

Supplementary Material

Supplementary Tables

Supplementary Table 1	The nucleotide sec	juences used in this research.
-----------------------	--------------------	--------------------------------

Single-stranded nucleic acids	Sequences (5'-3')				
	TGTGTGGCGGTTCACTATATGTTAAACCAGGTGG				
SARS- $C_0 V_2$ 1b 76 pt scDNA	AACCTCATCAGGAGATGCCACAACTGCTTATGCT				
SARS-COV-2 10 70 III SSDINA	AATAGTGT				
primary gDNA RT Guide A	P-GCAGTTGTGGCATCTCCTG				
primary gDNA RT Guide B	P-CTGATGAGGTTCCACCTGG				
Fluorescent Reporter	FAM-GCGACTTGACATCTCCTGATGAGGTGTGC-				
	BHQ1				
ssDNA target	ATATACTATACAACCTACTACCTCGTATAAATTTT				
SSDNA taiget	TAAATAAATA-FAM				
ssRNA target	AUAUACUAUACAACCUACUACCUCGUAUAAAUU				
-	UUUAAAUAAAUA-FAM				
5'P DNA guide	P-TGAGGTAGTAGGTTGTATAGT				
5'OH DNA guide	HO-TGAGGTAGTAGGTTGTATAGT				
5'P RNA guide	P-UGAGGUAGUAGGUUGUAUAGU				
5'OH RNA guide	HO-UGAGGUAGUAGGUUGUAUAGU				
	TAATACGACTCACTATAGGGGATAAAAGTGCATT				
	AACATTGGCCGTGACAGCTTGACAAATGTTAAAA				
	ACACTATTAGCATAAGCAGTTGTGGCATCTCCTG				
Inserted DNA fragment	ATGAGGTTCCACCTGGTTTAACATATAGTGAACC				
	GCCACACATGACCATTTCACTCAATACTTGAGCA				
	CACTCATTAGCTAATCTATAGAAACGGTGTGACA				
	AGCTACAACACGTTGT				
FW-1b-256 bp	CAGCTATGACCATGATTACGCCAAG				
RV-1b-256 bp	GGGGATCCACAACGTGTTGTAGCTT				
	GGGGAUAAAAGUGCAUUAACAUUGGCCGUGACA				
	GCUUGACAAAUGUUAAAAACACUAUUAGCAUAA				
	GCAGUUGUGGCAUCUCCUGAUGAGGUUCCACCU				
RNA template	GGUUUAACAUAUAGUGAACCGCCACACAUGACC				
	AUUUCACUCAAUACUUGAGCACACUCAUUAGCU				
	AAUCUAUAGAAACGGUGUGACAAGCUACAACAC				
	GUUGUGGAUCCCC				
RT primer	ACAACGTGTTGTAGC				

Detection methods	Nuclease	Operation	Target motif requirement	Guide oligos	Specificity	Lid opening	Portable
DETECTR (Broughton et al., 2020)	LbCas12a	62 °C for 20-30 min; 37 °C for 10 min	PAM	41 nt gRNAs	High	Yes	Yes
CRISPR-FDS (Huang et al., 2020)	LbaCas12a	42 °C for 20 min; 37 °C for 20 min	PAM	41-43 nt gRNAs	Medium	Yes	No
CRISPR/Cas12a-NER (Wang et al., 2020)	FnCas12a	39 °C for30 min; 37 °C for 15 min	PAM	28 nt crRNAs	High	Yes	Yes
STOPCovid (Joung et al., 2020)	AapCas12b	60 °C for 1 h	PAM	111 nt crRNAs	High	No	Yes
CASdetec (Guo et al., 2020)	AaCas12b	42 °C for 30 min; 42 °C for 10-30 min	PAM	103-105 nt sgRNAs	High	No	Yes
SHERLOCK (Zhang et al., 2020)	<i>Lwa</i> Cas13a	42°C for 25 min; 37°C for 30 min	PFS	64 nt crRNAs	High	Yes	Yes
SARS-CoV-2 PAND (Wang et al., 2021)	<i>Pf</i> Ago	55 °C for 10 min; 45 PCR cycles; 95 °C for 20-30 min	No	16 nt gDNAs	High	Yes	No
MULAN (Ye et al., 2022)	PfAgo	65 °C for 30-40 min; 95 °C for 10-15 min	No	16 nt gDNAs	High	No	Yes
MAIDEN	PbAgo/KmAgo	42 °C for 1 h	No	19 nt gDNAs	High	No	Yes

Supplementary Table 2 Comparison of reported CRISPR-based and thermophilic Ago-based methods for SARS-CoV-2 detection.

Supplementary Figures

Supplementary Figure 1. Phylogenetic tree analysis based on the amino acid sequences of the characterized mesophilic Agos. Candidate Agos that target DNA are highlighted in yellow. Candidates for universal Ago are highlighted in orange. Ago from *Brevibacillus_laterosporus* (*Bl*Ago, WP_096885432.1); Ago from *Clostridium butyricum* (*Cb*Ago, WP_058142162.1); Ago from *Paenibacillus borealis* (*Pb*Ago, WP_042211195.1); Ago from *Pseudobutyrivibrio ruminis* (*Pr*Ago, WP_099412865.1); Ago from *Kurthia massiliensis* (*Km*Ago, WP_010289662.1); Ago from *Domibacillus enclensis* (*De*Ago, WP_052698403.1); Ago from *Bacillus sp. FJAT-42315* (*Bsf*Ago, WP_100402176.1); Ago from *Paenibacillus odorifer* (*Po*Ago, WP_076305724.1).

A	M BIAgo CbAgo PbAgo PrAgo	В	M KmAgo DeAgo BsfAgo PoAgo
95 kDa-		140 kDa- 100 kDa- 75 kDa-	=
72 kDa-		60 kDa-	
		45 kDa-	
55 kDa-	ma line	35 kDa-	
43 kDa-		25 kDa-	
26 kDa- 17 kDa-		20 kDa-	

Supplementary Figure 2. SDS-PAGE analysis of purified Agos. (A) Candidate Agos that target DNA: *Bl*Ago, *Cb*Ago, *Pb*Ago, *Pr*Ago. (B) Candidates for universal Ago: *Km*Ago, *De*Ago, *Bsf*Ago, *Po*Ago.

А

Supplementary Figure 3. *In vitro* cleavage activity determination of *Bl*Ago, *Cb*Ago, *Pb*Ago and *Pr*Ago. (A) Synthetic 5'P gDNA and ssDNA targets sequence. (B) The gel electrophoresis result of the Ago cleavage experiment.

Supplementary Figure 4. *In vitro* cleavage activity determination of *Km*Ago, *De*Ago, *Bsf*Ago and *Po*Ago. (A) Synthetic 5'P and 5'OH gDNA, gRNA and ssDNA, RNA targets sequence. (B-E) The gel electrophoresis result of the Ago cleavage experiment: (B) DNA-guided cleavage of DNA target; (C) RNA-guided cleavage of DNA target; (D) DNA-guided cleavage of RNA target; (E) RNAguided cleavage of RNA target.

Supplementary Figure 5. Screening of enzymes for reverse transcription. (A) Transcription efficiency of the five reverse transcriptases. Error bars, standard deviation (SD) of replicates (n = 3). (B) Cleavage efficiency of *Pb*Ago in five reverse transcription systems.

Supplementary Figure 6. Optimization of an isothermal detection reaction of mesophilic Agos. (A) Fluorescence values of *Pb*Ago cascade cleavage under different concentrations of Mg^{2+} . (B) Fluorescence values of *Km*Ago cascade cleavage under different concentrations of Mg^{2+} . Data were collected from three independent experiments and are presented as the Mean \pm SD.

Supplementary Figure 7. Optimization of an isothermal detection reaction of KmAgo. (A-C) Fluorescence values of KmAgo cascade cleavage under different concentrations of gDNA (A), KmAgo (B), and tDNA (C). Data were collected from three independent experiments and are presented as the Mean \pm SD.

Supplementary Figure 8. The gel electrophoresis result of transcribed RNA. EG, experimental group, including unpurified and purified 200bp RNA template after transcription. CG, control group, unpurified RNA fragment transcribed from the DNA template that comes with the transcription kit.

Supplementary References

- Broughton, J.P., Deng, X., Yu, G., Fasching, C.L., Servellita, V., Singh, J., et al. (2020). CRISPRCas12-based detection of SARS-CoV-2. *Nat. Biotechnol.* 38(7), 870-874. doi: 10.1038/s41587020-0513-4.
- Guo, L., Sun, X., Wang, X., Liang, C., Jiang, H., Gao, Q., et al. (2020). SARS-CoV-2 detection with CRISPR diagnostics. *Cell Discov.* 6, 34. doi: 10.1038/s41421-020-0174-y.
- Huang, Z., Tian, D., Liu, Y., Lin, Z., Lyon, C.J., Lai, W., et al. (2020). Ultra-sensitive and highthroughput CRISPR-p owered COVID-19 diagnosis. *Biosens. Bioelectron*. 164, 112316. doi: 10.1016/j.bios.2020.112316.
- Joung, J., Ladha, A., Saito, M., Segel, M., Bruneau, R., Huang, M.W., et al. (2020). Point-of-care testing for COVID-19 using SHERLOCK diagnostics. *medRxiv*. doi: 10.1101/2020.05.04.20091231.
- Wang, F., Yang, J., He, R., Yu, X., Chen, S., Liu, Y., et al. (2021). PfAgo-based detection of SARSCoV-2. *Biosens. Bioelectron.* 177, 112932. doi: 10.1016/j.bios.2020.112932.
- Wang, X., Zhong, M., Liu, Y., Ma, P., Dang, L., Meng, Q., et al. (2020). Rapid and sensitive detection of COVID-19 using CRISPR/Cas12a-based detection with naked eye readout, CRISPR/Cas12a-NER. Sci. Bull. (Beijing) 65(17), 1436-1439. doi: 10.1016/j.scib.2020.04.041.
- Ye, X., Zhou, H., Guo, X., Liu, D., Li, Z., Sun, J., et al. (2022). Argonaute-integrated isothermal amplification for rapid, portable, multiplex detection of SARS-CoV-2 and influenza viruses.

Biosens. Bioelectron. 207, 114169. doi: 10.1016/j.bios.2022.114169.

Zhang, F., Abudayyeh, O.O., and Gootenberg, J.S. (2020). A protocol for detection of COVID-19 using CRISPR diagnostics. *Broad Institute* 8.