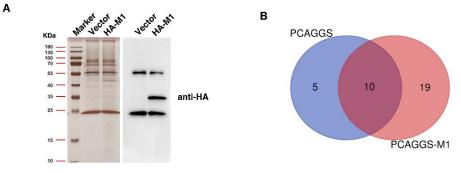
1	Supplementary Materials for
2	
3	PSMD12-mediated M1 ubiquitination of influenza A virus at K102 regulates
4	viral replication
5	
6	Xianfeng Hui ^{ab} , Lei Cao ^{ab} , Ting Xu ^{ab} , Lianzhong Zhao ^{ab} , Kun Huang ^{ab} , Zhong
7	Zou ^{abc} , Peilei Ren ^{ab} , Haiying Mao ^{ab} , Ying Yang ^{abc} , Shuo Gao ^{ab} , Xiaomei Sun ^{ab} ,
8	Xian Lin ^{ab*} and Meilin Jin ^{abcd*}
9	^a State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural
10	University, Wuhan, China
11	^b College of Animal Medicine, Huazhong Agricultural University, Wuhan, China
12	^c Key Laboratory of development of veterinary diagnostic products, Ministry of
13	Agriculture, Wuhan, Hubei, People's Republic of China
14	^d The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
15	
16	* Correspondence: jinmeilin@mail.hzau.edu.cn (MJ); yoya12@163.com (XL)
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	This PDF file includes:
27	Supplementary Table, Figures and Figure legends

28 Supplementary Table

Gene ID	Gene	protein name	NCBI accession
	abbreviation		number
429558	HIST1H2B5L	histone cluster 1, H2B-V-like	XM_004934773
		(similar to human histone cluster	
		1, class H2B genes)	
395853	HSPA8	heat shock 70kDa protein 8	NM_205003
420039	KRTC42L	keratin, type I cytoskeletal 42-	-
		like	
427882	HISTH1	histone H1	NM_001396439
395855	CALM2	calmodulin 2	NM_205005
423504	HSP70	heat shock 70kDa protein 2	NM_001006685
374193	GAPDH	glyceraldehyde-3-phosphate	NM_204305
		dehydrogenase	
424115	DNAJC10	DnaJ heat shock protein family	XM_046943855
		(Hsp40) member C10	
419963	MYO1D	myosin ID	XM_040653400
417425	PSMD12	proteasome 26S subunit, non-	NM_001316341
		ATPase 12	
418016	RPL3	ribosomal protein L3	NM_001006241
420001	RPL23	ribosomal protein L23	NM_001321599
418710	RPL31	ribosomal protein L31	NM_001277755
416275	RPS14	ribosomal protein S14	XM_015293785
770103	TPM3	tropomyosin 3	NM_001245927
100859627	HNRNPA3	heterogeneous nuclear	XM_025152378
		ribonucleoprotein A3	
-	A0A1D5PQ92	Uncharacterized protein	-
-	A0A1D5PK18	Uncharacterized protein	-
-	TBA1	Tubulin alpha-1 chain	-

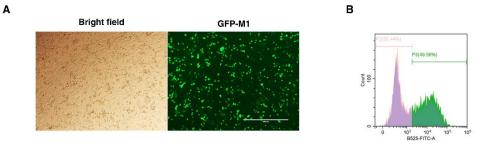
Table S1. Candidate Host proteins for Further Analysis


Name	Sense sense (5'-3')	antisense (5'-3')
siPSMD12-1	GCGUAUCUUAGUGGCU	UAUAGCCACUAAGAUACG
	AUATT	CTT
siPSMD12-2	GCAGAUGAGGCUCUGU	UAGACAGAGCCUCAUCU
	CUATT	GCTT
siPSMD12-3	CCACACAUCUCAUUGCC	UUGGCAAUGAGAUGUGU
	AATT	GGTT
shRNA-1	Target sequence (DNA): GGTTACCGAAGGCAAGATTTA	
shRNA-2	Target sequence (DNA): GCA	CAGCTTCTGGATCTATCT
shRNA-3	Target sequence (DNA): GCA	CTACAGAGCAATATATGA

32 Table S2. siRNA target PSMD12 in this study.

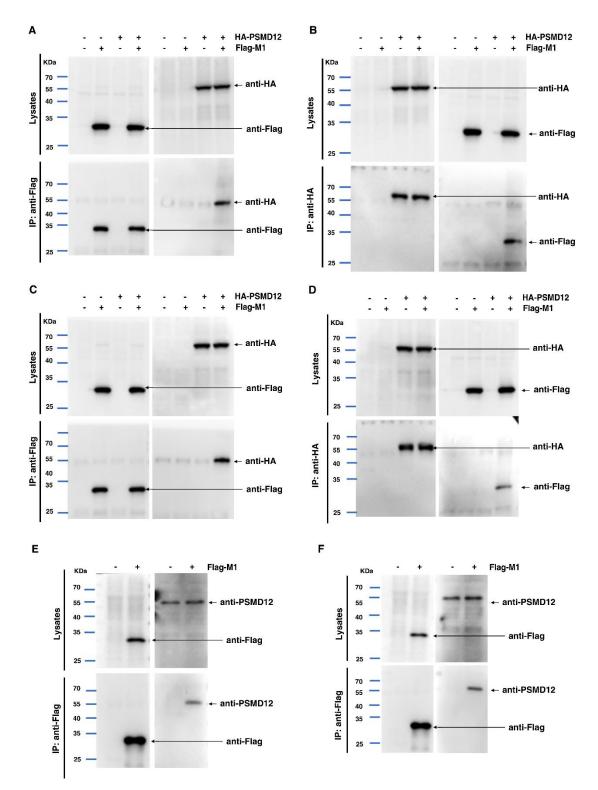
Table S3. The main primers used in this study.

Name	Sequence (5'-3')
K21R-F	CATCCCATCAGGCCCCCTCAGAGCCGAG
K21R-R	GTTTCTGCGCGATCTCGGCTCTGAGGGG
K35R-F	GATGTGTTTGCAGGAAGAAACGCTG
K35R-R	CCTCGAGATCAGCGTTTCTTCCTG
K98R-F	GGGCAGTTAGGCTATATAAGAAGCTG
K98R-R	CTTATATAGCCTAACTGCCCTATCC
K101R-F	GTTAAGCTATATA <mark>G</mark> GAAGCTGAAAAG
K101R-R	CTCTTTTCAGCTTCCTATATAGC
K102R-F	GCTATATAAGAGGCTGAAAAGAG
K102R-R	CTCTTTTCAGCCTCTTATATAGC
K113R-F	GGAGCTAGGGAGGTCGCACTCAGTTAC
K113R-R	GTGCGACCTCCCTAGCTCCATGG
K187R-F	CTACAGCTAGGGCTATGGAGCAGATGG
K187R-R	CCATAGCCCTAGCTGTAGTGCTGGC
K242R-F	CCTACCAGAGACGAATGGGAGTGCAG
K242R-R	CCCATTCGTCTCTGGTAGGCCTGC
K252R-F	GATGCAGCGATTCAGGTGAGGATC
K252R-R	GCCCGGGATCCTCACCTGAATCGC
qRT-PCR-IAV-M1-F	CTTCTAACCGAGGTCGAAACG
qRT-PCR-IAV-M1-R	GGCATTTTGGACAAAKCGTCTA
Uni12 primer	AGCAAAAGCAGG


36 Supplementary Figures and Figure legends

Supplementary Figure 1. Identification of influenza virus M1-associated factors
 by immunoprecipitation-mass spectrometry (IP/MS). (A) The
 coimmunoprecipitated proteins were separated and visualised by silver staining (left)
 and western blotting (right). (B) Venn diagram.

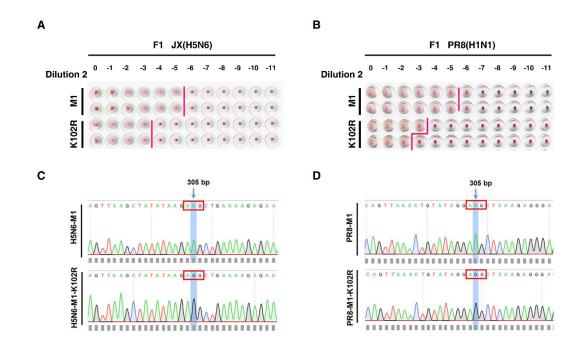
42


43

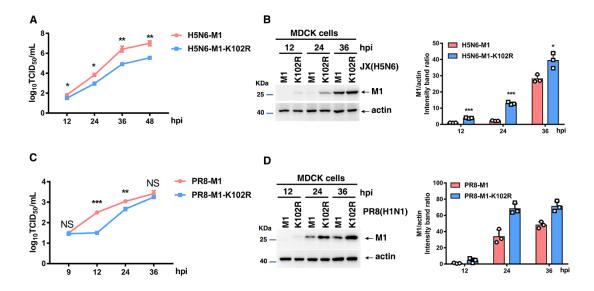
44 Supplementary Figure 2. Transfection efficiency of Lip2000 reagent on DF1 cells.

45 (A) Fluorescence observation 24 hours after transfection of pEGFP-M1 plasmid into

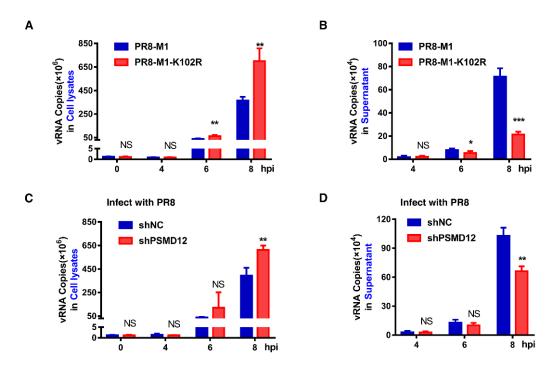
46 DF1 cells using Lip2000 reagent. (B) The transfection efficiency was determined by
 47 flow cytometry analysis.


48

49

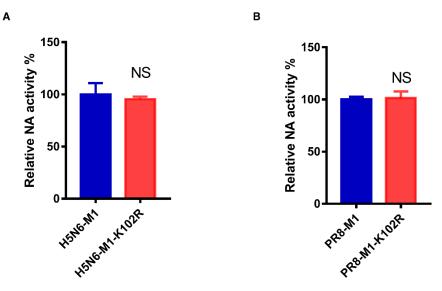

50 **Supplementary Figure 3. Full western blot figure reference to Figure 3.** (A, 51 reference to Figure 3A) DF1 cells were transfected with plasmids encoding HA-52 PSMD12 and Flag-M1. The lysates were subjected to anti-Flag IP and analysed via 53 western blotting (WB). (B, reference to Figure 3B) DF1 cells were transfected with 54 plasmids encoding HA-PSMD12 and Flag-M1. The lysates were subjected to anti-HA 55 IP and analysed via WB. (C, reference to Figure 3F) HEK293T cells were transfected 56 with plasmids encoding HA-PSMD12 (human source) and Flag-M1. The lysates were

subjected to anti-Flag IP and analysed via WB. (**D**, reference to Figure 3G) HEK293T cells were transfected with plasmids encoding HA-PSMD12 and Flag-M1. The lysates were subjected to anti-HA IP and analysed via WB. (**E**, reference to Figure 3C) DF1 cells were transfected with a plasmid encoding Flag-M1, and the lysate was subjected to IP and analysed for endogenous PSMD12 via WB. (**F**, reference to Figure 3H) HEK293T cells were transfected with a plasmid encoding Flag-M1, and the lysate was subjected to IP and analysed for endogenous PSMD12 via WB. (**F**, reference to Figure 3H) HEK293T cells were transfected with a plasmid encoding Flag-M1, and the lysate was subjected to IP and analysed for endogenous PSMD12 via WB.


65

Supplementary Figure 4. H5N6 and PR8 M1-K102R mutant viruses obtained by infectious cloning. (A) Hemagglutination test was performed on the allantoic fluid of chicken embryos infected with the first-generation H5N6 virus plasmid recombinant virus. (B) Hemagglutination test was performed on the allantoic fluid of chicken embryos infected with the first-generation PR8 virus plasmid recombinant virus. (C) H5N6 and it mutants viral RNA sequence was sequenced by Sanger method. (D) PR8 and it mutants viral RNA sequence was sequenced by Sanger method.

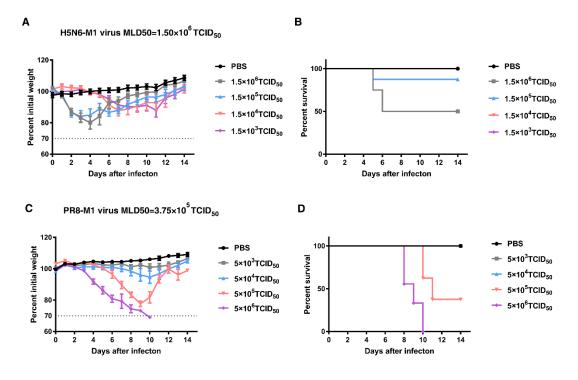
Supplementary Figure 5. Mutation at the M1 K102 site alters viral replication in 75 cells. (A, B) MDCK cells were infected with H5N6-M1 or H5N6-M1-K102R virus, 76 77 the supernatant was collected at different time points for TCID₅₀ measurement, and the cell lysates were analysed by western blotting (WB). (C, D) MDCK cells were 78 infected with PR8-M1 or PR8-M1-K102R virus, the supernatant was collected at 79 different time points for TCID50 measurement, and the cell lysates were analysed by 80 WB. Error bars, mean ± SD of three experiments. All by two-tailed Student's t test; *p 81 < 0.05; **p < 0.01; ***p < 0.001. 82 83



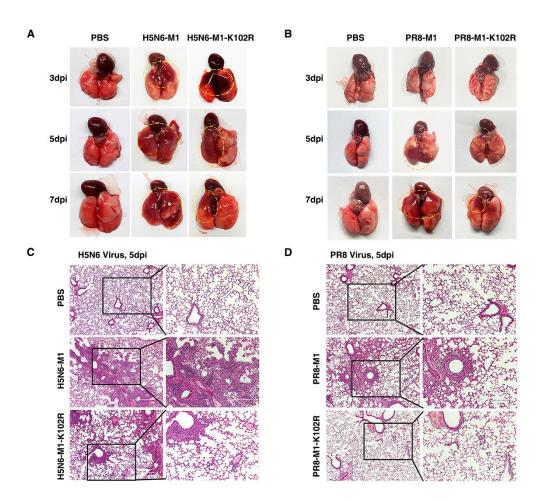
84

Supplementary Figure 6. M1 K102 mutation or knockdown PSMD12 restricts
virus release. (A, B) A549 cells were infected with PR8-M1 or PR8-M1-K102R virus
(MOI of 5), the cell lysates (A) and supernatant (B) were collected at different time

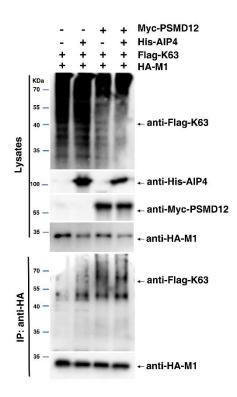
points and analysed vRNA of M1 by qRT-PCR. (C, D) A549 cells were infected with PR8-M1 virus at MOI=5. The cell lysates (C) and supernatant (D) were collected at different time points and analysed vRNA of M1 by qRT-PCR. All by two-tailed Student's t test; *p < 0.05; **p < 0.01; ***p < 0.001.



94 Supplementary Figure 7. Detection of NA activity of influenza virus. (A, B) The NA 95 activity of H5N6 (A) and PR8 (B) viruses was determined as described in materials 96 and methods (NA activity assay). The results are displayed as mean ± SD of three 97 independent experiments. The comparisons were performed with t tests.



100 Supplementary Figure 8. MLD50 dose of PR8 and H5N6 influenza viruses. (A, B)


Six-week-old C57/BL6 mice were intranasally infected with 10-fold serially diluted H5N6-M1 virus. Body weight (A) and survival (B) were monitored daily for two
weeks (n=8). (C, D) Six-week-old C57/BL6 mice were intranasally infected with 10fold serially diluted PR8-M1 virus. Body weight (C) and survival (D) were monitored
daily for two weeks (n=8).

Supplementary Figure 9. Gross pathology and histopathology. Six-week-old 108 109 C57/BL6 mice were intranasally infected with WT and M1-K102R mutant H5N6 or PR8 viruses at a dose of 2×MLD50. (A, B) Macroscopic appearance of lung tissue of 110 C57/BL6 mice at 3, 5, and 7 dpi with H5N6 (A) or PR8 (B) virus. Post-mortem 111 112 findings revealed focal dark red lesions (circled). (C, D) Lung tissues of C57/BL6 113 mice challenged with H5N6-M1 or H5N6-M1-K102R virus (C) and PR8-M1 or PR8-M1-K102R virus (D) at 5 dpi. H&E staining shows inflammatory cell infiltration and 114 moderate interstitial pneumonia with thickened alveolar septa. 115

Supplementary Figure 10. AIP4 could not synergistically promote K63-linked ubiquitination of M1 with PSMD12. HEK293T cells were transfected with the indicated plasmid combinations to measure ubiquitination of M1.