

Supplemental Figure 1. MKN cell response to IL-17A, IL-17F or IL-17A/F. A. MKN cells were simulated with IL-17A, IL-17F or IL-17A/F (100ng/mL). B. Various stimuli (IL-17 cytokines and/or TNF α at 2ng/ml, IL-22 at 200ng/mL, or PMSS1 at an MOI of 50) were added to serum-starved MKN cells for 8 hours. qPCR was performed to measure expression of *CXCL8*, *S100A8*, *PIGR* and *NOX1* (Relative units and is relative to expression from cells treated with equal concentration of the carrier (BSA)). Data shown as \pm SEM and are representative of 2 independent experiments. Statistical analysis was performed with one-way ANOVA and Tukey's test for multiple comparisons.

Supplemental Figure 2. In vitro Th17 differentiation assays do not suggest IL-17 impacts *il17a* and *Il21* expression. T cells were differentiated as described in the methods and then either anti-IL-17A (200 ng/ml) or rIL-17A (10 ng/ml) was added at 48 hrs. Gene expression was assessed by qPCR at 24 hours later.

Supplemental Table I. Nanostring (Ms_Immunology Panel) was used to determine the Ratio and Log2Fold change of genes associated with innate lymphoid cells and myeloid cells in $Il17ra^{-/-}$ vs WT (C57BL/6J) gastric tissue at 3 months post infection with PMSS1 strain of *H. pylori*. Values highlighted in red were significantly different between genotypes.

ILC Markers (innate lymphoid cells)

ILC	GENE	% SAMPLES ABOVE THRESHOLD	RATIO	LOG2 FOLD CHANGE	P-VALUE
	klrb1 (encodes NK1.1)	0 %	-1.09	-0.12	0.73608887
	Kit (encodes CD117)	100 %	1.1	0.14	0.60356021
NK CELLS	Fcgr3 (encodes Fc Receptor gamma 3)	100 %	1.31	0.39	0.1695715
	Klrd1 (encodes CD94)	100 %	-1.08	-0.11	0.71743888
	Ncam1 (encodes CD56)	100 %	-1.01	-0.02	0.89048237

Myeloid Cell Markers

CELL TYPE	GENE	% SAMPLES ABOVE THRESHOLD	RATIO	LOG2 FOLD CHANGE	P-VALUE
NEUTROPHILS	S100a8	100 %	-14.02	-3.81	0.00169777
	S100a9	100 %	-5.5	-2.46	0.00158813
MACROPHAGES	Cd14	100 %	-1.33	-0.41	0.23644663
	CD163	100 %	1.03	0.05	0.787763
	Emr1	100 %	1.41	0.49	0.02996789
	Itgam	100 %	1.27	0.35	0.04950276
	(endodes CD11b)				
DENDRITIC CELLS	Itgax	100 %	1.38	0.47	0.17926033
	(endodes CD11c)				
GENERAL MARKERS	Ccr2	100 %	1.33	0.41	0.079329

Supplemental Figure 3. In the presence of yeast colonization, IL-17RA expression on T cells is required to control bacterial burden but not required to control gastric inflammation in the mouse model. A) Yeast infection was visible much more frequently in $Cd4^{cre}II17ra^{ll/ll}$ than $II17ra^{ll/ll}$. When yeast was visible in $II17ra^{ll/ll}$ (uninfected mice, 5) these were littermates of the $Cd4^{cre}II17ra^{ll/ll}$ mice. Yeast observed in the stomachs of a number of $Cd4^{cre}II17ra^{ll/ll}$ mice are pictured (based on morphology and literature search, the yeast may be Kazachstania pintolopesii.B) Bacterial burden was measured in $II17ra^{ll/ll}$ (WT) and $Cd4^{cre}II17ra^{ll/ll}$ mice that were infected with PMSS1 for 3 months. CFU per gram of stomach was calculated and is presented \pm SEM. Statistical analysis was performed using Mann Whitney U unpaired t test on log transformed CFU/gram data. No significant differences between the groups of infected mice (p=0.056). Total inflammation is presented. Statistical analysis was performed using Kruskal-Wallis test's and the Dunn's multiple comparisons test. Significantly more inflammation present compared to the uninfected controls (mean \pm SEM). C) qPCR was used to measure II21, II17a and Ifng transcripts in the gastric tissue of H. pylori-infected $II17ra^{ll/ll}$ (WT) and $Cd4^{cre}II17ra^{ll/ll}$ mice. Relative units are calculated relative to Gapdh and calibrated to uninfected WT mice. Statistical analysis was performed using an ANOVA analysis and Tukey's multiple comparisons test. Error bars represent \pm SEM; $*P \le 0.05$, **, $P \le 0.01$ compared to the uninfected group.