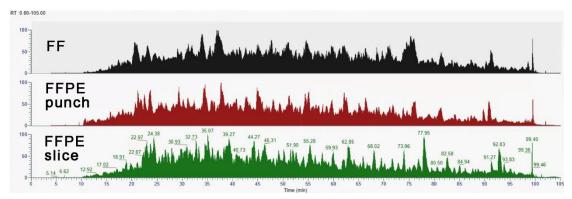
Supplementary information

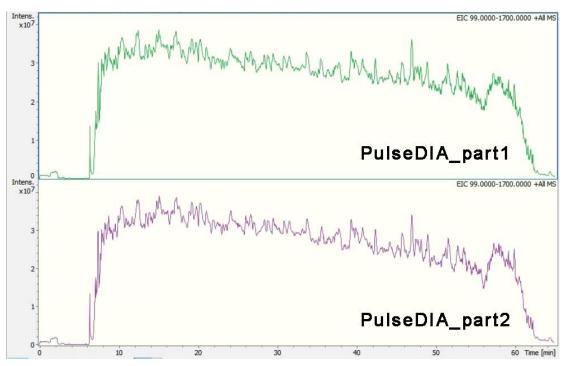
High-throughput proteomic sample preparation using pressure cycling technology

In the format provided by the authors and unedited

Supplementary Information


High-throughput proteomic sample preparation using pressure cycling technology

Xue Cai^{1,2}, Zhangzhi Xue^{1,2}, Chunlong Wu³, Rui Sun^{1,2}, Liujia Qian^{1,2}, Liang Yue^{1,2}, Weigang Ge³, Xiao Yi³, Wei Liu³, Chen Chen³, Huanhuan Gao³, Jing Yu³, Luang Xu³, Yi Zhu^{1,2*}, Tiannan Guo^{1,2*}


 Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China;
Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China;

 Westlake Omics (Hangzhou) Biotechnology Co., Ltd. No.1, Yunmeng Road, Cloud Town, Xihu District, Hangzhou (310024), Zhejiang, China;

*Correspondence: zhuyi@westlake.edu.cn; guotiannan@westlake.edu.cn

Supplementary Figure 1 | The extracted ion chromatograms for DDA-MS data of FF, FFPE punches and FFPE slices. The DDA-MS data are acquired on a nanoflow DIONEX UltiMate 3000 RSLCnano System coupled to a Q Exactive HF hybrid Quadrupole-Orbitrap with an effective LC gradient of 90 min and a total run time of 105 min.

Supplementary Figure 2 | **The extracted ion chromatograms for PulseDIA-PASEF MS data of cancer tissues.** The PulseDIA-PASEF MS data are acquired on a nanoElute System coupled to a timsTOF Pro mass spectrometer with an effective LC gradient of 60 min and a total run time of 65 min.