Science Advances

Supplementary Materials for

Plasticity in astrocyte subpopulations regulates heroin relapse

Anna Kruyer et al.

Corresponding author: Anna Kruyer, kruyer@musc.edu

Sci. Adv. **8**, eabo7044 (2022) DOI: 10.1126/sciadv.abo7044

This PDF file includes:

Figs. S1 to S7 Table S1

SUPPLEMENTARY MATERIALS

Fig. S1. Astrocyte motility and GLT-1 expression were unchanged during reinstated sucrose seeking. Co-registration of labeled NAcore astroglia with Synapsin I was not changed after extinction of sucrose self-administration or during 15 min of cue-reinstated sucrose seeking (A, Kruskal-Wallis=2.153, p=0.341). (B) GLT-1 expression was unchanged after operant training with sucrose (Kruskal-Wallis=0.7336, p=0.693). (C) Surface-proximal GLT-1, shown as percent of total GLT-1 from each astrocyte, was reduced after extinction from sucrose self-administration (Kruskal-Wallis=8.056, p<0.05). (D) Cued reinstatement of sucrose seeking did not change the proportion of astroglia expressing high levels of surface-proximal GLT-1 (<10%: Kruskal-Wallis=1.464, p=0.4865; 10-20%: Kruskal-Wallis=1.298, p=0.5428; 20-30%: Kruskal-Wallis=2.75, p=0.2667). (E) Co-registration of GLT-1 with the presynaptic marker Synapsin I was not changed by sucrose training (Kruskal-Wallis=0.3724, p=0.830). When synaptic (F, Kruskal-Wallis=2.950) and extrasynaptic (G, Kruskal-Wallis=2.950) fractions of surface GLT-1 were analyzed separately, we found no change in sucrose-trained rats compared with yoked controls. (H) shows ratio of extrasynaptic:synaptic GLT-1 (Kruskal-Wallis=2.950). N shown in (A) as cells/animals. *p<0.05 compared to yoked control using Dunn's test. Yoked, yoked cues; Ext, extinguished; 15m Cue, 15-min cued reinstatement.

Fig. S2. Heroin self-administration and extinction training did not impact Synapsin I immunoreactivity in the NAcore. Kruskal-Wallis=0.4046, p=0.9393. N shown in bars as frames/animal.

Fig. S3. (**A**) Principal component analysis showing individual data points organized according to dimensions 1 and 2, which account for 50.3% and 49.7% of the data variance, respectively. (**B**) Dendrogram shows three clusters representing type 1 (blue), type 2 (gray), and type 3 (orange) astroglia.

Fig. S4. Astroglial subpopulations were not altered by operant training with sucrose, but were abolished by ezrin or GLT-1 oligo treatment. (**A**) Astroglial clusters were not altered by operant training with sucrose (Chi²=2.818 p=0.2444 Yoke vs. Ext, Chi²=4.535 p=0.1036 Yoke vs. 15m). (**B**) Compared with astroglial subpopulations during reinstatement after control oligo treatment (left), ezrin or GLT-1 oligo treatment abolished subpopulations characterized by high synaptic adjacency (blue) or high surface-proximal GLT-1 (gray), respectively (Chi²=17.87 *p=0.0002 Ez vs. Con, Chi²=23.60 *p<0.001 GLT-1 vs. Con, Chi²=13.01 #p=0.003 GLT-1 vs. Ez). In (**A**, right panel), Yoke, yoked cues; Ext, extinguished; 15m, 15-min cued reinstatement. In (**B**, right panel), Con, control oligo; Ez, ezrin oligo; GLT-1, GLT-1 oligo.

Fig. S5. Astroglial transduction with AAV5/GfaABC1D-Lck-GFAP labeled the astroglial membrane (green). Astrocytes identified using this marker are outlined in white (left panel). (Right panel) In the same frame, immunolabeling for GLT-1 (yellow) shows astrocytes with high (red outline) and low levels of GLT-1 expression (white outline).

Fig. S6. Cell-type specific dynamics in astrocyte-synapse and GLT-dendrite association are largely independent of sex. (**A**) No sex differences were detected in D1- or D2-synaptic coregistration by NAcore astroglia after operant training with heroin (D1-Cre: Kruskal-Wallis=49.82, p<0.0001, Dunn's post-hoc test for sex>0.05 for all treatments; D2-Cre: Kruskal-Wallis=13.05, p=0.0229, Dunn's post-hoc test for sex>0.05 for all treatments). (**B**) Dendritic association of GLT-1 did not differ by sex, except in D1-Cre rats after extinction training (D1-Cre: Kruskal-Wallis=13.46, p=0.0194, **p<0.01 Male Ext vs. Female Ext; D2-Cre: Kruskal-Wallis=30.60, p<0.0001, Dunn's post-hoc test for sex>0.05 for all treatments). Sal, yoked saline; Ext, extinguished; Rst, 15-min cued reinstatement. Animal N shown below bars in (**A**) as (male, female).

Fig. S7. Synapse-selective proximity of astrocytes regulates seeking. Extinguished heroin seeking is characterized by astrocytes exhibiting a high degree of association with synapses from D1-MSNs (left), but retraction from synapses from D2-MSNs (right). High synaptic co-registration by astroglial processes low in GLT-1 (orange) is predicted to induce autoinhibition through spatial buffering of glutamate toward presynaptic inhibitory autoreceptors (*36*). The high co-registration of astroglia with D1-MSN synapses during extinction training is also predicted to shield post-synaptic NR2B receptors (yellow) that produce postsynaptic potentiation when stimulated by glutamate (*33*). These two functions would suppress D1-MSN potentiation during extinction training. Instead, retraction from D2-MSNs after extinction of heroin seeking engages post-synaptic potentiation of D2-MSNs through stimulation of postsynaptic NR2B (*33*), synaptic

recruitment (*41*), and loss of autoinhibitory mechanisms at terminals synapsing onto D2-MSNs (*36*). These hypotheses are supported by data showing potentiation of D2-MSNs, but not D1-MSNs during extinction training (*26, 46*). Reversal of this pattern during cued reinstatement would permit potentiation of D1-MSNs and block signaling through D2-MSNs, permitting seeking behavior (*10*).

D1-Cre						D2-Cre					
Saline		Extinguished		Reinstated		Saline		Extinguished		Reinstated	
Astro-Syn-Dendrite	Astro-GLT-Dendrite										
Co-Reg (% vol)											
0.0300	0.0076	0.7001	0.7365	0.1932	0.2788	0.1307	0.2724	0.0287	0.3753	0.1782	0.1425
0.2456	0.1780	0.0605	0.1774	0.1327	0.5443	0.1984	0.3842	0.0155	0.1248	0.1163	0.7739
0.5098	0.2482	0.3413	1.1587	0.1322	0.0502	0.1127	0.1744	0.0455	0.2622	0.3429	0.3991
0.0305	0.0043	0.6727	0.7868	0.0913	0.2309	0.3452	0.4887	0.3680	0.0975	0.3757	0.1197
0.2540	0.2729	0.2288	0.6566	0.1210	0.0947	0.2270	0.1807	0.0200	0.1809	0.2075	0.3220
0.0708	0.0527	0.2227	0.9594	0.1350	0.5158	0.2557	0.2551	0.0304	0.2420	1.4346	0.7354
0.0123	0.0277	0.0679	0.8191	0.6213	0.3455	0.3475	0.2966	0.0368	0.0078	0.0115	0.5105
0.0155	0.0398	0.5954	0.6045	0.7099	0.6298	0.1069	0.0336	0.0127	0.1029	0.0477	0.0883
0.0144	0.0020	1.0266	0.1080	0.0482	0.3122	0.3589	0.1326	0.0151	0.0145	0.3453	0.2403
0.2441	0.1499	0.1108	0.0421	0.0080	0.0475	0.0768	0.1742	0.0294	0.2039	1.1386	0.1740
0.2063	0.1212	1.9399	0.0129	2.4966	0.5931	0.1889	0.2818	0.0124	0.4163	0.4940	0.0402
0.0212	0.0581	0.1929	0.2035	0.0837	0.1153	1.5075	2.9899	0.0388	0.1537	0.0353	0.0314
0.1315	0.1291	0.2483	0.0004	0.0262	0.0093	5.6845	1.5592	0.0611	0.0035	0.3478	0.0415
0.0793	0.0665	0.1987	0.0241	0.0108	0.0082	2.0164	0.2007	0.0687	0.0054	0.1945	0.2818
0.1483	0.1803	0.1978	0.0131	0.0059	0.0021	0.3009	0.1548	0.0110	0.0584	0.0424	0.1492
0.0067	0.0151	0.2338	0.1819	0.0194	0.0102	1.1487	0.3968	0.0391	0.0448	0.0847	0.0475
0.0293	0.0416	0.1124	0.1596	0.0432	0.0984	0.4489	0.5708	0.0705	0.0551	0.2491	0.0681
0.1392	0.1404	0.9283	0.0909	0.0108	0.0757	0.3398	0.1734	0.1116	0.3930	0.2068	0.0527
0.0670	0.0305	0.0538	0.0847	0.1098	0.1977	0.5152	1.1983	0.0172	0.0019	0.1428	0.0393
0.4016	0.2204	0.2374	0.0477	3.9462	0.2067	0.2718	0.3590	0.0710	0.1988	0.1213	0.1213
0.2838	0.4279	0.9920	0.0307	0.2386	0.0353	0.2250	0.1535	0.1009	0.0544	0.0052	0.0276
1.1285	0.3126	0.4975	0.0118	1.0601	0.5309	1.2654	0.5146	0.2368	0.0877	0.3853	0.0165
0.3527	0.2036	0.2042	0.0075	0.0956	0.1388	2.2984	1.7794	0.0798	0.3014	0.3851	0.1269
0.0352	0.1150	0.4574	0.0740	0.3731	0.2772	0.5759	0.1510	0.0544	0.0044	0.1684	0.0301
0.0048	0.1748	0.5457	0.0033	0.2509	0.2463	0.1536	0.5491	0.0236	0.0132	0.2111	0.0072
0.0941	0.3145	0.2411	0.0600	0.2393	0.0616	0.1875	0.2406	0.0797	0.0416		
0.2877	0.2814	0.1222	0.0089	0.1581	0.0183	0.3488	0.2252	0.0117	0.0136		
0.0284	0.2051	0.8550	0.0477	0.0052	0.0247	0.4335	0.3767	0.0328	0.0070		
1.5922	0.3352	0.0949	0.0229	0.6927	0.4945	0.5357	0.6957	0.0184	0.0157		
0.8063	0.2548			0.1775	0.1694	0.1224	0.1730	0.0357	0.0801		
0.1473	0.3016			1.2145	0.3333	0.2860	1.2131	0.0293	0.0202		
0.0076	0.0951			0.0673	0.0841	0.1845	0.4097	0.0047	0.0005		
0.0311	0.1405			0.1652	0.0209	0.0565	0.0780	0.0023	0.0039	J	
0.4217	1.5885			0.0536	0.0818	0.1340	0.0199				
1.3833	0.3813			0.1204	0.0696	1.0013	0.1578	J			
0.2289	0.4215			0.0628	0.0153						
0.1299	0.1208			0.2941	0.0977	1					
0.0039	0.1085										
0.0373	0.1434										
0.0312	0.0317										
0.0822	0.2388										
0.0097	0.0025										
0.0040	0.0594										
0.0021	0.0123]									

 Table S1. Dendrite-specific co-registration values.
 Triple co-registration of astroglia with

 Synapsin I and labeled dendrites, as well as triple co-registration of astroglia with GLT-1 and
 Iabeled dendrites from D1- and D2-Cre rats are presented as % astrocyte volume.