SUPPLEMENTAL INFORMATION

Excreted antibiotics may be key to emergence of increasingly efficient antibiotic resistance in food-animal production

Johannetsy J. Avillan¹, Parvaneh Ahmadvand², Shao-Yeh Lu^{1,3}, Jennifer Horton¹, Jinxin Liu^{1,4} Eric Lofgren¹, Margaret A. Davis¹, ChulHee Kang², and Douglas R. Call^{1*}

¹Paul G. Allen School for Global Health, Washington State University, Pullman, WA 99164, USA; ²Department of Chemistry, Washington State University, Pullman, WA 99164, USA; ³U.S. Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Peoria, IL, 61604, USA; ⁴Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.

Table S1. Bacterial strains and plasmids used in this study.

Strains	Relevant genotype or phenotype ^a	Reference or source ^b	
Escherichia coli			
DH10B	F- mcrA Δ (mrr-hsdRMS-mcrBC) 80lacZ Δ M15 Δ lacX74 recA1 endA1 araD139 Δ (ara leu)7697 galU galK λ - rpsL nupG	Thermo Fisher	
DH10B/ pMMB207 \Delta bla TEM-1	Str ^r Cm ^r ; DH10B with pMMB207 vector and Tem-1 deletion (no-insert control)		
DH10B/ pMMB207\[Dh10B]/ a_{TEM-1}::bla_{CMY-2}	Str ^r Cm ^r Amp ^r ; DH10B with pMMB207 vector containing Tem-1 deletion complemented with <i>bla_{CMY-2}</i> and its native promoter (-574)	This study	
DH10B/ pMMB207 <i>Δbla</i> тем-1:: <i>blaстх-м-</i> 15	Str ^r Cm ^r Amp ^r ; DH10B with pMMB207 vector containing Tem-1 deletion complemented with <i>bla</i> _{CTX-M-15} and its native promoter (-506)	This study	
DH10B/ pMMB207\[Dhlatem-1::blakpc-3]	Str ^r Cm ^r Amp ^r ; DH10B with pMMB207 vector containing Tem-1 deletion complemented with <i>bla_{KPC-3}</i> and its native promoter (-377)	This study	
DH10B/ pMMB207∆ <i>bla</i> _{TEM-1} :: <i>bla_{CMY-2}-</i> Flagtagged	Str ^r Cm ^r Amp ^r ; DH10B with pMMB207 vector containing Tem-1 deletion complemented with <i>bla_{CMY-2}</i> , its native promoter (-574) and flag-tag after signal peptide sequence	This study	
DH10B/ pMMB207\[Dhlatem-1::blactx-m-15-Flagtagged]	Str ^r Cm ^r Amp ^r ; DH10B with pMMB207 vector containing Tem-1 deletion complemented with <i>bla_{CTX-M-15}</i> , its native promoter (-506) and flag-tag after signal peptide sequence	This study	
DH10B/ pMMB207∆ <i>bla</i> _{TEM-1} :: <i>bla_{KPC-3}-</i> Flagtagged	Str ^r Cm ^r Amp ^r ; DH10B with pMMB207 vector containing Tem-1 deletion complemented with <i>bla_{KPC-3}</i> , its native promoter (-377) and flag-tag after signal peptide sequence	This study	
Top10	F ⁻ mcrA Δ (mrr-hsdRMS-mcrBC) φ80lacZ Δ M15 Δ lacX74 recA1 araD139 Δ (ara- leu)7697 galU galK λ ⁻ rpsL(Str ^R) endA1 nupG	Invitrogen	
Top10/pET200:: <i>bla</i> CMY-2	Str ^r Kan ^r Amp ^r ; Top10 with the expression vector pET200 complemented with <i>bla</i> _{CMY-2}	This study	
Top10/pET200:: <i>bla</i> CTX-M-15	Str ^r Kan ^r Amp ^r ; Top10 with the expression vector pET200 complemented with <i>bla</i> _{CTX-} M-15	This study	
Top10/pET200:: <i>bla</i> _{KPC-3}	Str ^r Kan ^r Amp ^r ; Top10 with the expression vector pET200 complemented with <i>bla_{KPC-3}</i>	This study	
BL21 (DE3)	$F^- ompT hsdS_B (r_B^-, m_B^-) gal dcm (DE3)$	Invitrogen	
BL21/pET200:: <i>bla</i> CMY-2	Kan ^r Amp ^r ; Top10 with the expression vector pET200 complemented with <i>bla</i> _{CMY-2}	This study	
BL21/pET200::blactx-M-15	Kan ^r Amp ^r ; Top10 with the expression vector pET200 complemented with <i>blacTX-M-15</i>	This study	
BL21/pET200:: <i>bla</i> _{KPC-3}	Kan ^r Amp ^r ; Top10 with the expression vector pET200 complemented with <i>bla_{KPC-3}</i>	This study	
Plasmids			

pMMB207

Cm^r, Amp^r; RSF1010 derivative, IncQ lacI^q Tac oriT

$pMMB207\Delta bla_{TEM-1}$	Cm ^r ; pMMB207 vector with Tem-1 cassette deletion	This study
pET200	Kan ^r ; T7 expression vector, N-terminal peptide containing the X-press epitope and the 6× His tag	Invitrogen
Wild-type bacterial strains		
AR-0044	<i>bla</i> _{CTX-M-15} -positive <i>E. coli</i>	CDC
AR-0081	<i>bla</i> _{CMY-2} -positive <i>K. pneumoniae</i>	CDC
AR-0114	<i>bla</i> _{KPC-3} -positive <i>E. coli</i>	CDC

^{*a*}Amp^r, ampicillin resistant; Cm^r, Chloramphenicol resistant; Kan^r, kanamycin resistant; Str^r, streptomycin resistant; Nal^r, nalidixic acid resistant. ^{*b*}E. coli isolates AR-0044, AR-0081 and AR-0114 were obtained from the CDC and FDA antibiotic resistance isolate bank.

Table S2. Primers used in this study.

Primer	Sequence (5' – 3') ^{<i>a</i>}	Purpose	Reference
pMMB207 Tem-1 removal primers			
p207_InvPCR-F	CAGGCATCAACCCCGTCAGTAGCTGAACAG	Used for knocking out Tem-1 promoter and Tem-1 gene in pMMB207	This study
p207_InvPCR-R	GACGGGGTGTGATGCCTGGCAGTTTATGGCG	Used for knocking out Tem-1 promoter and Tem-1 gene in pMMB207	This study
p207_Tem-1_F	GTATCCGCTCATGAGACAATAACCCTGATA	Used to confirm the deletion of Tem-1 cassette	This study
p207_Tem-1_R	GTGCACCCAACTGATCTTCAGCATC	Used to confirm the deletion of Tem-1 cassette	This study
Cloning of AR genes into pMMB207∆Tem-1 primers			
Prom+_CTXM&CMY-2	ATTCG <u>GAGCTC</u> TGGGTCATCTCTTGCTAAAGTCA	Used for cloning of bla_{CMY-2} and $bla_{CTX-M-15}$ with promoter region (-574 and -506 respectively) into pMMB207 Δ Tem-1	This study
CMY-2_R	ATTCG <u>GGATCC</u> TTATTGCAGCTTTTCAAGAATGCG	Used for cloning of bla_{CMY-2} into pMMB207 Δ Tem-1 (includes TTA stop codon)	This study
CTXM-15_R	ATTCG <u>AAGCTT</u> TTACAAACCGTCGGTGACGATTTTAG	Used for cloning of <i>bla</i> _{CTX-M-15} into pMMB207∆Tem-1 (includes TTA stop codon)	This study
Prom_KPC-3_F	ATTCG <u>GAGCTC</u> GTCAGTATTACTTTGGTGATTCAG	Used for cloning of <i>bla_{KPC-3}</i> with promoter region (-377) into pMMB207 Δ Tem-1	This study
KPC-3_R	ATTCG <u>AAGCTT</u> TTACTGCCCGTTGACGC	Used for cloning of <i>bla_{KPC-3}</i> into pMMB207∆Tem-1 (includes TTA stop codon)	This study
M13R49	GAGCGGATAACAATTTCACACAGG	Used to verify the insertion of bla_{CMY-2} , $bla_{CTX-M-15}$ and bla_{KPC-3} genes into pMMB207 Δ Tem-1	Eurofins
TrcHis-R	CTTCTGCGTTCTGATTTAATCTG	Used to verify the insertion of bla_{CMY-2} , $bla_{CTX-M-15}$ and bla_{KPC-3} genes into pMMB207 Δ Tem-1	Eurofins

Protein expression constructs			
P-1_Flag-CMY-2-R	TGTTGTTCTGTTTTTGCCTTATCGTCGTCATCCTTGTA ATCGGCAGCAAATGTG	Used for insertion of Flag-tag after signal peptide of <i>bla_{CMY-2}</i>	This study
P-2_CMY-2-F	CTCTTTCTCCACATTTGCTGCCGATTACAAGGATGAC GACGATAAGGCAAAAACAG	Used for insertion of Flag-tag after signal peptide of <i>bla_{CMY-2}</i>	This study
P-1_Flag-CTXM-15-R	CTGTACGTCCGCCGTCTTATCGTCGTCATCCTTGTAA TCTTGCGCATAC	Used for insertion of Flag-tag after signal peptide of <i>bla_{CTX-M-15}</i>	This study
P-2_CTXM-15-F	GCTGTATGCGCAAGATTACAAGGATGACGACGATAA GACGGCGGAC	Used for insertion of Flag-tag after signal peptide of <i>blacTX-M-15</i>	This study
P1_KPC3_Flag-R	GACGAGGTTGGTCAGCTTATCGTCGTCATCCTTGTAA TCCGCGGTGGCAGAAAAG	Used for insertion of Flag-tag after signal peptide of <i>bla_{KPC-3}</i>	This study
P2_KPC3_Flag_F	GCTTTTCTGCCACCGCGGATTACAAGGATGACGACG ATAAGCTGACCAACCTCGTC	Used for insertion of Flag-tag after signal peptide of <i>bla_{KPC-3}</i>	This study
Enzyme kinetics constructs			
pET200-CTX-M-15-F	CACCATGGTTAAAAAATCACTGCGCCAGTT	Used for the cloning of blunt-end <i>bla</i> _{CTX-M-} 15 into pET200 vector for protein expression and purification (paired with primer CTXM-15_R)	This study
рЕТ200-СМҮ-2-F	CACCATGATGAAAAAATCGTTATGCTGCGCTCTG	Used for the cloning of blunt-end <i>bla_{CMY-2}</i> into pET200 vector for protein expression and purification (paired with primer CMY- 2_R)	This study
pET200-KPC-3-F	CACCATGTCACTGTATCGCCGTCTAGTT	Used for the cloning of blunt-end <i>bla_{KPC-3}</i> into pET200 vector for protein expression and purification (paired with primer KPC- 3_R)	This study
Τ7	TAATACGACTCACTATAGGG	Used to verify the insertion of <i>bla_{CMY-2}</i> , <i>bla_{CTX-M-15}</i> , and <i>bla_{KPC-3}</i> into pET200 vector	Eurofins
T7-term	CTAGTTATTGCTCAGCGGT	Used to verify the insertion of <i>bla</i> _{CMY-2} , <i>bla</i> _{CTX-M-15} , and <i>bla</i> _{KPC-3} into pET200 vector	Eurofins
qPCR primers			
qPCR_CMY-2_F	CACCCAGTCACGCAGCAAACG	Used for the identification of <i>bla_{CMY-2}</i> containing clones in the competition assays	This study
qPCR_CMY-2_R	GATAGCATCGCCGCCCAACAC	Used for the identification of <i>bla_{CMY-2}</i> containing clones in the competition assays	This study

qPCR_CTX-M-15_F	GACTGCCTGCTTCCTGGGTTG	Used for the identification of <i>bla</i> _{CTX-M-15} containing clones in the competition assays	This study
qPCR_CTX-M-15_R	GGTTGAGGCTGGGTGAAGTAAGTG	Used for the identification of <i>bla_{CTX-M-15}</i> containing clones in the competition assays	This study
qPCR_KPC-3_F	CTGACAACAGGCATGACGGT	Used for the identification of <i>bla_{KPC-3}</i> containing clones in the competition assays	This study
qPCR_KPC-3_R	GATAGAGCGCATGAAGGCCG	Used for the identification of <i>bla_{KPC-3}</i> containing clones in the competition assays	This study

^{*a*}Restriction enzyme sites are underline.

Fig. S1. Growth of *E. coli* **cultures without antibiotic.** Growth curves for CTX-M-15- (green square), CMY-2- (blue circle), and KPC-3- (purple triangle) producing strains of *E. coli* and for the plasmidonly negative control strain (red diamond). Average (+/- SEM) optical density for each time point was based on 15 experiments for which <u>no antibiotic</u> was added to the media. The tables below each figure present average area under the curve (AUC) with the standard error of the mean (SEM). Subscripts represent statistically nonsignificant grouping according to one-way ANOVA and Tukey's multiple comparisons test, (P<0.05).

	CMY-2	CTX-M-15	KPC-3	Control
х AUC	4.73 a	4.74 a	5.17 <u>b</u>	5.2 <u>b</u>
(SEM)	(0.09)	(0.12)	(0.1)	(0.1)

Fig. S2. Growth of *E. coli* cultures when exposed to ampicillin. Average growth curves (3 independent replicates, +/- SEM) for the CTX-M-15- (green square), CMY-2- (blue circle), and KPC-3- (purple triangle) producing strains of *E. coli* and for the plasmid-only negative control strain (red diamond) in the presence of 0, 8, 16, 32, 64, 128, 256, 512, 1,000, 1,500, 2,000, 2,500 or 3,000 μ g/ml of <u>ampicillin</u>. The tables below each figure present average area under the curve (AUC) with the standard error of the mean (SEM). Subscripts represent statistically nonsignificant grouping according to one-way ANOVA and Tukey's multiple comparisons test, (*P*<0.05).

C) 16 µg/ml ampicillin

D) 32 μg/ml ampicillin

← bla_{CMY-2} ← $bla_{CTX-M-15}$ ← bla_{KPC-3} ← pMMB207 Δbla_{Tem-1}

(control)

E) 64 µg/ml ampicillin

F) 128 µg/ml ampicillin

H) 512 µg/ml ampicillin

← bla_{CMY-2} ← $bla_{CTX-M-15}$ ← bla_{KPC-3} ← pMMB207∆ bla_{Tem-1}

(control)

K) 2,000 µg/ml ampicillin

L) 2,500 µg/ml ampicillin

- bla_{CMY-2} -- $bla_{CTX-M-15}$ -- bla_{KPC-3} pMMB207\Dalatembedblarem-1

(control)

Fig. S3. Growth of E. coli cultures when exposed to ceftiofur. Average growth curves (3 independent replicates, +/-SEM) for the CTX-M-15- (green square), CMY-2- (blue circle), and KPC-3- (purple triangle) producing strains of E. coli and for the plasmid-only negative control strain (red diamond) in the presence of 0, 4, 8, 16, 32, 64, 128, or 256 μ g/ml of **ceftiofur**. The tables below each figure present average area under the curve (AUC) with the standard error of the mean (SEM). Subscripts represent statistically nonsignificant grouping according to one-way ANOVA and Tukey's multiple comparisons test, (P < 0.05).

C) 8 µg/ml ceftiofur

E) 32 μg/ml ceftiofur

F) 64 µg/ml ceftiofur

G) 128 µg/ml ceftiofur

H) 256 µg/ml ceftiofur

• bla_{CMY-2} • $bla_{CTX-M-15}$ • bla_{KPC-3} • pMMB207 Δbla_{Tem-1} (control) Fig. S4. Growth of *E. coli* cultures when exposed to desfuroylceftiofur (DFC). Average growth curves (3 independent replicates, +/- SEM) for the CTX-M-15- (green square), CMY-2- (blue circle), and KPC-3- (purple triangle) producing strains of *E. coli* and for the plasmid-only negative control strain (red diamond) in the presence of 0, 4, 8, 16, 32, 64, 128, or 256 μ g/ml of <u>DFC</u>. The tables below each figure present average area under the curve (AUC) with the standard error of the mean (SEM). Subscripts represent statistically nonsignificant grouping according to one-way ANOVA and Tukey's multiple comparisons test, (*P*<0.05).

C) 8 µg/ml DFC

D) 16 µg/ml DFC

F) 64 µg/ml DFC

G) 128 µg/ml DFC

H) 256 µg/ml DFC

Figure S5. Growth of *E. coli* cultures when exposed to DFC-cysteine. Average growth curves (3 independent replicates, +/- SEM) for the CTX-M-15- (green square), CMY-2- (blue circle), and KPC-3- (purple triangle) producing strains of *E. coli* and for the plasmid-only negative control strain (red diamond) in the presence of 0, 4, 8, 16, 32, 64, 128, or 256 µg/ml of <u>DFC-cysteine</u>. The tables below each figure present average area under the curve (AUC) with the standard error of the mean (SEM). Subscripts represent statistically nonsignificant grouping according to one-way ANOVA and Tukey's multiple comparisons test, (*P*<0.05).

C) 8 µg/ml DFC-cysteine

D) 16 µg/ml DFC-cysteine

E 32 µg/ml DFC-cysteine

F) 64 µg/ml DFC-cysteine

G) 128 µg/ml DFC-cysteine

H) 256 µg/ml DFC-cysteine

Figure S6. Growth of *E. coli* cultures when exposed to DFC-dimer. Average growth curves (3 independent replicates, +/- SEM) for the CTX-M-15- (green square), CMY-2- (blue circle), and KPC-3- (purple triangle) producing strains of *E. coli* and for the plasmid-only negative control strain (red diamond) in the presence of 0, 4, 8, 16, 32, 64, 128, or 256 μ g/ml of <u>DFC-dimer</u>. The tables below each figure present average area under the curve (AUC) with the standard error of the mean (SEM). Subscripts represent statistically nonsignificant grouping according to one-way ANOVA and Tukey's multiple comparisons test, (*P*<0.05).

C) 8 µg/ml DFC-dimer

D) 16 µg/ml DFC-dimer

• bla_{CMY-2} • $bla_{CTX-M-15}$ • bla_{KPC-3} • $pMMB207\Delta bla_{Tem-1}$ (control)

E) 32 μg/ml DFC-dimer

F) 64 µg/ml DFC-dimer

G) 128 µg/ml DFC-dimer

H) 256 µg/ml DFC-dimer

Fig. S7. SDS-PAGE analysis for CTX-M-15, KPC-3, and CMY-2 after HPLC purification. Coomassie stained SDS-PAGE gel showing a mass standard (M), CTX-M-15 (31 kDa), KPC-3 (32 kDa) and CMY-2 (37 kDa) protein bands. These preparations were used to estimate catalytic efficiency for each enzyme.

Fig. S8. Kinetic assays of CTX-M-15, CMY-2, and KPC-3 against (A) ampicillin, (B) ceftiofur (C) desfuroylceftiofur (DFC), (C) DFC-cysteine, (D) DFC-dimer and (E) DFC-dimer. Velocity plots are used in the calculation of steady-state kinetic parameters (Table 1). GraphPad Prism (San Diego, CA) was used to draw the plots. Data points represent the average of three independent replicates +/- SEM. See Table 1, Fig. S7 and the methods section for additional information.

Fig. S9. *E. coli* cultures with ceftiofur added at 5 or 8 hours post inoculation. Average growth curves (3 independent replicates, +/- SEM) for the CTX-M-15- (green square), CMY-2- (blue circle), and KPC-3- (purple triangle) producing strains of *E. coli* and for the plasmid-only negative control strain (red diamond) with no antibiotic for the first five hours (left column) or for the first 8 hours (right column) before adding 4, 8, 16, 32, 64, 128, or 256 μ g/ml ceftiofur. The tables below each figure present average area under the curve (AUC) with the standard error of the mean (SEM). Subscripts represent statistically nonsignificant grouping according to one-way ANOVA and Tukey's multiple comparisons test, (*P*<0.05).

C) 4 µg/ml ceftiofur added at 5 hours

D) 4 µg/ml ceftiofur added at 8 hours

(control)

E) 8 μg/ml ceftiofur added at 5 hours

F) 8 µg/ml ceftiofur added at 8 hours

H) 16 µg/ml ceftiofur added at 8 hours

- bla_{CMY-2} - $bla_{CTX-M-15}$ + bla_{KPC-3} - $pMMB207\Delta bla_{Tem-1}$ (control)

I) 32 µg/ml ceftiofur added at 5 hours

J) 32 µg/ml ceftiofur added at 8 hours

K) 64 µg/ml ceftiofur added at 5 hours

L) 64 µg/ml ceftiofur added at 8 hours

K) 128 µg/ml ceftiofur added at 5 hours

L) 128 µg/ml ceftiofur added at 8 hours

L) 256 µg/ml ceftiofur added at 8 hours

• bla_{CMY-2} • $bla_{CTX-M-15}$ • bla_{KPC-3} • pMMB207 Δbla_{Tem-1} (control)