹⁸⁸ and Arg²⁸⁵ of 4JQI and 7DFA; calculated separately using CONTACT/ACT program within the CCP4 suite.

SmBiT-βarr1 + Lg-CAAX

1.6

а

e

Receptor-SmBiT + LgBiT-βarr1 + Ib30

ns

Supplementary Figure 4. Surface expression of V₂R constructs in different assays. (a-e) Surface expression of V₂R constructs in the NanoBiT assay as measured using whole cell ELISA, normalized with respect to V₂R^{WT} (treated as 100%), and analyzed using paired t-test (mean±SEM from four independent experiments, ns, non-significant). (f). Surface expression of V₂R constructs in ERK1/2 phosphorylation assays as measured using whole cell ELISA, normalized with respect to vector-transfected cells (treated as 1), and analyzed using One-way ANOVA (mean±SEM from seven independent experiments, Sidak's multiple comparisons test ns, non-significant). Source data are provided as a Source Data file.

Supplementary Figure 5. (a) Schematic representation of NanoBiT-based β arr1 recruitment assay (created with BioRender.com). **(b)** HEK-293 cells expressing the indicated receptor and β arr1 constructs together with Ib-CTL or Ib30 were stimulated with varying doses of AVP for 30min followed by the measurement of luminescence (mean±SEM from four independent experiments; normalized with luminescence signal for V₂R^{WT}at maximal ligand dose as 100%) (Two-way ANOVA, Tukey's multiple comparisons test; ****p<0.0001). Source data are provided as a Source Data file.

b

b

Supplementary Figure 6. Effect of Intrabody30 (Ib30) on agonist-induced cAMP response. (a) Ib30 does not affect agonist-induced cAMP response for the V₂R constructs as assessed using GloSensor assay. HEK-293 cells expressing the indicated constructs were stimulated with AVP followed by measurement of cAMP using luminescence-based readout. Data (mean±SEM) from seven independent experiments are presented here. (b). Surface expression of V₂R constructs in GloSensor assay as measured using whole cell ELISA (mean ±SEM, from seven independent experiments, One-way ANOVA, Dunnett's multiple comparison test). Source data are provided as a Source Data file.