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Web Appendix.1 Accelerated Smoothing Proximal Gradient Algorithm for JFM

In this section, we present a complete description of an accelerated smoothing proximal

gradient (ASPG) algorithm (Chen et al., 2012) to solve Problem (2) for JFM, which briefly

introduced in Section 3 of the main text. The objective function of (2) is convex in β so

that a global optimal solution can be attained. However, conventional proximal gradient-

based or coordinate descent approaches (generally used for lasso-like methods) cannot be

directly applied to solve Problem (2) because there is no closed form solution for the proximal

operator associated with PFPR and PFNR.

To overcome the difficulty originating from the non-differentiability of the fairness and

similarity penalties, we decouple the terms into a linear combination of the decision variables

via the dual norm and then apply the Nesterov smoothing approximation (Nesterov, 2005).

We start with matrix representations of the fairness penalty terms PFPR(β; X,y, λF) =

λF ‖D0β‖1 and PFNR(β; X,y, λF) = λF ‖D1β‖1, where Dy ∈ RK(K−1)/2×pK is defined as

below. Similarly, we use the matrix representation of the similarity penalty PSim(β;λSim) =

λSim ‖Fβ‖1 with F defined as below.

Dy =


X̄1y −X̄2y 0 · · · 0

...

0 X̄2y −X̄3y · · · 0

...

 F =


Ip −Ip 0 · · · 0

...

0 Ip −Ip · · · 0

...


Here, X̄ky = 1

|Sky |
∑

i∈Sky Xi is the average predictor vector for group k with true outcome

y, Ip is the p-dimensional identity matrix. The matrix form of the fairness penalty term and

the similarity penalty term is therefore defined as:

PF(β; X,y, λF) + PSim(β;λSim) =

∥∥∥∥∥∥∥∥∥∥∥


λFD0

λFD1

λSimF

β
∥∥∥∥∥∥∥∥∥∥∥

1

= ‖DλF,λSimβ‖1.
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Thus, the objective function (2) can be written in matrix form:

minimize
β

−
K∑
k=1

1

nk
`(βk; Xk,yk) + ‖DλF,λSimβ‖1 +

K∑
k=1

λSpk‖βk‖1, (A.1)

where the associated proximal operator of ‖DλF,λSimβ‖1 does not have a closed form solution.

We apply the Nesterov smooth approximation to approximate ‖DλF,λSimβ‖1 by a smooth

function fµ(β). Since the dual norm of the L1 norm is the L∞ norm, we have

‖DλF,λSimβ‖1 = sup{αTDλF,λSimβ : ‖α‖∞ 6 1},

and thus, for µ > 0, the Nesterov smooth approximation of ‖DλF,λSimβ‖1 is

fµ(β;λF, λSim) = sup
{
αTDλF,λSimβ −

µ

2
‖α‖2

2 : ‖α‖∞ 6 1
}
. (A.2)

The following proposition provides the maximum gap between ‖DλF,λSimβ‖1 and its Nes-

terov approximation fµ(β;λF, λSim).

Proposition A.1: For any µ > 0, the Nesterov smooth approximation satisfies the follow-

ing inequalities:

0 6 ‖DλF,λSimβ‖1 − fµ(β;λF, λSim) 6
µpK

2
.

Proof: See Web Appendix 4.

The proposition implies that we can control the upper bound of the approximation error

by manipulating µ. We can achieve an arbitrary accuracy δ by letting µ = 2δ
pK

.

The next proposition dictates that the gradient ∇fµ(β;λF, λSim) has a simple form and is

thus easy to compute.

Proposition A.2: For any µ > 0, fµ(β;λF, λSim) is smooth and convex with respect to β,

whose gradient takes the following form:

∇fµ(β;λF, λSim) = DT
λF,λSim

α∗, (A.3)

where α∗ = argmax
{
αTDλF,λSimβ −

µ
2
‖α‖2

2 : ‖α‖∞ 6 1
}

. Moreover, the gradient is Lips-

chitz continuous with the Lipschitz constant Lµ = µ−1‖DλF,λSim‖2
2, where ‖ · ‖2 denotes the

matrix spectral norm (which is equivalent to the largest singular value of the matrix).
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Proof: See Web Appendix 4.

The following proposition yields α∗ in Proposition A.2, which is essential to compute the

gradient ∇fµ(β;λF, λSim).

Proposition A.3: For any µ > 0, we have

α∗ = S∞
(
µ−1DλF,λSimβ

)
,

where S∞(·) is the projection onto the unit L∞ ball such that [S∞(x)]i = xiI[−1,1](xi) +

I(1,∞)(xi)− I(−∞,−1)(xi), where I is the indicator function.

Proof: See Web Appendix 4.

Computational Remark: The computational complexities of DT
λF,λSim

α∗ and DλF,λSimβ is

quadratic in p, making them each computationally intensive when p is large. However, the

computations can be substituted by a series of scalar multiplications and vector addition,

reducing the complexities to be linear in p. Details are provided in Web Appendix Web

Appendix.5.

With ‖DλF,λSimβ‖1 substituted by the Nesterov smooth approximation fµ(β;λF, λSim),

problem (A.1) becomes

minimize
β

F̃ (β) = −
K∑
k=1

1

nk
`(βk; Xk,yk) + fµ(β;λF, λSim) +

K∑
k=1

λSpk‖βk‖1, (A.4)

whose first two terms are convex smooth functions. Although the sparsity penalty term∑
k λSpk‖βk‖1 is non-differentiable, it can be managed through the proximal gradient method

using the soft-thresholding operator S with a closed form solution (Friedman et al., 2007).

Algorithm 1 (can be found in the main text) presents the proposed ASPG algorithm,

starting from parameter initialization, to gradient descent iterations with proximal and

momentum steps, until convergence. The gradient descent step tries to improve the current

solution γ(t−1) by using the gradients∇` of the log-likelihood and∇fµ of function (A.3). Sub-

sequently, it performs a proximal step for the sparsity penalty. Finally, a momentum-based
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update is performed to accelerate the convergence. Specifically, we adopted the momentum

coefficients in the fast iterative shrinkage thresholding algorithm (Beck and Teboulle, 2009).

Although Algorithm 1 minimizes the Nesterov smooth approximation F̃ (β) instead of the

original objective function F (β) in equation (2), it can be proven that the solution is suffi-

ciently close to the optimal solution of equation (2). We first present a lemma demonstrating

a convergence property of the algorithm.

Lemma A.1 Let {β(t) : t = 1, 2, · · · } be a sequence generated by Algorithm 1. Then for any

t > 1,

F̃ (β(t))− F̃ (β∗) 6
2L‖β(0) − β∗‖2

2

t2
,

where β∗ is a global minimizer of problem (A.4).

Proof: See Web Appendix 4.

Based on the lemma, we establish a theorem that shows the solution provided by Algorithm

1 can be arbitrarily close to the global optimum of problem (2).

Theorem 3.1 Let {β(t) : t = 1, 2, · · · } be a sequence generated by Algorithm 1. Then for

any t > 1,

F (β(t))− F (β∗∗) 6
µpK

2
+

2L‖β(0) − β∗‖2
2

t2
,

where β∗ and β∗∗ are global minimizers of problem (A.4) and problem (2), respectively, and

L is the Lipschitz constant of F̃ presented in Lemma A.1.

Proof: See Web Appendix 4.

Given the desired accuracy δ > 0 for the approximation, we set µ = 2δ
pK

. Then, we have

F (β(t))−F (β∗∗) 6 δ+
2L‖β0−β∗‖22

t2
. This inequality implies that the accuracy of Algorithm 1

both depends on the number of iterations t and the accuracy δ > 0 for the approximation.

Based on Theorem 3.1, we present the rate of convergence of the algorithm in the following

proposition.
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Proposition A.4 Given a desired accuracy ε > 0, rate of convergence of Algorithm 1 is

O
(√

pK
δ(ε−δ)

)
. Note that δ > 0 must be smaller than ε.

Proof: See Web Appendix 4.

Finally, we provide the time complexity of a single iteration of Algorithm 1. Proposition

A.4: Time complexity of a single iteration of Algorithm 1 is O((n+K2)pK).

Proof: See Web Appendix 4.

Web Appendix.2 Accelerated Smoothing Proximal Gradient Algorithm for JFM

with Group Lasso Similarity Term

With the group lasso-like similarity term, which encourages simultaneous selection but not

encourage the estimated values to be similar, the JFM formulation is

minimize
β

−
K∑
k=1

1

nk
`(βk; Xk,yk) + ‖DλF‖1 +

K∑
k=1

λSpk‖βk‖1 + λSim

p∑
j=1

√
K‖β[j]‖2,

where β[j] = (βj+1, · · · , βj+K) is the vector of coefficients associated covariate j. We can

apply the same Nesterov approximation technique on ‖DλF‖1 and other two terms are the

same as in sparse group lasso, which can be handled via a well-known proximal operator.

The pseudocode of the algorithm for solving the problem is given in Algorithm 2. Note S is

the soft-thresholding operator and (x)+ = max{0, x}.

Web Appendix.3 Accelerated Smoothing Proximal Gradient Algorithm for SFM

Bechavod and Ligett (2017) suggested to use CVXPY (Diamond and Boyd, 2016) to solve the

SFM optimization problem. Since the problem is convex, CVXPY can easily handle. However,

CVXPY is equipped with a general quadratic optimization solver and is not efficient enough

to be scalable for high-dimensional problems. Here, we introduce a variant of Algorithm 1

to solve the SFM more efficiently. Consider the following SFM optimization problem:

minimize
β

− `(β; X,y) + λF0

∑
j<k

|(X̄j0 − X̄k0)β|+ λF1

∑
j<k

|(X̄j1 − X̄k1)β|+ λSp‖β‖1. (A.5)
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Algorithm 2 Accelerated Smoothing Proximal Gradient Method for JFM-Group

1: Input: Data Xk,yk for k = 1, · · · , K, hyperparameters λF, λSim, λSp, ε, µ

2: Output: β̂ = (β̂1, · · · , β̂K) solving the Joint Fairness optimization problem.

3: Initialize: β(0) = 0, γ(0) = 0, s(0) = 1

4: Compute L = 1
4

max
{
λmax(XT

kXk) : k = 1, · · · , K
}

+ µ−1‖DλF‖2
2

5: for t > 1 do

6: α(t) = γ(t−1) − L−1
(
−∇`

(
γ(t−1)

)
+∇fµ

(
γ(t−1)

))
7: for j = 1, · · · , p do

8: β
(t)
[j] =

(
1− L−1λSim

√
K

‖S(α
(t)
[j]

;L−1λSp)‖2

)
+

S
(
α

(t)
[j] ;L

−1λSp

)
9: if ‖β(t) − β(t−1)‖2 6 ε break

10: s(t) = 1+
√

1+4s(t−1)2

2

11: γ(t) = β(t) +
(
s(t−1)−1
s(t)

)(
β(t) − β(t−1)

)
12: t← t+ 1

13: end for

14: β̂ ← β(t).

Analogous to the matrix representation in Chapter 3, we can rewrite the objective function

in matrix form:

minimize
β

− `(β; X,y) + ‖DλFβ‖1 + λSp‖β‖1,

where

DλF =



λF0(X̄10 − X̄20)

...

λF0(X̄K−1 0 − X̄K0)

λF1(X̄11 − X̄21)

...

λF1(X̄K−1 1 − X̄K1)


.
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Algorithm 3 Accelerated Smoothing Proximal Gradient Method for SFM

1: Input: Data X,y, hyperparameters λF0 , λF1 , λSp, ε, µ

2: Output: β̂ solving the Single Fairness optimization problem (A.5).

3: Initialize: β(0) = 0, γ(0) = 0, s(0) = 1

4: Compute L = 1
4
λmax(XTX) + µ−1‖DλF‖2

2

5: for m > 1 do

6: α(m) = γ(m−1) − L−1
(
−∇`

(
γ(m−1)

)
+∇fµ

(
γ(m−1)

))
7: β(m) = S

(
α(m);L−1λSp

)
8: if ‖β(m) − β(m−1)‖2 6 ε break

9: s(m) = 1+
√

1+4s(m−1)2

2

10: γ(m) = β(m) +
(
s(m−1)−1
s(m)

)(
β(m) − β(m−1)

)
11: m← m+ 1

12: end for

13: β̂ ← β(m).

We can easily verify the Nesterov smooth approximation can be applied to approximate

‖DλFβ‖1 and Propositions A.1, A.2, and A.3 hold. Therefore, Algorithm 3 solves the SFM

optimization problem.

Web Appendix.4 Proofs

Proof of Proposition 2.1

Let σ(x) = 1
1+exp(−x)

be a sigmoid function. Since σ is differentiable, by the mean value

theorem, we have

σ(xj)− σ(xk) = σ′(z)(xj − xk),

for any xj and xk, where z = αxj+(1−α)xk, α ∈ [0, 1]. Since 0 6 σ′(z) = σ(z)(1−σ(z)) 6 1
4
,

we have

−1

4
(xj − xk) 6 σ(xj)− σ(xk) 6

1

4
(xj − xk).
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By letting xj = xjyβj, we obtain

−1

4

∫∫ (
xjyβj − xkyβk

)
dp(xjy,xky) 6

∫∫ (
σ(xjyβj)− σ(xkyβk)

)
dp(xjy,xky)

6
1

4

∫∫ (
xjyβj − xkyβk

)
dp(xjy,xky),

where p is the joint probability density function of Xjy and Xky which represent Xj|Y = y

and Xk|Y = y, respectively. Therefore,

−1

4

(
E[Xjyβj −Xkyβk]

)
6 E[σ(Xjyβj)− σ(Xkyβk)] 6

1

4

(
E[Xjyβj −Xkyβk]

)
.

By the linearity of the expectation, we can rewrite the inequality as follows:∣∣E[σ(Xjyβj)]− E[σ(Xkyβk)]
∣∣ 6 1

4

∣∣E[Xjyβj]− E[Xkyβk]
∣∣ ,

which is equivalent to the statement given in Proposition 2.1.

Proof of Proposition A.1

Note that the proof of Propositions A.1, A.2, and A.3 are based on the work of Chen et al.

(2012). The left-hand side of the inequalities is trivial by definition. For the right-hand side,

we have

‖DλF,λSimβ‖1 − fµ(β;λF, λSim) 6
µ

2
‖α‖2

2, ∀α ∈ RpK s.t. ‖α‖∞ 6 1,

and it is easy to verify that ‖α‖2
2 6 pK given that α ∈ RpK and ‖α‖∞ 6 1, which completes

the proof.

Proof of Proposition A.2

The smoothness of fµ(β;λF, λSim) can be proved by applying the following Theorem 26.3 in

Rockafellar (1970). We start by the conjugate φ∗ of φ(α) = 1
2
‖α‖2

2 defined on {α : ‖α‖∞ 6

1}, which is given by

φ∗(β) = sup
{α:‖α‖∞61}

(
αTβ − φ(α)

)
.

By plugging
DλF,λSim

β

µ
into the conjugate function, we have

µφ∗
(

DλF,λSimβ

µ

)
= sup
{α:‖α‖∞61}

(
αTDλF,λSim −

µ

2
‖α‖2

2

)
= fµ(β;λF, λSim).
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Therefore, fµ has the essentially smooth conjugate function (we can easily verify that φ(α) =

1
2
‖α‖2

2 defined on {α : ‖α‖∞ 6 1} is essentially convex) and thus it is a smooth function.

To obtain the gradient ∇fµ, we apply Danskin’s theorem. Let

ψ(α,β) = αTDλF,λSimβ −
µ

2
‖α‖2

2.

Then,

fµ(β;λF, λSim) = max
{α:‖α‖∞61}

ψ(α,β).

Since {α : ‖α‖∞ 6 1} is a compact set, fµ is continuous in both α and β, and it is convex in

β for every α such that ‖α‖∞ 6 1. Under these three conditions, Danskin’s theorem grants

that fµ is convex in β. Moreover,

∇fµ(β;λF, λSim) =
∂

∂β
ψ(α∗,β) = DT

λF,λSim
α∗,

since the set {
α∗ : ψ(α∗,β) = max

{α:‖α‖∞61}
ψ(α,β)

}
has a single element because ψ is strongly convex in α.

Proof of Proposition A.3

α∗ can be attained by solving the following optimization problem

max
α
αTDλF , λSimβ −

µ

2
‖α‖2

2 s.t. ‖α‖∞ 6 1,

which can be rewritten as the following minimization problem

min
α

µ

2
‖α‖2

2 −αTDλF,λSimβ s.t. ‖α‖∞ 6 1.

It is equivalent to

min
α

∥∥∥∥α− DλF,λSimβ

µ

∥∥∥∥2

2

s.t. ‖α‖∞ 6 1,
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whose optimal solution satisfies

α∗i =



di if di ∈ [−1, 1]

1 if di ∈ (1,∞)

−1 if di ∈ (−∞,−1)

,

where di =
[
DλF,λSim

β

µ

]
i

is the i-th element of
DλF,λSim

β

µ
. Note that solving the minimization

problem is equivalent to finding a Euclidean projection of
DλF,λSim

β

µ
onto the unit L∞ ball.

Proof of Lemma A.1

Proof of this theorem is analogous to the proof of Theorem 4.4 in Beck and Teboulle (2009)

because −
∑

k `(βk; Xk,yk) + fµ(β;λF, λSim) is a convex differentiable function and it has

Lipschitz continuous gradient with Lipschitz constant

L =
1

4
max

{
λmax(XT

kXk) : k = 1, · · · , K
}

+ µ−1‖DλF,λSim‖2
2 > 0,

where λmax(A) denotes the largest eigenvalue of A.

Proof of Theorem 3.1 We can easily verify the inequality by applying Proposition A.1

and Lemma A.1, and using F̃ (β∗) 6 F̃ (β∗∗) as below:

F (β(t))− F (β∗∗) =
(
F (β(t))− F̃ (β(t))

)
+
(
F̃ (β(t))− F̃ (β∗)

)
+
(
F̃ (β∗)− F (β∗∗)

)
6
µpK

2
+

2L‖β(0) − β∗‖2
2

t2
+ 0.

Proof of Proposition A.4

From Theorem 3.1, with µ = 2δ
pK

for the approximation accuracy 0 < δ < ε, we have

F (β(t))−F (β∗∗) 6 δ+
2‖β(0) − β∗‖2

2

t2

(
1

4
max

{
λmax(XT

kXk) : k = 1, · · · , K
}

+
pK

2δ
‖DλF,λSim‖2

2

)
.

Thus, the number of iterations t to achieve F (β(t))− F (β∗∗) 6 ε, is bounded by√
2‖β(0) − β∗‖2

2

ε− δ

(
1

4
max {λmax(XT

kXk) : k = 1, · · · , K}+
pK

2δ
‖DλF,λSim‖2

2

)
,

which can be simplified to O
(√

pK
δ(ε−δ)

)
.

Proof of Proposition A.5

Computing the gradient ∇
∑

k `(βk) of the sum of the log-likelihood functions requires
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O(npK). Computing ∇fµ(β;λF, λSim) requires O(pK3). Thus, the gradient step requires

O((n + K2)pK) operations. The proximal step and momentum step both require O(pK),

which are dominated by the complexity of the gradient step. Therefore, a single iteration of

Algorithm 1 requires O((n+K2)pK) operations.

Proof of Theorem 4.1

To prove the theorem, it is sufficient to show that Vn(u1, · · · ,uK) → V(u1, · · · ,uK) as

mink=1,··· ,K nk →∞, where Vn(u1, · · · ,uK) is defined in (A.6).

From Theorem 4.1, we can re-write V(u1, · · · ,uK) as

V(u1, · · · ,uK) = g(u1, · · · ,uK) + h(u1, · · · ,uK)

where

g(u1, · · · ,uK) =
K∑
k=1

uTkWk +
1

2

K∑
k=1

uTkCkuk

and

h(u1, · · · ,uK) = λ
(0)
F

∑
j<k

∑
y∈{0,1}

T (X̄jyuj − X̄kyuk, X̄jyβj − X̄kyβk)

+ λ
(0)
Sim

∑
j<k

p∑
l=1

T (ujl − ukl, βjl − βkl) + λ
(0)
Sp

K∑
k=1

p∑
l=1

T (ukl, βkl).

Let

Vn(u1, · · · ,uK) = gn(u1, · · · ,uK) + hn(u1, · · · ,uK) (A.6)

where

gn(u1, · · · ,uK) = −
K∑
k=1

{
`

(
βk +

uk√
n

)
− `(βk)

}
,
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and

hn(u1, · · · ,uK) =λF

∑
j<k

∑
y∈{0,1}

{∣∣∣∣X̄jy

(
βj +

uj√
n

)
− X̄ky

(
βk +

uk√
n

)∣∣∣∣− ∣∣X̄jyβj − X̄kyβk
∣∣}

+ λSim

∑
j<k

∑
y∈{0,1}

{∣∣∣∣(βjl +
ujl√
n

)
−
(
βkl +

ukl√
n

)∣∣∣∣− |βjl − βkl|
}

+ λSp

K∑
k=1

p∑
l=1

{∣∣∣∣βkl +
ukl√
n

∣∣∣∣− |βkl|
}
. (A.7)

We first show gn(u1, · · · ,uK)→ g(u1, · · · ,uK), that is,

`

(
βk +

uk√
n

)
− `(βk)→ uTkWk +

1

2
uTkCkuk. (A.8)

Following the arguments of Viallon et al. (2013), we apply Taylor series expansion on the

left side of (A.8) which yields

`

(
βk +

uk√
n

)
− `(βk) =

∇`(βk)Tuk√
n

+
1

2
uk

T I(βk)

n
uk + oP

(
1

n

)
.

Here, oP is the small o with respect to the probability measure P. Assumption 1 ensures

1
2
uTk
I(βk)
n

uk → 1
2
uTkCkuk and assumption 2 ensures ∇`(βk)Tuk/

√
n→Wk.

On the other hand, to show hn(u1, · · · ,uK)→ h(u1, · · · ,uK), we follow the arguments in

Theorem 2 of Knight and Fu (2000). For the first term of (A.7), we have

λ
(n)
F

∑
j<k

∑
y∈{0,1}

{∣∣∣∣X̄jy

(
βj +

uj√
n

)
− X̄ky

(
βk +

uk√
n

)∣∣∣∣− ∣∣X̄jyβj − X̄kyβk
∣∣}

= λ
(n)
F

∑
j<k

∑
y∈{0,1}

{∣∣∣∣X̄jyβj − X̄kyβk +
X̄jyuj − X̄kyuk√

n

∣∣∣∣− ∣∣X̄jyβj − X̄kyβk
∣∣}

→ λ
(0)
F

∑
j<k

∑
y∈{0,1}

{
(X̄jyuj − X̄kyuk)sign(X̄jyβj − X̄kyβk)I(X̄jyβj 6= X̄kyβk)

+ |X̄jyuj − X̄kyuk|I(X̄jyβj = X̄kyβk)

}
,
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as n→∞. Similarly,

λ
(n)
Sim

∑
j<k

p∑
l=1

{∣∣∣∣(βjl +
ujl√
n

)
−
(
βkl +

ukl√
n

)∣∣∣∣− |βjl − βkl|}

= λ
(n)
Sim

∑
j<k

p∑
l=1

{∣∣∣∣βjl − βkl +
ujl − ukl√

n

∣∣∣∣− |βjl − βkl|}

→ λ
(0)
Sim

∑
j<k

p∑
l=1

{(ujl − ukl)sign(βjl − βkl)I(βjl 6= βkl) + |ujl − ukl|I(βjl = βkl)} ,

as n→∞. We also have

λ
(n)
Sp

K∑
k=1

p∑
l=1

{∣∣∣∣βkl +
ukl√
n

∣∣∣∣− |βkl|}→ λ
(0)
Sp

K∑
k=1

p∑
l=1

{uklsign(βkl)I(βkl 6= 0) + |ukl|I(βkl = 0)},

as n→∞.

We showed that gn(u1, · · · ,uK) → g(u1, · · · ,uK) and hn(u1, · · · ,uK) → h(u1, · · · ,uK)

as n→∞. Thus, Vn(u1, · · · ,uK)→ V(u1, · · · ,uK) as n→∞ as desired.

Note: Theorem 4.1 is proved for the JFM with L1 penalization. For a model defined with

L2 penalization, we can simply modify h(u1, · · · ,uK) as below.

h(u1, · · · ,uK) = λ
(0)
F

∑
j<k

∑
y∈{0,1}

(X̄jyuj − X̄kyuk)sign(X̄jyβj − X̄kyβk)|X̄jyuj − X̄kyuk|

+ λ
(0)
Sim

∑
j<k

p∑
l=1

{(ujl − ukl)sign(βjl − βkl)|ujl − ukl|}+ λ
(0)
Sp

K∑
k=1

p∑
l=1

{uklsign(βkl)|ukl|}.

Following Knight and Fu (2000) and the arguments above, we can show
√
n-consistency of

the estimates obtained from a model with L1 penalization. The consistency of estimates

obtained form a model utilizing mixture of L1 and L2 penalization can be proved similarly.

Web Appendix.5 Computational Remark

Although DT
λF,λSim

α∗ and DλF,λSimβ in Proposition A.2 and A.3 seem computationally ex-

pensive due to the high-dimensionality of DλF,λSim ∈ R(p+1)K(K−1)×pK , we can reduce the

complexity because of their structure.

For DT
λF,λSim

α∗, we have

DT
λF,λSim

α∗ = λFD0α
∗
1 + λFD1α

∗
2 + λSimA∗, (A.9)
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where

A∗ =



α∗3+ α∗3+ α∗3+ · · · 0

−α∗3+ 0 0 · · · 0

0 −α∗3+ 0 · · · 0

...

0 0 0 · · · α∗3+

0 0 0 · · · −α∗3+


,

and α∗3+ = (α∗3, · · · , α∗pK) is sub-vector of α∗ that obtained by removing first two elements

from it. (A.9) requires scalar-matrix multiplication and matrix addition and thus its compu-

tational complexity is O(pK3), which is lower than O(p2K3) of the matrix multiplication.

On the other hand, we have

DλF,λSimβ =


λFD0β

λFD1β

λSimFβ

 . (A.10)

Here, F is a sparse matrix consists of identity matrices and thus Fβ can be computed without

matrix multiplication by

Fβ =


β1 − β2

...

βK−1 − βK

 . (A.11)

Its complexity isO(pK2) which is lower thanO(p2K3), the complexity of the standard matrix

multiplication for Fβ. Since (A.11) only requires a series of vector subtraction operations, it

is more efficient than multiplying large matrices. Note that the complexity of (A.10) is also

O(pK2) because D0β and D1β both require O(pK) computations.

Web Appendix.6 Computational Analysis

[Web Figure 1 about here.]
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Figure 1 displays JFM’s empirical computational complexity against the number of features

and sample sizes.

For the first experiment, we increased the number of covariates from 100 to 5,000 while

fixing the sample size at 200 and 500 respectively. Figure 1(a) shows that the JFM computa-

tion time is approximately O(p1.5), which is because Algorithm 1’s per iteration complexity

is linear in p and its rate of convergence is proportional to
√
p. With 5, 000 features, JFM

finishes in 9 seconds on one Intel Xeon Platinum 8268 Processor (2.90 GHz, 24 cores) and

32GB RAM.

We then varied the sample size to 7,000 (5:2 ratio between groups) while the number of

features was fixed at 1,000. In Figure 1(b), the computation time is approximately O(n) for

n > 1, 000, as shown in Proposition 3.5. For n < 1, 000, the computation time is inversely

proportional to n because the problem is ill-posed (p > n) and requires more iterations for

convergence.

Web Appendix.7 Details of Choice of Hyperparameters

The group-ignorant model, group-separate model, SFM, and JFM contain 1, K, 2, and

K+2 hyperparameters respectively. For every method, 5-fold cross-validation on the training

dataset was used to determine the hyperparameters. For the vanilla models (group-separate

and group-ignorant), the lasso penalty term was selected by optimizing cross-validation

AUCs. For the fairness-aware models, we compared a series of evaluation metrics for select-

ing the hyperparameters in cross-validations, including group average of AUCs/accuracies

(arithmetic mean, geometric mean, and harmonic mean), overall AUCs/accuracies on all

samples ignoring group memberships, and the group average of AUCs/accuracies subtract-

ing the disparity of AUCs/accuracies (absolute differences and squared differences). Web

Figures 2, 3, and 4 show the prediction performances in the test datasets with the opti-

mal hyperparameters selected by various metrics. They demonstrate that the performances
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in the test datasets with the hyperparameters optimizing group-average AUCs in cross-

validations were more optimal than those with the hyperparameters optimizing overall

AUCs in cross-validations. Although the hyperparameters chosen to optimize group average

of AUCs subtracting disparities provided better fairness performance in test datasets, it

was often achieved by lowering the performance of the over-represented group. We also

note that the hyperparameters optimizing AUC-based evaluation metrics generated more

robust performances in test datasets than those optimizing threshold-based metrics such

as accuracies and TPRs/TNRs. Therefore, the simulation results use the hyperparameters

optimized by the harmonic mean of group-wise AUCs in cross-validations.

[Web Figure 2 about here.]

[Web Figure 3 about here.]

[Web Figure 4 about here.]

Web Appendix.8 Additional Plots for Simulation Study

[Web Figure 5 about here.]

[Web Figure 6 about here.]

[Web Figure 7 about here.]

[Web Figure 8 about here.]

Web Appendix.9 Additional Simulation Scenarios

Here, we present the results for additional simulation scenarios. The datasets are generated

in the same way as in Section 5.

• Scenario 4 (Sensitivity with respect to baseline prevalence): The outcome preva-

lence ranged from 10 − 50% for group 2, and fixed at 50% for group 1. The sample sizes
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were set at 500 and 200 for group 1 and 2 respectively. The number of features was p = 100,

with half of the features with non-zero coefficients were shared.

• Scenario 1B (Sensitivity with respect to model difference): The number of non-

zero coefficients of the under-represented group ranged from 20 to 40. The number of

shared features fixed at 20, the baseline prevalence were 50% and 30% for the over and

under-represented groups, respectively. The sample sizes were set at 500 and 200 for over

and under-represented groups. The number of features were p = 100.

• Scenario 2B (Sensitivity with respect to sample size): The samples size of the over-

represented group ranged from 500 to 2, 500 with the sample size of the under-represented

group fixed at 200.

• Scenario 3B (Sensitivity with respect to dimensionality): The number of features

p ranged from 50 to 2,000. Everything is the same with the Scenario 3, except that for

each p, 30% of the features had non-zero coefficients.

• Scenario 4B (Sensitivity with respect to baseline prevalence): The baseline preva-

lence of the under-represented group ranged from 50% to 90% while the baseline event

prevalence of the over-represented group was fixed at 50%.

As same as with the Section 5, we evaluated the methods on independent testing datasets

under the same setups with large sample sizes (both 1, 000). AUC was used to evaluate the

predictive performance of each model.

Figure 9 displays the performance of the four methods when varying the baseline event

prevalence of the under-represented group while holding the prevalence of the majority group

fixed. In Figure 9(a), the JFM showed consistently higher AUCs for the under-represented

group than those from all the other models. The AUCs estimated from the group-separate

method showed higher variance when the prevalence is rare. Figure 9(b) indicates that

the AUC of the over-represented group was not impacted for the JFM and group-separate
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methods, remaining consistently higher than those from the SFM and the group-ignorant

models. As seen in Figure 9(c) and 9(d), the JFM achieves overall satisfactory AUCs and

parity between groups with varying sample sizes of the under-represented group. Web Figure

8(a) through 8(d) compares the average of TPR and TNR and disparity in TPR and TNR

differences of the four methods.

[Web Figure 9 about here.]

[Web Figure 10 about here.]

[Web Figure 11 about here.]

[Web Figure 12 about here.]

[Web Figure 13 about here.]

Web Appendix.10 Variable Selection Performances

[Web Figure 14 about here.]

Web Appendix.11 Comparison of the Fusion and Group Similarity Penalties

[Web Figure 15 about here.]

Web Appendix.12 Python Implementation

We provide a Python implementation to reproduce the simulation study results. The codes

will be available at https://github.com/hyungrok-do/joint-fairness-model.

Dependencies:

- anaconda3 (> 4.8.3)

- Cython (> 0.29.8)

- scipy (> 1.6.2)

- numpy (> 1.17.0)

- pandas (> 1.2.4)
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- matplotlib (> 3.1.1)

- scikit-learn (> 0.24.1)

Install: Users have to compile the enclosed cython source code (tested on Windows 10,

macOS Catalina 10.15.7, and Red Hat Enterprise Linux 8.2.) After unzipping or cloning the

git, type

python setup.py build ext --inplace.

Reproducing the results: We provide shell/slurm scripts to run the repeated experiments

to reproduce the results. For the results of scenarios 1 through 4 and the supplementary

results scenarios 1B through 4B, use run-simulation.sh or run-simulation.s. To draw

the plots, run visualization-simulation-results.py.

For the experiments for validation measures, execute run-validation-measure.sh or

run-validation-measure.s. To draw the plots, run visualization-validation-measures.py.

Executing experiment-computation-time-p.py and experiment-computation-time-n.py

will produce the Figure 1 (a) and (b), respectively.
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Figure 1: Experimental Results for Computational Analysis
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Figure 2: Experimental Results for Evaluation Metrics on Scenario 1
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Figure 3: Experimental Results for Evaluation Metrics on Scenario 2
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Figure 4: Experimental Results for Evaluation Metrics on Scenario 3
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Figure 5: Experimental Results for Scenario 1 (TPR + TNR)
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Figure 6: Experimental Results for Scenario 2 (TPR + TNR)
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(a) Average of TPR and TNR of the Under-represented
Group
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50 100 200 400 600 800 1000 1200 1400 1600 1800 2000
Number of Covariates

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00
Group-separate
Group-ignorant
SFM
JFM
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Figure 7: Experimental Results for Scenario 3 (TPR + TNR)
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(b) Average of TPR and TNR of the Over-represented Group
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Figure 8: Experimental Results for Scenario 4 (TPR + TNR)
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(a) AUC of the Under-represented Group
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(b) AUC of the Over-represented Group
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Figure 9: Experimental Results for Scenario 4
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Figure 10: Experimental Results for Scenario 1B
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Figure 11: Experimental Results for Scenario 2B
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(a) AUC of the Under-represented Group
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(b) AUC of the Over-represented Group
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Figure 12: Experimental Results for Scenario 3B
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Figure 13: Experimental Results for Scenario 4B
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(a) Scenario 1 – Coefficients True Positive Rates
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(c) Scenario 2 – Coefficients True Positive Rates
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(d) Scenario 2 – Coefficients True Negative Rates
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(e) Scenario 3 – Coefficients True Positive Rates
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(f) Scenario 3 – Coefficients True Negative Rates

Figure 14: Variable Selection Performances
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(a) Scenario 1 – AUC of the Under-represented Group
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(b) Scenario 1 – AUC of the Over-represented Group
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(d) Scenario 2 – AUC of the Over-represented Group
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(e) Scenario 3 – AUC of the Under-represented Group
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(f) Scenario 3 – AUC of the Over-represented Group

Figure 15: Experimental Results for JFM-Fusion / JFM-Group


