nature portfolio | Corresponding author(s): | Heping Zheng | |----------------------------|--------------| | Last updated by author(s): | Jun 30, 2022 | ### **Reporting Summary** Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist. For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section | ~ . | | | | | |------------|----|-----|----|---| | St | at | IS. | tu | 2 | | - | | |-----|--| | n/a | Confirmed | | | The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement | | | A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly | | | The statistical test(s) used AND whether they are one- or two-sided Only common tests should be described solely by name; describe more complex techniques in the Methods section. | | × | A description of all covariates tested | | × | A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons | | | A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals) | | | For null hypothesis testing, the test statistic (e.g. <i>F</i> , <i>t</i> , <i>r</i>) with confidence intervals, effect sizes, degrees of freedom and <i>P</i> value noted <i>Give P values as exact values whenever suitable.</i> | | × | For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings | | × | For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes | | × | Estimates of effect sizes (e.g. Cohen's <i>d</i> , Pearson's <i>r</i>), indicating how they were calculated | | | | #### Our web collection on <u>statistics for biologists</u> contains articles on many of the points above. ### Software and code Policy information about availability of computer code Data collection Fluorescence values of TaqMan PCR for all samples were collected by Real-Time PCR Instruments (BioRad, Hercules, CA, USA; CFX96) in this study. A fluorescence reader (Thermo Fisher Scientific, MA, USA; Varioskan LUX) was used to read out fluorescence signal of CRISPR/LwCas13a reaction with all samples in this study. Phylogenetic tree was generated based on the Sanger sequencing results. Data analysis Prism 8 software was used for statistical analysis and to generate the figures of fluorescence value figures and fluorescence kinetic curve. MEGA-X software (version 423 10.0.5) was used to construct the phylogenetic tree. SnapGene (v4.1.9) was used for crRNA design. For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information. #### Data Policy information about availability of data All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: - Accession codes, unique identifiers, or web links for publicly available datasets - A description of any restrictions on data availability - For clinical datasets or third party data, please ensure that the statement adheres to our policy The data supporting the findings of this study are available within the paper and supplementary information files. DNA sequencing data generated in this study have been deposited in the GenBank database under accession code ON776877.1-ON776886.1 and ON843723.1-ON843742.1. Nichols and SS14 reference genome were available in the GenBank database under accession code CP004010.2 and CP004011.1. Source data are provided with the paper. | | T S | | | |-------|--------|---------|---------| | Field | d-spec | itic re | porting | | Please select the one below that is the best fit for y | our research. If you are not sure, | read the appropriate sections I | pefore making your selection | |---|------------------------------------|---------------------------------|------------------------------| |---|------------------------------------|---------------------------------|------------------------------| Life sciences Behavioural & social sciences Ecological, evolutionary & environmental sciences For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf ### Life sciences study design All studies must disclose on these points even when the disclosure is negative. Sample size The sample size has been indicated in the manuscript. No statistical methods were used to predetermine sample size. According to the principle (Díaz, F. Principles and methods of validation of diagnostic assay for infectious diseases. Biology, 2009), the sample size was sufficient to achieve a 95% confidence for PCR-LwCas13a assay with diagnostic sensitivity (93.3%) and specificity (100%). Data exclusions No experimental data was excluded. Replication Replicate runs using synthetic DNA of Treponema pallidum for PCR-LwCas13a assay and real-time PCR proved successful. Randomization Clinical samples determined in figure 2 c-d were not picked up randomly because all of the collected clinical samples were included for detection and randomization is not meaningful. Clinical samples for rabbit infectivity testing were not randomly picked up because rabbit infectivity testing required fresh samples and was conducted immediately after sample collection, meaning the sample is not able to store and randomized. Clinical samples in other experiments were randomly picked up from the collected sample pool. Blinding Experiments were not conducted in blinding. Blinding was not necessary for developing a new diagnostic in the early stage. Blinding will be considered in a prospective trial in the future. ### Behavioural & social sciences study design All studies must disclose on these points even when the disclosure is negative. Study description Briefly describe the study type including whether data are quantitative, qualitative, or mixed-methods (e.g. qualitative cross-sectional, quantitative experimental, mixed-methods case study). Research sample State the research sample (e.g. Harvard university undergraduates, villagers in rural India) and provide relevant demographic information (e.g. age, sex) and indicate whether the sample is representative. Provide a rationale for the study sample chosen. For studies involving existing datasets, please describe the dataset and source. Sampling strategy Describe the sampling procedure (e.g. random, snowball, stratified, convenience). Describe the statistical methods that were used to predetermine sample size OR if no sample-size calculation was performed, describe how sample sizes were chosen and provide a rationale for why these sample sizes are sufficient. For qualitative data, please indicate whether data saturation was considered, and what criteria were used to decide that no further sampling was needed. Data collection Provide details about the data collection procedure, including the instruments or devices used to record the data (e.g. pen and paper, computer, eye tracker, video or audio equipment) whether anyone was present besides the participant(s) and the researcher, and whether the researcher was blind to experimental condition and/or the study hypothesis during data collection. Timing Indicate the start and stop dates of data collection. If there is a gap between collection periods, state the dates for each sample cohort. Data exclusions If no data were excluded from the analyses, state so OR if data were excluded, provide the exact number of exclusions and the rationale behind them, indicating whether exclusion criteria were pre-established. Non-participation State how many participants dropped out/declined participation and the reason(s) given OR provide response rate OR state that no participants dropped out/declined participation. Randomization If participants were not allocated into experimental groups, state so OR describe how participants were allocated to groups, and if allocation was not random, describe how covariates were controlled. ## Ecological, evolutionary & environmental sciences study design All studies must disclose on these points even when the disclosure is negative. Study description Briefly describe the study. For quantitative data include treatment factors and interactions, design structure (e.g. factorial, nested, hierarchical), nature and number of experimental units and replicates. | Research sample | Describe the research sample (e.g. a group of tagged Passer domesticus, all Stenocereus thurberi within Organ Pipe Cactus National Monument), and provide a rationale for the sample choice. When relevant, describe the organism taxa, source, sex, age range and any manipulations. State what population the sample is meant to represent when applicable. For studies involving existing datasets, describe the data and its source. | |-----------------------------|--| | Sampling strategy | Note the sampling procedure. Describe the statistical methods that were used to predetermine sample size OR if no sample-size calculation was performed, describe how sample sizes were chosen and provide a rationale for why these sample sizes are sufficient. | | Data collection | Describe the data collection procedure, including who recorded the data and how. | | Timing and spatial scale | Indicate the start and stop dates of data collection, noting the frequency and periodicity of sampling and providing a rationale for these choices. If there is a gap between collection periods, state the dates for each sample cohort. Specify the spatial scale from which the data are taken | | Data exclusions | If no data were excluded from the analyses, state so OR if data were excluded, describe the exclusions and the rationale behind them, indicating whether exclusion criteria were pre-established. | | Reproducibility | Describe the measures taken to verify the reproducibility of experimental findings. For each experiment, note whether any attempts to repeat the experiment failed OR state that all attempts to repeat the experiment were successful. | | Randomization | Describe how samples/organisms/participants were allocated into groups. If allocation was not random, describe how covariates were controlled. If this is not relevant to your study, explain why. | | Blinding | Describe the extent of blinding used during data acquisition and analysis. If blinding was not possible, describe why OR explain why blinding was not relevant to your study. | | Did the study involve field | d work? Yes No | | Field conditions | Describe the study conditions for field work, providing relevant parameters (e.g. temperature, rainfall). | | Location | State the location of the sampling or experiment, providing relevant parameters (e.g. latitude and longitude, elevation, water depth). | | Access & import/export | Describe the efforts you have made to access habitats and to collect and import/export your samples in a responsible manner and in compliance with local, national and international laws, noting any permits that were obtained (give the name of the issuing authority, the date of issue, and any identifying information). | | Disturbance | Describe any disturbance caused by the study and how it was minimized. | # Reporting for specific materials, systems and methods We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. | iviateriais & experimental systems | ivietnods | | |------------------------------------|---------------------------|--| | n/a Involved in the study | n/a Involved in the study | | | X Antibodies | ChIP-seq | | | Eukaryotic cell lines | Flow cytometry | | | 🗷 🔲 Palaeontology and archaeology | MRI-based neuroimaging | | | Animals and other organisms | • | | | Human research participants | | | | X Clinical data | | | | Dual use research of concern | | | | · | | | ### **Antibodies** Antibodies used Describe all antibodies used in the study; as applicable, provide supplier name, catalog number, clone name, and lot number. Validation Describe the validation of each primary antibody for the species and application, noting any validation statements on the manufacturer's website, relevant citations, antibody profiles in online databases, or data provided in the manuscript. ### Eukaryotic cell lines Policy information about cell lines Cell line source(s) State the source of each cell line used. Authentication Describe the authentication procedures for each cell line used OR declare that none of the cell lines used were authenticated. Mycoplasma contamination Confirm that all cell lines tested negative for mycoplasma contamination OR describe the results of the testing for mycoplasma contamination OR declare that the cell lines were not tested for mycoplasma contamination. Commonly misidentified lines (See ICLAC register) Name any commonly misidentified cell lines used in the study and provide a rationale for their use. ### Palaeontology and Archaeology Specimen provenance Provide provenance information for specimens and describe permits that were obtained for the work (including the name of the issuing authority, the date of issue, and any identifying information). Permits should encompass collection and, where applicable, export. Specimen deposition Indicate where the specimens have been deposited to permit free access by other researchers. Dating methods If new dates are provided, describe how they were obtained (e.g. collection, storage, sample pretreatment and measurement), where they were obtained (i.e. lab name), the calibration program and the protocol for quality assurance OR state that no new dates are provided. Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information. Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance was required and explain why not. Note that full information on the approval of the study protocol must also be provided in the manuscript. ### Animals and other organisms Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research Laboratory animals New Zealand White rabbits, male, adult (3 months of age, 2.5 - 3.0 kg). Wild animals The study did not involve wild animals. Field-collected samples The New Zealand White rabbits were housed and maintained at 18 °C until the end of experiment. Ethics oversight All animal experiments were approved by the Animal Welfare Committee of South China Agricultural University (2020c004) and conducted following the regulations of the institution. Note that full information on the approval of the study protocol must also be provided in the manuscript. ### Human research participants Policy information about studies involving human research participants Population characteristics Eligible patients and healthy subjects (> 18 years of age, male and female) who visited the Dermatology Hospital of Southern Medical University were invited to participate in this study. The participants in this study are Asians. Recruitment The diagnosis of STD in this study was made according to the guidelines of the STD Association, China Centers for Disease Control. Syphilis participants were recruited based on the clinical diagnosis and serological results. Primary syphilis cases with positive darkfield microscopy (DFM) tests and secondary syphilis cases with characteristic rashes and positive serological results (toluidine red unheated serum test [TRUST] and Treponema pallidum particle agglutination [TPPA]/treponemal chemiluminescence immunoassay [CIA]) were enrolled. HSV-2 infected patients were enrolled based on clinical diagnosis and positive laboratory test results. Healthy volunteers without a history of prior syphilis and with negative serological results of syphilis were invited to join as negative controls in the study. Patients who received antibiotics active against syphilis in the last 30 days would be excluded from this study. Written informed consent was obtained from all participants. Participants would receive a total of ¥200 for taking part in this study. Any potential selection bias should not affect the efficacy of the PCR-LwCas13a assay. Ethics oversight This study was approved by the Ethics Review Committee at Dermatology Hospital of Southern Medical University (GDDHLS-20181202[2R], 2020056, 2021071). Note that full information on the approval of the study protocol must also be provided in the manuscript. | Clinical data | | |--|--| | Policy information about <u>cli</u>
All manuscripts should comply | nical studies with the ICMJEguidelines for publication of clinical research and a completedCONSORT checklist must be included with all submissions. | | Clinical trial registration | Provide the trial registration number from ClinicalTrials.gov or an equivalent agency. | | Study protocol | Note where the full trial protocol can be accessed OR if not available, explain why. | | Data collection | Describe the settings and locales of data collection, noting the time periods of recruitment and data collection. | | Outcomes | Describe how you pre-defined primary and secondary outcome measures and how you assessed these measures. | | Dual use research | of concern | | Policy information about <u>du</u> | all use research of concern | | Hazards | | | Could the accidental, deli
in the manuscript, pose a | berate or reckless misuse of agents or technologies generated in the work, or the application of information presented threat to: | | No Yes Public health National security Crops and/or livest Ecosystems Any other significan | | | Experiments of concer | n | | Does the work involve an | y of these experiments of concern: | | Confer resistance t Enhance the viruler Increase transmissi Alter the host rang Enable evasion of c Enable the weapor Any other potentia | to render a vaccine ineffective o therapeutically useful antibiotics or antiviral agents nce of a pathogen or render a nonpathogen virulent bility of a pathogen e of a pathogen liagnostic/detection modalities nization of a biological agent or toxin lly harmful combination of experiments and agents | | ChIP-seq | | | Data deposition | | | _ | and final processed data have been deposited in a public database such as <u>GEO</u> . | | | e deposited or provided access to graph files (e.g. BED files) for the called peaks. | | Data access links
May remain private before public | For "Initial submission" or "Revised version" documents, provide reviewer access links. For your "Final submission" document, provide a link to the deposited data. | | Files in database submissi | on Provide a list of all files available in the database submission. | | Genome browser session (e.g. <u>UCSC</u>) | Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to enable peer review. Write "no longer applicable" for "Final submission" documents. | ### Methodology Replicates Describe the experimental replicates, specifying number, type and replicate agreement. Sequencing depth Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of reads and whether they were paired- or single-end. | Antibodies | Describe the antibodies used for the ChIP-seq experiments; as applicable, provide supplier name, catalog number, clone name, and lot number. | |--|--| | Peak calling parameters | Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and index files used. | | Data quality | Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold enrichment. | | Software | Describe the software used to collect and analyze the ChIP-seq data. For custom code that has been deposited into a community repository, provide accession details. | | low Cytometry | | | lots | | | Confirm that: The axis labels state the | he marker and fluorochrome used (e.g. CD4-FITC). | | The axis scales are cle | arly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers). | | All plots are contour p | plots with outliers or pseudocolor plots. | | A numerical value for | number of cells or percentage (with statistics) is provided. | | 1ethodology | | | Sample preparation | Describe the sample preparation, detailing the biological source of the cells and any tissue processing steps used. | | Instrument | Identify the instrument used for data collection, specifying make and model number. | | Software | Describe the software used to collect and analyze the flow cytometry data. For custom code that has been deposited into a community repository, provide accession details. | | Cell population abundand | Describe the abundance of the relevant cell populations within post-sort fractions, providing details on the purity of the samples and how it was determined. | | Gating strategy | Describe the gating strategy used for all relevant experiments, specifying the preliminary FSC/SSC gates of the starting cell population, indicating where boundaries between "positive" and "negative" staining cell populations are defined. | | Tick this box to confir | m that a figure exemplifying the gating strategy is provided in the Supplementary Information. | | | | | /lagnetic resonar | nce imaging | | xperimental design | | | Design type | Indicate task or resting state; event-related or block design. | | Design specifications | Specify the number of blocks, trials or experimental units per session and/or subject, and specify the length of each trial or block (if trials are blocked) and interval between trials. | | Behavioral performance I | State number and/or type of variables recorded (e.g. correct button press, response time) and what statistics were used to establish that the subjects were performing the task as expected (e.g. mean, range, and/or standard deviation across subjects). | | cquisition | | | Imaging type(s) | Specify: functional, structural, diffusion, perfusion. | | Field strength | Specify in Tesla | | Sequence & imaging para | Specify the pulse sequence type (gradient echo, spin echo, etc.), imaging type (EPI, spiral, etc.), field of view, matrix size, slice thickness, orientation and TE/TR/flip angle. | State whether a whole brain scan was used OR define the area of acquisition, describing how the region was determined. Area of acquisition Diffusion MRI Used ☐ Not used #### Preprocessing Preprocessing software Provide detail on software version and revision number and on specific parameters (model/functions, brain extraction, segmentation, smoothing kernel size, etc.). Normalization If data were normalized/standardized, describe the approach(es): specify linear or non-linear and define image types used for transformation OR indicate that data were not normalized and explain rationale for lack of normalization. Normalization template Describe the template used for normalization/transformation, specifying subject space or group standardized space (e.g. original Talairach, MNI305, ICBM152) OR indicate that the data were not normalized. Noise and artifact removal Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and physiological signals (heart rate, respiration). Define your software and/or method and criteria for volume censoring, and state the extent of such censoring. Volume censoring Statistical modeling & inference Specify type (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first and Model type and settings second levels (e.g. fixed, random or mixed effects; drift or auto-correlation). Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether ANOVA Effect(s) tested or factorial designs were used. Specify type of analysis: Whole brain ROI-based Both Statistic type for inference Specify voxel-wise or cluster-wise and report all relevant parameters for cluster-wise methods. (See Eklund et al. 2016) Describe the type of correction and how it is obtained for multiple comparisons (e.g. FWE, FDR, permutation or Monte Carlo). Correction Models & analysis n/a Involved in the study Functional and/or effective connectivity Graph analysis Multivariate modeling or predictive analysis mutual information). metrics. Functional and/or effective connectivity Multivariate modeling and predictive analysis Graph analysis Report the measures of dependence used and the model details (e.g. Pearson correlation, partial correlation, Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph, subject- or group-level, and the global and/or node summaries used (e.g. clustering coefficient, efficiency, Specify independent variables, features extraction and dimension reduction, model, training and evaluation