Supplementary Figure 1. Gating strategy and confirmation of apoptosis in MRC-5 and Eµ-Myc lymphoma cells

Referring to Figure 1. (a) Gating strategy for all annexin V/PI apoptosis assays measured by flow cytometry. (b) MRC-5 cells overexpressing MYC-ER^{T2} (Myc) or MYC-ER^{T2} and Bcl-xL (Myc/Bcl-xL) were stimulated for 24 h with 200nM 4-OHT and glutamine was then withdrawn for 16 h. Apoptosis was assessed by annexinV/PI staining. (c) Annexin V/PI was used to quantify apoptosis in Eµ-Myc lymphoma cells in complete medium (+Gln) or following glutamine withdrawal for 16 h (-Gln). (d) Low magnification phase contrast images of VEC and MYC cultures after 24 h of glutamine withdrawal, after 24 h withdrawal and 24 h addback of glutamine and after 24 h withdrawal and 96 h addback of glutamine.

Supplementary Figure 2. Untargeted stable isotope tracing in MYC-expressing cells

Referring to Figure 2. Untargeted X13CMS analysis compared stable isotope incorporation in MRC-5 primary human fibroblasts with active MYC to empty vector control. Figure summarizes X13CMS analysis 'hits', which were defined as metabolites with significantly increased percent label incorporation (p≤0.05, T-test) from a 6 hr ¹³C₆glucose pulse (blue boxes) or a 6 hr ¹⁵N-amide-glutamine pulse (red boxes). Further targeted analyses were carried out on pathways containing hits to identify metabolites that may have been missed from the initial analysis (highlighted in blue for ${}^{13}C_6$ -glucose and orange for ${}^{15}N$ -amide-glutamine).

Pathway analysis (U-[13]C-glucose)

Pathway analysis hit ([15]N-amide-glutamine)

Supplementary Table 1. Untargeted X13CMS analysis of U-¹³C-glucose incorporation

Referring to Figure 2. Untargeted X13CMS analysis compared stable isotope incorporation in MRC-5 primary human fibroblasts with active MYC to empty vector control. Table shows X13CMS analysis 'hits', which were defined as metabolites with significantly increased percent label incorporation ($p \le 0.05$, T-test) from a 6 hr $^{13}C_6$ -glucose pulse.

X13CMS hits						
Increased in Myc						
Metabolites	Predominant isotopologue	Ratio	p-value			
Lactic acid	M+3	1.5	0.002			
Acetyl-alanine	M+5	2.0	0.000			
Glutamic acid	M+2	1.5	0.001			
Acetyl-glutamic acid	M+2	11.7	0.000			
Acety-methionine	M+2	1.2	0.000			
Uridine triphosphate	M+5	1.2	0.001			
Adenosine triphosphate	M+6	1.2	0.000			
Uridine disphosphate-glucose	M+11	1.1	0.000			
Decreased in Myc						
Acetyl-aspartyl-glutamic acid	M+11	10.57	0.000			
	Normalised X13CMS hits					
Increased in Myc						
Metabolites	Predominant isotopologue	Ratio	p-value			
Lactic acid	M+3	1.4	0.010			
Acetyl-alanine	M+5	1.9	0.000			
Glutamic acid	M+2	1.5	0.004			
Acetyl-glutamic acid	M+2	3.0	0.000			
Acety-methionine	M+2	1.2	0.000			
Uridine triphosphate	M+5	1.1	0.000			
Adenosine triphosphate	M+6	1.2	0.000			
Uridine disphosphate-glucose	M+11	1.1	0.000			
	Decreased in Myc					
Acetyl-aspartyl-glutamic acid	M+11	5.62	0.000			
Normalised pathway analysis hits						
Increased in Myc						
Metabolites	Predominant isotopologue	Ratio	p-value			
Pyruvic acid	M+3	1.3	0.000			
Alanine	M+3	1.5	0.000			
Glycine	M+2	6.0	0.000			
Serine	M+3	4.2	0.000			

Supplementary Table 2. Untargeted X13CMS analysis of ¹⁵N-glutamine incorporation

Referring to Figure 2. Untargeted X13CMS analysis compared stable isotope incorporation in MRC-5 primary human fibroblasts with active MYC to empty vector control. Table shows X13CMS analysis 'hits', which were defined as metabolites with significantly increased percent label incorporation ($p \le 0.05$, T-test) from a 6 hr ¹⁵N-amide-glutamine pulse.

X13CMS hits					
Metabolites	Predominant isotopologue	Ratio	p-value		
Uracil	M+1	Inf. (0 in control)			
Orotic acid	M+1	Inf. (0 in control)			
Cys-Gly	M+1	Inf. (0 in control)			
Inosine	M+1	Inf. (0 in control)			
Uridine monophosphate	M+1	Inf. (0 in control)			
Uridine diphosphate	M+1	Inf. (0 in control)			
Uridine diphosphate-acetyl-glucosamine	M+1	1.2	0.033		
Normalised X13CMS hits					
Metabolites	Predominant isotopologue	Ratio	p-value		
Uracil	M+1	29.5	0.000		
Orotic acid	M+1	2.1	0.005		
Cys-Gly	M+1	Inf. (0 in control)			
Inosine	M+1 Inf. (0 in control)		in control)		
Uridine monophosphate	M+1	M+1 Inf. (0 in control)			
Uridine diphosphate	M+1	3.3	0.000		
Uridine diphosphate-acetyl-glucosamine	M+1	1.2	0.000		
Normalised pathway analysis hits					
Metabolites	Predominant isotopologue	Ratio	p-value		
Uridine triphosphate	M+1	1.5	0.000		
Cytidine diphosphate	M+1	Inf. (0 in control)			
Cytidine	M+1	10.9	0.000		
Cytidine diphosphate-choline	M+1	Inf. (0 in control)			
Uridine disphosphate-glucose	M+1	2.3	0.000		
Cytidine diphosphate-ethanolamine	M+1	10.2	0.000		

Referring to Figure 3. (a) Ratio of peak intensities of ATP/AMP of VEC and MYC cells upon glutamine withdrawal for one hour. (b) Ratio of peak intensities of ATP/AMP of MYC cells upon inhibition of the PPP with 250 μ M 6-AN for 2 hours with glutamine withdrawal for the second hour.

Supplementary Figure 4. MYC does not drive reductive carboxylation in MRC-5 fibroblasts

Referring to Figure 5. Isotopologue analysis of citrate following a ${}^{13}C_5$ -glutamine pulse shows minimal reductive carboxylation compared to oxidative TCA cycling in MRC-5 VEC versus MYC cells.

Supplementary Figure 5. Kinetics and succinate rescue of apoptosis triggered by CPI-613

Referring to Figure 5. (a) Kinetics of Incucyte caspase 3/7 analysis of MRC-5 cells triggered to undergo apoptosis by CPI-613. (b) Rescue of the apoptosis triggered by CPI-613 by addition of 4 mM dimethylsuccinate.

Supplementary Figure 6. Genetic manipulation of AK2 and ASNS

Referring to Figure 6. (a) qRT-PCR analysis of expression of *ASNS* (normalised to *GAPDH* mRNA) upon ASNS knockdown in MYC MRC-5 cells. Expression relative to VEC siNT is shown. (b) qRT-PCR analysis of expression of *AK2* (normalised to β -actin mRNA) upon AK2 knockdown (siAK2) or non-targeting control (siNT) in MRC-5 cells expressing MYC-ER^{T2}. Expression relative to siNT is shown. (c) Incucyte caspase 3/7 apoptosis assay in MYC cells with control siRNA (siNT) or siRNA to AK2 (siAK2) in medium containing glutamine or after 8 h of glutamine withdrawal. (d) qRT-PCR analysis of expression of *AK2* (normalised to *GAPDH* mRNA) upon overexpression of AK2 cDNA.

