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Peer Review File

Integrated methylome and phenome study of the circulating 

proteome reveals markers pertinent to brain health



REVIEWER COMMENTS 

Reviewer #1 (Remarks to the Author): 

Gadd et al sought to characterize the associations between plasma proteome with DNA CpG 

methylation and neurological phenome obtained from the Generation Scotland cohort. Epigenome-

wide and phenome-wide studies identified nearly 3k protein quantitative trait methylation loci (pQTMs) 

after multiple testing, and 644 proteins related to various neurological phenotypes, respectively. 

Integration studies further uncovered 88 epigenetic associations for protein markers of neurological 

traits with majority of them being novel loci. Overall, this is a straightforward study that may provide 

some useful resource to the community. However, this study suffers from several significant 

conceptual and technical shortcomings highlighted below: 

Major comments: 

1. Methylation on the CpG sites only represents a fraction of “epigenome”, other types of epigenetic 

mechanisms, such as 5-hydroxymethylcytosine, histone modifications and chromatin remodeling have 

all been implicated to coordinatively involve in neurological diseases. On the other hand, increasing 

evidence suggests critical epigenetic roles of non-CG methylation in neurological diseases. The present 

study that solely focuses on CpG methylation could be bias and misleading. The term “epigenetics” or 

“epigenomics” used throughout the paper is inaccurate and confusing. 

2. The authors claimed “As DNAm at CpG sites can affect gene expression in some instances, these 

relationships may carry information that informs on the regulation of proteins, the biological effector 

molecules of disease.” This is extraordinarily weak as DNA methylation plays differential roles in 

influencing gene expression at the transcription level, depends on their locations (promoter vs gene 

bodies, or cis-regulatory elements). The post-transcriptional regulation and translation control are 

additional layers of regulation. Given the DNA methylation in the plasma is not even from the same 

population of cells or tissues with circulating proteins, the connection investigated in this study does 

not represent strong biological insights. 

3. The methylated DNA in the plasma could derive from various types of blood cells, secreted vesicles, 

or any tissues or organs the blood flows. As indicated by the authors, “Blood-based methylation is 

unlikely to correlate highly with brain methylation in all cases”, it is unclear whether the pQTMs 

identified here are specific to neurological diseases showing specific disease manifestations in the 

brain. 

4. For the 255 trans CpG that more than 10Mb from the transcription start site of the protein gene 

(Fig. 2), the direct transcription regulation is unlikely. Do those CpG sites locate in known cis-

regulatory elements to form 3D genomic interaction with these protein targets? 

5. 

Reviewer #3 (Remarks to the Author): 

The manuscript by Gadd et al. entitled "Epigenome and phenome study reveals circulating markers 

pertinent to brain health" explored associations between protein expression (4,235 plasma proteins) 

and methylation loci. The authors found 2,895 protein quantitative trait methylation loci (pQTMs) after 

multiple correction. Then the authors evaluated associations between phenotypes in 1.065 subjects 

with 644 proteins associated with cognitive, brain imaging or APOE status. Finally they integrated the 

pQTMs finding 88 epigenetic associations for protein markers of neurological traits (83 of those new). 

This is an innovative approach using multiple layers of information for studying brain health. There are 

some details that may require additional explanation in the text for context to the reader. 

Comments: 

1. Supplementary table 1: the cognitive scores and brain imaging measures are difficult to interpret. It 



will be important to include the units in the tables and some additional information about range and/or 

distribution (e.g., IQR). Without that differences between the PheWAS and EWAS studies (brain age 

acceleration and anisotropy) are difficult to understand (specially with those very large SD in several 

of them). 

2. White blood cell proportions (page 5): in addition to the Houseman method, what reference was 

used (Reinius, Fox, Salas), and what method for the selection of the CpGs used in our cell 

deconvolution (Jaffe, Koestler). Please add the information to your manuscript. 

3. Descriptive information Supplementary table 1 and page 5: It is also important that you summarize 

the information about your estimated cell proportions for your study, as you are using them to adjust 

your models, this information is also vital for the context of the manuscript. Similarly additional 

information about BMI categories, and smoking status is lacking and it is used for your adjusted 

model. I see also in your methods section that you adjusted for depression, but that information is not 

summarized in the table either. Please add this data to the manuscript. 

4. Effect size (supplementary tables and page 5): The beta coefficients are large, but it is not 

explained the units in the methylation (beta values, M-values?) and protein (z-scores, log-transformed 

level, other?). This should be introduced early in the text. What captured my attention is that when 

compared to Zaghlool et al there are 10 fold differences between both (Supplementary Table 7). This 

requires some explanation or context for interpretation. 

5. Figure 2 and page 6: Could you add some more context to the cis effects, I am confused why 10 

Mb? Most of the studies look for closer relationships (1 Mb) around the TSS to locate promoter and 

enhancer areas (Zaghlool et al use that criterion). In that context trans are limited to TF in different 

chromosomes and in some cases to changes in large chromosomes (as chromosome 1). Is it possible 

to elaborate for the reader why that threshold was used and what does that mean for your findings 

interpretation. 

6. Figure 4: The results are well condensed in this circosplot figure pointing to several inflammatory 

genes. I have only one comment with chromosome 22 as the genes overlap with those of 

chromosome 21. If there is an alternative to redraw those it will be clearer for your message. 

7. I would recommend to add some supplementary plots for the relationships between the two CpGs 

for NLCR5 and the seven pQTMs. and whether there are particular distributions in those relationships 

(e.g., genetic components in the association). 

8. Limitations: You mention three hypotheses for the non-association between PheWAS and pQTMs. I 

believe you meant "not reflected by the blood immune cells epigenome" instead of "plasma 

epigenome". 

9. Why the eosinophil proportions were unavailable? Reinius include eosinophils, the newer Salas et al 

2021 also incorporates eosinophils. There was any reason not to use it? 

10. Methods: DNAm briefly can you report the normalization, p-detection threshold used in your 

analysis? 

11. Code: I briefly looked at the code, and I have questions about your lagged effects and creatinine 

adjustment. Were those used in your analysis for selection of your sample? I was confused when I 

found those variables there and not in your manuscript. Could you please clarify? 



Reviewer #4 (Remarks to the Author): 

The authors perform a systematic study mapping the epigenetic measures to plasma protein levels. 

The study offers expanded protein measurements compared to an earlier study by Zaghlool et al, 

Nature Comm, 2020. The novelty here is not in the approach itself, but in the expanded set of pQTM 

discoveries. The manuscript is overall well-written and I found no major issues in methodology. Whilst 

the results contain some caveats – this is clearly explained up-front and the authors clearly have gone 

to some lengths to address this. Some of the caveats are shared with the previous study. Whilst a 

replication cohort would be nice, I understand the limited availability of such data, and the previous 

Zaghlool et al study to which the author compares to does provide some indication of replicability. 

Overall this work provides a useful resource for the scientific community that expands on existing 

knowledge in this area assuming summary results will be publicly available. 

I have the following comments and questions which I feel needed to be addressed/clarified in a 

revision: 

1. It is possible that the reported numbers may be inflated. I have no issues with the conservative 

multiple testing threshold. It would be good to know what the correlation structure is like for the CpG 

measures and how many “effective” independent components drive most the findings here. Also it 

would be good to know how many proteins are associated in the main results (rather then implied 

through the GC lambda sentence). 

2. The numbers drop drastically once you exclude the 2/3 biggest pleiotropic CpG/proteins, which 

explains a significant proportion of your 2,854 associations. 

3. Of the 151 novel proteins with significant associations, how many are due to the protein not being 

measured in previous studies. 

4. Since effect size are in relative units, I feel sentences relating to effect sizes eg. “There were 2,895 

associations, with effect size ranging from -2.64 (SE 0.29) for PRG3 and cg16899419, to 2.62 (SE 

0.19) for MDGA1 and cg12415337 (Supplementary Table 5).” are not very informative. 

5. Some summary figure/supplementary figure on how many proteins have how many 

associations/other pleiotropic CpG genes/regions would help interpretability 

6. The vast majority of findings seem to be explained by white cell count – I wonder whether other 

blood cell counts/components may be a confounder in plasma based studies. Do the authors have 

access to subtype white cell counts, red cell counts, haemoglobin and platelets, that may be adjusted 

for? Also are cis and trans effects affected differently/similarly with adjustment? 

7. I would have though epigenetic effects in theory affect expression rather than post-transcriptional 

process, at least cis ones? It may be worthwhile to see whether the eQTLs explain some of these 

associations? 

8. I also see ABO there, is this explained by blood group? (assuming there’s access to blood 

type/genetics to impute the blood type) 

9. Despite the lack of replication cohort, the authors attempt to replicate some of the overlap with the 

existing study. Are any strong associations/relatively pleiotropic associations excluding the ones 

mentioned, seen in only this study or the other study? 

10. What prompts the switch of multiple adjustment methods to FDR for the protein PheWAS rather 

than stick to one? 

11. I believe other studies including Sun et al, Menni et al, Ngo et al also looked at association with 

age, gender, + others such as BMI/eGFR in addition to Lehallier et al. 

12. The proteomic associations with other phenotypes: how much is known and how many are new? 



Maybe a forest plot with effect sizes for all/novel proteins rather than an arbitrary selection of 

scatterplots would be more informative for the space in the figure? 

13. “Many of the 644 protein marker associations were independent and did not cross neurological 

modalities.” How is this determined? 

14. . Of the 25 common proteins, there were six independent signals, as determined by components 

with eigenvalues > 1 in principal components analyses (Supplementary Fig.1). How is this justified? 

Why use eigenvalue of 1 – doesn’t cumulative proportion essentially say the same thing? The first 6 

PCs explain less than 70% of the variance. May be an alternative way to cluster may be needed here 

15. Are associated genes/proteins systematically enriched for any pathways from your main results?



REVIEWER COMMENTS

General response to reviewers 

We thank the reviewers for their comments and suggestions, which have helped us 

to refine our study design and explore the results further. We have added a number 

of clarifications and additional analyses based on these reviews that we believe 

enhance the manuscript. Briefly, the changes include: 1) a tonal adjustment of the 

scope of our study (including a shift from epigenome-wide to the more DNAm-

specific, methylome-wide association study (MWAS) terminology), 2) clarifications of 

the extent to which pQTM associations can provide biological insights, 3) a full re-run 

of the MWAS that integrates additional white blood cell estimates, 4) a revision of 

our multiple testing correction strategy that is informed by principal components 

analysis of the protein data, 5) further integration of previous research to highlight 

novel associations, 6) recapitulation of figures to better visualise results with several 

new supplementary figures, 7) a 10mb vs 1mb thresholding sensitivity analysis for cis 

associations, 9) an assessment of pleiotropic MWAS associations, 10) FUMA gene set 

enrichment, FUMA tissue expression and STRING protein interaction analyses to 

explore candidate pathways implicated by our PheWAS and neurological pQTM 

results, 11) integration of promoter-capture Hi-C data and CHIP-sequencing marks 

to support chromatin 3D-genome interactions for the neurological pQTMs and 12) 

potential genetic component mapping for the neurological pQTMs. We detail these 

changes in the following point-by-point responses. 

General points of note for all reviewers 

Open access sharing 

Complete summary statistics for all fully-adjusted MWAS will be made available via 

the MRC-IEU EWAS catalog and this will be included in the manuscript when 

finalised. As part of this process, the full summary statistics will be hosted on the 

open-access repository Zenodo. We will also create a YouTube video summarising 

the findings and detailing how the data can be accessed, which will be hosted on our 

YouTube account (https://www.youtube.com/channel/UCxQrFFTIItF25YKfJTXuumQ). 

Updated results 

When rerunning the study with a more stringent threshold for the protein PheWAS 

(in response to reviewer 4: comment 10), our total PheWAS associations fell from 644 

to 497. Upon reflection, we also decided that protein lag group (time between 



sampling and sequencing) and study site (Dundee/Aberdeen) variables should also 

be included as covariates in the PheWAS. This led to 405 total associations, with 191 

proteins associated with one or more of the brain health characteristics. This 

reduction in protein markers from the PheWAS, combined with further adjustment 

for eosinophil and monocyte estimates in the MWAS, meant that our total pQTMs for 

neurological protein markers fell from 88 to 35 pQTMs. However, many of the results 

that inform the core discussion points of the study (SLC7A11, RBL2, SMPD1 and 

HEXB) remain consistent.  

Additional co-authors 

We have added Claire Green and Shen Xueyi for their work on the updated imaging 

variable for white matter hyperintensity volumes that we use in the protein PheWAS. 

We have added Tamir Chandra and Neil Robertson for their contributions on the 

CHIP-seq and promoter-focused Hi-C chromatin interaction mapping added in 

response to points raised by reviewer one. 

We have revised the manuscript to reflect the updated analyses – we believe the 

edits (while substantial) greatly improve the work. This is also true of the 

Supplementary Figures (that are all new, except one) and Supplementary Methods 

(that has been added to provide further clarity). We therefore advise (due to the 

unreadability of the tracked changes version) that the reviewers use a clean copy of 

the revised manuscript. We provide page and line specificity in our responses for 

clarity.  

Reviewer #1 

Comment one

1. Methylation on the CpG sites only represents a fraction of “epigenome”, other 

types of epigenetic mechanisms, such as 5-hydroxymethylcytosine, histone 

modifications and chromatin remodeling have all been implicated to coordinatively 

involve in neurological diseases. On the other hand, increasing evidence suggests 

critical epigenetic roles of non-CG methylation in neurological diseases. The present 

study that solely focuses on CpG methylation could be bias and misleading. The term 

“epigenetics” or “epigenomics” used throughout the paper is inaccurate and 

confusing. 



Response to comment one

We agree that the distinction between DNA methylation at CpG sites and 

other epigenetic modifications should be clearer. To address this, we have 

clarified throughout that we perform a methylome-wide association study 

(MWAS) using only DNAm data at CpG sites. We have also amended our 

introduction to emphasise that DNAm is one of several possible epigenetic 

modifications: 

Page 3, line 53: ‘Epigenetic modifications to the genome record an individual’s 

response to environmental exposures, stochastic biological effects, and genetic 

influences. Epigenetic changes include histone modifications, non-coding RNA, 

chromatin remodelling, and DNA methylation (DNAm) at cytosine bases, such 

as 5-hydroxymethylcytosine. These are implicated in changes to chromatin 

structure and the regulation of pathways associated with neurological diseases 
11,12. However, DNAm at cytosine-guanine (CpG) dinucleotides is the most 

widely profiled blood-based epigenetic modification at large scale.’ 

Our discussion has been updated to caveat that when further epigenetic 

measurements become available at large-scale more widely, alternative 

modifications beyond DNAm should be assessed: 

Page 15, line 349: ‘…profiling DNAm signatures alone cannot capture the full 

role of the epigenome in brain health. Integration of more diverse epigenetic 

markers will be critical to further resolve these relationships.’ 

Comment two part one

1. The authors claimed “As DNAm at CpG sites can affect gene expression in some 

instances, these relationships may carry information that informs on the regulation of 

proteins, the biological effector molecules of disease.” This is extraordinarily weak as 

DNA methylation plays differential roles in influencing gene expression at the 

transcription level, depends on their locations (promoter vs gene bodies, or cis-

regulatory elements).  

Response to comment two part one 



Our original statement was written to avoid mechanistic claims on the role of 

DNAm at CpGs that associate with protein levels (pQTMs). We agree that this 

is a vague statement when introducing the rationale for studying DNAm. We 

have therefore updated the text as follows: 

Page 3, line 60: ‘Modifications to DNAm at CpG sites play differential roles in 

influencing gene expression at the transcriptional level 13. Additionally, DNAm 

accounts for inter-individual variability in circulating protein levels 14–16. 

Comment two part two

2. The post-transcriptional regulation and translation control are additional layers of 

regulation. Given the DNA methylation in the plasma is not even from the same 

population of cells or tissues with circulating proteins, the connection investigated in 

this study does not represent strong biological insights. 

Response to comment two part two

We agree that the DNAm is not sourced from the exact same cell types as 

proteins and we also cannot be sure of the cell type that released proteins 

into the blood (i.e. liver cells, immune cells, brain cells etc). The SomaScan 

assay also measures aptamer binding of probes to intracellular, membrane-

bound and extracellular protein target epitopes.  

A previous EWAS of 1,123 protein levels in blood from Zaghlool et al, (Nat 

Comms, 2020) faced the same limitation as our work. This is a known issue 

that is far-reaching across other EWAS and multi-omics studies. We have 

added a limitation to our discussion as follows: 

Page 14, line 326: ‘…the DNAm signatures of proteins we quantify represent 

widespread differences across blood cells that are related to circulating protein 

levels and are therefore not derived from the same cell-types as proteins.’ 

Nonetheless, there are still important insights from these data types. pQTMs 

tell us how DNAm from bulk tissue/cells relates to circulating protein levels. 

pQTMs capture chronic exposure to various environmental and biological 

states within individuals that associate with protein pathways of interest, 



despite us not being certain of the nature of the mechanistic directionality of 

those relationships. 

Previous results from our group suggest that epigenetic scores for circulating 

proteins (such as SMPD1 – which is also a candidate of interest in this study) 

constitute signals that are capable of predicting a range of incident diseases 

(https://elifesciences.org/articles/71802). These scores are based on DNAm, 

indicating that relationships between DNAm and proteins at scale have 

predictive value for disease risk stratification. 

We have updated our manuscript as follows to reflect these points: 

Page 3, line 62: ‘Recently, through integration of DNAm and protein data, we 

have shown that epigenetic scores for plasma protein levels – known as 

‘EpiScores’ – associate with brain morphology and cognitive ageing markers 17

and predict the onset of neurological diseases 18. These studies highlight that 

while datasets that allow for integration of proteomic, epigenetic and 

phenotypic information are rarely-available, they hold potential to advance risk 

stratification. Integration may also uncover candidate biological pathways that 

may underlie brain health.’ 

Page 14, line 326: ‘Additionally, the DNAm signatures of proteins we quantify 

represent widespread differences across blood cells that are related to circulating 

protein levels and are therefore not derived from the same cell-types as proteins. 

Despite this limitation, previous work supports DNAm scores for proteins as useful 

markers of brain health, suggesting there is merit in integrating DNAm signatures 

of protein levels in disease stratification 18.’ 

To provide further evidence that the pQTMs we identify may represent 

biological insights (despite the cell-type caveat discussed), we have performed 

CHIP-seq and promoter-centered Hi-C chromatin mapping, for the 11 

neurological pQTMs that involved CpGs within genes that were on the same 

chromosome as the protein-coding gene. This is discussed further in our 

response to comment four, however the results indicate that there is modest 

evidence linking CpG sites with protein-coding gene promoters when separate 

genes are considered within the 3D genomic neighbourhood. This suggests 

https://elifesciences.org/articles/71802


that widespread trends in CpG DNAm that correlate with protein levels may 

indicate functional relationships in some instances. We have also completed 

additional lookups using UCSC annotation information to further characterise 

the locations of CpGs in our results. These updates are also discussed in 

response to comment four below. 

While there are methods such as two-sample Mendelian randomisation (MR) 

that can be used to infer potentially causal relationships between DNAm and 

gene expression, from our experience this method is impaired by some critical 

limitations that makes current interpretability challenging: 

1) The summary statistics for mQTLs/eQTLs mostly report significant QTLs 

only, so the summary statistics are biased towards those associations 

2) MR is normally based on Wald ratio in those tests with only single 

instruments available - because it is a ratio it will likely give a significant 

association in both directions (i.e. mQTL>eQTL and eQTL>mQTL) 

3) QTL data are nearly exclusively derived from whole blood, as the 

reviewer has pointed out 

We have therefore chosen to perform an eQTL/mQTL lookup to check for the 

possible roles of these genetic effects in our pQTM associations. If no 

mQTL/eQTL signal exists, a DNAm pertaining to a pQTM is more likely to be 

environmentally-mediated. 

Our results section now reads as follows: 

Page 13, line 308: ‘Given that this study utilised CpGs from the Illumina EPIC 

array, 15 of the 31 unique CpGs did not have mQTL characterisations in public 

databases, which primarily comprise results from the earlier 450K array. However, 

our plots showing pQTM associations suggested that for several CpGs (such as 

cg11294350 that associated with SMPD1 and HEXB), there may be a partial 

genetic component influencing DNAm. As mQTLs tend to explain 15-17% of the 

additive genetic variance of DNAm 59, it is possible that the signals we isolate in 

these instances are partially driven by genetic loci, but are also likely driven by 

unmeasured environmental and biological influences. In the case of SIGLEC5, 

IL18R1 and CHI3L, mQTLs were identified that were also eQTLs, providing 

evidence that mQTLs for these CpG sites were possible regulators of protein 

expression.’ 



Comment three

3. The methylated DNA in the plasma could derive from various types of blood cells, 

secreted vesicles, or any tissues or organs the blood flows. As indicated by the 

authors, “Blood-based methylation is unlikely to correlate highly with brain 

methylation in all cases”, it is unclear whether the pQTMs identified here are specific 

to neurological diseases showing specific disease manifestations in the brain. 

Response to comment three 

We thank the reviewer for highlighting this. As we focus on a healthy ageing 

population as opposed to a case/control study, we agree that generalisation 

to specific diseases is difficult.  

We focus on brain health markers in an ageing population of older adults that 

are not enriched for neurodegenerative disease. The primary objective of this 

study is therefore to identify markers that inform on brain health, rather than 

disease states. However, we anticipate that the findings from our study will 

help to provide candidate targets that may be investigated in disease states. 

For example, there is overlap between the proteins and methylation sites we 

identify here and a range of neurological diseases, which we cover in our 

discussion. This implies that the markers we have mapped (that are associated 

with better/poorer neurological health), may represent a pool of possible 

protein of epigenetic (protein-regulatory) targets that could be considered to 

improve brain health; this is certainly the case when considering that DNAm at 

site cg06690548 has been robustly linked to ALS and Parkinson’s disease in 

two studies.  

Given that we can’t be sure of the source of the methylation or the proteins in 

this study, we can only make suggestions about possible mechanisms by 

which these findings could impact on the brain. We have integrated tissue-

specific expression mapping for genes corresponding to the proteins 

implicated in our results. These tissue expression heatmaps are provided for 

the genes corresponding to protein markers in the PheWAS findings 

(Supplementary Figure 10) and the genes corresponding to CpGs and proteins 

involved in neurological pQTMs (Supplementary Figure 13). This provides 

clarity on whether the proteins are likely to be excreted in brain tissue directly 



(and may transition into blood), or whether the markers originate in the 

periphery (and may impact the brain as a systemic effect), either directly or 

indirectly influencing brain function via the circulatory system. 

We have updated our results for the PheWAS and neurological pQTMs as 

follows: 

Page 8, line 176: ‘Gene set enrichment analyses on the 191 genes 

corresponding to the protein markers (Supplementary Fig. 9) supported the link 

between many of the proteins associated with poorer brain health and the 

innate immune system, while also implicating extracellular matrix, lysosomal, 

metabolic and additional inflammatory pathways. Tissue expression profiles of 

the 191 genes (Supplementary Fig. 10) indicated that many of the markers were 

expressed non-neurological tissues; however, some proteins were expressed in 

nervous tissues. Markers such as ASB9 and NCAN were found to be consistently 

identified across multiple brain imaging traits as markers of poorer and better 

brain health, respectively (Supplementary Table 16).’ 

Page 10, line 228: ‘Tissue expression profiles for the 33 genes that were linked 

to either CpGs or proteins in the 35 neurological pQTMs are summarised in 

Supplementary Fig. 13. Gene set enrichment for these 33 genes identified 

enrichment for immune effector pathways in a subset of 11 genes, whereas a 

cluster of four genes (SMPD1, HEXB, AMY2A and AMY2B) were enriched for 

amylase and hydrolase activity (Supplementary Fig. 14).’ 

Our discussion now reads as follows: 

Page 11, line 263: ‘Tissue expression analyses suggested that a large proportion 

of the 191 protein markers were not expressed in the brain; this supports work 

suggesting that sustained peripheral inflammation influences general brain 

health 3132 and accelerates cognitive decline 8,33–35. However, a subset of proteins 

were expressed in the central nervous system. Given that leakage at the blood-

brain-barrier interface has been hallmarked as a part of healthy brain ageing 36,37, 

there is a possibility that brain-derived proteins may enter the bloodstream as 

biomarkers. SLIT and NTRK Like Family Member 1 (SLITRK1), Neurocan (NCAN) 

and IgLON family member 5 (IGLON5) were examples of proteins expressed in 

brain for which higher levels associated with either larger grey matter volume, 

larger whole brain volume, or higher general fractional anisotropy. SLITRK1 



localises at excitatory synapses and regulates synapse formation in hippocampal 

neurons 38. Neurocan (NCAN) is a component of neuronal extracellular matrix 

and is linked to neurite growth 39. IGLON5 has been implicated in maintenance 

of blood-brain-barrier integrity and an anti-IGLON5 antibody disease involves 

the deterioration of cognitive health 40. Taken together, the protein markers 

identified in the PheWAS may, therefore, reflect pathways that could be targeted 

to improve brain health.’ 

Page 13, line 296: ‘Many of the genes corresponding to CpGs and proteins 

involved in the 35 pQTMs were enriched for immune effector processes and were 

not expressed in brain. However, some markers did show evidence for brain-

specific expression, such as acid sphingomyelinase (SMPD1) and Hexosaminidase 

Subunit Beta (HEXB). ‘ 

Regarding DNAm consistencies between blood and brain as the tissue of 

interest, while looking at blood-brain correlations (using a publicly available 

DNAm comparison tool - https://epigenetics.essex.ac.uk/bloodbrain/) is 

useful, this tool does not integrate the most recent Illumina EPIC array (with 

800,000+ probes), nor does it interrogate all brain regions. It is also worth 

noting that a lack of correlation between DNAm at CpGs between blood and 

brain is not necessarily equivalent to the blood findings being irrelevant to the 

brain. There are signatures that will be specific to blood that are still of 

predictive value for brain health; for example, our recent work has 

demonstrated that a blood-based signature of DNAm for SMPD1 is able to 

predict onset of Alzheimer’s dementia (Gadd et al, 2022). We show that blood 

patterns of DNAm are able to delineate risk, implying that there is value in 

understanding DNAm markers in the blood that are specific to the biological 

state of individuals with certain protein levels in circulation. 

We have integrated promoter-capture Hi-C data from the brain 

(hippocampus) and CHIP-sequencing data (from both blood and brain) in our 

analyses. The mapping has been conducted for the 11 neurological cis pQTMs 

with CpGs and proteins that lie within genes located on the same 

chromosome. We show that there are common CHIP-sequencing marks across 

blood and brain for the genes of interest. We also find evidence that brain 

hippocampal tissue has chromatin interactions for genes implicated in our 

pQTM results. This supports the possibility that the pQTMs we identify may 

have relevance to the brain. These analyses are detailed in response to 



comment four. We have added the following discussion point regarding blood 

and brain differences to the manuscript: 

Page 15, line 346: ‘…differences in blood and brain DNAm and pQTLs are 

emerging; these indicate that blood-based markers may not fully align to 

biology of brain degeneration 65,66. However, our ChIP-seq analysis of chromatin 

regulation suggested that some regulatory states may persist between blood 

and brain.’ 

Comment four 

4. For the 255 trans CpG that more than 10Mb from the transcription start site of the 

protein gene (Fig. 2), the direct transcription regulation is unlikely. Do those CpG 

sites locate in known cis-regulatory elements to form 3D genomic interaction with 

these protein targets? 

Response to comment four 

The reviewer makes an excellent point here. To address this, we have carried 

out a series of CHIP-sequencing and promoter-capture Hi-C analyses. We 

focus on the 35 pQTMs, where the protein is associated with both DNAm and 

a brain health outcome. 

We have split our pQTMs into the following subgroups when considering 

possible functional pathways: 

 Cis associations with CpGs proximal to the protein-coding gene 

 Cis associations on the same chromosome, but with different CpG and 

protein genes 

 Trans associations on different chromosomes, with different CpG and 

protein genes 

Due to chromosomal segregation, inter-chromosomal contacts tend to be 

more stochastic and less persistent, ergo, we have chosen interrogate intra-

chromosomal cis- associations (involving different CpG and protein genes) 

with ChIP-seq and promoter-capture Hi-C mapping to assess whether there 

might be some basis for shared regulation and chromatin interaction in these 



loci. The mapping for each of the seven proteins implicated in 11 pQTMs is 

presented in Supplementary Figures 15-21.  

Our methods section now reads as follows: 

Page 22, line 518: ‘Although inter-chromosomal chromatin interactions are 

unlikely to be stable and persistent, seven proteins with cis pQTMs involving CpGs 

located intra-chromosomally to the proximal protein-coding gene were 

considered for ChIP-seq and promoter-capture Hi-C mapping to interrogate local 

chromatin interactions and states that might form the basis for co-regulation of 

these loci. ChIP-seq data from peripheral blood mononuclear cells (PBMCs) and 

brain hippocampus were selected from the ENCODE project 86, with accession 

identifiers available in Supplementary Table 21. Processed promoter-capture Hi-

C data for brain hippocampal tissue was integrated from Jung et al, 60 and is 

available at NCBI Geo with accession GSE86189. Data concerning both promoter-

prometer interactions and promoter-other interactions were concatenated and all 

regions subsequently visualised on the WashU epigenome browser 87.’ 

Our results section now reads as follows: 

Page 10, line 237: ‘Promoter-capture Hi-C and ChIP-sequencing integration 

was used to assess the interactions and chromatin states of our pQTMs and 

associated CpG loci. This analysis focused on 11 of the 20 cis pQTMs that 

involved CpGs on the same chromosome as the protein-coding gene, but were 

located in a different gene. Mapping information is presented for the seven 

proteins involved in these pQTMs in Supplementary Figs. 15-21. In all instances, 

we found evidence of spatial co-localisation of these genes using promoter-

capture Hi-C data from brain hippocampal tissue. We attempted to 

contextualise these sites further with ChIP-seq (ENCODE project) analyses of 

active chromatin marks H3K27ac and H3K4me1 and repressive chromatin 

H3K4me3 and H3K27me3 in both peripheral blood mononuclear cells (PBMCs) 

and brain hippocampus. ChIP-seq data suggested that in many instances there 

were shared regulatory regions that existed across both blood and hippocampal 

samples that were hubs for local promoter interactions. For example, promoter 

loops were found linking the S100Z and CRHBP genes, with a signature of 

activating (H3Kme1 and H3K27ac) and silencing (H3k27me and H3K4me3) 

marks (normally considered bivalent chromatin) that may form the basis for 

shared regulation of this gene locus.’ 



Our discussion reads as follows: 

Page 14, line 317: ‘Integration of promoter-capture Hi-C chromatin interaction 

and ChIP-seq databases 60 provided evidence for long-range interaction 

relationships for cis pQTMs with CpGs in different gene regions that are proximal 

to the protein-coding gene of interest. This suggests that in such instances, the 

pQTMs may reflect regulatory relationships in the 3-dimensional genomic 

neighbourhood. The pQTMs therefore direct us towards pathways that can be 

tested in experimental constructs. Positional information suggested that many 

CpGs involved in neurological pQTMs lay within 1500 bp of the TSS of the 

respective protein-coding gene. While positional information of CpGs is thought 

to infer whether DNAm is likely to play a role in the expression regulation of 

nearby genes, this is still somewhat disputed. Some studies suggest that 

transcription factors regulate DNAm 61 and differential methylation at gene body 

locations predicts dosage of functional genes 62. Additionally, the DNAm 

signatures of proteins we quantify represent widespread differences across blood 

cells that are related to circulating protein levels and are therefore not derived 

from the same cell-types as proteins. Despite this limitation, previous work 

supports DNAm scores for proteins as useful markers of brain health, suggesting 

there is merit in integrating DNAm signatures of protein levels in disease 

stratification 18.’ 

To add greater positional context to the CpGs implicated in our wider pQTM 

results, we examined positional information through UCSC database 

annotations. We have integrated all lookup results into the revised

Supplementary Table 6 and Supplementary Table 20.  

We present UCSC lookups of the CpGs implicated in pQTMs as follows: 

Page 5, line 115: ‘Characterising the genomic location of the findings, 46% of 

cis and 29% of trans pQTMs in the fully-adjusted MWAS involved CpGs 

positioned in either a CpG Island, Shore or Shelf (Supplementary Table 6).’ 

Page 10, line 233: ‘Of the 35 pQTMs, seven had CpGs that were located in 

either a CpG Shore or Shelf position and there were 13 that were located either 

1500 bp or 200 bp from the TSS of the protein-coding gene (Supplementary 

Table 20). Fifteen pQTMs involved CpGs that were located in the gene body and 

7 were located in either the first exon or UTR regions (Supplementary Table 20).’ 



These approaches guide us on positional context of CpGs within 

islands/shores/shelves, their relation to the transcriptional start site of the 

gene encoding the protein and the likelihood of the region being a site of 

transcription factor (TF) binding. There is still debate in the field as to whether 

the assumption that DNAm located at promoter regions always regulates TF 

binding is representative – as some evidence also suggests that TFs may 

regulate DNAm. Additionally, we also note that CpGs in the body of genes 

have been shown to influence gene dosage.  

We have therefore added the following section to our discussion: 

Page 14, line 321: ‘Positional information suggested that many CpGs involved 

in neurological pQTMs lay within 1500 bp of the TSS of the respective protein-

coding gene. While positional information of CpGs is thought to infer whether 

DNAm is likely to play a role in the expression regulation of nearby genes, this is 

still somewhat disputed. Some studies suggest that transcription factors regulate 

DNAm 61 and differential methylation at gene body locations predicts dosage of 

functional genes 62.’ 

We recognise however that the cell-type limitation discussed is a major 

limitation to any functional mapping of likely relationships between DNAm and 

protein levels. For this reason, we state the following limitation in our discussion: 

Page 14, line 326: ‘Additionally, the DNAm signatures of proteins we quantify 

represent widespread differences across blood cells that are related to circulating 

protein levels and are therefore not derived from the same cell-types as proteins. 

Despite this limitation, previous work supports DNAm scores for proteins as useful 

markers of brain health, suggesting there is merit in integrating DNAm signatures 

of protein levels in disease stratification 18.’ 

Reviewer #2 

Comment one

1. Supplementary table 1: the cognitive scores and brain imaging measures are 

difficult to interpret. It will be important to include the units in the tables and some 



additional information about range and/or distribution (e.g., IQR). Without that 

differences between the PheWAS and EWAS studies (brain age acceleration and 

anisotropy) are difficult to understand (especially with those very large SD in several 

of them). 

Response to comment one 

We have updated the now revised Supplementary Table 2 to show the IQR for 

each of the cognitive and brain imaging measures used. We also agree with 

the reviewer that we could do more to describe the range and distributions 

for the phenotypes studied. We therefore plot the distributions of the 

cognitive and brain imaging measures used in our study and include these as 

the revised Supplementary Figures 4-5. We have also provided a more 

detailed overview of the imaging and cognitive phenotype measurements in 

the revised Supplementary Methods. We hope that in combination, these 

updates sufficiently describe the data for interpretation.  

Regarding the query on units, the units for brain imaging variables have been 

added where appropriate to do so. An overview is given for each measure: 

 Predicted Brain Age – this variable is the brain age estimate generated 

(in years)  

 Brain Age Acceleration – this variable describes differences between 

predicted brain age and chronological age and is therefore in years 

 Global Grey Matter Volume, Whole Brain Volume and Intracranial 

Volume - these are derived with the FreeSurfer toolkit and are 

therefore in cubic millimeters (mm3) 

 White Matter Hyperintensity Volume – this variable is measured in 

milliliters (one unit is 1000 mm3) 

 Global Fractional Anisotropy / Global Mean Diffusivity – these measures 

are derived from standardized FA and MD measures for individual 

white matter tracts with PCA and are thus ‘unitless’ 

With regard to the cognitive tests we have updated our methods and 

Supplementary Methods as follows (key changes highlighted in yellow) to 

include the maximum scores possible for each test, in addition to what each 

test measures to create scores: 



Page 18, line 410: ‘Full details for the specific scores has been detailed 

previously 68 and further details can be found in Supplementary Methods. Briefly, 

these included the Wechsler Logical Memory Test (maximum possible score of 

50), the Wechsler Digit Symbol Substitution Test (maximum possible score of 

133), the verbal fluency test (based on the Controlled Oral Word Association 

task), the Mill Hill Vocabulary test (maximum possible score of 44) and the Matrix 

Reasoning test (maximum possible score of 15).’ 

Supplementary Methods: ‘The sum of immediate and delayed recall of one oral 

story from the Wechsler Logical Memory Test was taken as the logical memory 

phenotype (maximum score of 25 for each recall test with a combined maximum 

score of 50) 6. Details about the stories that were remembered correctly were 

recorded as points contributing to the scores. The Wechsler Digit Symbol 

Substitution Test, which requires individuals to recode digits to symbols and 

represents a count of correct pairs within a timeframe of 120 seconds was used 

to measure processing speed phenotype 7. The verbal reasoning phenotype 

measures verbal comprehension and phonemic fluency and was based on the 

Controlled Oral Word Association task 8 with letters C, F and L. The number of 

words named starting with the given letters in a one minute period were recorded 

as the score. The Mill Hill Vocabulary test was used as a measure of acquired 

verbal intelligence, and is an estimate of ‘crystallised intelligence’ and peak 

cognitive ability. This records the number of times participants successfully 

explain the meaning of words select a synonym, using junior and senior 

synonyms 9. The Matrix Reasoning test, a paper adaptation of the computerised 

version from the COGNITO psychometric examination 10 was used to measure 

perceptual organisation and visuospatial logic. The Matrix Reasoning test 

measures non-verbal, abstract reasoning and records the number of correct 

answers recognising the missing element in a pattern that is presented as a 

matrix.’ 

The gf and g measures are derived from principal components of the scores in 

combinations, and are standardised scores with mean 0 and variance of 1. 

Comment two 

2. White blood cell proportions (page 5): in addition to the Houseman method, what 

reference was used (Reinius, Fox, Salas), and what method for the selection of the 

CpGs used in your cell deconvolution (Jaffe, Koestler). Please add the information to 

your manuscript. 



Response to comment two  

We have updated our ‘Phenotypes in STRADL’ methods section to clarify this 

as follows: 

Page 17, line 397: ‘The meffil 68 implementation of the Houseman method was 

used to calculate estimated white blood cell (WBC) proportions for Sets 1 and 2. 

Blood reference panels were sourced from Reinius et al 69.  The ‘blood gse35069 

complete’ panel was used to imputed measures for Monocytes, Natural Killer 

cells, Bcells, Granulocytes, CD4+T cells and CD8+T cells. Eosinophil and 

Neutrophil estimates were also sourced through the ‘blood gse35069’ panel.’ 

Comment three

3. Descriptive information Supplementary table 1 and page 5: It is also important that 

you summarize the information about your estimated cell proportions for your study, 

as you are using them to adjust your models, this information is also vital for the 

context of the manuscript. Similarly additional information about BMI categories, and 

smoking status is lacking and it is used for your adjusted model. I see also in your 

methods section that you adjusted for depression, but that information is not 

summarized in the table either. Please add this data to the manuscript. 

Response to comment three 

Thank you for raising this. We have added summary information for 

depression, estimated cell proportions and BMI as additional variables to the 

now revised Supplementary Table 2. Given we adjusted our epigenetic-

association study using the DNAm score for smoking (EpiSmokEr), we have 

added the mean, sd and IQR for this score for this group to the table. We have 

also ensured these variables are summarised appropriately in the ‘Phenotypes 

in Generation Scotland’ section of the methods in our manuscript on page 17. 

Comment four 

4. Effect size (supplementary tables and page 5): The beta coefficients are large, but it 

is not explained the units in the methylation (beta values, M-values?) and protein (z-

scores, log-transformed level, other?). This should be introduced early in the text. 



What captured my attention is that when compared to Zaghlool et al there are 10 

fold differences between both (Supplementary Table 7). This requires some 

explanation or context for interpretation. 

Response to comment four 

In our epigenome-wide association study we used rank-based inverse 

normalised protein levels and M-values for our DNAm dataset. Zaghlool et al 

used log transformed protein levels with M-values. However, P-values and 

direction of effects are consistent across both studies – see Supplementary 

Table 11. 

To aid in the comparison given in Supplementary Table 11, we have converted 

the effect estimates from both studies to z-score format and plotted the 

replication in Supplementary Figure 3. We hope that this further visualisation 

is of value. 

Comment five

5. Figure 2 and page 6: Could you add some more context to the cis effects, I am 

confused why 10 Mb? Most of the studies look for closer relationships (1 Mb) around 

the TSS to locate promoter and enhancer areas (Zaghlool et al use that criterion). In 

that context trans are limited to TF in different chromosomes and in some cases to 

changes in large chromosomes (as chromosome 1). Is it possible to elaborate for the 

reader why that threshold was used and what does that mean for your findings 

interpretation. 

Response to comment five 

To understand the impact that this decision has on our results, we have 

performed a sensitivity assessment that restricted the distance to within 1Mb 

of the TSS for the genes corresponding to the fully-adjusted pQTM 

associations. We restricted cis associations to CpGs on the same chromosome 

as the protein, as per our main analyses. This analysis suggests that the WBC-

adjusted and fully-adjusted cis classifications are largely unaffected by 

differences in the distance threshold used.  

In this assessment, we found that:  



 Of the 451 associations from the fully-adjusted MWAS that were 

classified as cis at the 10Mb threshold, 409 cis associations fell within 

the 1Mb distance from the TSS, while 42 were within the 10Mb-1Mb 

region of the TSS 

 Of the 453 associations from the WBC-adjusted MWAS that were 

classified as cis at the 10Mb threshold, 413 cis associations fell within 

the 1Mb distance from the TSS, while 40 were within the 10Mb-1Mb 

region of the TSS 

 Of the 2,107 associations from the basic MWAS that were classified as 

cis at the 10Mb threshold, 752 cis associations fell within the 1Mb 

distance from the TSS, while 1355 were within the 10Mb-1Mb region of 

the TSS 

We have added this sensitivity analysis to our results section: 

Page 5, line 111: ‘In a sensitivity analysis, restriction of the threshold for cis 

pQTMs from 10Mb to 1Mb from the transcription start site of the gene encoding 

the protein yielded 409 cis pQTMs (a drop of 42 pQTMs) in the fully-adjusted 

MWAS.’ 

We have clarified our cis/trans definitions in the methods as follows: 

Page 22, line 500: ‘pQTMs were classified as cis if the CpG was on the same 

chromosome as the protein-coding gene and fell within 10Mb of the 

transcriptional start site (TSS) of the protein gene. pQTMs involving a CpG located 

on a different chromosome to the protein-coding gene, or >10Mb from the TSS 

of the protein gene were classed as trans.’ 

We have also ensured that this is made clear in the Figure 2 part b legend: 

Fig 2 legend: “The 434 cis pQTMs (purple) lay on the same chromosome and ≤ 

10Mb from the transcriptional start site (TSS) of the protein gene, whereas the 

391 trans pQTMs (green) lay > 10Mb from the TSS of the protein gene or on a 

different chromosome.”  

We agree that there is variable use of the 1Mb and 10Mb threshold in the 

literature. The 10mb threshold has been used in two previous studies by our 



group, which quantified genetic and epigenetic associations with protein 

levels: 

 https://genomemedicine.biomedcentral.com/articles/10.1186/s13073-

020-00754-1

 https://www.nature.com/articles/s41467-019-11177-x

While there are also epigenetic and genetic studies (such as Sun et al) that 

restrict cis associations to within 1Mb of the transcription start site (TSS) of the 

gene encoding the protein, there are arguably cis associations that may fall 

slightly beyond such distances. Our choice to use a more lenient 10Mb 

threshold is based on this rationale. 

Comment six

6. Figure 4: The results are well condensed in this circosplot figure pointing to several 

inflammatory genes. I have only one comment with chromosome 22 as the genes 

overlap with those of chromosome 21. If there is an alternative to redraw those it will 

be clearer for your message. 

Response to comment six 

We have updated this figure based on the revised findings. Due to the 

number of neurological pQTMs dropping from 88 to 35 as a result of immune 

cell adjustments in the MWAS and more stringent thresholding adjustment for 

multiple testing in the PheWAS, the text is now much larger and should help 

with interpretability for readers.  

Comment seven

7. I would recommend to add some supplementary plots for the relationships 

between the two CpGs for NLCR5 and the seven pQTMs. and whether there are 

particular distributions in those relationships (e.g., genetic components in the 

association). 

Response to comment seven 

We have used the DNAm and protein datasets that fed into the MWAS to plot 

the relationships for the revised set of pQTMs for all 35 associations in the 

neurological subset, in the interests of thoroughness and visualisation. These 

https://genomemedicine.biomedcentral.com/articles/10.1186/s13073-020-00754-1
https://genomemedicine.biomedcentral.com/articles/10.1186/s13073-020-00754-1
https://www.nature.com/articles/s41467-019-11177-x


plots are included in Supplementary Figure 12. Several of the distributions 

indicated the presence of trimodal distributions in CpG DNAm, implying they 

have an underlying genetic component. We performed a lookup of 

mQTLs/eQTLs in public databases, however due to these relying on data from 

the 450K Illumina array, this search was limited to partial coverage of the 

relevant CpGs (15/31 CpGs were unique to the EPIC array).  

The results section has been updated as follows: 

Page 10, line 221: ‘A lookup that integrated information from the GoDMC and 

eQTLGen databases assessed whether pQTMs were partially driven by an 

underlying genetic component. This identified methylation quantitative trait loci 

(mQTLs) for CpGs that were associated with CHI3L1, IL18R1 and SIGLEC5 and 

were also expression quantitative trait loci (eQTLs) for the respective protein 

levels (Supplementary Table 20). Further visual inspection of the distributions for 

the 35 pQTMs indicated that trimodal distributions – suggestive of unaccounted 

SNP effects – were present for CpGs involved in seven of the pQTMs 

(Supplementary Fig. 12).’ 

We have also discussed the interpretation of these genetic components as 

follows, referencing the plots and mQTL/eQTL analyses: 

Page 13, line 308: ‘Given that this study utilised CpGs from the Illumina EPIC 

array, 15 of the 31 unique CpGs did not have mQTL characterisations in public 

databases, which primarily comprise results from the earlier 450K array. However, 

our plots showing pQTM associations suggested that for several CpGs (such as 

cg11294350 that associated with SMPD1 and HEXB), there may be a partial 

genetic component influencing DNAm. As mQTLs tend to explain 15-17% of the 

additive genetic variance of DNAm 59, it is possible that the signals we isolate in 

these instances are partially driven by genetic loci, but are also likely driven by 

unmeasured environmental and biological influences. In the case of SIGLEC5, 

IL18R1 and CHI3L, mQTLs were identified that were also eQTLs, providing 

evidence that mQTLs for these CpG sites were possible regulators of protein 

expression.’ 

Comment eight



8. Limitations: You mention three hypotheses for the non-association between 

PheWAS and pQTMs. I believe you meant "not reflected by the blood immune cells 

epigenome" instead of "plasma epigenome". 

Response to comment eight 

Thank you for pointing this out. We have updated the sentence to the 

following: 

Page 15, line 340: ‘1) the presence of pathways relating to neurological disease 

that are not reflected by blood immune cell DNAm…’ 

Comment nine

9. Why the eosinophil proportions were unavailable? Reinius include eosinophils, the 

newer Salas et al 2021 also incorporates eosinophils. There was any reason not to use 

it? 

Response to comment nine  

Thank you for raising this point. At the time of rerunning our analyses, we 

generated the eosinophil estimates using Reinius et al 2012 as the reference 

panel. We also were able to source Neutrophil estimates from this panel. 

When correlating measurements for all estimates white blood cell proportions 

available (Supplementary Figure 22), we observed that the neutrophil 

esitmates were highly correlated (>95%) with granulocyte estimates. For this 

reason, we chose to include Monocytes, Bcells, CD4T cells, CD8T cells, 

Granulocytes, Natural Killer cells and Eosinophils in our updated MWAS in 

WBC-adjusted and fully-adjusted models. Previously we had used Bcells, CD4T 

cells, CD8T cells, Granulocytes and Natural Killer cells. Our new results 

therefore have further adjustment for Monocyte and Eosinophil estimates and 

we see a reduction in pQTMs, suggesting that our previous associations for 

MX1 were likely to have been driven by the cell type effects.  

Page 21, line 483: ‘A second model further adjusted for estimated white blood 

cell proportions (Monocytes, CD4+T cells, CD8+T cells, BCells, Natural Killer cells, 

Granulocytes and Eosinophils). While Neutrophil estimates were available, they 



were excluded due to high correlation (>95%) with Granulocyte proportions 

(Supplementary Fig. 22).’ 

We appreciate that a more recent study is now available that facilitates 

eosinophil estimates (Salas et al, 2021), however, given that was in the form of 

a preprint when we ran our MWAS analyses we chose not to use it on this 

occasion. However, we have noted it as a reference in our limitations/future 

applications as follows: 

Our updated text reads as follows:  

Page 14, line 334: ‘While comprehensive adjustment for estimated immune 

cells was performed and the remainder of CpGs involved in pQTMs did not show 

high correlations (Supplementary Fig. 2), concurrently measured blood 

components such as haemoglobin, red blood cells and platelets were not 

available. Future studies should seek to resolve signals with more detailed 

blood-cell phenotyping and immune cell estimates 63.’ 

Comment ten

10. Methods: DNAm briefly can you report the normalization, p-detection threshold 

used in your analysis? 

Response to comment ten 

We have added this information and also provide more extensive details 

regarding the DNAm preparation as a subsection of the newly included 

Supplementary Methods file. Our updated manuscript now reads as follows: 

Page 17, line 383: ‘Measurements of blood DNAm in the STRADL subset of GS 

subset were processed in two sets on the Illumina EPIC array using the same 

methodology as those collected in the wider Generation Scotland cohort. Quality 

control details have been reported previously 70–72 and further details are 

provided in Supplementary Methods. Briefly, samples were removed if there was 

a mismatch between DNAm-predicted and genotype-based sex and all non-

specific CpG and SNP probes (with allele frequency > 5%) were removed from 

the methylation file. Probes which had a beadcount of less than 3 in more than 

5% of samples and/or probes in which >1% of samples had a detection P>0.01 



were excluded. After quality control, 793,706 and 773,860 CpG were available in 

sets 1 and 2, respectively.’ 

Comment eleven

11. Code: I briefly looked at the code, and I have questions about your lagged effects 

and creatinine adjustment. Were those used in your analysis for selection of your 

sample? I was confused when I found those variables there and not in your 

manuscript. Could you please clarify? 

Response to comment eleven 

Thank you for raising this important point. We apologise that our code was 

not presented clearly enough for full interpretation. In a previous iteration of 

the study we had initially integrated eGFR as a covariate and adjusted the 

protein levels for this measure. However, we realised that the eGFR was 

sampled at Generation Scotland baseline. Given the STRADL sample was taken 

~5 years after baseline, we decided that this variable should not be used in 

analyses. The protein preparation script that you viewed had the remnants of 

the eGFR preparation step, however we did not use the eGFR variable in the 

regression onto protein levels for the MWAS that was detailed in the script. 

In response to this issue, we have checked all code presented on GitLab, to 

ensure that it is true to the final analyses we present in the paper. We will be 

producing a YouTube video that informs people on both the open access data 

and code that is available. 

Reviewer #4 

Comment one

1. It is possible that the reported numbers may be inflated. I have no issues with the 

conservative multiple testing threshold. It would be good to know what the 

correlation structure is like for the CpG measures and how many “effective” 

independent components drive most the findings here. Also it would be good to 

know how many proteins are associated in the main results (rather then implied 

through the GC lambda sentence). 



Response to comment one 

We agree that PAPPA and PRG3 had a significant proportion of the pQTM 

associations and were likely to be inflated. This was aligned to Zaghlool et al 

(Nat Comms, 2020), which found that PAPPA was also the largest component 

of associations in their study (72 of a possible 98 pQTMs). PRG3 was not 

measured by Zaghlool et al, which is why we do not see high inflation for this 

protein in their results.  

We have made the distinction between PAPPA/PRG3 and the rest of the 

protein associations clearer throughout our results section (see Fig. 2b). We 

have also add a limitation to our discussion to discuss the potential for 

inflation as follows: 

Page 14, line 333: ‘…we observed a substantial inflation for PAPPA and PRG3 

proteins.’ 

Regarding the second point raised on ‘effective independent components’, we 

now present the correlation structure for CpG measures with a PCA analysis to 

show how many independent signals drive the majority of findings in 

Supplementary Figure 2. These indicated a high level of intercorrelations for 

the inflated proteins (PRG3 and PAPPA). We have updated the text as follows: 

Page 6, line 123: ‘Principal components analyses indicated high correlations 

between CpGs associated with the pleiotropic proteins PAPPA and PRG3, 

whereas the CpGs involved in the remaining 825 pQTMs were largely 

uncorrelated (Supplementary Fig. 2).’ 

Finally, we have clarified the number of proteins implicated in our results, 

separate to the sentence that refers to lambda values. This text now reads as 

follows: 

Page 5, line 108: ‘There were 191 unique proteins with associations in the 

fully-adjusted models, corresponding to 195 SOMAmer measurements (two 

SOMAmers were present for CLEC11A, GOLM1, ICAM5 and LRP11). Genomic 

inflation statistics for these 195 SOMAmer measurements (fully-adjusted MWAS) 

are presented in Supplementary Table 7.’ 



Comment two

2. The numbers drop drastically once you exclude the 2/3 biggest pleiotropic 

CpG/proteins, which explains a significant proportion of your 2,854 associations. 

Response to comment two 

As mentioned in the response to the above comment, we have made this 

distinction clearer throughout the manuscript. Our revised visualisations (Fig. 

2b and Fig3) also make the distinction clearer. 

We have also added a limitation on the potential for inflation as follows: 

Page 14, line 334: ‘…Second, we observed a substantial inflation for PAPPA 

and PRG3 proteins. While comprehensive adjustment for estimated immune 

cells was performed and the remainder of CpGs involved in pQTMs did not show 

high correlations (Supplementary Fig. 2), concurrently measured blood 

components such as haemoglobin, red blood cells and platelets were not 

available. Future studies should seek to resolve signals with more detailed 

blood-cell phenotyping and immune cell estimates 63.’ 

Comment three

3. Of the 151 novel proteins with significant associations, how many are due to the 

protein not being measured in previous studies. 

Response to comment three 

We have updated our manuscript as follows to clarify this: 

Page 6, line 137: ‘When accounting for 26 pQTMs that were previously 

reported by Zaghlool et al and 10 pQTMs that were previously reported by 

Hillary et al 14,19, 2,892 of the 2,928 fully-adjusted pQTMs were novel. Of these 

2,892 novel pQTMs, 1,109 involved the levels of 41 proteins that were measured 

by Zaghlool et al (973 pQTMs for PAPPA and 136 additional pQTMs for the 

levels of 40 proteins), whereas 1,783 pQTMs involved the levels of proteins that 



were previously unmeasured (1,116 pQTMs for PRG3 and 667 further pQTMs for 

148 proteins).’ 

Comment four

4. Since effect size are in relative units, I feel sentences relating to effect sizes eg. 

“There were 2,895 associations, with effect size ranging from -2.64 (SE 0.29) for PRG3 

and cg16899419, to 2.62 (SE 0.19) for MDGA1 and cg12415337 (Supplementary Table 

5).” are not very informative. 

Response to comment four 

We agree that this sentence is uninformative and have removed it. This has 

been replaced with further clarification on the strongest/most pleiotropic 

associations as requested in comments five and nine. 

Comment five

5. Some summary figure/supplementary figure on how many proteins have how 

many associations/other pleiotropic CpG genes/regions would help interpretability 

Response to comment five  

We have added a visualisation that forms the revised Fig. 3 to highlight the 

most pleiotropic proteins/CpGs involved in the fully-adjusted MWAS pQTMs. 

This figure plots the associations with protein chromosomal locations on the 

x-axis and CpG chromosomal locations on the y-axis. In each case, we 

highlight the proteins or CpGs that had the most pleiotropic signatures in the 

results. We also supplement this by presenting counts for associations in 

Supplementary Tables 9-10. Part c of Figure 2 also presents a flow diagram 

showing the number of associations that were found in the fully-adjusted 

MWAS, with the highly pleiotropic associations for PAPPA and PRG3 

separated out from the remaining 825 pQTMs for 189 protein levels. Though it 

is challenging to present such a large amount of information in a diagram 

such as this, we hope that these amends make the findings clearer. 



Comment six

6. The vast majority of findings seem to be explained by white cell count – I wonder 

whether other blood cell counts/components may be a confounder in plasma based 

studies. Do the authors have access to subtype white cell counts, red cell counts, 

haemoglobin and platelets, that may be adjusted for? Also are cis and trans effects 

affected differently/similarly with adjustment? 

Response to comment six 

Regarding the first point, we unfortunately do not have access to red cell 

counts, haemoglobin and platelet measurements at the same time as DNAm 

in the Generation Scotland cohort. Though we have adjusted for white blood 

cell estimates, it is possible that there may be other blood-based cell 

composition factors that are unaccounted for by this study that may influence 

pQTM associations. For this reason, we have added a caveat as follows: 

Page 14, line 334: ‘…Second, we observed a substantial inflation for PAPPA 

and PRG3 proteins. While comprehensive adjustment for estimated immune 

cells was performed and the remainder of CpGs involved in pQTMs did not show 

high correlations (Supplementary Fig. 2), concurrently measured blood 

components such as haemoglobin, red blood cells and platelets were not 

available. Future studies should seek to resolve signals with more detailed 

blood-cell phenotyping and immune cell estimates 63.’ 

With regards to the second point raised, we agree that the associations that 

are accounted for by adjustment using white blood cell estimates are 

interesting. As the MWAS was previously run with WBC and pQTL adjustment 

in the same model, we have now included pQTL adjustments in our basic 

model. This has allowed us to report the associations that are attenuated due 

to WBC adjustment specifically. We have updated the manuscript as follows 

with cis/trans breakdowns for each stage of the MWAS with cis/trans 

information also now included in the Supplementary Tables for each MWAS 

iteration: 

Page 5, line 99: ‘In our basic model adjusting for age, sex and available genetic 

pQTL effects from Sun et al 20 238,245 pQTMs (2,107 cis and 236,138 trans, 

representing 0.005% of tested associations) had P < 4.5x10-10 (Supplementary 



Table 4). In our second model that further adjusted for Houseman-estimated 

white blood cell proportions21, there were 3,213 associations (453 cis and 2,760 

trans) that had P < 4.5x10-10 (Supplementary Table 5). Smoking status and BMI 

are known to have well-characterised DNAm signatures 22,23; fully-adjusted 

models were therefore further adjusted for these factors. There were 2,928 

associations (451 cis and 2,477 trans) in the fully-adjusted models

(Supplementary Table 6). 2,847 pQTM associations were significant in all 

models. Figure 2 summarises these findings.’ 

Comment seven

7. I would have thought epigenetic effects in theory affect expression rather than 

post-transcriptional process, at least cis ones? It may be worthwhile to see whether 

the eQTLs explain some of these associations? 

Response to comment seven 

Given that our DNAm has been measured on the Illumina EPIC array, we do 

not have access to any public databases that would allow us to search for 

mQTLs across all CpGs included in the present study. We have performed a 

lookup of both mQTLs (from the GoDMC database) and eQTLs (from the 

eQTLGen database) with partial coverage. This identified three proteins that 

may be driven by an mQTL that is also an eQTL. We include this in 

Supplementary Table 20 (for the neurological subset of proteins with pQTM 

signals). We also plotted the pQTM associations for the 35 pQTMs associated 

with brain health protein markers (Supplementary Figure 12). This revealed 

seven associations that had CpGs with possible mQTL effects via trimodal 

distributions of the CpG DNAm. Of the 31 unique CpGs, 15 are unique to the 

EPIC array and therefore not included in the GoDMC database. 

We detail this in our results as follows: 

Page 10, line 221: A lookup that integrated information from the GoDMC and 

eQTLGen databases assessed whether pQTMs were partially driven by an 

underlying genetic component. This identified methylation quantitative trait loci 

(mQTLs) for CpGs that were associated with CHI3L1, IL18R1 and SIGLEC5 and 

were also expression quantitative trait loci (eQTLs) for the respective protein 

levels (Supplementary Table 20). Further visual inspection of the distributions for 



the 35 pQTMs indicated that trimodal distributions – suggestive of unaccounted 

SNP effects – were present for CpGs involved in seven of the pQTMs 

(Supplementary Fig. 12).’ 

We also discuss this as follows: 

Page 13, line 308: ‘Given that this study utilised CpGs from the Illumina EPIC 

array, 15 of the 31 unique CpGs did not have mQTL characterisations in public 

databases, which primarily comprise results from the earlier 450K array. However, 

our plots showing pQTM associations suggested that for several CpGs (such as 

cg11294350 that associated with SMPD1 and HEXB), there may be a partial 

genetic component influencing DNAm. As mQTLs tend to explain 15-17% of the 

additive genetic variance of DNAm 59, it is possible that the signals we isolate in 

these instances are partially driven by genetic loci, but are also likely driven by 

unmeasured environmental and biological influences. In the case of SIGLEC5, 

IL18R1 and CHI3L, mQTLs were identified that were also eQTLs, providing 

evidence that mQTLs for these CpG sites were possible regulators of protein 

expression.‘ 

Comment eight

8. I also see ABO there, is this explained by blood group? (assuming there’s access to 

blood type/genetics to impute the blood type) 

Response to comment eight 

We have sourced blood type information from the Generation Scotland study. 

However, since a more stringent thresholding approach was applied to the 

protein PheWAS to adjust for multiple testing, ABO is now no longer 

implicated as a protein marker for neurological traits. This additional analysis 

for the neurological pQTM pertaining to ABO is now no longer required. 

Comment nine

9. Despite the lack of replication cohort, the authors attempt to replicate some of the 

overlap with the existing study. Are any strong associations/relatively pleiotropic 

associations excluding the ones mentioned, seen in only this study or the other 

study? 



Response to comment nine 

As the only other large-scale MWAS on circulating proteins was conducted by 

Zaghlool et al, we compared strong/pleiotropic associations across both 

studies. Our updated replication assessment (Supplementary Figure 3 and 

Supplementary Table 11) shows that we replicate all pQTMs comparable with 

Zaghlool et al at the nominal threshold of P < 0.05 and we replicate many of 

the strongest associations at P<4.5x10-10. 

Regarding pleiotropy across both studies, we replicate the highly pleiotropic 

associations found by Zaghlool et al for PAPPA protein levels, and for CpGs in 

the NLRC5 gene region. Our results also found that PRG3 was a highly 

pleiotropic protein – this protein was not measured in the Zaghlool et al 

sample. Our results extend the work of Zaghlool et al further with the 

identification of several additional sites that are pleotropic, such as the 

associations for SLC7A11 and PARP9 that were previously unmeasured. We 

have provided a more detailed view of the pleiotropy present in our study in 

the revised Figure 3 and Supplementary Tables 9-10. We have also added 

further clarification on the number of proteins that were previously 

uncharacterised by Zaghlool et al that we have analysed for the first time in 

our results section as follows: 

Page 6, line 137: ‘When accounting for 26 pQTMs that were previously 

reported by Zaghlool et al and 10 pQTMs that were previously reported by 

Hillary et al 14,19, 2,892 of the 2,928 fully-adjusted pQTMs were novel. Of these 

2,892 novel pQTMs, 1,109 involved the levels of 41 proteins that were measured 

by Zaghlool et al (973 pQTMs for PAPPA and 136 additional pQTMs for the 

levels of 40 proteins), whereas 1,783 pQTMs involved the levels of proteins that 

were previously unmeasured (1,116 pQTMs for PRG3 and 667 further pQTMs for 

148 proteins).’ 

Comment ten

10. What prompts the switch of multiple adjustment methods to FDR for the protein 

PheWAS rather than stick to one? 

Response to comment ten 



In our first draft of the manuscript we used conventions from previous MWAS 

and PheWAS studies. For example, Lehallier et al used FDR correction over 

their PheWAS results between SOMAmer measurements and age and sex. 

Zaghlool et al used the correction threshold of 0.05 / total proteins / total 

CpGs for their MWAS.  

However, we have revisited the rationale for this. Since there is high 

correlation structure between the 4,235 protein measurements, we feel a 

Bonferroni threshold is somewhat harsh in this instance, given there are likely 

fewer independent components to the protein data. For this reason, we 

conducted a PCA analysis on the 4,235 SOMAmers in 1,065 individuals using 

prcomp() in R. This suggested that 143 independent components were able to 

explain >80% of the cumulative variance in protein levels (Supplementary Fig. 

1 and Supplementary Table 3).  

For this reason, we have chosen the following adjustment: MWAS: 0.05 / 143 

components * 772,619 CpGs = P < 4.5x10-10. However, we also consider the 

more stringent threshold previously used (P < 0.05 / 4,235 * 772,619 = 1.5x10-

11) by demarcating the difference in associations between the previous and 

revised threshold in Supplementary Tables 4-6, which detail the MWAS results. 

While the updated MWAS threshold is slightly less stringent than that used 

previously, whether a pQTM falls into the more stringent threshold can 

therefore be easily referenced.   

We have chosen the following threshold for the PheWAS:  0.05 / 143 

components = P < 3.5x10-4. When comparing adjustment in the PheWAS to 

our previous FDR-based method, we generally see that this is a more stringent 

approach, with the number of associations falling from 644 to 405. This is also 

evidenced by our age/sex PheWAS, in which the revised threshold reduced 

associations from 800 to 587 for age and 805 to 545 for sex, as compared to 

our original FDR P < 0.05 adjustment strategy (Supplementary Table 12). We 

therefore feel that this is appropriate. The high rate of replications between 

the age (97%) and sex (98%) associations in one or more of the three studies 

we use for comparisons (Ferkingstad et al 2021, Sun et al 2018 and Lehallier et 

al 2019) also supports this – see Supplementary Table 12 for this information, 

which is described as follows: 



Page 7, line 154: ‘When comparable associations from three studies (with 

N>1000) were tested 20,27,28, 97% of age and 98% of sex associations replicated 

in one or more of studies (Supplementary Table 12).’ 

We have updated the manuscript as follows: 

Page 5, line 95: ‘143 principal components explained 80% of the cumulative 

variance in the 4,235 measurements (Supplementary Fig. 1 and Supplementary 

Table 3). A threshold for multiple testing based on these components was 

applied across all MWAS (P < 0.05/(143x772,619) = 4.5x10-10).’ 

Page 7, line 150: ‘A threshold for multiple testing adjustment was calculated 

based on 143 independent components that explained >80% of the 4,235 

SOMAmer levels (Supplementary Table 3 and Supplementary Fig. 1). This 

equated to P < 0.05/(143) = 3.5x10-4.’ 

Page 20, line 469: ‘The Prcomp package 78 was used to generate principal 

components for the 4,235 SOMAmer measurements (N=1,065). 143 components 

explained >80% of the cumulative variance in protein levels (Supplementary Fig. 

1 and Supplementary Table 3); these components were used to derive the PheWAS 

multiple testing adjustment threshold of P < 0.05 / 143 = 3.5x10-4. This method 

was chosen due to the presence of high intercorrelations within the protein data.’ 

Page 21, line 496: ‘A threshold for multiple testing correction (P < 4.5x10-10) was 

based on 143 independent protein components with cumulative variance >80% 

(Supplementary Fig. 1 and Supplementary Table 3) (P < 0.05/(143x772,619) 

CpGs). A more conservative threshold based on total number of SOMAmers was 

also considered (P < 0.05/(4,235x772,619) = 1.5x10-11) and is detailed in

Supplementary Tables 4-6.’ 

Comment eleven

11. I believe other studies including Sun et al, Menni et al, Ngo et al also looked at 

association with age, gender, + others such as BMI/eGFR in addition to Lehallier et al. 

Response to comment eleven 



Thank you for drawing our attention to these studies. We collated the studies 

that examine age/sex associations and decided to include only those with N 

individuals greater than 1000 individuals that had looked at associations 

directly in a comparable format. A summary of inclusions/exclusions is 

provided below. 

Chosen studies to include  

 Sun et al, 2018 – (N 3,301 individuals) 

 Ferkingstad et al, 2021 – (N 35,559 individuals) 

 Lehallier et al, 2019 – (N 4,263 individuals) 

Remaining studies that had N < 1000 individuals or looked at age/sex 

associations with DNAm mediation and were therefore not considered: 

 Tanaka et al – (N 240 individuals) 

https://onlinelibrary.wiley.com/doi/full/10.1111/acel.12799  

 Tanaka et al – (N 997 individuals) 

https://elifesciences.org/articles/61073 (Age associated proteins 

mediation by DNA methylation) 

 Ngo et al – (N < 100 individuals) 

https://www.ahajournals.org/doi/full/10.1161/CIRCULATIONAHA.116.02

1803  

 Menni et al – (N 206 individuals) 

https://academic.oup.com/biomedgerontology/article/70/7/809/70774

7?login=true#supplementary-data 

This replication assessment can be found in the updated Supplementary Table 

12. Our manuscript also now reads as follows: 

Page 7, line 152: ‘The levels of 587 plasma proteins were associated with age 

and 545 were associated with sex, with 222 proteins common to both 

phenotypes (Supplementary Table 12). When comparable associations from 

three studies (with N>1000) were tested 20,27,28, 97% of age and 98% of sex 

associations replicated in one or more of studies (Supplementary Table 12).’ 

Comment twelve

12. The proteomic associations with other phenotypes: how much is known and how 

many are new? Maybe a forest plot with effect sizes for all/novel proteins rather than 



an arbitrary selection of scatterplots would be more informative for the space in the 

figure? 

Response to comment twelve 

We have made the number of novel proteins for each trait clearer throughout 

the manuscript. Our replication assessment reads as follows: 

Page 8, line 191: ‘Six of the 14 APOE e4 status associations replicated previous 

SOMAmer protein findings (N SOMAmers= 4,785 and N participants=227) 10, 

and eight novel relationships involved NEFL, ING4, PAF, MENT, TMCC3, CRP, 

FAM20A and PEF1. Several of the markers for cognitive function were identified 

in previous work relating Olink proteins to cognitive function (such as CPM) 29

and work that characterised SOMAmer signatures of cognitive decline and 

incident Alzheimer’s disease (such as SVEP1) 8. No studies have performed 

SOMAmer-based, whole proteome PheWAS studies of the brain imaging and 

cognitive score traits we have profiled in a heathy ageing population that were 

not enriched for neurodegenerative diseases. However, replication of 

associations from several studies 9,29,30 was found for a small subset of 

associations (Supplementary Table 19).’ 

We have also updated the revised Figure 4 such that it now details the 

number of total associations. As the number of novel associations would be 

too large to detail on a forest plot with ease, we have plotted all associations 

for APOE in Supplementary Figure 7. We also then include a replication 

summary in Supplementary Table 19 for the cognitive score and brain imaging 

replication assessment. We also provide the subset of 405 associations that 

were significant in the PheWAS as Supplementary Table 17. This means that 

future readers can easily search the summary statistics for the 405 associations 

presented by protein gene name in Supplementary Table 16. 

Figure 4b shows a subset of protein associations that involved proteins that 

were markers for either a cognitive trait and APOE status (3 proteins), or a 

marker for a cognitive trait and brain imaging trait (22 proteins). The updated 

text reads as follows: 



Page 8, line 181: ‘Markers such as ASB9 and NCAN were found to be 

consistently identified across multiple brain imaging traits as markers of poorer 

and better brain health, respectively (Supplementary Table 16). While many of 

the associations for brain imaging measures identified proteins that were 

distinct from those found for cognitive scores and APOE e4 status, 22 protein 

markers were associated with both a cognitive score and a brain imaging trait 

(Fig. 4b and Supplementary Table 18). Of these 22 proteins, there were 10 

principal components that had a cumulative variance of >80% and five 

components had eigenvalues > 1 (Supplementary Fig. 11). Three APOE e4 status 

markers (ING4, APOB and CRP) were also associated with cognitive scores (Fig. 

4b).’ 

Comment thirteen

13. “Many of the 644 protein marker associations were independent and did not 

cross neurological modalities.” How is this determined? 

Response to comment thirteen 

Apologies that this was not clear in our original text. Simply put, we meant 

that many of the proteins markers we identified were not associated with 

multiple types of brain health outcome (i.e. associations for cognitive scores 

did not largely crossover with the associations for brain imaging, and only 3 

APOE-associated proteins were associated with cognitive scores). We 

appreciate that the ‘modalities’ term is unclear and have updated our 

manuscript as follows: 

Page 8, line 181: ‘Markers such as ASB9 and NCAN were found to be 

consistently identified across multiple brain imaging traits as markers of poorer 

and better brain health, respectively (Supplementary Table 16). While many of 

the associations for brain imaging measures identified proteins that were 

distinct from those found for cognitive scores and APOE e4 status, 22 protein 

markers were associated with both a cognitive score and a brain imaging trait 

(Fig. 4b and Supplementary Table 18). Of these 22 proteins, there were 10 

principal components that had a cumulative variance of >80% and five 

components had eigenvalues > 1 (Supplementary Fig. 11). Three APOE e4 status 



markers (ING4, APOB and CRP) were also associated with cognitive scores (Fig. 

4b).’ 

Comment fourteen

14. . Of the 25 common proteins, there were six independent signals, as determined 

by components with eigenvalues > 1 in principal components analyses 

(Supplementary Fig.1). How is this justified? Why use eigenvalue of 1 – doesn’t 

cumulative proportion essentially say the same thing? The first 6 PCs explain less 

than 70% of the variance. May be an alternative way to cluster may be needed here 

Response to comment fourteen 

We have updated our manuscript to clarify the number of clusters required to 

reach 80% of the cumulative variance explained, in addition to the 

components that had eigenvalues >1 (a metric that is commonly applied to 

identify PCs of interest). Our results section reads as follows: 

Page 8, line 186: ‘Of these 22 proteins, there were 10 principal components 

that had a cumulative variance of >80% and five components had eigenvalues 

> 1 (Supplementary Figure 11).’ 

Comment fifteen

15. Are associated genes/proteins systematically enriched for any pathways from 

your main results? 

Response to comment fifteen 

We have added FUMA enrichment analyses and STRING protein interaction 

networks for the genes corresponding to the 191 unique proteins implicated 

in our PheWAS of brain health characteristics. These are provided as 

Supplementary Figures 8-10. We have also grouped the association summary 

in Supplementary Table 16 to include associations that reflected either poorer 

or more favourable brain health outcomes. 

Our results section has been updated as follows: 



Page 7, line 167: ‘Stratifying the 405 associations by direction of effect 

revealed that the majority (89%) of associations indicated that higher levels of 

the proteins were associated with less favourable brain health (Supplementary 

Table 16). Eighty-seven of the 405 associations involved protein leves that were 

associated with more favourable brain health; this signature included the levels 

of SLITRK1, NCAN and COL11A2. Higher levels of ASB9, RBL2, HEXB and 

SMPD1 associated with poorer brain health. Protein interaction network 

analyses for the genes corresponding to the 191 protein markers 

(Supplementary Fig. 8) indicated that many of the proteins in these signatures 

clustered together, implying shared underlying functions. An inflammatory 

cluster including CRP, ITIH4, C3, C5, COL11A2 and SIGLEC2 was present and 

higher levels of these markers were associated with poorer brain health 

outcomes. Gene set enrichment analyses on the 191 genes corresponding to the 

protein markers (Supplementary Fig. 9) supported the link between many of the 

proteins associated with poorer brain health and the innate immune system, 

while also implicating extracellular matrix, lysosomal, metabolic and additional 

inflammatory pathways. Tissue expression profiles of the 191 genes 

(Supplementary Fig. 10) indicated that many of the markers were expressed 

non-neurological tissues; however, some proteins were expressed in nervous 

tissues. Markers such as ASB9 and NCAN were found to be consistently 

identified across multiple brain imaging traits as markers of poorer and better 

brain health, respectively (Supplementary Table 16).‘ 

Our discussion has been updated as follows: 

Page 11, line 261: ‘Many of the 191 proteins identified in the protein PheWAS 

were part of inflammatory clusters with shared functions in acute phase response, 

complement cascade activity, innate immune activity and cytokine pathways. 

Tissue expression analyses suggested that a large proportion of the 191 protein 

markers were not expressed in the brain; this supports work suggesting that 

sustained peripheral inflammation influences general brain health 3132 and 

accelerates cognitive decline 8,33–35. However, a subset of proteins were expressed 

in the central nervous system. Given that leakage at the blood-brain-barrier 

interface has been hallmarked as a part of healthy brain ageing 36,37, there is a 

possibility that brain-derived proteins may enter the bloodstream as biomarkers. 

SLIT and NTRK Like Family Member 1 (SLITRK1), Neurocan (NCAN) and IgLON 

family member 5 (IGLON5) were examples of proteins expressed in brain for 

which higher levels associated with either larger grey matter volume, larger whole 



brain volume, or higher general fractional anisotropy. SLITRK1 localises at 

excitatory synapses and regulates synapse formation in hippocampal neurons 38. 

Neurocan (NCAN) is a component of neuronal extracellular matrix and is linked 

to neurite growth 39. IGLON5 has been implicated in maintenance of blood-brain-

barrier integrity and an anti-IGLON5 antibody disease involves the deterioration 

of cognitive health 40. Taken together, the protein markers identified in the 

PheWAS may, therefore, reflect pathways that could be targeted to improve brain 

health.’ 

We also include FUMA tissue expression and gene set enrichment analysis for 

the subset of 33 genes corresponding to either CpGs or proteins involved in 

neurological pQTMs. These can be found in Supplementary Figures 13-14.  

The following updates have been included: 

Page 10, line 228: ‘Tissue expression profiles for the 33 genes that were linked 

to either CpGs or proteins in the 35 neurological pQTMs are summarised in 

Supplementary Fig. 13. Gene set enrichment for these 33 genes identified 

enrichment for immune effector pathways in a subset of 11 genes, whereas a 

cluster of four genes (SMPD1, HEXB, AMY2A and AMY2B) were enriched for 

amylase and hydrolase activity (Supplementary Fig. 14).‘ 

Page 13, line 296: ‘Many of the genes corresponding to CpGs and proteins 

involved in the 35 pQTMs were enriched for immune effector processes and 

were not expressed in brain. However, some markers did show evidence for 

brain-specific expression, such as acid sphingomyelinase (SMPD1) and 

Hexosaminidase Subunit Beta (HEXB).’ 

Our methods section has been updated as follows, covering all FUMA and 

STRING analyses included: 

Page 22, line 507: ‘Functional mapping and annotation (FUMA) 82 gene set 

enrichment analyses were conducted for genes corresponding to protein 

markers that were identified through the PheWAS study, in addition to genes 

linked to either CpGs or proteins in the neurological pQTM subset. Protein-

coding genes were selected as the background set and ensemble v92 was used 



with a false discovery rate (FDR) adjusted P < 0.05 threshold for gene set testing. 

For the genes corresponding to protein markers in the PheWAS a minimum 

overlapping number of genes was set to 3, whereas this was set to 2 for the 

genes involved in neurological pQTMs for the purposes of visualisation. The 

STRING 83 database was queried to build a protein interaction network based on 

all proteins that had associations in the PheWAS.’ 



REVIEWERS' COMMENTS

Reviewer #1 (Remarks to the Author): 

The authors did a good job addressing my previous concerns. The manuscript has been significantly 

strengthened for publication in Nature Communications. 

Reviewer #2 (Remarks to the Author): 

The manuscript by Gadd et al. entitled "Integrated methylome and phenome study of the circulating 

proteome reveals markers pertinent to brain health" integrates DNA methylation and phenotypes 

uncovering multiple relationships and newer DNA methylation signatures in relation to brain health. 

The answers filled all the gaps found initially, and the manuscript is greatly improved. 

The authors have made a thorough revision of the manuscript and addressed the questions and 

concerns raised by the different reviewers and I have no additional comments. 

Reviewer #4 (Remarks to the Author): 

Thank you to the authors for addressing my comments (as much as the extent of availability of data 

allows) - I have no major outstanding concerns. 

One minor comment: 

"in addition to the components that had eigenvalues >1 (a metric that is commonly applied to identify 

PCs of interest)" - can you refer to the source/references that suggest this usage? 

Can the necessary changes also be updated in the abstract to reflect the updated results please?



REVIEWER COMMENTS

General response to reviewers 

We thank the reviewers for their positive feedback regarding the revisions. The work done to 

address their comments has, we believe, improved the rigour and quality of the work. As 

reviewers #1 and #2 did not have any further comments to address, we present a final point-

by-point style response to the query raised by reviewer #4 below. Once again thank you to 

all reviewers for their time and expertise in reviewing this work. 

Response to Reviewer #4

Thank you to the authors for addressing my comments (as much as the extent of availability 

of data allows) - I have no major outstanding concerns. 

One minor comment: 

"in addition to the components that had eigenvalues >1 (a metric that is commonly applied 

to identify PCs of interest)" - can you refer to the source/references that suggest this usage? 

Can the necessary changes also be updated in the abstract to reflect the updated results 

please? 

Response to comment two part one 

Thank you for raising this point regarding the use of thresholds for principal 

components analyses. While there are many possible sources to reference for the 

application of such thresholds, one appropriate source comes from work done by the 

statistician Ian Jolliffe.  

In this publication titled ‘Principal Component Analysis, Second Edition’, on page 112 

Joliffe outlines that the dimensionality reduction thresholds we utilise in our paper (i.e. 

cumulative variance of 80% and eigenvalues >1 as per Kaiser’s rule) while being ‘very 

much ad hoc rules-of-thumb’ are ‘intuitively plausible and that they work in practice’. 

The full text can be accessed here: 

http://cda.psych.uiuc.edu/statistical_learning_course/Jolliffe%20I.%20Principal%20Com

ponent%20Analysis%20(2ed.,%20Springer,%202002)(518s)_MVsa_.pdf.  

Kaiser’s rule is described on page 114 as follows: ‘The rule, in its simplest form, is 

sometimes called Kaiser’s rule (Kaiser, 1960) and retains only those PCs whose 

variances lk exceed 1.’ 

The cumulative variance approach is described on page 112 as follows: ‘Perhaps the 

most obvious criterion for choosing m, which has already been informally adopted in 

some of the examples of Chapters 4 and 5, is to select a (cumulative) percentage of 

total variation which one desires that the selected PCs contribute, say 80% or 90%. The 

http://cda.psych.uiuc.edu/statistical_learning_course/Jolliffe%20I.%20Principal%20Component%20Analysis%20(2ed.,%20Springer,%202002)(518s)_MVsa_.pdf
http://cda.psych.uiuc.edu/statistical_learning_course/Jolliffe%20I.%20Principal%20Component%20Analysis%20(2ed.,%20Springer,%202002)(518s)_MVsa_.pdf


required number of PCs is then the smallest value of m for which this chosen 

percentage is exceeded.’ 

Professor Jolliffe’s work on principal components analyses that we have referenced here 

has been cited in over 49,000 previous instances (see: 

https://scholar.google.co.uk/citations?user=JdqoVEkAAAAJ&hl=en). 

We have therefore updated the text regarding principle analyses of the 22 protein 

marker levels that were associated with both a cognitive and imaging trait as follows: 

Page 9, line 193: ‘A principal components analysis of the 22 protein levels was 

conducted. The first five components had an eigenvalue > 1 and a cumulative variance 

of >80% was explained by the first 10 components. These are both commonly-used 

thresholds for deciding how many principal components to retain 29.’ 

We have also updated the methods on the derivation of the 143 components across the 

full set of 4,235 protein measurements that we used to inform multiple testing 

correction as follows: 

Page 22, line 498: ‘The Prcomp function in the stats R package (Version 3.6.2) 79 was 

used to generate principal components for the 4,235 SOMAmer measurements 

(N=1,065). 143 components explained >80% of the cumulative variance in protein levels 

(a commonly-used threshold for the retention of principal components 29: Supplementary 

Fig. 1 and Supplementary Data 3). These 143 components were used to derive the 

PheWAS multiple testing adjustment threshold of P < 0.05 / 143 = 3.5x10-4. This method 

was chosen due to the presence of high intercorrelations within the protein data.’

These amends have been made in tracked changes in the manuscript file. They now detail 

the dimensionality reduction techniques used with further clarity and provide a reference 

to substantiate the thresholds used. While every statistical threshold is imperfect, these 

are commonly-used thresholds that serve to isolate components and we believe their use 

is warranted in these analyses. 

Finally, regarding the request to add this update to the abstract, these methods details 

are not the primary analyses of this work. Therefore, given the limited text allowance of 

the abstract that is available, we hope it is acceptable to include full details in the results 

and methods section with referencing as we have done here. Additionally, it is not 

possible to reference in the abstract – the edits we have made to the main manuscript 

regarding this point are therefore better-substantiated. 

https://scholar.google.co.uk/citations?user=JdqoVEkAAAAJ&hl=en

